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Performance Analysis of the Gaussian
Quasi-Maximum Likelihood Approach for

Independent Vector Analysis
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Abstract—Maximum Likelihood (ML) estimation requires pre-
cise knowledge of the underlying statistical model. In Quasi
ML (QML), a presumed model is used as a substitute to the
(unknown) true model. In the context of Independent Vec-
tor Analysis (IVA), we consider the Gaussian QML Estimate
(QMLE) of the demixing matrices set and present an (approx-
imate) analysis of its asymptotic separation performance. In
Gaussian QML the sources are presumed to be Gaussian, with
covariance matrices specified by some “educated guess”. The
resulting quasi-likelihood equations of the demixing matrices
take a special form, recently termed an extended “Sequentially
Drilled” Joint Congruence (SeDJoCo) transformation, which is
reminiscent of (though essentially different from) classical joint
diagonalization. We show that asymptotically this QMLE, i.e.,
the solution of the resulting extended SeDJoCo transforma-
tion, attains perfect separation (under some mild conditions)
regardless of the sources’ true distributions and/or covariance
matrices. In addition, based on the “small-errors” assumption,
we present a first-order perturbation analysis of the extended
SeDJoCo solution. Using the resulting closed-form expressions
for the errors in the solution matrices, we provide closed-form
expressions for the resulting Interference-to-Source Ratios (ISRs)
for IVA. Moreover, we prove that asymptotically the ISRs depend
only on the sources’ covariances, and not on their specific
distributions. As an immediate consequence of this result, we
provide an asymptotically attainable lower bound on the resulting
ISRs. We also present empirical results, corroborating our an-
alytical derivations, of three simulation experiments concerning
two possible model errors - inaccurate covariance matrices and
sources’ distribution mismodeling.

Index Terms—Joint blind source separation, independent vec-
tor analysis, quasi maximum likelihood, extended SeDJoCo,
perturbation analysis.

I. INTRODUCTION

The Blind Source Separation (BSS) problem [1]–[4] con-
sists of retrieving signals of interest, termed the sources, from
a single dataset consisting of their mixtures. One of the most
popular and common paradigms for solving the BSS problem
is Independent Component Analysis (ICA) [4]–[6], where
the sources are assumed to be (only) mutually statistically
independent random processes, and the mixtures are assumed
to be linear combinations thereof, where the linear mixing
operator is unknown.
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Joint BSS (JBSS) [7]–[9] is an extension of the BSS prob-
lem, where multiple datasets of mixtures are observed. JBSS
is commonly addressed under the Independent Vector Anal-
ysis (IVA) paradigm [10]–[12], a (natural) extension of ICA,
where each dataset is restricted to the ICA formulation, with
the addition of a potentially allowed statistical dependence
between each source in one dataset and (at most) one source
in every different dataset. The interest in IVA emerged due
to the nature of problems with dependence between multiple
datasets such as analysis of multi-subject fMRI data [13]–[15]
or the convolutive ICA problem, formulated in the frequency
domain, using multiple frequency bins [16], [17].

ICA and IVA with their conventional assumptions (men-
tioned above) describe a fully blind scenario, i.e., where no
additional information is available. However, in cases where
some a-priori knowledge is available, be it full/partial descrip-
tion of the sources’ statistics or some information regarding
the (linear) mixing operator(s), the scenario is termed “semi-
blind” [18]–[20]. A particularly interesting case is when the
sources’ probability distributions are known a-priori, allowing
the Maximum Likelihood (ML) approach to be taken. ML
separation is attractive due to its (asymptotic) optimality
[21]–[24] in the sense of minimal attainable Interference to
Source Ratio (ISR), a common measure for the separation
performance. Concentrating on the IVA problem (of which
ICA is merely a particular case) with an equal number of
mixtures and sources in every dataset, it has been shown in
[24], [25], that when the sources are zero-mean Gaussian
with known and distinct temporal covariance matrices, the
ML Estimate (MLE) of the demixing operators, which in
this case are essentially the inverses of the mixing matrices,
may be obtained by the solution of the so called extended
“Sequentially Drilled” Joint Congruence (SeDJoCo) transfor-
mation (previously presented, though not with this name, for
a single dataset (ICA) by Pham and Garat in [26], Dégerine
and Zaı̈di in [21], [27] and Yeredor et al. in [23], [28], [29]),
which are obviously the likelihood equations in this context.
In addition, a few interesting properties of the solution and
two iterative solution algorithms for this problem have been
proposed as well in [24], as we shall elaborate in Section
II. It is interesting to remark, that in the context of Multi-
User Multiple-Input Multiple-Output (MU-MIMO) Coordinate
Beamforming (CBF) setup (see [25], [30] for further details),
the solution of (an almost identical problem to) the extended
SeDJoCo equations serves as the beamforming transformation
which achieves the elimination of multiuser interference as
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well as the maximization of the desired signal components.
On the other hand, Quasi Maximum Likelihood (QML)

approaches (e.g., [31]–[34]), make some model assumptions
on the sources, and use some “educated guess” for the associ-
ated parameters, in order to facilitate a “quasi-” MLE, which
would hopefully approximate the MLE when the assumed
model is close to reality. Thus, a QML Estimate (QMLE)
is defined as any estimate which can be interpreted as the
MLE under an assumption of some presumed, hypothesized
model, not necessarily describing the true state of nature. For
example, if the sources are presumed to be Gaussian with
known temporal auto- and cross-covariances (between respec-
tive sources across different datasets only, as in a standard
IVA setup), the implied likelihood of the observed mixtures
from all datasets is expressed and maximized (with respect to
the unknown mixing matrices), essentially resulting in a set of
extended SeDJoCo equations. However, since the sources are
not necessarily Gaussian, and their temporal auto- and cross-
covariances are actually unknown, in this case the resulting
extended SeDJoCo equations are in fact the quasi-likelihood
(rather than the likelihood) equations.

While the true MLE enjoys some appealing, well-known
properties, such as consistency and asymptotic efficiency [35],
these properties are generally not shared by QMLEs. Never-
theless, in this paper we show that the Gaussian QMLEs of
the demixing matrices, obtained by a solution to an extended
SeDJoCo transformation for the general IVA problem, are
consistent1 estimates of the separating matrices (under some
mild conditions), i.e., their consistency is not restricted to a
semi-blind scenario. Namely, these estimates are consistent
even when the sources’ temporal covariance matrices are
unknown and/or when the sources are not Gaussian. Con-
sequently, the solution of the extended SeDJoCo equations
is apparently of considerable interest in the general context
of IVA. Moreover, in reality, even in the semi-blind scenario
the a-priori information (or assumptions) are not likely to be
exact, e.g., error-prone estimated versions of the covariance
matrices and/or an approximate distribution of the sources
might be available. Consequently, the performance analysis
of the extended SeDJoCo solution is of high interest also in
various (more realistic) scenarios, as detailed in the sequel,
establishing our motivation for this work. Our main contribu-
tions in this paper are as follows:
• A “first-order” perturbation analysis of the extended

SeDJoCo solution: We provide a full analytical derivation
with closed-form expressions for the errors in the solution
matrices resulting from perturbations in the coefficients
under the “small-errors” assumption (i.e., when neglect-
ing second- and higher-order terms). This result is not
confined to the context of JBSS and may be used in other
contexts as well (e.g., in the MU-MIMO CBF problem
mentioned earlier2).

• Consistency of the extended SeDJoCo solution as the
QMLE: We show that a solution of extended SeDJoCo,

1An estimate is considered consistent in the context of IVA/ICA if its
resulting ISRs all tend to zero (perfect separation) when the observation
lengths tend to infinity.

2with very slight modifications

i.e., a solution to the quasi-likelihood equations, provides
a consistent estimate of the demixing matrices in the IVA
scenario (under some mild conditions), even if the a-
priori information is unavailable or inaccurate.

• Asymptotic performance analysis in the context of IVA:
Under the “small-errors” analysis in the asymptotic
regime, we provide closed-form expressions for the re-
sulting ISRs. In the particular case where the sources are
indeed Gaussian and the covariance matrices are known,
these expressions coincide with the induced Cramér-
Rao Lower Bound (iCRLB, [22]) on the ISRs, given
implicitly (as the Fisher information matrix elements)
in [24]. However (and more importantly), our results
also predict the performance in a “quasi-ML” framework,
when the actual distribution and/or covariance matrices
are different from their presumed values.

• “Universal” asymptotic ISR of the Gaussian QMLE for
IVA: We provide a Theorem (and its constructive proof)
which states that the asymptotic ISR attained by the
Gaussian QMLE does not depend on the sources’ full
distributions, but rather on their Second-Order Statistics
(SOS) only (and on some parameters related to the
presumed hypothesized model, which will be specifically
stated in the sequel).

• A lower bound on the Gaussian QMLE ISR - We show
that the Gaussian QMLE enjoys the appealing ISR-
equivariance property, which in turn, when combined
with the Theorem mentioned above, leads to a lower
bound on the ISR attained by the Gaussian QMLE - the
Gaussian iCRLB - for mixtures with any sources’ distri-
butions (under some mild conditions, stated explicitly in
the paper).

The rest of this paper is organized as follows. The ending
part of this section is devoted to notations. In Section II
we present the semi-blind Gaussian IVA problem formulation
along with the resulting extended SeDJoCo (likelihood) equa-
tions. Some important properties of the solution are outlined,
focusing on the consistency of (the solution as) the QMLEs
and the implied necessary conditions. Section III is dedicated
to the analytical performance analysis of the solution, deriving
(approximate) estimation-error terms, followed by the result-
ing (approximate) ISR. Simulations results are presented in
Section IV, corroborating our analytical results, and Section
V is dedicated to conclusions and to final remarks.

A. Notations and Preliminaries

We use a,a and A for a scalar, column vector and matrix,
respectively, where Aij denotes the (i, j)-th element of the
matrixA and a[i] denotes the i-th element of the vector a. The
superscripts (·)T and (·)−1 denote the transposition and inverse
operators, respectively. The notations E[·],Tr(·), cum(·, ·, ·, ·)
and ‖ · ‖2 denote the expectation, trace, 4-th order joint cu-
mulant [36] and `2-norm of their arguments, respectively. The
convolution operator is denoted by ∗. We also denote by IK
the K×K identity matrix, and the pinning vector ek denotes
the k-th column of IK . Using these notations, we define
Eij , eie

T
j and δij , eTi ej . We also define vec(·) as the

operator which concatenates the columns of an M×N matrix
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into an MN × 1 column vector. Furthermore, we define the
operator Bdiag(·, . . . , ·), which creates an ML ×ML block-
diagonal matrix from its L, M×M matrix arguments. Finally,
the all zeros-matrix (with proper dimensions) is denoted by O.

II. PROBLEM FORMULATION AND THE SOLUTION

A. Gaussian IVA and the Extended SeDJoCo Transformation

Consider M datasets of linear, static, memoryless mixtures

X(m) = A(m)S(m), ∀m ∈ {1, . . . ,M}, (1)

where S(m) =
î
s
(m)
1 · · · s(m)

K

óT
∈ RK×T denotes a matrix

of K source signals of length T (for all m ∈ {1, . . . ,M}),
belonging to the m-th out of M datasets. In each dataset the
sources are mixed by an unknown (deterministic) respective
mixing-matrix A(m) ∈ RK×K , and the observed mixture
signals are given by X(m) ∈ RK×T . Based on the observed
mixtures datasets

¶
X(m)

©M
m=1

, it is desired to estimate all
M mixing-matrices and thereby recover the source signals. In
the same manner as in the standard ICA model, in IVA, too,
the sources within each dataset are assumed to be mutually
statistically independent. Clearly, IVA amounts to M indepen-
dent standard ICA problems when no statistical dependence
between source signals across different datasets exists. How-
ever, in IVA statistical dependence between respective sources
from different datasets is considered, i.e., the vector s(m1)

k may
depend on the vector s(m2)

k (for all m1,m2 ∈ {1, . . . ,M}
and all k ∈ {1, . . . ,K}), but any two vectors s(m1)

k1
and

s
(m2)
k2

are statistically independent when k1 6= k2 for any
m1,m2 ∈ {1, . . . ,M}.

It turns out [24] that in the semi-blind Gaussian model,
where the sources are zero-mean Gaussian with known and
distinct temporal covariance matrices, the resulting likeli-
hood equations for obtaining the MLEs of the matrices{
B(m) ,

î
A(m)

ó−1}M
m=1

in the IVA problem require a solu-
tion of the so-called “extended SeDJoCo” problem as follows.
Let us denote by C(m1,m2)

k , E
î
s
(m1)
k s

(m2)T
k

ó
∈ RT×T the

temporal covariance matrices between the k-th source of the
m1-th dataset and the k-th source of the m2-th dataset. Now
define the k-th Source Component Vector (SCV) as s̄k ,
vec(Sk), where Sk is the k-th source component matrix, de-

fined as Sk ,
î
s
(1)
k · · · s(M)

k

óT
∈ RM×T ,∀k ∈ {1, . . . ,K}.

The covariance matrix of each SCV is given by

Ck , E
[
s̄ks̄

T
k

]
=

C
(1,1)
k · · · C

(1,M)
k

...
. . .

...
C

(M,1)
k · · · C

(M,M)
k

 ∈ RMT×MT ,

(2)
and we denote the respective block-partition of its inverse as

C−1k ,

P
(1,1)
k · · · P

(1,M)
k

...
. . .

...
P

(M,1)
k · · · P

(M,M)
k

 , P k, (3)

where P
(m1,m2)
k ∈ RT×T , to be used below. Using the

fact that the mixtures, being linear combinations of (jointly)

Gaussian random vectors, are also (jointly) Gaussian, we can
explicitly write the (log-)likelihood function of the given data¶
X(m)

©M
m=1

with respect to (w.r.t.) the demixing matrices¶
B(m)

©M
m=1

. After differentiating w.r.t. B(m) for every m ∈
{1, . . . ,M} and equating to O ∈ RK×K(see [24] for the full
detailed derivation), we obtain the likelihood equations,

M∑
`=1

“B(m)

ML
“Q(m,`)

k
“B(`)T

ML ek = ek,

∀k ∈ {1, . . . ,K},∀m ∈ {1, . . . ,M}, (4)

where “B(m)

ML is the MLE of B(m) and the matrices “Q(m1,m2)

k ,
termed the “target-matrices”, are defined as“Q(m1,m2)

k ,
1

T
X(m1)P

(m1,m2)
k X(m2)T ∈ RK×K ,

∀k ∈ {1, . . . ,K},∀m1,m2 ∈ {1, . . . ,M}. (5)

Thus, the likelihood equations (4) take the form of the
extended SeDJoCo equations, which are formulated more
generally as follows:
Given KM2 target-matrices

¶
Q

(m1,m2)
k

©
, k ∈ {1, . . . ,K},

m1,m2 ∈ {1, . . . ,M}, find a set of M K × K matrices¶
B(m)

©M
m=1

, such that[
M∑
`=1

B(m)Q
(m,`)
k B(`)T

]
ek ,D

(m)
k ek = ek,

∀k ∈ {1, . . . ,K},∀m ∈ {1, . . . ,M}. (6)

The meaning of this statement is that the k-th column of each
transformed matrix D(m)

k , has a “drilled”3 structure, hence the
name of this transformation.

B. Properties of the Extended SeDJoCo Solution

Two general (context-free) important properties of solutions
of the extended SeDJoCo problem (6) are existence and non-
uniqueness. As we have shown in [24], when the matrices

Ωk ,

Q
(1,1)
k · · · Q

(1,M)
k

...
. . .

...
Q

(M,1)
k · · · Q

(M,M)
k

 ∈ RKM×KM , (7)

are Positive Definite (PD) for all k ∈ {1, . . . ,K}, a solution
of (6) is guaranteed to exist. By recalling the definition of
the target-matrices in (5), it is easily (and not surprisingly)
seen that a solution always exists in the context of our IVA
problem4 (under the general SOS-based IVA identifiability
conditions). However, it has been shown [37], [24] that the
solution is generally not unique, and might therefore lead to
a local (rather than the global) maximizer of the likelihood
function. Nevertheless, an identification-correction scheme of
non-optimal solutions (which are not the MLE) was derived
in [38] for the case of M = 1 dataset (i.e., for ICA, but can
be readily extended to IVA with M > 1). The scheme first

3We say that a K × K matrix D is “drilled” along its k-th column (or
row), if that column (or row) is all-zeros, except for its k-th element (Dkk).

4In fact, the proof in [24] even shows that the MLE always exists
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identifies whether a given solution is the global maximizer
of the likelihood or not, and, if needed, applies a correction
which leads it (with high probability) to the correct (global
maximizer) MLE.

Next, we address the issue of consistency, a prop-
erty of an extended SeDJoCo solution in the context
of the QML approach for IVA. We begin by noting
that for

¶
A(m) = IK

©M
m=1

(a “non-mixing” condition), the

QML target-matrices “Q(m1,m2)

k (5), with a set of matricesß‹P (m1,m2)

k

™
replacing the true

¶
P

(m1,m2)
k

©
as defined in

(3), are asymptotically diagonal under some mild conditions
stated in the Lemma below. This important property will be
used later to establish consistency of the resulting estimates
under mixing conditions.

Lemma 1 (Asymptotic diagonality of the target-matrices
when

¶
X(m) = S(m)

©M
m=1

): Let us temporarily denote
the observation-length-dependent covariance matrices and
the presumed respective blocks as in (2) and (3) as
C

(m1,m2)
k[T ] ,‹P (m1,m2)

k[T ] ∈ RT×T , respectively, for an observation
length T . Consider the following three conditions:

1) The following limits exist and are finite:

φ
(m1,m2)
k` , lim

T→∞

1

T
Tr

Å‹P (m1,m2)

k[T ] C
(m2,m1)
`[T ]

ã
,

∀k, ` ∈ {1, . . . ,K}.

2) All matrices C(m1,m2)
k[T ] ,‹P (m1,m2)

k[T ] can be element-wise
bounded by an exponentially-decaying Toeplitz matrix,
namely there exist some finite ρ and a positive α, such
that∣∣∣C(m1,m2)

k[T ],τ1τ2

∣∣∣ , ∣∣∣‹P (m1,m2)
k[T ],τ1τ2

∣∣∣ < ρ2 · e−α|τ1−τ2|,

∀k ∈ {1, . . . ,K},∀m1,m2 ∈ {1, . . . ,M},
∀τ1, τ2 ∈ {1, . . . , T},∀T ∈ Z+.

3) The 4-th order joint cumulants of each SCV can be
similarly bounded by an exponentially decaying function
of the time differences, i.e., there exist some finite % and
a positive β, such that for each k ∈ {1, . . . ,K}∣∣∣cum(s

(m1)
k [τ1], s

(m2)
k [τ2], s

(m3)
k [τ3], s

(m4)
k [τ4])

∣∣∣
< %4·e−β(|τ1−τ2|+|τ3−τ4|+|τ1−τ3|+|τ2−τ4|+|τ1−τ4|+|τ2−τ3|)

for all k,m1,m2,m3,m4 and for all τ1, τ2, τ3, τ4.
Under these conditions the following property holds:
For
¶
A(m) = IK

©M
m=1

(so that
¶
X(m) = S(m)

©M
m=1

), the

QML target-matrices “Q(m1,m2)

k are asymptotically diagonal
for all k ∈ {1, . . . ,K} and all m1,m2 ∈ {1, . . . ,M},¶

A(m) = IK
©M
m=1

:“Q(m1,m2)

k =
1

T
S(m1)‹P (m1,m2)

k[T ] S(m2)T m.s.−−−−→
T→∞

Φ
(m1,m2)
k ,

(8)

where Φ
(m1,m2)
k is a diagonal matrix with

φ
(m1,m2)
k1 , φ

(m1,m2)
k2 , . . . , φ

(m1,m2)
kK along its diagonal, and

where the convergence is in the mean square sense [39].
Note that the conditions of the Lemma are quite loose and

are readily satisfied as long as the temporal covariances of the
SCVs and their presumed inverses, Ck and ‹P k, respectively,
as well as the joint cumulants tensors, all have bounded
diagonals and a sufficient rate of decay of their elements away
from their diagonals.

The proof of this Lemma is rather straightforward and
technical, and is therefore omitted from here due to length
considerations. However, note only that the mean of the
element “Q(m1,m2)

k,p` = 1
T s

(m1)T
p

‹P (m1,m2)

k[T ] s
(m2)
` reads

E
î“Q(m1,m2)

k,p`

ó
=

1

T
Tr

Å‹P (m1,m2)

k[T ] E
î
s
(m2)
` s(m1)T

p

óã
= 1

T Tr

Å‹P (m1,m2)

k[T ] C
(m2,m1)
`[T ]

ã
−−−−→
T→∞

φ
(m1,m2)
k` , p = `

0, p 6= `
,

(9)

and using Conditions 2 and 3 it can be shown that their
variances tend to zero (note further that the exponential
decay of the bound in these conditions is sufficient but not
necessary). This important property of asymptotic diagonality
establishes the consistency of estimates obtained as extended
SeDJoCo solutions. To see this, we note the following.

Let
ß“B(m)

QML

™M
m=1

denote a (specific) solution of the ex-

tended SeDJoCo equations (4) with target-matrices defined as
in (5). By Lemma 1 we have, for all k ∈ {1, . . . ,K} and for
all m1,m2 ∈ {1, . . . ,M},“B(m1)

QML
“Q(m1,m2)

k
“B(m2)T

QML = (10)“B(m1)

QML

Å
1

T
X(m1)P

(m1,m2)
k X(m2)T

ã “B(m2)T

QML = (11)“B(m1)

QML

Å
1

T
A(m1)S(m1)P

(m1,m2)
k S(m2)TA(m2)T

ã “B(m2)T

QML ,

(12)“G(m1)
Å

1

T
S(m1)P

(m1,m2)
k S(m2)T

ã “G(m2)T Lemma 1−−−−−−→
T→∞

(13)“G(m1)
Φ

(m1,m2)
k

“G(m2)T
, (14)

where we have defined “G(m)
, “B(m)

QMLA
(m) as the QML

estimated global demixing-mixing matrix of the m-th dataset.
Note that by (10)-(14) we have actually shown that the QMLE
of the demixing matrices shares the ISR-equivariance property
([23], [24]), meaning that its resulting separation performance
(in terms of ISR) is independent of the mixing matrices (or, put
differently, is the same for any set of mixing matrices). Thus,
returning to (10)-(14), since “B(m)

QML is a solution of (4), the
implied asymptotic extended SeDJoCo equations, expressed
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in terms of
ß“G(m)

™M
m=1

, take the form

M∑
`=1

“G(m)
Φ

(m,`)
k

“G(`)T
ek = ek,

∀k ∈ {1, . . . ,K},∀m ∈ {1, . . . ,M}. (15)

It is trivial to show that for M = 1 (ICA) and M = 2 a
set of diagonal matrices (which implies perfect separation)
solves (15) (for the case M = 1, see the explicit solution

in [40]), meaning that the estimates
ß“B(m)

QML

™M
m=1

are indeed

consistent. For M > 3, it is easily seen that any set of

diagonal matrices
ß“G(m)

o

™M
m=1

potentially solves (15) for all

k 6= j ∈ {1, . . . ,K} and for all m ∈ {1, . . . ,M}. The only
MK equations left to solve (for all the MK diagonal elements

of
ß“G(m)

o

™M
m=1

) are

M∑
`=1

“G(m)
o,kkφ

(m,`)
kk

“G(`)
o,kk = 1,

∀k ∈ {1, . . . ,K},∀m ∈ {1, . . . ,M}, (16)

which are anyhow related to the inherent ambiguity (in a fully
blind scenario) of the scale of the unobserved sources. Thus, it
immediately follows that if a solution to (16) exists, a perfect
separating solution exists to the asymptotic quasi-likelihood
equations. Although we currently do not have a proof that a
solution to (16) (which is a set of MK nonlinear, quadratic
equations in MK unknowns) always exists, we have witnessed
empirically in a variety of simulation scenarios (some of which
are presented in Section IV) that this is usually the case. In
conclusion, under the mild conditions stated in Lemma 1,
and assuming the fundamental identifiability conditions hold,
a solution of the extended SeDJoCo equations serves as a
consistent estimate of a set of (perfectly) separating matrices
in a general (temporally-diversed) IVA problem.

Having addressed the issue of consistency, thereby justify-
ing the assumption that asymptotically the solution resides in
a “close” vicinity to an exact separating solution, we now turn
to assess the asymptotic performance analysis of this solution.
In the next section we address the analytical aspects of the
performance analysis starting by a “first-order” perturbation
analysis of the extended SeDJoCo solution, followed by the
resulting (approximated) ISR in the context of IVA.

III. ANALYTICAL PERFORMANCE ANALYSIS OF THE
EXTENDED SEDJOCO

A. Derivatives of the Solution w.r.t. the Target-Matrices
Let us define the following matrix

F , [F 1 F 2 · · · FM ] ∈ RK×KM , (17)

where

Fm ,
K∑
k=1

M∑
`=1

EkkB
(`)Q

(`,m)
k B(m)T − IK ∈ RK×K ,

∀m ∈ {1, . . . ,M}. (18)

Clearly, F is a function of all the
¶
B(m)

©M
m=1

and¶
Q

(m1,m2)
k

©
matrices. When the target-matrices

¶
Q

(m1,m2)
k

©
are fixed, the solutions (in terms of the

¶
B(m)

©M
m=1

matrices)
of the equation F = O are the extended SeDJoCo solutions,
induced by this fixed set of target-matrices . We are interested
in the perturbations of the elements of the solution matrices¶
B(m)

©M
m=1

caused by a perturbation in the elements of the

target-matrices
¶
Q

(m1,m2)
k

©
. To this end, we first concentrate

on the perturbations of the elements of
¶
B(m)

©M
m=1

caused

by a perturbation in the single element Q(m1,m2)
k,ij . Since F

must maintain its zero value of O ∈ RK×KM under these
perturbations, exploiting its total derivative w.r.t. Q(m1,m2)

k,ij we
obtain the following equation

dF

dQ
(m1,m2)
k,ij

=
∂F

∂Q
(m1,m2)
k,ij

+
K∑
k=1

M∑
p,q=1

∂F

∂B
(m)
pq

· dB
(m)
pq

dQ
(m1,m2)
k,ij

= O.

(19)
Let us carefully compute each term of equation (19). First,
notice that

∂F

∂Q
(m1,m2)
k,ij

=

[
∂F 1

∂Q
(m1,m2)
k,ij

∂F 2

∂Q
(m1,m2)
k,ij

· · · ∂FM

∂Q
(m1,m2)
k,ij

]
,

(20)
so it is enough to compute each block of (20). After differ-
entiation and some straight forward algebraic simplifications
(see Appendix A for the detailed computation), we obtain:

∂Fm

∂Q
(m1,m2)
k,ij

=δmm2
Ekkb̃

(m1)

i b̃
(m2)T

j +
δmm1

Ekkb̃
(m2)

j b̃
(m1)T

i , m1 6= m2

δmm2
Ekkb̃

(m2)

j b̃
(m1)T

i , m1 = m2, i 6= j
0, m1 = m2, i = j

,

(21)
∂F n

∂B
(m)
pq

=EpqQ
(m,n)
p B(n)T+

δmn

K∑
k=1

M∑
`=1

EkkB
(`)Q

(`,m)
k Eqp, (22)

where b̃
(m)

i denotes the i-th column of B(m). Now, for ease
of exposition, define

Y ,
∂F

∂Q
(m1,m2)
k,ij

, H [m,p,q] ,
∂F

∂B
(m)
pq

, (23)

so that equation (19) can now be written as

− Y =
M∑
m=1

K∑
p,q=1

H [m,p,q] ·
dB

(m)
pq

dQ
(m1,m2)
k,ij

. (24)

Applying the vec(·) operator on both sides of (24) yields

− y =
M∑
m=1

K∑
p,q=1

h[m,p,q] ·
dB

(m)
pq

dQ
(m1,m2)
k,ij

. (25)
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where y , vec (Y ) and h[m,p,q] , vec
(
H [m,p,q]

)
. Finally,

define

H ,
[
h[1,1,1]h[1,2,1] · · ·h[1,K,K]h[2,1,1]h[2,2,1] · · ·h[M,K,K]

]
,

(26)

θ ,
[
θ[1,1,1]θ[1,2,1] · · · θ[1,K,K]θ[2,1,1]θ[2,2,1] · · · θ[M,K,K]

]T
,

(27)

where θ[m,p,q] ,
dB(m)

pq

dQ
(m1,m2)

k,ij

, to obtain equation (19) in its

compact form
− y = Hθ. (28)

It can be shown that H ∈ RK2M×K2M is full-rank5 (the proof
is straightforward, though rather technical, so we omit this part
from the paper). Therefore, the derivatives of the elements of¶
B(m)

©M
m=1

w.r.t. the single element Q(m1,m2)
k,ij are given by

θ = −H−1y. (29)

We emphasize that the linear system of equations (29) may
be solved separately for obtaining the derivative w.r.t. each
element Q(m1,m2)

k,ij , i.e., for every combination of k, i, j ∈
{1, . . . ,K} and m1,m2 ∈ {1, . . . ,M}, so as to obtain
all the derivatives of all elements of the solution matrices¶
B(m)

©M
m=1

w.r.t. all elements of all target-matrices.

B. A “First-Order” Perturbation Analysis

Let us now return to our semi-blind Gaussian IVA problem.
Assuming the conditions stated in Lemma 1 hold, when the
target-matrices are

Q
(m1,m2)
k =

1

T
E
î
X(m1)P

(m1,m2)
k X(m2)T

ó
= lim
T→∞

“Q(m1,m2)

k ,

∀k ∈ {1, . . . ,K},∀m1,m2 ∈ {1, . . . ,M},
(30)

by the consistency of the MLE, a solution to (4) isß“B(m)

ML = B(m)

™M
m=1

, i.e., the set of true demixing matrices.

For ease of the exposition, we define‹Q , îQ(1,1)
1 Q

(1,1)
2 · · · Q(1,1)

K Q
(2,1)
1 Q

(2,1)
2 · · · Q(M,M)

K

ó
,

(31)

q , vec∗
Ä‹Qä ∈ RMq×1, (32)

where vec∗(·) concatenates the columns of the matrix ‹Q into
a column vector but takes each element duplicated by sym-
metry only once, on its first occurrence (since

¶
Q

(m,m)
k

©
are

symmetric andQ(m1,m2)
k = Q

(m2,m1)T
k ), Mq = MK2(1+MK)

2 ,

and “‹Q, q̂ are defined in the same manner as ‹Q, q only with the

(finite sample size) target-matrices
ß“Q(m1,m2)

k

™
, as defined in

(5). Now, since the elements of the solution matrices of the
extended SeDJoCo equations are determined by the elements
of the target-matrices, we may write“B(m)

ij = f̃
(m)
ij (q̂) ,∀m ∈ {1, . . . ,M},∀i, j ∈ {1, . . . ,K},

(33)

5with probability 1

where f̃
(m)
ij : RMq×1 → R denotes the function that maps

a given set of target-matrices to the (i, j)-th element of the
QMLE of the matrix B(m). Now, define εq , q̂ − q as the
estimation error (vector) in the estimation of q. Assuming f̃ (m)

ij

is an analytical function in the neighborhood of q̂ = q, and
that ‖εq‖2 is “small enough” (in the sense that the second-
and higher-order terms of the Taylor expansion of f̃ (m)

ij in
the neighborhood of q̂ = q are negligible w.r.t. the first-order
term), we may write“B(m)
ij ≈ B(m)

ij +

(
d“B(m)

ij

dq̂

∣∣∣∣∣
q̂=q

)
(q̂ − q) , B(m)

ij + g
(m)T
ij εq,

(34)
where we have neglected second- and higher-order terms of
the estimation error εq , and defined g(m)

ij as the (i, j,m)-th
gradient vector of “B(m)

ij w.r.t. the vector q̂, evaluated at q̂ = q.
Hence, if we define ε(m)

B,ij , “B(m)
ij −B

(m)
ij , equation (34) may

be written as

ε
(m)
B,ij ≈ g

(m)T
ij εq. (35)

C. The resulting ISR in the context of IVA

In the context of IVA we have E [εq] = 0, so we also have

E
î
ε
(m)
B,ij

ó
≈ g(m)T

ij E [εq] = 0,

∀m ∈ {1, . . . ,M},∀i, j ∈ {1, . . . ,K}. (36)

Exploiting the ISR-equivariance property of the (Q)MLE of
the demixing matrices, it suffices to consider and evaluate the
resulting ISR, defined as

ISR(m)
ij , E


∣∣∣∣∣
Å“B(m)

A(m)

ã
ij

∣∣∣∣∣
2

∣∣∣∣Å“B(m)
A(m)

ã
ii

∣∣∣∣2
 ·

E
î
s
(m)T
j s

(m)
j

ó
E
î
s
(m)T
i s

(m)
i

ó ,
1 ≤ i 6= j ≤ K,∀m ∈ {1, . . . ,M}, (37)

for any particular (arbitrarily chosen) set of mixing matrices¶
A(m)

©M
m=1

. Thus, we consider the convenient choice of the

set of identity matrices, i.e.,
¶
A(m) = IK = B(m)

©M
m=1

, and
for ease of notation we define the block diagonal matrix A ,
Bdiag

Ä
A(1), . . . ,A(M)

ä
∈ RKM×KM . Hence, we notice that

in this case (A = IKM ),“T (m)
, “B(m)

A(m) = “B(m)
= B(m) + ε

(m)
B = IK + ε

(m)
B ,
(38)

for all m ∈ {1, . . . ,M}, where ε(m)
B ∈ RK×K denotes

the estimation error matrix in the estimation of B(m) (whose
(i, j)-th element is ε(m)

B,ij), so that

T̂
(m)
ij = ε

(m)
B,ij , 1 ≤ i 6= j ≤ K,∀m ∈ {1, . . . ,M}. (39)
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Assuming that ε(m)
B,ij � 1 for all i, j,m and, for simplicity of

the exposition, that all sources have unit power, it follows that

ISR(m)
ij = E


∣∣∣T̂ (m)
ij

∣∣∣2∣∣∣T̂ (m)
ii

∣∣∣2
 ≈ E ï∣∣∣T̂ (m)

ij

∣∣∣2ò = E

ï∣∣∣ε(m)
B,ij

∣∣∣2ò ,
1 ≤ i 6= j ≤ K, ∀m ∈ {1, . . . ,M}. (40)

Substituting (35) into (40), we have that

ISR(m)
ij ≈ E

ï∣∣∣ε(m)
B,ij

∣∣∣2ò ≈ g(m)T
ij C q̂(I)g

(m)
ij , (41)

where C q̂(I) denotes the covariance matrix of q̂ when A =
IKM , i.e.,

C q̂(I) , E
î
(q̂ − q) (q̂ − q)

T
ó∣∣∣

A=IKM

= E
[
εqε

T
q

]∣∣
A=IKM

.

(42)
Let us write C q̂(I)= E

î
q̂q̂T
ó
− qqT

∣∣∣
A=IKM

and compute

each term separately. First, recall that q = vec∗
Ä‹Qä, and

when A = IKM we get

Q
(m1,m2)
k,ij =

1

T
E
î
s
(m1)T
i P

(m1,m2)
k s

(m2)
j

ó
(43)

= δij
1

T
Tr
Ä
C

(m2,m1)
i P

(m1,m2)
k

ä
, (44)

hence all the matrices
¶
Q

(m1,m2)
k

©
are diagonal in this case.

In addition, define the indexing function

ind`, i` + (j` − 1)K + (k` − 1)K2

+(m` − 1)K3 + (n` − 1)MK3, ` = 1, 2, (45)

for all 1 ≤ i`, j`, k` ≤ K, 1 ≤ m`, n` ≤ M , and denote ĩ :=
ind[1], j̃ := ind[2], so that now we may write in shorthand

(q)ĩ = δi1j1
1

T
Tr
Ä
C

(n1,m1)
i1

P
(m1,n1)
k1

ä
,

⇒
(
qqT

)
ĩj̃

= δi1j1δi2j2 ·
1

T 2
Tr
Ä
C

(n1,m1)
i1

P
(m1,n1)
k1

ä
Tr
Ä
C

(n2,m2)
i2

P
(m2,n2)
k2

ä
. (46)

To complete the computation of the elements of C q̂(I) , we
now address the term E

î
q̂q̂T
ó
. By definition of the elements

of q̂, and again using A = IKM , we have thatÄ
E
î
q̂q̂T
óä
ĩj̃

=

1

T 2
E
î
s
(m1)T
i1

P
(m1,n1)
k1

s
(n1)
j1

s
(m2)T
i2

P
(m2,n2)
k2

s
(n2)
j2

ó
. (47)

Finally, using the linearity of the expectation and trace oper-
ators, exploiting the mutual statistical independence between
all SCVs, and subtracting (46), we obtainÄ

C q̂(I)

ä
ĩj̃

=

δi1i2δj1j2Tr
Ä
C

(m2,m1)
i1

P
(m1,n1)
k1

C
(n1,n2)
j1

P
(n2,m2)
k2

ä
+

δi1j2δj1i2Tr
Ä
C

(n2,m1)
i1

P
(m1,n1)
k1

C
(n1,m2)
i2

P
(m2,n2)
k2

ä
, (48)

where we have used the assumption that the sources are
Gaussian (and in particular, Isserlis’ Theorem [41], regarding
the computation of higher-order moments of the multivariate

Gaussian distribution) only in the computation of the terms for
which i1 = j1 = i2 = j2 (see Appendix B).

Appendix C contains the solution for the system of equa-
tions (29), for the case where A = IKM . Solving (29) for
each element of q yields Mq vectors, which will be denoted
here by {θr}

Mq

r=1. Now, notice that if we define the matrix
whose columns are {θr}

Mq

r=1, we have that

G ,
[
θ1 θ2 · · · θMq

]
= [g̃1 g̃2 · · · g̃MK2 ]

T ∈ RMK2×Mq ,
(49)

where
g̃i+(j−1)K+(m−1)K2 = g

(m)
ij , (50)

i.e., the rows of G are exactly the gradient vectors g(m)
ij

defined in (34). To summarize, we have obtained closed-form
expressions for the resulting (approximated) ISR elements (37)
attained by the (QML) solution of the extended SeDJoCo
equations. These expressions are computed as follows:

1) Compute the covariance matrix C q̂(I) (whose elements
are given explicitly in (48));

2) Compute the gradient matrix G (defined in (49)), whose
Mq columns are the solutions of (28), given explicitly in
Appendix B (each with its corresponding indices);

3) Obtain the gradient vectors g(m)
ij (as the rows of G);

4) Compute the predicted (approximated) ISRs via (41).
Fortunately, it turns out that the asymptotic ISR obtained by

the (QML) solution of the extended SeDJoCo is determined,
and therefore may be accurately predicted, only by the SOS
of the sources, rather than by their full distributions, as stated
in following Theorem.

Theorem 1 (“Universal” asymptotic ISR of the Gaussian
QMLE for IVA): For model (1), under the conditions stated in
Lemma 1, the asymptotic ISR (defined in (37)) of the Gaussian
QMLE, obtained as a solution of the extended SeDJoCo
equations, does not depend on the sources’ full distributions,
but only on their covariance matrices

¶
C

(m1,m2)
k

©
, and the

matrices
¶
P

(m1,m2)
k

©
used for the construction of the target-

matrices (5).
Proof 1: See Appendix C.

�
Thus, the (approximated) closed-form ISR expressions we

have obtained hold not only when the sources are Gaussian,
but also for any distribution of the sources. In addition, we
emphasize that the matrices

¶
P

(m1,m2)
k

©
in (48) need not be

the actual blocks obtained by the true covariance matrices,
defined in (3), but rather can be arbitrarily chosen matrices
(under the conditions stated in Lemma 1) used to construct
the target-matrices for the extended SeDJoCo equations.

Furthermore, this Theorem yields yet another important and
informative result regarding the performance of the Gaussian
QMLE, which is given as follows. By virtue of Theorem 1, the
asymptotic ISR attained by the Gaussian QMLE is determined
only by the true covariances of the sources

¶
C

(m1,m2)
k

©
,

and by the matrices
¶
P

(m1,m2)
k

©
used for the construction

of the target-matrices. Hence, the resulting asymptotic ISRs
attained by the Gaussian QMLE are affected only by the
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mismodeling error introduced by the deviation of the presumed¶
P

(m1,m2)
k

©
matrices from the actual blocks obtained by the

true covariances matrices. But in the “best” scenario, when
the sources’ SOS are actually known a-priori, the predicted
ISRs coincide with the Gaussian iCRLB ([24]) regardless of
the true sources’ distributions. Therefore, we conclude that the
Gaussian iCRLB serves as an asymptotically attainable lower
bound on the resulting ISR of the Gaussian QMLE.

To summarize, the expressions we have obtained for the
resulting (approximated) ISRs attained by the extended SeD-
JoCo (QML) solution hold for a general IVA problem, not
necessarily Gaussian and not necessarily semi-blind (as long
as the mild conditions stated in Lemma 1 hold). Moreover,
the Gaussian iCRLB serves as a lower bound (asymptotically
attainable) on the resulting ISR of the Gaussian QMLE,
regardless of the true sources’ distributions.

IV. SIMULATION RESULTS

In order to corroborate our analytical results, we present
simulations results of three experiments. In these experi-
ments, we compare analytically predicted results, based on
our “small-errors” assumption, with empirical results. Further-
more, the setup of these experiments describes more realistic
semi-blind scenarios, which are more suitable for modeling
“real-life” problems, where some a-priori information is avail-
able (or assumed), but is likely to be inaccurate (or false).

In all the experiments we consider (according to model (1))
mixtures of M datasets, each with K stationary sources. The
k-th source of the m-th dataset, s(m)

k [t], is generated as

s
(m)
k [t] =

M∑
`=1

w
(`)
k [t] ∗ h(m,`)k [t],

∀k ∈ {1, . . . ,K},∀m ∈ {1, . . . ,M}, (51)

where
¶
w

(m)
k [t]

©
are all mutually independent white noise

processes,
¶
h
(m1,m2)
k [t]

©
are Finite Impulse Response (FIR)

filters of length L for which
L−1∑
t=0

∣∣∣h(m1,m2)
k [t]

∣∣∣2 =

®
1, m1 = m2

η, m1 6= m2

, (52)

so that η is a parameter which controls the “relative en-
ergy” contained in the cross-spectra between corresponding
sources from different datasets. As can be seen from (51),
h
(m1,m2)
k [t] is the FIR filter applied to the m2-th white driving-

noise in order to generate a component of the k-th source
in the m1-th dataset. The cross-spectrum between any pair¶
s
(m1)
k [t], s

(m2)
k [t] : m1 6= m2

©
is obviously non-zero when

η > 0. In each of the three experiments, the solution matrices
were obtained using Newton’s method for an iterative solution
of the extended SeDJoCo [24]. In order to focus on the small
errors and avoid convergence to false local maxima (which
are out of scope of our analysis), we initialized the iterative
solution with the true demixing matrices

¶
B(m)

©M
m=1

. Note
that this choice guarantees (with probability 1) that the initial
solution is not the expected solution

¶
B(m) + ε

(m)
B

©M
m=1

,
which stems from our analysis (since for every finite sample

Fig. 1: Analytically predicted and empirical total normalized ISR vs. µ,
representing the deviation from the model, i.e., the true zeros of the FIR
filters. An excellent match is evident, where the largest difference between
the predicted and empirical values is ∼ 0.1[dB]. The empirical results were
obtained by averaging 104 independent trials.

Fig. 2: Analytically predicted and empirical total normalized ISR vs. T . It
can be seen that the predicted ISR values, attained using the “first-order”
approximation based on the “small-errors” assumption, are very close to the
empirical values, obtained by averaging 104 independent trials.

size T the ISRs are strictly positive). We shall present our
results in terms of the total normalized ISR, defined as

ISRnorm ,
1

MK(K − 1)

M∑
m=1

K∑
i,j=1
i 6=j

ISR(m)
ij . (53)

A. Gaussian Sources with Inaccurate Covariance Matrices

In the first experiment we consider two datasets (M = 2),
each with three Gaussian sources (K = 3). The white
driving-noises

¶
w

(m)
k [t]

©
are all standard Gaussian processes,

i.e., with zero-mean and unit variance. In this experiment,
we assume that only some inaccurate versions ‹C(m1,m2)

k

of the sources’ true temporal covariance matrices C(m1,m2)
k

are available, so the target-matrices “Q(m1,m2)

k in (5) are

computed using the inaccurate ‹P (m1,m2)

k matrices implied by
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Fig. 3: Analytically predicted and empirical (minus) ISR values for the Gaussian, uniform, Bernoulli and Laplace distributions. Clearly, the simulation results
reflect a proper match between the theoretical predication and the empirical results regardless of the distribution - the predicted ISR values are within ∼ 0.2[dB]
from the empirical values, obtained by averaging 104 independent trials.

the inaccurate ‹C(m1,m2)

k matrices via (2), (3). The covariance
information is given, equivalently, in the form of inaccurate
versions

¶
h̃
(m1,m2)
k [t]

©
of the true FIR filters

¶
h
(m1,m2)
k [t]

©
.

The true FIR filters (of length L = 10) are generated
in the following manner. For each FIR filter (i.e., for each
triplet {k,m1,m2}) we draw one real-valued zero and four
complex-valued zeros, all inside the unit-circle (the remaining
four zeros are the conjugate of the complex-valued ones, since
the FIRs are real-valued). For each zero, the phase is drawn
(independently) from U(0, π) and the radius is drawn (also
independently) from the distribution of the random variable
exp (−au), where a is a “small” real-valued fixed parameter
and u ∼ U(0, 1) (the phase of the real-valued zero is fixed
at zero). Denote these zeros as

¶
z
(m1,m2)
0,k

©
. For each FIR we

calculate its coefficients from its zeros, and then normalize its
energy to agree with (52), and we set η = 1.

Now, to generate the “inaccurate” version of each FIR we
define the “erroneous zeros”, denoted by z

(m1,m2)
1,k , taking

z
(m1,m2)
0,k with their phases perturbed by a zero-mean Gaussian

noise with variance b2 and their radii attenuated by c, where
b, c are fixed real-valued constants (such that the erroneous
zeros still lie inside the unit-circle). Now, we assume that the
zeros of the inaccurate versions of the FIRs are given in the
form of z̃(m1,m2)

k = µz
(m1,m2)
1,k + (1 − µ)z

(m1,m2)
0,k (for each

triplet {k,m1,m2}), where 0 ≤ µ ≤ 1, from which we con-
struct the inaccurate FIRs’ coefficients (normalized to agree
with (52)), leading to the resulting inaccurate (“presumed”)
covariance matrices ‹C(m1,m2)

k and the ensuing target-matrices.
For this experiment, we have used a = 2, b = 0.1[rad] and
c = 0.1. As can be seen from Fig. 1, which presents the
total normalized ISR vs. µ (representing the “amount” of
estimation noise in the FIRs), there is an excellent match
between the analytically predicted and the empirical results,
so that the largest deviation is ∼ 0.1[dB] 6. As expected, when

6This match was also verified for every ISR element independently

µ = 0 the iCRLB is attained, since the prior information on
the model (i.e., the covariance matrices and the distribution
of the sources) is accurate and the MLE is asymptotically
efficient. However, as µ increases, the inaccuracy in the
“presumed” FIRs leads to increasingly inaccurate versions
of the presumed covariance matrices, thus the resulting ISR
departs from its iCRLB, since the extended SeDJoCo solution
for the noisy target-matrices is no longer the (exact) MLE, but
only a QMLE. Nevertheless, the performance is still accurately
predicted by our analysis.

Fig. 2 presents the the total normalized ISR vs. T , the
sample size, for three different values of µ. Clearly, the “first-
order” approximation, assuming the validity of the “small-
errors” analysis, gives quite accurate predictions of the result-
ing ISRs even for very small sample sizes (e.g., for T = 50 the
empirical ISR values are within ∼ 1[dB] from the predicted
values). Obviously, as T grows, i.e., in the asymptotic regime,
the approximation becomes even more accurate.

B. Sources’ Distribution Mismodeling

Our second experiment concerns the modeling, or more
precisely, mismodeling of the sources’ distributions. Indeed,
due to the nature of the IVA problem, an inherent uncertainty
is the one relating to the sources’ distributions. In a semi-blind
scenario, where prior knowledge is given or assumed, it is
more realistic that only partial information on the statistical
properties of the sources (e.g., SOS) is given rather than
the entire distribution. Hence, in this experiment we assume
perfect knowledge of the covariance matrices of the sources,
but no information at all regarding the distributions of the
sources. We consider five datasets (M = 5), each with two
sources (K = 2). The white driving-noises

¶
w

(m)
k [t]

©
are

drawn from four different distribution for each test case, where
we examine the Gaussian, uniform, Bernoulli and Laplace
distributions. Recall that for all cases, the white noises are
zero-mean and unit variance, which uniquely defines all the
parameters of all these distributions (aside from the Bernoulli
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distribution, which is traditionally defined for the values 0
and 1, and was defined here for the values −1 and 1 with
equal probability). The white driving-noises are then filtered
by FIR filters of length L = 4, whose coefficients are drawn
from the standard Gaussian distribution. Notice that now we
chose L to be relatively small in order to keep the sources’
marginal distributions away from the Gaussian distribution (as
L grows, the marginal distributions of the sources become
“more” Gaussian due to the central limit theorem). We also
decrease the cross-correlation between corresponding sources
from different datasets by setting η = 0.5. Then, we obtain the
extended SeDJoCo equations solution, which is a consistent
estimate (according to the arguments presented in Section
II, Subsection II-B) but definitely not the MLE for non-
Gaussian sources. Fig. 3 shows (for all the ISR elements,
from all datasets) the analytically predicted values evaluated
by (41), and the empirical values for each test case obtained
by simulation. It is readily seen that all predicted values well-
approximate the true empirical values, to a precision of ∼
0.2[dB], for each ISR element, and for all the distributions. We
note in passing that the distributions for this experiment were
chosen as representatives of both platykurtic (e.g., uniform)
and leptokurtic (e.g., Laplace) distributions, which produce
less and more extreme outliers, respectively, than does the
Gaussian distribution. Furthermore, we emphasize that in this
experiment the covariance matrices were assumed to be per-
fectly known only in order to isolate the sources’ distributions
mismodeling effect. Of course, our results are also valid for
cases where both factors - inaccurate covariance matrices
and sources’ distributions mismodeling - are considered, as
demonstrated in the following experiment.

C. General Mismodeling and a Comparison to IVA-G-N
In our third experiment we consider a scenario where

both mismodeling factors, which were separately examined
in the first two experiments, are introduced simultaneously.
In addition, we compare the separation performance obtained
by the Gaussian QMLE vs. Anderson et al.’s [9] Newton
updates for Gaussian IVA (IVA-G-N). We stress that the IVA-
G-N is intended for separation of temporally independent
identically distributed (i.i.d.) Gaussian sources, which is only a
particular (possible) case for the Gaussian QML presumption.
Nonetheless, it is our purpose in this work to show how
temporal diversity of the sources can be exploited for better
separation (even without precise knowledge of the actual
covariance structures governing this diversity). We consider
M = 8 datasets, each with K = 5 Gaussian mixture sources.
Here, the k-th source of the m-th dataset is defined as

s
(m)
k [t] = I

(m)
k [t] · s(m)

k,a [t] +
Ä
1− I(m)

k [t]
ä
· s(m)
k,b [t]

∀k ∈ {1, . . . ,K},∀m ∈ {1, . . . ,M}, (54)

where the “switch indices”
¶
I
(m)
k [t] ∈ {0, 1}

©
are all mutu-

ally statistically independent i.i.d. Bernoulli processes, with a
common (known) probability of “success” Pr

Ä
I
(m)
k [t] = 1

ä
,

p ∈ (0, 1), statistically independent of the sets
¶
s
(m)
k,a [t]

©
and
¶
s
(m)
k,b [t]

©
, which were generated (according to the gen-

eral description given in the beginning of this section) by

Fig. 4: Analytically predicted and empirical total normalized ISR vs. p,
representing deviation from Gaussianity. For a large sample size (2000
[sample/estimated parameter]), the approximated prediction is seen to be very
accurate. Additionally, the Gaussian QMLE is superior to the IVA-G-N for
every p. Empirical results were obtained by averaging 103 independent trials.

the mutually statistically independent sets of white Gaussian
driving-noises

¶
w

(m)
k,a [t]

©
and
¶
w

(m)
k,b [t]

©
, and the sets of FIR

filters
¶
h
(m1,m2)
k,a [t]

©
and

¶
h
(m1,m2)
k,b [t]

©
, respectively. This

time, we set L = 10, η = 0.1 (yielding weaker correlations
between sources from different sets than in the two previous
experiments) and µ = 0.5. For the QMLE we used only
noisy versions of the presumed covariance matrices ensuing
from the erroneous versions of the FIRs

¶
h̃
(m1,m2)
k,a [t]

©
and¶

h̃
(m1,m2)
k,b [t]

©
(given implicitly by the sets of their corre-

sponding erroneous zeros
¶
z̃
(m1,m2)
k,a

©
and
¶
z̃
(m1,m2)
k,b

©
, re-

spectively). The sample size was set to T = 104, so that
in this scenario we also investigate the proposed algorithm
in a considerably larger-scale estimation problem, including
MK2 = 200 unknown parameters and MKT = 400, 000
available samples.

Fig. 4 presents the total normalized ISR vs. p, which
is de facto the Gaussian mixture characterizing parameter
quantifying (in this case) the non-Gaussianity of the sources.
At p = 0 and p = 1, the sources are (truly) Gaussian, such
that the modeling error is only due to the inaccuracy in the
presumed covariance matrices. However, as p departs from
the edges towards p = 0.5, the sources’ distributions depart
from Gaussianity towards the “most” non-Gaussian form of
this parametric distribution - an equiprobable two Gaussians
mixture. As expected, it can be seen that even with both
mismodeling errors, the “first-order” approximation gives an
accurate prediction of the resulting ISR. Moreover, the Gaus-
sian QMLE, attaining its lower bound, exhibits superiority
over the IVA-G-N for every value of p in this scenario, which
demonstrates its ability to exploit temporal diversity even when
the cross-correlations are relatively low.

V. CONCLUSION

We considered a separation procedure for a semi-blind IVA
problem using the extended SeDJoCo solution. We showed
that (under mild conditions) this solution is consistent (in the
sense of zero ISR when T →∞) for a general IVA problem,
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i.e., potentially fully blind. In addition, using the classical
“first-order” perturbation analysis (under the “small-errors”
assumption), we provided closed-form analytical expressions
for the approximated predicted ISRs. Furthermore, we proved
the “universal” asymptotic ISR Theorem for the Gaussian
QMLE and showed that the Gaussian iCRLB serves as an
asymptotically attainable lower bound for the resulting ISR,
regardless of the true sources’ distributions, as an immediate
implicit result of the Theorem. Our analytical results were veri-
fied by simulations, demonstrating an excellent match with the
obtained empirical outcomes (to a precision of ∼ 0.2[dB] for
a sample size of 103) for two types of partial prior knowledge
- imperfect SOS and sources’ distributions mismodeling.
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APPENDIX A
PARTIAL DIFFERENTIATION OF THE MATRIX F

Differentiating each block Fm w.r.t. Q(m1,m2)
k,ij yields

∂Fm

∂Q
(m1,m2)
k,ij

=
K∑
k̃=1

M∑
`=1

Ek̃k̃B
(`)

∂Q
(`,m)

k̃

∂Q
(m1,m2)
k,ij

B(m)T =

δmm2Ekkb̃
(m1)

i b̃
(m2)T

j +
δmm1

Ekkb̃
(m2)

j b̃
(m1)T

i m1 6= m2

δmm2Ekkb̃
(m2)

j b̃
(m1)T

i m1 = m2, i 6= j
0 m1 = m2, i = j

,

(55)

where b̃
(m)

i denotes the i-th column of B(m). Then, in the
same fashion, differentiating each block F n w.r.t. B(m)

pq gives

∂F n

∂B
(m)
pq

=
K∑
k=1

M∑
`=1

Ekk
∂

∂B
(m)
pq

Ä
B(`)Q

(`,n)
k B(n)T

ä
=

K∑
k=1

Ekk

[
δmn
Ä
B(m)Q

(m,m)
k Eqp +EpqQ

(m,m)
k +

M∑
`=1
` 6=m

B(`)Q
(`,m)
k Eqp

ä
+ (1− δmn)

Ä
EpqQ

(m,n)
k B(n)T

ä]
=

K∑
k=1

Ekk

(
EpqQ

(m,n)
k B(n)T + δmn

M∑
`=1

B(`)Q
(`,m)
k Eqp

)
,

EpqQ
(m,n)
p B(n)T + δmn

K∑
k=1

M∑
`=1

EkkB
(`)Q

(`,m)
k Eqp,

(56)

where we have used EkkEpq = δkpEpq and ([42])

∂XBXT

∂Xij
= XBEji +EijBX

T,
∂XA

∂Xij
= EijA.

APPENDIX B
COMPUTATION OF THE ELEMENTS OF E

î
q̂q̂T
ó

Let us examine all different cases of the expressionÄ
E
î
q̂q̂T
óä
ĩj̃
, Λĩj̃ =

1

T 2
E
î
s
(m1)T
i1

P
(m1,n1)
k1

s
(n1)
j1

s
(m2)T
i2

P
(m2,n2)
k2

s
(n2)
j2

ó
.

Case I: i1 = j1, i2 = j2, i1 6= i2

Λĩj̃ =
1

T 2
Tr
Ä
C

(n1,m1)
i1

P
(m1,n1)
k1

ä
Tr
Ä
C

(n2,m2)
i2

P
(m2,n2)
k2

ä
,

where we have used

(i) E
î
s
(m1)T
i1

P
(m1,n1)
k1

s
(n1)
i1

s
(m2)T
i2

P
(m2,n2)
k2

s
(n2)
i2

ó
=

E
î
s
(m1)T
i1

P
(m1,n1)
k1

s
(n1)
i1

ó
E
î
s
(m2)T
i2

P
(m2,n2)
k2

s
(n2)
i2

ó
;

(ii) s(m1)T
i1

P
(m1,n1)
k1

s
(n1)
j1

= Tr
Ä
s
(n1)
j1

s
(m1)T
i1

P
(m1,n1)
k1

ä
; and

(iii) E [Tr (·)] = Tr (E [·]) .

Case II: i1 = j2, i2 = j1, i1 6= j1

Λĩj̃ =
1

T 2
Tr
Ä
C

(n2,m1)
i1

P
(m1,n1)
k1

C
(n1,m2)
i2

P
(m2,n2)
k2

ä
,

where we have used (i)-(iii) and also

(iv) s
(m1)T
i1

P
(m1,n1)
k1

s
(n1)
j1

= s
(n1)T
j1

P
(n1,m1)
k1

s
(m1)
i1

; and

(v) Tr (ABCD) = Tr (DABC) ,A,B,C,D ∈ RK×K .

Case III: i1 = i2, j1 = j2, i1 6= j1

Λĩj̃ =
1

T 2
Tr
Ä
C

(m2,m1)
i1

P
(m1,n1)
k1

C
(n1,n2)
j1

P
(n2,m2)
k2

ä
,

where we have used (i)-(v).
Case IV: i1 = j1 = i2 = j2

Λĩj̃ =
1

T 2

ï
Tr
Ä
C

(n1,m1)
i1

P
(m1,n1)
k1

ä
Tr
Ä
C

(n2,m2)
i1

P
(m2,n2)
k2

ä
+

Tr
Ä
C

(n2,m1)
i1

P
(m1,n1)
k1

C
(n1,m2)
i1

P
(m2,n2)
k2

ä
+

Tr
Ä
C

(m2,m1)
i1

P
(m1,n1)
k1

C
(n1,n2)
j1

P
(n2,m2)
k2

ä ò
,

where we have used (i)-(v) and Isserlis’ theorem [41], re-
garding the computation of higher-order moments of the
multivariate Gaussian distribution, and in particular,

E
î
s
(m1)
i1

[t1]s
(n1)
i1

[t2]s
(m2)
i1

[t3]s
(n2)
i1

[t4]
ó

=

E
î
s
(m1)
i1

[t1]s
(n1)
i1

[t2]
ó
E
î
s
(m2)
i1

[t3]s
(n2)
i1

[t4]
ó

+

E
î
s
(m1)
i1

[t1]s
(m2)
i1

[t3]
ó
E
î
s
(n1)
i1

[t2]s
(n2)
i1

[t4]
ó

+

E
î
s
(m1)
i1

[t1]s
(n2)
i1

[t4]
ó
E
î
s
(n1)
i1

[t2]s
(m2)
i1

[t3]
ó

=

C
(m1,n1)
i1,t1t2

C
(m2,n2)
i1,t3t4

+ C
(m1,m2)
i1,t1t3

C
(n1,n2)
i1,t2t4

+ C
(m1,n2)
i1,t1t4

C
(n1,m2)
i1,t2t3

.

Case V: otherwise

Λĩj̃ = 0.
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APPENDIX C
PROOF OF THEOREM 1

We shall now show that the solution of (29) for every
θr, 1 ≤ r ≤Mq ,

dB
(m)
pq

d“Q(m1,n1)
k,ij

∣∣∣∣∣∣
q̂=q

= 0, p 6= q, (57)

∀p, q, i, j, k ∈{1, . . . ,K},∀m,m1, n1 ∈ {1, . . . ,M},

which zeros out all the elements of C q̂(I) (in (41), when
the sum is written explicitly) that depend on the fourth-order
statistics of the sources, thereby proving the Theorem.

By virtue of the ISR-equivariance property of the (Q)MLE
of the demixing matrices, it suffices to consider the solution
of (29) for the case A = IKM = B (where B , A−1),
evaluated at q̂ = q. Notice that in this case the terms in
equation (20) boil down to

∂F

∂“Q(m1,n1)
k,ij

∣∣∣∣∣∣
B=IKM

= δijδikEkk·
ß
δmm1 m1 = n1
δmm1

+ δmn1
m1 6= n1

.

(58)
First, notice that i 6= j or i 6= k implies Y = O, so for all
these cases we have that θ = 0, i.e.,

dB
(m)
pq

d“Q(m1,n1)
k,ij

∣∣∣∣∣∣
q̂=q

= 0,∀m,m1, n1 ∈ {1, . . . ,M},

∀i, j, k, p, q ∈ {1, . . . ,K} : (i 6= j) ∪ (i 6= k). (59)

Now, let us examine the cases where i = j = k. Obviously,
there are two such cases: m1 = n1 and m1 6= n1. We start
with the case where m1 = n1, and we assert that for this case
the solution of (29) is of the form

θ =
M∑
`=1

α`ei+(i−1)K+(`−1)K2 , (60)

where {α`}M`=1 are some coefficients (to be defined below in
(68)). To show this, we begin by computing y for this case.
By (20) and (58), it follows that

Y =

O · · · O Eii︸︷︷︸
m1-th matrix

O · · · O

 ,
⇔

y = vec (Y ) = ei+(i−1)K+(m1−1)K2 .

(61)

Then, recall that the columns of the matrix H are the vectors{
h[m,p,q]

}
, defined in (25). These vectors are the concate-

nated column vectors of the matrices
{
H [m,p,q]

}
, respectively,

hence

Hei+(i−1)K+(`−1)K2 = h[i,i,`] = vec
(
H [i,i,`]

)
. (62)

Evaluating (22) at q̂ = q, and substituting B = IKM , we
have that

∂Fm

∂B
(`)
ii

∣∣∣∣∣
q̂=q

=
K∑
k=1

Ekk

(
EiiQ

(`,m)
k + δm`

M∑
m̃=1

Q
(m̃,`)
k Eii

)

= EiiQ
(`,m)
i + δm`

K∑
k=1

M∑
m̃=1

EkkQ
(m̃,`)
k Eii

= Q
(`,m)
i,ii Eii + δm`

M∑
m̃=1

Q
(m̃,`)
i,ii Ekk

=

[
M∑
m̃=1

Q
(m̃,`)
i,ii (δm` + δmm̃)

]
Eii , β(`,m)Eii,

(63)

where we have used the fact that whenB = IKM = A, all the
matrices

¶
Q

(m,`)
k

©
are diagonal, and that Q(`,m)

i,ii = Q
(m,`)
i,ii .

Using the definition in (23), it follows that

Hθ =
M∑
`=1

α`Hei+(i−1)K+(`−1)K2

=
M∑
`=1

M∑
˜̀=1

α`β(`, ˜̀)ei+(i−1)K+(˜̀−1)K2

=
M∑
˜̀=1

(
M∑
`=1

α`β(`, ˜̀)

)
ei+(i−1)K+(˜̀−1)K2

,
M∑
˜̀=1

γ˜̀ei+(i−1)K+(˜̀−1)K2 .

(64)

Now, notice that

Hθ =
M∑
˜̀=1

γ˜̀ei+(i−1)K+(˜̀−1)K2

= γm1ei+(i−1)K+(m1−1)K2 +
M∑
˜̀=1

˜̀6=m1

γ˜̀ei+(i−1)K+(˜̀−1)K2

= γm1
y +

M∑
˜̀=1

˜̀6=m1

γ˜̀ei+(i−1)K+(˜̀−1)K2 ,

(65)

so that if γ` = −δm1`, (60) is a solution of (29). Indeed,
this can be easily obtained by the following linear system of
equations

M∑
`=1

α`β(`, ˜̀) = −δm1
˜̀,∀˜̀∈ {1, . . . ,M}, (66)

or written equivalently in matrix form

βα = −em1 , (67)

where the (i, j)-th element of the matrix β ∈ RM×M is
β(i, j), and the i-th element of α ∈ RM×1 is αi. Finally,
with

α = −β−1em1 , (68)
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we have that
Hθ = −y, (69)

and we conclude that (60) is the solution of (29).
We shall now address the last case where m1 6= n1 (recall

that in this case also i = j = k). The only difference from the
previous case is the value of y, since now by (58) (w.l.o.g.
assume n1 > m1)

Y =

O · · · O Eii︸︷︷︸
m1-th matrix

O · · · O Eii︸︷︷︸
n1-th matrix

O · · · O

 ,
⇔

y = vec (Y ) = ei+(i−1)K+(m1−1)K2 + ei+(i−1)K+(n1−1)K2 .
(70)

Applying exactly the same machinery used in the previous
case, we select the coefficients {α`}M`=1 for the solution vector
(60) such that

M∑
`=1

α`β(`, ˜̀) = −
Ä
δm1

˜̀+ δn1
˜̀

ä
,∀˜̀∈ {1, . . . ,M}, (71)

or written equivalently in matrix form

βα = − (em1
+ en1

) , (72)

so that (60) with the coefficients

α = −β−1 (em1
+ en1

) , (73)

is a solution of (29). With this, we have presented the closed-
form solution for the gradient of each element in the solution
matrices of the extended SeDJoCo w.r.t. each element of the
target-matrices for the particular case where A = IKM = B,
evaluated at q̂ = q.

Now, recall the definition of θ in (26), and notice that for
the aforementioned solution

dB
(m)
pq

d“Q(m1,n1)
k,ij

∣∣∣∣∣∣
q̂=q

= 0, p 6= q, (74)

∀p, q, i, j, k ∈{1, . . . ,K},∀m,m1, n1 ∈ {1, . . . ,M},

which means that asymptotically, the resulting ISR from the
separating solution of the extended SeDJoCo depends only on
the sources’ SOS, as seen from equation (41) when written
explicitly as a sum of products between the elements of the
gradient vector g(m)

ij and the covariance matrix C q̂(I) .
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