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Abstract—We consider the problem of demixing a sequence of
source signals from the sum of noisy bilinear measurements.
It is a generalized mathematical model for blind demixing
with blind deconvolution, which is prevalent across the areas
of dictionary learning, image processing, and communications.
However, state-of-the-art convex methods for blind demixing
via semidefinite programming are computationally infeasible for
large-scale problems. Although the existing nonconvex algorithms
are able to address the scaling issue, they normally require
proper regularization to establish optimality guarantees. The
additional regularization yields tedious algorithmic parameters
and pessimistic convergence rates with conservative step sizes.
To address the limitations of existing methods, we thus develop
a provable nonconvex demixing procedure via Wirtinger flow,
much like vanilla gradient descent, to harness the benefits of
regularization free, fast convergence rate with aggressive step
size and computational optimality guarantees. This is achieved
by exploiting the benign geometry of the blind demixing problem,
thereby revealing that Wirtinger flow enforces the regularization-
free iterates in the region of strong convexity and qualified level
of smoothness where the step size can be chosen aggressively.

Index Terms—Blind demixing, blind deconvolution, bilin-
ear measurements, nonconvex optimization, Wirtinger flow,
regularization-free, statistical and computational guarantees.

I. INTRODUCTION

Demixing a sequence of source signals from the sum of

bilinear measurements provides a generalized mathematical

modeling framework for blind demixing with blind deconvolu-

tion [1], [2], [3]. It spans a wide scope of applications ranging

from communication [4], imaging [5], and machine learning

[6], to the recent application in the context of the Internet-

of-Things for sporadic and short messages communications

over unknown channels [3]. Although blind demixing can be

regarded as a variant of blind deconvolution [7] by extending

the problem of “single-source” setting to the “multi-source”

setting, it is nontrivial to accomplish the extension. The main

reason is that the “incoherence” between different sources

brings unique challenges to develop effective algorithms for

blind demixing with theoretical guarantees [1], [2], [8]. In

addition, the bilinear measurements in the blind demixing

problem hamper the extension of the results for the demix-

ing problem with linear measurements [9]. Moreover, the

demixing procedure often involves solving highly nonconvex

optimization problems which are generally dreadful to tackle.

In particular, local stationary points bring severe challenges

since it is usually intractable to even check local optimality

for a feasible point [10].

Despite the general intractability, recent years have seen

progress on convex relaxation approach for demixing prob-

lems. Specifically, sharp recovery bound for convex demixing

J. Dong and Y. Shi are with the School of Information Science and Tech-
nology, ShanghaiTech University, Shanghai 201210, China (e-mail: {dongjl,
shiym}@shanghaitech.edu.cn).

with linear measurements has been established in [11] based

on the integral geometry technique [11] for analyzing the

convex optimization problems with random constraints. More-

over, by lifting the original bilinear model into the the linear

model with rank-one matrix, the provable convex relaxation

approach for solving the blind deconvolution problem via

semidefinite programming has been developed in [7]. Ling et

al. in [1] further extended the theoretical analysis for blind

deconvolution with single source [7] to the blind demixing

problem with multiple sources. The theoretical guarantees for

blind demixing have been recently improved in [2], which are

built on the concept of restricted isometry property originally

introduced in [12]. Despite attractive theoretical guarantees,

such convex relaxation methods fail in the high-dimensional

data setting due to the high computational and storage cost for

solving large-scale semidefinite programming problems.

To address the scaling issue of the convex relaxation ap-

proaches, a recent line of works has investigated computa-

tionally efficient methods based on nonconvex optimization

paradigms with theoretical guarantees. For high-dimensional

estimation problems via nonconvex optimization methods,

state-of-the-art results can be divided into two categories, i.e.,

local geometry and global geometry. In the line of works

that focuses on the local geometry, one shows that iterative

algorithm converges to global solution rapidly when the ini-

tialization is close to the ground truth. The list of this line

of successful works includes matrix completion [13], phase

retrieval [14], [15], [10], blind deconvolution [16] and blind

demixing [8]. The second line of works explores the global

landscape of the objective function and aims to show that all

local minima are globally optimal under suitable statistical

conditions while the saddle points can be escaped efficiently

via nonconvex iterative procedures with random initialization.

The successful examples include matrix sensing [17], matrix

completion [18], dictionary learning [19], tensor decomposi-

tion [20], synchronization problem [21] and learning shallow

neural networks [22].

The nonconvex optimization paradigm for high-dimensional

estimation has also recently been applied in the setting of blind

demixing. Specifically, a nonconvex Riemannian optimization

algorithm was developed in [3] by exploiting the manifold

geometry of fixed-rank matrices. However, due to complicated

iterative strategies of in the Riemannian trust-region algo-

rithms, it is challenging to provide high-dimensional statistical

analysis for such nonconvex strategy. Ling et al. in [8]

developed a regularized gradient descent procedure to optimize

the nonconvex loss function directly, in which the regular-

ization accounts for guaranteeing incoherence. Although the

regularized nonconvex procedure in [8] provides appealing

computational properties with optimality guarantees, it usually

introduces tedious algorithmic parameters that need to be
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carefully tuned. Moreover, theoretical analysis in [8] provides

a pessimistic convergence rate with a severely conservative

step size.

In contrast, the Wirtinger flow algorithm [14], which con-

sists of spectral initialization and vanilla gradient descent

updates without regularization, turns out to yield theoretical

guarantees for important high-dimensional statistical estima-

tion problems. In particular, the optimality guarantee for phase

retrieval was established in [14]. However, the theoretical re-

sults in [14] only ensure that the iterates of the Wirtinger flow

algorithm remain in the ℓ2-ball, in which the step size is chosen

conservatively, yielding slow convergence rate. The statistical

and computational efficiency was further improved in [15] via

the truncated Wirtinger flow by carefully controlling search

directions, much like regularized gradient descent. To harness

all benefits of regularization free, fast convergence rates with

aggressive step size and computational optimality guarantees,

Ma et al. [10] has recently uncovered that the Wirtinger flow

algorithm (without regularization) implicitly enforces iterates

within the intersection between ℓ2-ball and the incoherence

region, i.e., the region of incoherence and contraction, for the

nonconvex estimation problems of phase retrieval, low-rank

matrix completion, and blind deconvolution. By exploiting the

local geometry in such a region, i.e., strong convexity and

qualified level of smoothness, the step size of the iterative

algorithm can be chosen more aggressively, yielding faster

convergence rate.

In the present work, we extend the knowledge of implicit

regularization in the nonconvex statistical estimation problems

[10] by studying the unrevealed blind demixing problem. It

turns out that, for the blind demixing problem, our theory

suggests a more aggressive step size for the Wirtinger flow

algorithm compared with the results in [8], yielding substan-

tial computational savings for blind demixing problem. The

extension turns out to be nontrivial since the “incoherence”

between multiple sources for blind demixing leads to distortion

to the statistical property in the single source scenario for blind

deconvolution. The similar challenge has also been observed

in [1], [2] by extending the convex relaxation approach (i.e.,

semidefinite programming) for blind deconvolution to the

setting of blind demixing. Furthermore, the noisy measure-

ments also bring additional challenges to establish theoretical

guarantees. The extra technical details involved in this paper to

address these challenges shall be demonstrated clearly during

the presentation.

Notations: Throughout this paper, f(n) = O(g(n)) or

f(n) . g(n) denotes that there exists a constant c > 0
such that |f(n)| ≤ c|g(n)| whereas f(n) & g(n) means that

there exists a constant c > 0 such that |f(n)| ≥ c|g(n)|.
f(n) ≫ g(n) denotes that there exists some sufficiently large

constant c > 0 such that |f(n)| ≥ c|g(n)|. In addition,

the notation f(n) ≍ g(n) means that there exist constants

c1, c2 > 0 such that c1|g(n)| ≤ |f(n)| ≤ c2|g(n)|.

II. PROBLEM FORMULATION

In this section, we present mathematical model of the blind

demixing problem in the noisy scenario. As this problem is

highly intractable without any further structural assumptions,

the coupled signals are thus assumed to belong to known

subspaces [1], [2], [8].

Let A∗ denote the conjugate transpose of matrix A.

Suppose we have m bilinear measurements yj’s, which are

represented in the frequency domain as

yj =

s∑

i=1

b∗jh
♮
ix

♮∗
i aij + ej , 1 ≤ j ≤ m, (1)

where aij ∈ CK and bj ∈ CK are known design vectors,

ej ∼ N (0,
σ2d2

0

2m )+ iN (0,
σ2d2

0

2m ) is the additive white complex

Gaussian noise with d0 =
√∑s

i=1 ‖h
♮
i‖22‖x♮

i‖22 and 1/σ2 as

the measurement of noise variance [8]. Each aij is assumed

to follow an i.i.d. complex Gaussian distribution, i.e., aij ∼
N (0, 1

2IK)+ iN (0, 1
2IK). The first K columns of the unitary

discrete Fourier transform (DFT) matrix F ∈ Cm×m with

FF ∗ = Im form the matrix B := [b1, · · · , bm]∗ ∈ Cm×K

[8]. Based on the above bilinear model, our goal is to si-

multaneously recover the underlying signals h
♮
i ∈ CK’s and

x
♮
i ∈ C

K’s by solving the following blind demixing problem

[3], [8]

P : minimize
{hi},{xi}

f(h,x) :=

m∑

j=1

∣∣∣
s∑

i=1

b∗jhix
∗
iaij − yj

∣∣∣
2

. (2)

To simplify the presentation, we denote f(z) := f(h,x),
where z = [z∗1 · · · z∗s ]∗ ∈ C2sK with zi = [h∗

i x
∗
i ]

∗ ∈ C2K .
We further define the discrepancy between the estimate z and

the ground truth z♮ as the distance function, given as

dist(z, z♮) =

(
s∑

i=1

dist2(zi, z
♮
i )

)1/2

, (3)

where dist2(zi, z
♮
i ) = min

αi∈C

(‖ 1
αi
hi − h♮

i‖22 + ‖αixi − x♮
i‖22)/di

for i = 1, · · · , s. Here, di = ‖h♮
i‖2 + ‖x♮

i‖2 and each αi is

the alignment parameter.

III. MAIN RESULTS

In this section, we shall present the Wirtinger flow algorithm

along with the statistical analysis for blind demixing P .

A. Wirtinger Flow Algorithm

The Wirtinger flow algorithm [14] is a two-stage approach

consisting of spectral initialization and vanilla gradient de-

scent update procedure without regularization. Specifically,

the gradient step in the second stage of Wirtinger flow is

characterized by the notion of Wirtinger derivatives [14], i.e.,

the derivatives of real valued functions over complex variables.

For each i = 1, · · · , s, ∇hi
f(h,x) and ∇xi

f(h,x) denote

the Wirtinger gradient of f(z) with respect to hi and xi

respectively as follows:

∇hi
f(z) =

m∑

j=1

( s∑

k=1

b∗jhkx
∗
kakj − yj

)
bja

∗
ijxi, (4a)

∇xi
f(z) =

m∑

j=1

( s∑

k=1

b∗jhkx
∗
kakj − yj

)
aijb

∗
jhi. (4b)



3

Algorithm 1: Wirtinger flow for blind demixing P

Given: {aij}1≤i≤s,1≤j≤m, {bj}1≤j≤m, and {yj}1≤j≤m.

1: Spectral Initialization:

2: for all i = 1, · · · , s do in parallel

3: Let σ1(Mi), ȟ
0
i and x̌0

i be the leading singular value,

left singular vector and right singular vector of matrix

Mi :=
∑m

j=1 yjbja
∗
ij , respectively.

4: Set h0
i =

√
σ1(Mi)ȟ

0
i and x0

i =
√
σ1(Mi)x̌

0
i .

5: end for

6: for all t = 1, · · · , T do

7: for all i = 1, · · · , s do in parallel

8:

[
h

t+1
i

x
t+1
i

]
=
[
h

t
i

xt
i

]
− η

[
1

‖xt
i
‖22

∇hi
f(ht,xt)

1

‖ht
i
‖22

∇xi
f(ht,xt)

]

9: end for

10: end for

The Wirtinger flow for the blind demixing problem is

presented in Algorithm 1, in which T > 0 is the maximum

number of iterations and the constant η > 0 is the step size.

We now provide some numerical evidence by testing the

performance of the Wirtinger flow algorithm for blind demix-

ing problem P (2). We first consider the blind demixing

problem in the noiseless scenario in order to clearly demon-

strate the effectiveness of the Wirtinger flow algorithm. Specif-

ically, for each K ∈ {50, 100, 200, 400, 800}, s = 10 and

m = 50K , we generate the design vectors aij’s and bj’s for

each 1 ≤ i ≤ s, 1 ≤ j ≤ m, according to the descriptions in

Section II. The underlying signals h
♮
i ,x

♮
i ∈ CK , 1 ≤ i ≤ s,

are generated as random vectors with unit norm. With the

chosen step size η = 0.1 in all settings, Fig. 1(a) shows

the relative error
∑s

i=1 ‖ht
ix

t∗
i − h♮

ix
♮∗
i ‖F /

∑s
i=1 ‖h

♮
ix

♮∗
i ‖F ,

versus the iteration count, where ‖ · ‖F denotes the Frobenius

norm. We observe that, in the noiseless case, Wirtinger flow

with constant step size enjoys extraordinary linear convergence

rate which rarely changes as the problem size varies.

In the noiseless scenario, we further demonstrate that the

performance and convergence rate of the Wirtinger flow actu-

ally depend on the condition number, i.e., κ :=
maxi ‖x♮

i‖2

mini ‖x♮
i‖2

. In

this experiment, we let K = 50, m = 800, s = 2, the step size

be η = 0.5 and set for the first component ‖h♮
1‖2 = ‖x♮

1‖2 = 1
and for the second one ‖h♮

2‖2 = ‖x♮
2‖2 = κ with κ ∈

{1, 2, 3}. Fig. 1(b) shows the relative error versus the iteration

count. As we can see, the larger κ yields slower convergence

rate. This phenomenon may be caused by bad initial guess

for weak components via spectral initialization [8]. Moreover,

the strong components may pollute the gradient directions for

weak components, which yields slow convergence rate [8].

We further provide empirical results for the Wirtinger flow

algorithm in the presence of noise. We set the size of source

signals K = 50, the sample size m ∈ {3, 5, 7, 9, 12}×103, the

user number s = 10, the step size η = 0.1. The underlying

signals h
♮
i ,x

♮
i ∈ CK , 1 ≤ i ≤ s, are generated as random

vectors with unit norm. Fig. 1(c) shows the relative error

defined above versus the signal-to-noise ratio (SNR), where

the SNR is defined as SNR := ‖y‖2/‖e‖2 [8] since it is easy

to access the signal y. Both the relative error and the SNR are

shown in the dB scale. As we can see, the relative error scales

linearly with the SNR, which implies that the Wirtinger flow

is robust to the noise. The main purpose of this paper is to

theoretically analyze the promising empirical observations of

the Wirtinger flow algorithm for blind demixing P in the

noisy scenarios. We will demonstrate that for the problem

P the Wirtinger flow algorithm can achieve fast convergence

rates with aggressive step size and computational optimality

guarantees without explicit regularization.

B. Theoretical Results

Before stating the main theorem, we need to introduce the

incoherence parameter [8], which characterizes the incoher-

ence between bj and hi for 1 ≤ i ≤ s, 1 ≤ j ≤ m.

Definition 1 (Incoherence for blind demixing). Let the inco-

herence parameter µ be the smallest number such that

max
1≤i≤s,1≤j≤m

|b∗jh♮
i |

‖h♮
i‖2

≤ µ√
m
. (5)

The incoherence between bj and hi for 1 ≤ i ≤ s, 1 ≤ j ≤
m specifies the smoothness of the loss function (2). Within

the region of incoherence and contraction (defined in Section

IV-A) that enjoys the qualified level of smoothness, the step

size for iterative refinement procedure can be chosen more

aggressively according to generic optimization theory [10].

Based on the definition of incoherence, our theory shall show

that the iterates of Algorithm 1 will retain in the region of

incoherence and contraction, which is endowed with strong

convexity and the qualified level of smoothness.

Without loss of generality, we assume ‖h♮
i‖2 = ‖x♮

i‖2
for i = 1, · · · , s and define the condition number κ :=
maxi ‖x♮

i‖2

mini ‖x♮
i‖2

≥ 1 with maxi ‖x♮
i‖2 = 1. Define Ai(e) =

∑m
j=1 ejbja

∗
ij , i = 1, · · · , s, then the main theorem is

presented in the following.

Theorem 1. Suppose the step size obeys η > 0 and η ≍ s−1,

then the iterates (including the spectral initialization point) in

Algorithm 1 satisfy

dist(zt, z♮) ≤ C1(1−
η

16κ
)t
( 1

log2 m
− 48

√
sκ2

η
·

max
1≤i≤s

‖Ai(e)‖
)
+

48C1
√
sκ2

η
max
1≤i≤s

‖Ai(e)‖, (6a)

max
1≤i≤s,1≤j≤m

∣∣∣a∗
ij

(
αt
ix

t
i − x♮

i

)∣∣∣ · ‖x♮
i‖−1

2 ≤ C3
1

√
s log3/2 m

,

(6b)

max
1≤i≤s,1≤j≤m

∣∣∣∣∣b
∗
j

1

αt
i

ht
i

∣∣∣∣∣ · ‖h
♮
i‖−1

2 ≤ C4
µ√
m

log2 m, (6c)

for all t ≥ 0, with probability at least 1−c1m
−γ−c1me−c2K if

the number of measurements m ≥ C(µ2 + σ2)s2κ4K log8 m
for some constants γ, c1, c2, C1, C3, C4 > 0 and sufficiently

large constant C > 0.
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Fig. 1. Numerical results.

Here, we denote αt
i for i = 1, · · · , s as the alignment

parameter such that

αt
i := argmin

α∈C

∥∥∥∥
1

α
ht
i − h♮

i

∥∥∥∥
2

2

+
∥∥∥αxt

i − x♮
i

∥∥∥
2

2
. (7)

In addition, with probability at least 1−O(m−9), there holds

max1≤i≤s ‖Ai(e)‖ ≤ C0σ
√

10sK log2 m
m , for some absolute

constant C0 > 0 and σ is defined in Section II.

Note that the assumption of the same length of hi and

xi only serves the purpose of simplifying the presentation.

Our theoretical results can be easily extended to the sce-

nario where hi and xi have different sizes. Specifically, for

each i = 1, · · · , s, j = 1, · · · ,m, if hi, bj ∈ CK and

xi,aij ∈ CN , the requirement of sample size turns out to

be m ≥ C(µ2 + σ2)s2κ4max{K,N} log8 m.

Theorem 1 endorses the empirical results shown in Fig.

1(a), Fig. 1(b) and Fig. 1(c). Specifically, compared to the

step size (i.e., η . 1
sκm ) suggested in [8] for regularized

gradient descent, our theory yields a more aggressive step

size (i.e., η ≍ s−1) even without regularization. According to

(6a), in the noiseless scenario, the Wirtinger flow algorithm

can achieve ǫ-accuracy within sκ log(1/ǫ) iterations, while

previous theory in [8] suggests sκm log(1/ǫ) iterations. In

the noisy scenario, the convergence rate of the Wirtinger flow

algorithm is independent of the number of measurements m
and related to the level of the noise. The sample complexity,

i.e., m ≥ Cs2Kpoly logm with sufficiently large constant

C > 0, is comparable to the result in [8] which uses explicit

regularization. However, we expect to reduce the sample

complexity to m ≥ CsKpoly logm, with sufficiently large

constant C > 0 by a tighter analysis, e.g., eluding controlling

terms involved s2/m, which is left for future work.

For further illustrations, we plot the incoherence mea-

sure max1≤i≤s,1≤j≤m |a∗
ij(α

t
ix

t
i − x

♮
i)| (in Fig. 1(d)) and

max1≤i≤s,1≤j≤m |b∗j 1

αt
i

ht
i| (in Fig. 1(e)) of the gradient

iterates versus iteration count, under the setting K ∈
{20, 40, 80, 160, 200}, m = 50K , s = 10, η = 0.1, σ = 10−1

with ‖h♮
i‖2 = ‖x♮

i‖2 = 1 for 1 ≤ i ≤ s. We observe that both

incoherence measures remain bounded by befitting values for

all iterations.

IV. TRAJECTORY ANALYSIS FOR BLIND DEMIXING

In this section, we prove the main theorem via trajectory

analysis for blind demixing via the Wirtinger flow algorithm.

We shall reveal that iterates of Wirtinger flow, i.e., Algorithm

1, stay in the region of incoherence and contraction by

exploiting the local geometry of blind demixing P . The steps

of proving Theorem 1 are summarized as follows.

• Characterizing local geometry in the region of inco-

herence and contraction (RIC). We first characterize

a region R, i.e., RIC, where the objective function

enjoys restricted strong convexity and smoothness near

the ground truth z♮. Moreover, any point z ∈ R satisfies

the ℓ2 error contraction and the incoherence conditions.

This will be established in Lemma 1. Provided that

all the iterates of Algorithm 1 are in the region R,

the convergence rate of the algorithm can be further

established, according to Lemma 2.

• Constructing the auxiliary sequences via the leave-

one-out approach. To justify that the Wirtinger Flow

algorithm enforces the iterates to stay within the RIC, we

introduce the leave-one-out sequences. Specifically, the

leave-one-out sequences are denoted by {ht,(l)
i ,x

t,(l)
i }t≥0

for each 1 ≤ i ≤ s, 1 ≤ l ≤ m obtained by removing the

l-th measurement from the objective function f(h,x).

Hence, {ht,(l)
i } and {xt,(l)

i } are independent with {bj}
and {aij}, respectively.

• Establishing the incoherence condition via induction.

In this step, we employ the auxiliary sequences to estab-

lish the incoherence condition via induction. That is, as

long as the current iterate stays within the RIC, the next

iterate remains in the RIC.

– Concentration between original and auxiliary

sequences. The gap between {zt} and {zt,(l)} is

established in Lemma 3 via employing the restricted

strong convexity of the objective function in RIC.

– Incoherence condition of auxiliary

sequences.Based on the fact that {zt} and

{zt,(l)} are sufficiently close, we can instead bound

the incoherence of h
t,(l)
i (resp. x

t,(l)
i ) with respect

to {bj} (resp. {aij}), which turns out to be much

easier due to the statistical independence between

{ht,(l)
i } (resp. {xt,(l)

i }) and {bj} (resp.{aij}).

– Establishing iterates in RIC. By combining the

above bounds together, we arrive at |a∗
ij(x

t
i−x♮

i)| ≤
‖aij‖2 · ‖xt

i − x
t,(l)
i ‖2 + ‖a∗

ij(x
t,(l)
i − x♮

i)‖ via the

triangle inequality. Based on the similar arguments,

the other incoherence condition will be established

in Lemma 4.

– Establishing initial point in RIC. Lemma 5,

Lemma 6 and Lemma 7 are integrated to justify that
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the spectral initialization point is in RIC.

A. Characterizing Local Geometry in the Region of Incoher-

ence and Contraction

We first introduce the notation of Wirtinger Hessian. Specif-

ically, let A denote the entry-wise conjugate of matrix A

and fclean denote the objective function of noiseless case. The

Wirtinger Hessian of fclean(z) with respect to zi can be written

as

∇2
zi
fclean :=

[
C

E∗
E

C

]
, (8)

where C := ∂
∂zi

(
∂fclean

∂zi

)∗
and E := ∂

∂zi

(
∂fclean

∂zi

)∗
. The

Wirtinger Hessian of fclean(z) with respect to z is thus rep-

resented as ∇2fclean(z) := diag({∇2
zi
fclean}si=1), where the

operation diag({Ai}si=1) generates a block diagonal matrix

with the diagonal elements as the matricesA1, · · · ,As. Please

refer to Appendix C for more details on the Wirtinger Hessian.

In addition, we say (hi,xi) is aligned with (h′
i,x

′
i), if the

following condition is satisfied

‖hi − h′
i‖

2
2 + ‖xi − x′

i‖
2
2 =

min
α∈C

{∥∥∥∥
1

α
hi − h′

i

∥∥∥∥
2

2

+ ‖αxi − x′
i‖

2
2

}
. (9)

Let ‖A‖ denote the spectral norm of matrix A. We have

the following lemma.

Lemma 1. (Restricted strong convexity and smoothness for

blind demixing problem P). Let δ > 0 be a sufficiently

small constant. If the number of measurements satisfies m ≫
µ2s2κ2K log5 m, then with probability at least 1−O(m−10),
the Wirtinger Hessian ∇2fclean(z) obeys

u∗ [D∇2fclean(z) +∇2fclean(z)D
]
u ≥ 1

4κ
‖u‖22 and

∥∥∇2fclean(z)
∥∥ ≤ 2 + s (10)

simultaneously for all

u =



u1

...

us


 with ui =




hi − h′
i

xi − x′
i

hi − h′
i

xi − x′
i


 ,

and D = diag ({Wi}si=1)

with Wi = diag
([

βi1IK βi2IK βi1IK βi2IK
]∗)

.

Here z satisfies

max
1≤i≤s

max
{
‖hi − h♮

i‖2, ‖xi − x♮
i‖2
}
≤ δ

κ
√
s
, (11a)

max
1≤i≤s,1≤j≤m

∣∣∣a∗
ij

(
xi − x♮

i

)∣∣∣ · ‖x♮
i‖−1

2 ≤ 2C3√
s log3/2 m

,

(11b)

max
1≤i≤s,1≤j≤m

|b∗jhi| · ‖h♮
i‖−1

2 ≤ 2C4µ√
m

log2 m, (11c)

where (hi,xi) is aligned with (h′
i,x

′
i), and one has

max{‖hi − h
♮
i‖2, ‖h′

i − h
♮
i‖2, ‖xi − x

♮
i‖2, ‖x′

i − x
♮
i‖2} ≤

δ/(κ
√
s), for i = 1, · · · , s and Wi’s satisfy that for βi1, βi2 ∈

R, for i = 1, · · · , s max1≤i≤s max
{
|βi1 − 1

κ |, |βi2 − 1
κ |
}
≤

δ
κ
√
s
. Therein, C3, C4 ≥ 0 are numerical constants.

Proof. Please refer to Appendix B for details.

Conditions (11a)-(11c) identify the local geometry of blind

demixing in the noiseless scenario. Specifically, (11a) identi-

fies a neighborhood that is close to the ground truth in ℓ2-

norm. In addition, (11b) and (11c) specify the incoherence

region with respect to the vectors aij and bj for 1 ≤ i ≤
s, 1 ≤ j ≤ m, respectively. This lemma paves the way to the

proof of Lemma 2 and Lemma 3. Specifically, the quantities

of interest in these lemmas are decomposed into the part with

respect to fclean and the part with respect to the noise e such

that Lemma 9 can be exploited to bound the first part.

Based on the local geometry in the region of incoherence

and contraction, we further establish contraction of the error

measured by the distance function (3).

Lemma 2. Suppose the number of measurements satisfies

m ≫ µ2s2κ2K log5 m and the step size obeys η >
0 and η ≍ s−1. Then with probability at least 1 −
O(m−10), dist(zt+1, z♮) ≤ (1 − η/(16κ))dist(zt, z♮) +
3κ

√
smax1≤k≤s ‖Ak(e)‖ , provided that

dist(zt, z♮) ≤ ξ, (12a)

max
1≤i≤s,1≤j≤m

∣∣∣a∗
ij

(
x̃t
i − x♮

i

)∣∣∣ · ‖x♮
i‖−1

2 ≤ 2C3√
s log3/2 m

,

(12b)

max
1≤i≤s,1≤j≤m

∣∣∣b∗j h̃t
i

∣∣∣ · ‖h♮
i‖−1

2 ≤ 2C4µ√
m

log2 m, (12c)

for some constants C3, C4 > 0 and a sufficiently small

constant ξ > 0. Here, h̃t
i and x̃t

i are defined as h̃t
i = 1

αt
i

ht
i

and x̃t
i = αt

ix
t
i for i = 1, · · · , s.

Proof. Please refer to Appendix E for details.

Remark 1. The key idea of proving Lemma 2 is to decompose

the gradient (4) to the the part of pure gradient ∇hi
fclean(z)

(resp. ∇xi
fclean(z)) and the part relative to the noise, i.e.,

Ai(e)xi (resp. A∗
i (e)hi). The pure gradient ∇hi

fclean(z)
(resp. ∇xi

fclean(z)) is required in Lemma 1.

As a result, if zt satisfies condition (12) for all 0 ≤ t ≤
T = O(mγ) for some arbitrary constant γ > 0, then there is

dist(zt, z♮)− 48κ2√s/η max
1≤k≤s

‖Ak(e)‖

≤ρt(dist(z0, z♮)− 48κ2
√
s/η max

1≤k≤s
‖Ak(e)‖), (13)

with probability at least 1 − O(m−γ) for some arbitrary

constant γ > 0, where ρ := 1 − η/(16κ). In the absence of

noise (e = 0), exact recovery can be established and it yields

linear convergence rate due to dist(zt, z♮) ≤ ρtdist(z0, z♮).
In addition, stable recovery can be achieved in the presence

of noise, where the estimation error is controlled by the noise

level.
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B. Establishing Iterates in the Region of Incoherence and

Contraction

In this subsection, we will demonstrate that the iterates of

Wirtinger flow algorithm stay within the region of incoherence

and contraction. In particular, the leave-one-out argument

has been introduced to address the statistical dependence

between {ht
i} (resp. {xt

i}) and {bj} (resp.{aij}). Recall that

{ht,(l)
i ,x

t,(l)
i } are defined in the recipe for proving Theorem

1. For simplicity, we denote zt,(l) = [z
t,(l)∗
1 · · ·zt,(l)∗s ]∗ where

z
t,(l)
i = [h

t,(l)∗
i x

t,(l)∗
i ]∗ and f

(
zt,(l)

)
:= f (l) (h,x). We

further define the alignment parameters α
t,(l)
i , signals h̃

t,(l)
i

and x̃
t,(l)
i in the context of leave-one-out sequence.

We continue the proof by induction. For brief, with z̃ti =

[z̃t∗1 , · · · , z̃t∗s ]∗ where z̃ti = [h̃t∗
i x̃t∗

i ]∗, the set of induction

hypotheses of local geometry is listed as follows:

dist(zt, z♮) ≤ C1
1

log2 m
, (14a)

dist(zt,(l), z̃t) ≤ C2
sκµ√
m

√
µ2K log9 m

m
, (14b)

max
1≤i≤s,1≤j≤m

∣∣∣a∗
ij

(
x̃t
i − x♮

i

)∣∣∣ · ‖xi‖−1
2 ≤ C3

1
√
s log3/2 m

,

(14c)

max
1≤i≤s,1≤j≤m

∣∣∣b∗l h̃t
i

∣∣∣ · ‖hi‖−1
2 ≤ C4

µ√
m

log2 m, (14d)

where C1, C3 are some sufficiently small constants, while

C2, C4 are some sufficiently large constants. In particular,

(14a) and (14b) can be also represented with respect to zi:

dist(zti , z
♮
i ) ≤ C1

1√
s log2 m

, (15a)

dist(z
t,(l)
i , z̃ti) ≤ C2

κµ√
m

√
sµ2K log9 m

m
, (15b)

for i = 1, · · · , s. We aim to specify that the induction hypothe-

ses (14) hold for (t + 1)-th iteration with high probability, if

these hypotheses hold up to the t-th iteration. Since (14a) has

been identified in (12a) as δ ≍ 1/ log2 m, we begin with the

hypothesis (14b) in the following lemma.

Lemma 3. Suppose the number of measurements satisfies

m ≫ (µ2 + σ2)s2κK log13/2 m and the step size obeys

η > 0 and η ≍ s−1. Under the hypotheses (14) for the t-th

iteration, one has dist(zt+1,(l), z̃t+1) ≤ C2
sκµ√
m

√
µ2K log9 m

m ,

max1≤l≤m

∥∥z̃t+1,(l), z̃t+1
∥∥
2

. C2
sµ√
m

√
µ2K log9 m

m , with

probability at least 1−O(m−9).

Proof. Please refer to Appendix F for details.

Remark 2. The key idea of proving Lemma 3 is similar to

the one in Lemma 2 that decomposes the gradient (4) in the

update rule into the part of pure gradient and the part relative

to the noise. Combining Lemma 1 and Lemma 10, we finish

the proof.

Before proceeding to the hypothesis (14c), let us first show

the incoherence of the leave-one-out iterate x
t+1,(l)
i with

respect to ail for all 1 ≤ i ≤ s, 1 ≤ l ≤ m. Based on

the triangle inequality, one has

‖x̃t+1,(l)
i − x♮

i‖2 ≤ ‖x̃t+1,(l)
i − x̃t+1

i ‖+ ‖x̃t+1
i − x♮

i‖2
(i)

≤ C
µ

m

√
µ2sK log9 m

m
+ C1

1

κ
√
s log2 m

(ii)

≤ 2C1/(κ
√
s log2 m), (16)

where (i) arises from Lemma 2 and Lemma 3 and (ii) holds

as long as m ≫ (µ2 + σ2)
√
sKκ2/3 log13/2 m. Using the

inequality (16), the standard Gaussian concentration inequality

in [10] and the statistical independence, it follows that

max
1≤i≤s,1≤l≤m

∣∣∣a∗
il

(
x̃
t+1,(l)
i − x♮

i

)∣∣∣ · ‖x♮
i‖−1

2

≤5
√
logm max

1≤i≤s,1≤l≤m

∥∥∥x̃t+1,(l)
i − x♮

i

∥∥∥
2
· ‖x♮

i‖−1
2

≤10C1
1

√
s log3/2 m

(17)

with probability exceeding 1 − O(m−9). For each 1 ≤ i ≤
s, 1 ≤ l ≤ m, we further obtain
∣∣∣a∗

il

(
x̃t+1
i − x♮

i

)∣∣∣ · ‖x♮
i‖−1

2

(i)

≤
(
‖ail‖2‖x̃t+1

i − x̃t+1,(l)
i ‖2 +

∣∣∣a∗
il

(
x̃
t+1,(l)
i − x♮

i

)∣∣∣
)
‖x♮

i‖−1
2

(ii)

≤3
√
K · C κµ

m

√
µ2sK log9 m

m
+ 10C1

1
√
s log3/2 m

(iii)

≤C3
1

√
s log3/2 m

, (18)

where step (i) is based on the Cauchy-Schwarz inequality, step

(ii) follows from the bound (17), Lemma 3 and the bound with

probability at least 1 − Cm exp(−cK), for some constants

c, C > 0 [10], max1≤j≤m ‖aj‖2 ≤ 3
√
K, and the last step

(iii) holds as long as m ≫ (µ2 + σ2)sκ2/3K log6 m and

C3 ≥ 11C1. It remains to justify the incoherence of ht+1
i

with respect to bl for all 1 ≤ i ≤ s, 1 ≤ l ≤ m. The result is

summarized as follows.

Lemma 4. Suppose the induction hypotheses (14) hold true

for t-th iteration and the number of measurements obeys

m ≫ (µ2 + σ2)s2K log8 m. Then with probability at

least 1 − O(m−9), max1≤i≤s,1≤j≤m

∣∣∣b∗l h̃t+1
i

∣∣∣ · ‖h♮
i‖−1

2 ≤
C4

µ√
m
log2 m, provided that C4 is sufficiently large and the

step size obeys η > 0 and η ≍ s−1.

Proof. Please refer to Appendix G for details.

Remark 3. Based on the claim (27) in Lemma 10, it suffices to

control |b∗l 1

αt
i

ht+1
i |·‖h♮

i‖2 in order to bound

∣∣∣b∗l h̃t+1
i

∣∣∣·‖h♮
i‖−1

2

in Lemma 4. We represent 1

αt
i

ht+1
i by the gradient update rule

where the gradient is decomposed as Remark 1 describes. The

quantities of interest are separated into several terms which

are bounded individually. In addition, the random vector aij

with i.i.d. plays a vital role in the proof since E(aija
∗
kj) = 0

for k 6= i.
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C. Establishing Initial Point in the Region of Incoherence and

Contraction

In order to finish the induction step, we need to further

show that the spectral initializations z0i and z
0,(l)
i for 1 ≤ i ≤

s, 1 ≤ l ≤ m hold for the induction hypotheses (14) of local

geometry. The related lemmas are summarized as follows.

Lemma 5. With probability at least 1−O(m−9), there exists

some constant C > 0 such that

min
αi∈C,|αi|=1

{∥∥∥αih
0
i − h♮

i

∥∥∥+
∥∥∥αix

0
i − x♮

i

∥∥∥
}
≤ ξ

κ
√
s

and

(19)

min
αi∈C,|αi|=1

{∥∥∥αih
0,(l)
i − h♮

i

∥∥∥+
∥∥∥αix

0,(l)
i − x♮

i

∥∥∥
}
≤ ξ

κ
√
s
,

(20)

and ||α0
i |−1| < 1/4, for each 1 ≤ i ≤ s, 1 ≤ l ≤ m, provided

that m ≥ C(µ2 + σ2)sκ2K logm/ξ2.

Proof. Please refer to Appendix H for details.

Remark 4. The proof of Lemma 8 is based on the Wedin’s

sinΘ theorem [23] and the bound in [8], i.e., for any ξ > 0,

‖Mi − E[Mi]‖ ≤ ξ/(κ
√
s), with probability at least 1 −

O(m−9), provided that m ≫ c2(µ
2 + σ2)sκ2K logm/ξ2, for

some constant c2 > 0.

From the definition of distance function (3) and the assump-

tion ξ ≍ 1/ log2 m, we immediately imply that

dist(z0, z♮)

(i)

≤ min
αi∈C

√
sκ

{∥∥∥∥
1

αi
h0
i − h♮

i

∥∥∥∥+
∥∥∥αix

0
i − x♮

i

∥∥∥
}

(ii)

≤ min
αi∈C,|αi|=1

√
sκ
{∥∥∥αih

0
i − h♮

i

∥∥∥+
∥∥∥αix

0
i − x♮

i

∥∥∥
}

(iii)

≤C1
1

log2 m
, (21)

as long as m ≫ (µ2 + σ2)sκ2K log6 m. Here, (i) arises from

the inequality that a2 + b2 ≤ (a + b)2 for a, b > 0 and the

assumption that ‖h♮
i‖2 = ‖x♮

i‖2 with max1≤i≤s ‖x♮
i‖2 = 1,

(ii) occurs since the latter optimization problem has strictly

smaller feasible set and (iii) derives from Lemma 5. With

similar strategy, we can get that with high probability

dist(z0,(l), z♮) .
1

log2 m
, 1 ≤ l ≤ m. (22)

This establishes the inductive hypothesis (14a) for t = 0. We

further show the identification of (14b) and (14d) for t = 0.

Lemma 6. Suppose that m ≫ (µ2 + σ2)s2κ2K log3 m. Then

with probability at least 1−O(m−9),

dist
(
z0,(l), z̃0

)
≤ C2

sκµ√
m

√
µ2sK log5 m

m
and (23)

max
1≤i≤m

|b∗l h̃0
i | · ‖h♮

i‖−1
2 ≤ C4

µ log2 m√
m

. (24)

Proof. Please refer to Appendix I.

Remark 5. Regarding the proof of Lemma 6, we de-

compose Mi into the terms
∑m

j=1 bjb
∗
jh

♮
ix

♮∗
i aija

∗
ij and

Wi =
∑m

j=1 bj(
∑

k 6=i b
∗
jh

♮
kx

♮∗
k akj + ej)a

∗
ij . The proof is

further facilitated by the Wedin’s sinΘ theorem [23] and

the bound that with probability 1 − O(m−9) [8], ‖Wi‖ ≤
(‖h♮

i‖2 · ‖x♮
i‖2)/(2

√
logm), provided that m ≫ (µ2 +

σ2)sK log2 m.

Finally, we specify (14c) regarding the incoherence of x0

with respect to the vector aij for each 1 ≤ i ≤ s, 1 ≤ j ≤ m.

Lemma 7. Suppose the sample complexity m ≫ (µ2 +
σ2)s3/2K log5 m. Then with probability at least 1−O(m−9),

max
1≤i≤s,1≤j≤m

∣∣∣a∗
ij

(
x̃0
i − x♮

i

)∣∣∣ · ‖x♮
i‖−1

2 ≤ C3
1

√
s log3/2 m

.

(25)

Proof. The proof follows [10, Lemma 21].

V. CONCLUSION

In this paper, we developed a provable nonconvex demixing

procedure from the sum of noisy bilinear measurements via

Wirtinger flow without regularization. We demonstrated that,

starting with spectral initialization, the iterates of Wirtinger

flow keep staying within the region of incoherence and con-

traction. The restricted strong convexity and qualified level of

smoothness of such a region leads to more aggressive step

size for gradient descent, thereby significantly accelerating

convergence rates. The provable Wirtinger flow algorithm thus

can solve the blind demixing problem with regularization

free, fast convergence rates with aggressive step size and

computational optimality guarantees. Our theoretical analysis

are by no means exhaustive, and there are diverse directions

that would be of interest for future investigations. For ex-

amples, we may leverage provable regularization-free iterates

for the constrained nonconvex high-dimensional estimation

problems. Establish optimality for nonconvex estimation prob-

lems solved by other regularization-free iterative methods, e.g.,

the Riemannian optimization algorithms, are also worth being

explored.

APPENDIX A

TECHNICAL LEMMAS

The following two lemmas, i.e., Lemma 8 and Lemma 9,

are established to proof Lemma 1. We denote the population

Wirtinger Hessian in the noiseless case at the ground truth z♮

as

∇2F (z♮) := diag
(
{∇2

zi
F}si=1

)
, (26)

where

∇2
zi
F :=




IK 0 0 h
♮
ix

♮⊤
i

0 IK x
♮
ih

♮⊤
i 0

0
(
x
♮
ih

♮⊤
i

)∗
IK 0(

h
♮
ix

♮⊤
i

)∗
0 0 IK




for i = 1, · · · , s.

Lemma 8. Recall that z = [z∗1 · · · z∗s ]∗ ∈ C2sK with zi =
[h∗

i x
∗
i ]

∗ ∈ C2K . Instate the notations and conditions
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in the Lemma 1, there are ‖∇2F (z♮)‖ ≤ 1 + s and

u∗ [D∇2F (z♮) +∇2F (z♮)D
]
u ≥ 1

κ‖u‖22.
Proof. Please refer to Appendix C for details.

Lemma 9. Suppose the sample complexity satisfies m ≫
µ2s2κ2K log5 m. Then with probability at least 1−O(m−10),
one has sup

z∈S ‖∇2fclean(z)−∇2F (z♮)‖ ≤ 1
4 , where the set

S consists of all z’s satisfying the conditions (11) provided in

Lemma 1.

Proof. Please refer to Appendix D for details.

Remark 6. For the proof of Lemma 8 and Lemma 9, ex-

tension operations are required due to multiple sources in

blind demixing. Furthermore, for the proof of Lemma 9, we

decompose the quantity of interest to the sum of spectral

norm of random matrix. In particular, the sum of multiple

“incoherence” signals in (4a) and (4b) calls for new statistical

guarantees for the spectral norm of random matrices over the

“incoherence” region, which is demonstrated in Lemma 12

(see Appendix A) by extending Lemma 59 in [10] for blind

deconvolution with single source.

Lemma 10. Suppose that m ≫ 1. The following two bounds

hold true.

1) If ||αt
i| − 1| < 1/2, i = 1, · · · , s and dist(zt, z♮) ≤

C1/ log
2 m, then for i = 1, · · · , s
∣∣∣∣
αt+1
i

αt
i

− 1

∣∣∣∣ ≤ c dist(zti , z
♮
i ) ≤

cC1

log2 m
(27)

holds for some absolute constant c > 0.

2) If
∣∣|α0

i | − 1
∣∣ < 1/4, i = 1, · · · , s and dist(zτ , z♮)

satisfies the condition (6a) for all 0 ≤ τ ≤ t, then for

i = 1, · · · , s, one has
∣∣|ατ+1

i | − 1
∣∣ < 1

2 , 0 ≤ τ ≤ t, with

sufficiently small C5 > 0 .

Proof. The proof follows [10, Lemma 16].

We will present that the assumption
∣∣|α0

i | − 1
∣∣ < 1/4,

for i = 1, · · · , s can be guaranteed with high probability

by Lemma 5. Based on Lemma 2 and Lemma 10, we

conclude that the ratio of consecutive alignment parameters,

i.e., αt+1
i /αt

i, i = 1, · · · , s, linearly converges to 1, and αt
i,

i = 1, · · · , s converges to a point near to 1.

Lemma 11. Suppose that {Akl}1≤l≤m is a collection of fixed

matrices in CN×K . For k 6= i, we have

P



∥∥∥∥∥
1

m

m∑

l=1

Aklakla
∗
il

∥∥∥∥∥ ≥ 2θ

∥∥∥∥∥
1

m

m∑

l=1

AklA
∗
kl

∥∥∥∥∥

1/2



≤exp
(
c(N +K)− θ2m/C

)
, ∀θ ∈ (0, 1). (28)

Here, c, C > 0 are some absolute constants,

Proof. For simplicity, we define Q =
∑m

l=1Aklakla
∗
il, where

k 6= i. We are going to show that

P


 1

m
|u∗Qv| ≥ θ

∥∥∥∥∥
1

m

m∑

l=1

AklA
∗
kl

∥∥∥∥∥

1/2



≤exp(1 − θ2m/C), ∀θ ∈ (0, 1), (29)

holds for any fixed u ∈ CN , v ∈ CK with ‖u‖2 = ‖v‖2 = 1.

To achieve this goal, we denote a zero-mean random variable

as wl = u
∗Aklakla

∗
ilv, where k 6= i. Based on the technique

provided in [10, Lemma 58], we accomplish the proof.

The following lemma derives the supremum of the spectral

norm of random matrices over an “incoherence" region.

Lemma 12. Suppose that {Akji(h,x)}1≤j≤m, where 1 ≤
k, i ≤ s and k 6= i, is a set of CN×K-valued func-

tion defined on CsN × CsK , such that for all (h,x),
(h′,x′), (h′′,h′′) ∈ C( δ

κ
√
s
, α) the following conditions

hold: ‖ 1
m

∑m
j=1Akji(h,x)A

∗
kji(h,x)‖1/2 ≤ M1, and

max1≤j≤m ‖Akji(h
′′,x′′)−Akji(h

′,x′)‖ ≤ M2 max{‖h′′
k−

h′
k‖2, ‖x′′

k − x′
k‖2}.

Define Pk(h,x) :=
∑m

j=1Akji(h,x)akja
∗
ij , where

k 6= i. If the parameters δ, M1 and M2 hold that

(min{ δ
smM1

, 1})2m ≫ (K +N) logm and m ≫ κ
√
sM2K,

then with probability exceeding 1 − O(m−10), there is

sup(hk,xk)∈Ck(
δ

κ
√

s
,α) ‖Pk(h,x)‖ ≤ 4δ

s .

Proof. The proof follows the technical method provided in

[10, Lemma 59].

APPENDIX B

PROOF OF LEMMA 1

Combining Lemma 8 and Lemma 9 in Appendix A, we can

see that for z ∈ S,
∥∥∇2fclean(z)

∥∥ ≤
∥∥∇2F (z♮)

∥∥+
∥∥∇2fclean(z) −∇2F (z♮)

∥∥
≤ 1 + s+ 1/4 ≤ 2 + s, (30)

which identifies the upper bound of level of smoothness. We

further have

u∗ [D∇2fclean(z) +∇2fclean(z)D
]
u

(i)

≥u∗ [D∇2F (z♮) +∇2F (z♮)D
]
u− 2‖D‖·∥∥∇2fclean(z) −∇2F (z♮)

∥∥ ‖u‖22
(ii)

≥ 1

κ
‖u‖22 − 2(

1

κ
+

δ

κ
√
s
) · 1

4
‖u‖22

(iii)

≥ 1

4κ
‖u‖22, (31)

where (i) uses proper reformulation and triangle inequality, (ii)
is derived from Lemma 9 and the fact that ‖D‖ ≤ 1

κ + δ
κ
√
s
,

and (iii) holds if δ ≤
√
s
2 . Thus, we finish establishing the

restricted strong convexity and smoothness in the region of

incoherence and contraction.

APPENDIX C

PROOF OF LEMMA 8

We first provide the expressions of C =

[
C1 C2

C∗
2 C3

]
where

C1 =

m∑

j=1

|a∗
ijxi|2bjb∗j , (32a)

C2 =

m∑

j=1

(
s∑

k=1

b∗j

(
hkx

∗
k − h♮

kx
♮∗
k

)
akj

)
bja

∗
ij , (32b)
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C3 =
m∑

j=1

|b∗jhi|2aija
∗
ij , (32c)

and E =

[
0 E1

E2 0

]
where

E1 =

m∑

j=1

bjb
∗
jhi(aija

∗
ijxi)

⊤, (33a)

E2 =

m∑

j=1

aija
∗
ijxi(bjb

∗
jhi)

⊤. (33b)

We first prove the identity
∥∥∇2F (z♮)

∥∥ = 1 + s. For

i = 1, · · · , s, let vi1 = 1√
2
[ q h♮

i 0 0 x
♮
i w ]⊤,vi2 =

1√
2
[ q 0 x

♮
i h

♮
i 0 w ]⊤,vi3 = 1√

2
[ q h♮

i 0 0 −x♮
i w ]⊤,vi4 =

1√
2
[ q 0 x

♮
i − h♮

i 0 w ]⊤, where a⊤ denote the transpose

of the complex vector a, vi1,vi2,vi3,vi4 ∈ C4s as well

as q ∈ R4(i−1) and w ∈ R4(s−i) are zero vectors. Based

on the assumption that ‖h♮
i‖2 = ‖x♮

i‖2 for i = 1, · · · , s,

we check that these vectors are from an orthonormal set

of size 4s. Via simple calculations, there is ∇2F (z♮) =
I4sK+

∑s
i=1(vi1v

∗
i1+vi2v

∗
i2−vi3v∗i3−vi4v∗i4), which implies

that
∥∥∇2F (z♮)

∥∥ ≤ 1 + s. Based on Lemma 26 in [10] and

the definition of ui in Lemma 1, for i = 1, · · · , s, there is

u∗
i

[
Mi∇2

zi
F (z♮) +∇2

zi
F (z♮)Mi

]
ui ≥ 1/κ‖ui‖22, as long

as δ defined in Lemma 1 is small enough, which implies that

u∗ [D∇2F (z♮) +∇2F (z♮)D
]
u

=

s∑

i=1

u∗
i

[
Mi∇2

zi
F (z♮) +∇2

zi
F (z♮)Mi

]
ui

≥ 1

κ

s∑

i=1

‖ui‖22 =
1

κ
‖u‖22. (34)

APPENDIX D

PROOF OF LEMMA 9

Based on the expression of ∇2fclean(z) (8) and ∇2F (z♮)
(26) and the triangle inequality, we have
∥∥∇2fclean(z) −∇2F (z♮)

∥∥ ≤ max
1≤i≤s

(αi1 + 2αi2 + 4αi3 + 4αi4)

(35)

where the four terms on the right hand side are defined as

follows

αi1 =

∥∥∥∥∥∥

m∑

j=1

|a∗
ijxi|2bjb∗j − IK

∥∥∥∥∥∥
, (36a)

αi2 =

∥∥∥∥∥∥

m∑

j=1

|b∗jhi|2aija
∗
ij − IK

∥∥∥∥∥∥
, (36b)

αi3 =

∥∥∥∥∥∥

m∑

j=1

( s∑

k=1

b∗j

(
hkx

∗
k − h♮

kx
♮∗
k

)
akj

)
bja

∗
ij

∥∥∥∥∥∥
, (36c)

αi4 =

∥∥∥∥∥∥

m∑

j=1

bjb
∗
jhi(aija

∗
ijxi)

⊤ − h♮
ix

♮⊤
i

∥∥∥∥∥∥
. (36d)

1) Here, αi1, αi2, αi4 can be bounded through [10, Lemma

27]. In particular, with probability 1−O(m−10),

max
1≤i≤s

sup
z∈S

αi1 .

√
K

m
logm+ C3

1

logm
. (37)

In addition, with probability at least 1−O(m−10), we have

max
1≤i≤s

sup
z∈S

αi2 ≤ 7
δ

κ
√
s
, (38)

max
1≤i≤s

sup
z∈S

αi4 ≤ 11
δ

κ
√
s

(39)

as long as m ≫ (µ2/δ)sκ2K log5 m.

2) To control αi3, similar to the set defined in [10], we define

a new set for (h,x) ∈ C
sK × C

sK

C(ξ, ζ) :=
{
(h,x) : max

1≤i≤s
max

{
‖hi − h♮

i‖2, ‖xi − x♮
i‖2
}

≤ ξ and max
1≤i≤s,1≤j≤m

∣∣b∗jhi

∣∣ · ‖h♮
i‖2 ≤ ζ√

m

}
,

where h is composed of h1, · · · ,hs and x is composed

of x1, · · · ,xs. Note that the set S defined in Lemma

9 satisfies S ⊆ C( δ
κ
√
s
, 2C4µ log2 m), thus it suffices to

specify sup
z∈C( δ

κ
√

s
,2C4µ log2 m) αi3 in order to control αi3.

We are going to exploit Lemma 59 in [10] to derive that

with probability at least 1−O(m−10)

max
1≤i≤s

sup
z∈C( δ

κ
√

s
,2C4µ log2 m)

αi3 ≤ 4δ +
7δ

κ
√
s
. (40)

To achieve this goal, we define ∆ij(h,x) :=∑
k 6=i

(
hkx

∗
k − h♮

kx
♮∗
k

)
akj and Ri(h, x) :=

Ri,clean(h, x) +
∑m

j=1 bjb
∗
j∆ij(h,x)a

∗
ij , where

the first term is denoted as Ri,clean(h, x) =∑m
j=1 bjb

∗
j (hix

∗
i − h♮

ix
♮∗
i )aija

∗
ij . The original inequality

(40) can be represented as

P


 sup

z∈C( δ
κ
√

s
,2C4µ log2 m)

‖Ri(h,x)‖ ≥ 4δ + 7
δ

κ
√
s




.m−10. (41)

Note that one has E[Ri,clean(h,x)] = hix
∗
i − h♮

ix
♮∗
i and

the spectral norm is bounded by ‖E[Ri,clean(h,x)]‖ ≤
3δ/(κ

√
s) [10, Section C.1.2] when hi,xi are fixed. Based

on the conclusion provided in [10, Section C.1.2], for

(h,x) ∈ C( δ
κ
√
s
, 2C4µ log2 m), it yields

P

(
sup
(h,x)

‖Ri,clean(h,x)− E[Ri,clean(h,x)]‖ ≥ 4
δ

κ
√
s

)

. m−10, (42)

as long as m ≫ (µ2/δ2)sκ2K log5 m. It thus suffices to

show that

P


 sup

(h,x)

∥∥∥∥∥∥

m∑

j=1

bjb
∗
j∆ij(h,x)a

∗
ij

∥∥∥∥∥∥
≥ 4δ


 . m−10, (43)
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where (h,x) ∈ C( δ
κ
√
s
, 2C4µ log2 m). We are positioned

to invoke Lemma 12 to achieve the above result.

Specifically, let Akji(h,x) = bjb
∗
jΓik where Γik =

hkx
∗
k − h

♮
kx

♮∗
k with k 6= i. We further define τ =

argmax1≤k≤s,k 6=i ‖Akji(h,x)akja
∗
ij‖. Hence, it suffices

to show that

P


 sup

(h,x)

∥∥∥∥∥∥

m∑

j=1

Aτji(h,x)aτja
∗
ij

∥∥∥∥∥∥
≥ 4δ

s


 . m−10,

(44)

By choosing M1 ≤ 5C4µ log2 m/m and M2 ≤ 4K/m, we

invoke Lemma 12 and finish the proof of inequality (44).

3) Based on the previous bounds, we deduced that with

probability 1−O(m−10),
∥∥∇2fclean(z) −∇2F (z♮)

∥∥

.

(√
K

m
logm+ C3

1

logm

)
+ δ ≤ 1

4
, (45)

as long as δ > 0 is a small constant and m ≫
µ2s2κ2K log5 m, as desired.

APPENDIX E

PROOF OF LEMMA 2

Based on the definition of αt+1
k (7), k = 1, · · · , s , one has

dist2
(
zt+1, z♮

)
≤

s∑

k=1

dist2
(
zt+1
k , z♮k

)

≤sκ2

∥∥∥∥∥
1

αt+1
k

ht
k − h♮

k

∥∥∥∥∥

2

2

+ sκ2
∥∥∥αt

kx
t+1
k − x♮

k

∥∥∥
2

2
. (46)

By denoting h̃t
k = 1

αt
k

ht
k, x̃

t
k = αt

kx
t
k, ĥ

t+1
k = 1

αt
k

ht+1
k

and x̂t+1
k = αt

kx
t+1
k , we have




ĥt+1
k − h♮

k

x̂t+1
k − x♮

k

ĥt+1
k − h♮

k

x̂t+1
k − x♮

k


 =




h̃t
k − h♮

k

x̃t
k − x♮

k

h̃t
k − h♮

k

x̃t
k − x

♮
k


− ηWk




∇hk
f(z̃t)

∇xk
f(z̃t)

∇hk
f(z̃t)

∇xk
f(z̃t)


 ,

(47)

andWk = diag
([
‖x̃t

k‖−2
2 IK , ‖h̃t

k‖−2
2 IK , ‖x̃t

k‖−2
2 IK , ‖h̃t

k‖−2
2

IK
])
. According to the fundamental theorem of calculus

provided in [10] together with the definition of the noiseless

objective function fclean and the noiseless Wirtinger Hessian

∇2
zk
fclean (8), we get




∇hk
f(z̃t)

∇xk
f(z̃t)

∇hk
f(z̃t)

∇xi
f(z̃t)


 =




∇hk
fclean(z̃

t)
∇xk

fclean(z̃
t)

∇hk
fclean(z̃t)

∇xk
fclean(z̃t)


+




Ak(e)x
t
k

A∗
k(e)h

t
k

Ak(e)xt
k

A∗
k(e)h

t
k




=Hk




h̃t
k − h♮

k

x̃t
k − x♮

k

h̃t
k − h

♮
k

x̃t
k − x

♮
k


+




Ak(e)x
t
k

A∗
k(e)h

t
k

Ak(e)xt
k

A∗
k(e)h

t
k


 , (48)

where Hk =
∫ 1

0
∇2

zk
fclean (z(τ)) dτ with z(τ) := z♮ +

τ
(
z̃t − z♮

)
and Ak(e) =

∑m
j=1 ejbja

∗
kj and A∗

k(e) =∑m
j=1 ejakjb

∗
j . Since z(τ) lies between z̃t and z♮, for all

τ ∈ [0, 1], z(τ) satisfies the assumption (12).

For simplicity, we denote ẑt+1
k = [ĥt+1∗

k x̂t+1∗
k ]∗. Substi-

tuting (48) to (47), one has
[
ẑt+1
k − z♮k
ẑt+1
k − z♮k

]
= ϕt

k +ψ
t
k, (49)

where

ϕt
k = (I − ηWkHk)

[
z̃tk − z♮k
z̃tk − z

♮
k

]
,ψt

k =




Ak(e)x
t
k

A∗
k(e)h

t
k

Ak(e)xt
k

A∗
k(e)h

t
k


 .

Take the Euclidean norm of both sides of (49) to arrive

‖ϕt
k +ψ

t
k‖2 ≤ ‖ϕt

k‖2 + ‖ψt
k‖2. (50)

We first control the second Euclidean norm at the right-hand

side of the equation (50): ‖ψt
k‖22 ≤ 16 ‖Ak(e)‖2 , where we

use the fact that max{‖xk‖2, ‖hk‖2} ≤ 2 for 1 ≤ k ≤ s.

Based on the paper [10, Section C.2], the squared Euclidean

norm of ϕt
k is bounded by ‖ϕt

k‖22 ≤ 2(1−η/(8κ))‖z̃tk−z♮k‖22,
under the assumption (12). We thus conclude that

‖ϕt
k +ψ

t
k‖2 ≤

√
2(1− η/(8κ))1/2‖z̃tk − z♮k‖2 + 4 ‖Ak(e)‖ ,

(51)

and hence

‖z̃t+1
k − z♮k‖2 ≤ ‖ẑt+1

k − z♮k‖2 ≤
√
2/2‖ϕt

k +ψ
t
k‖2

≤ (1− η/(16κ))‖z̃tk − z♮k‖2 + 3 ‖Ak(e)‖ .
(52)

Integrating the above inequality (52) for i = 1, · · · , s, we

further obtain dist(zt+1, z♮) ≤ (1 − η/(16κ))dist(zt, z♮) +
3
√
sκmax1≤k≤s ‖Ak(e)‖ .

APPENDIX F

PROOF OF LEMMA 3

Define the alignment parameter between z
t,(l)
i =

[h
t,(l)∗
i x

t,(l)∗
i ]∗ and z̃ti = [h̃t∗

i x̃t∗
i ]∗ as

α
t,(l)
i,mutual := argmin

α∈C

∥∥∥∥∥
1

α
h
t,(l)
i − 1

αt
i

ht
i

∥∥∥∥∥

2

2

+
∥∥∥αxt,(l)

i − αt
ix

t
i

∥∥∥
2

2
,

(53)

where h̃t
i =

1

αt
i

ht
i and x̃t

i = αt
ix

t
i for i = 1, · · · , s. In addition,

we denote ẑ
t,(l)
i = [ĥ

t,(l)∗
i x̂

t,(l)∗
i ]∗ where

ĥ
t,(l)
i :=

1

α
t,(l)
i,mutual

h
t,(l)
i and x

t,(l)
i := α

t,(l)
i,mutualx

t,(l)
i . (54)

In view of the above notions and technical methods in [10,

Section C.3], we have

dist
(
zt+1,(l), z̃t+1

)
≤ κ

√√√√
s∑

k=1

max

{∣∣∣∣
αt+1
i

αt
i

∣∣∣∣ ,
∣∣∣∣
αt
i

αt+1
i

∣∣∣∣
}2

‖Jk‖2,

(55)



11

where Jk =




1

α
t,(l)
k,mutual

h
t+1,(l)
k − 1

αt
k

ht+1
k

α
t,(l)
k,mutualx

t+1,(l)
k − αt

kx
t+1
k


 . By further apply-

ing the update rule in Algorithm 1, we get

Jk =



ĥ
t,(l)
k − η

‖x̂t,(l)
k

‖2
2

∇hk
f (l)(ĥt,(l), x̂t,(l))−Uk

x̂
t,(l)
k − η

‖ĥt,(l)
k

‖2
2

∇xk
f (l)(ĥt,(l), x̂t,(l))− Vk


 (56)

where ∇hk
f (l)(h,x) and ∇xk

f (l)(h,x) are defined as

∇hk
f (l)(h,x) = ∇hk

f(h,x)−Rlbla
∗
klxk,

∇xk
f (l)(h,x) = ∇xk

f(h,x)−Rlaklb
∗
l hk,

with Rl =
∑s

i=1 b
∗
l hix

∗
iail − yl, and

Uk = h̃t
k − η

‖x̃t
k‖22

∇hk
f(h̃t, x̃t),

Vk = x̃t
k −

η

‖h̃t
k‖22

∇xk
f(h̃t, x̃t).

Inspired by [10, Section C.3], by further derivation, we obtain

Jk = Jk1 + ηJk2 − ηJk3, (57)

where

Jk1 =



ĥ
t,(l)
k − η

‖x̂t,(l)
k

‖2
2

∇hk
f(ĥt,(l), x̂t,(l))

x̂
t,(l)
k − η

‖ĥt,(l)
k

‖2
2

∇xk
f(ĥt,(l), x̂t,(l))


−



h̃t
k − η

‖x̂t,(l)
k

‖2
2

∇hk
f(h̃t, x̃t)

x̃t
k − η

‖ĥt,(l)
k

‖2
2

∇xk
f(h̃t, x̃t)


 ,

Jk2 =




(
1

‖x̃t
k
‖2
2
− 1

‖x̂t,(l)
k

‖2
2

)
∇hk

f(h̃t, x̃t)
(

1

‖h̃t
k
‖2
2

− 1

‖ĥt,(l)
k

‖2
2

)
∇xk

f(h̃t, x̃t)


 ,

Jk3 =




1

‖x̂t,(l)
k

‖2
2

(∑s
i=1 b

∗
l ĥ

t,(l)
i x̂

t,(l)∗
i ail − yl

)
bla

∗
klx̂

t,(l)
k

1

‖ĥt,(l)
k

‖2
2

(∑s
i=1 b

∗
l ĥ

t,(l)
i x̂

t,(l)∗
i ail − yl

)
aklb

∗
l ĥ

t,(l)
k


 .

We shall control the three terms Jk1, Jk2 and Jk3.

1. In terms of the first term Jk1, we can exploit the same

strategy as in Appendix E and conclude that

‖Jk1‖ ≤
(
1− η

16κ
+ C6

1

log2 m

)
‖ẑt,(l)k − z̃tk‖2, (58)

provided that m ≫ (µ2 + σ2)sκK log13/2 m for the

constant C6 > 0.

2. Regarding to the second term J2, based on [10, Appendix

C.3] and the bound on ‖Ak(e)‖ provided in [10, Section

6.5] that with probability at least 1 − O(m−9), there

holds max1≤i≤s ‖Ai(e)‖ ≤ C0σ
√

10sK log2 m
m , for some

absolute constant C0 > 0 and σ is defined in Section II, it

yields that

‖J2‖2 . C7
1

log2 m
‖ẑt,(l)k − z̃tk‖2. (59)

3. In terms of the last term Jk3, based on the technical

method used in [10, Appendix C.3] and the fact that

|ej | ≤ σ2/m ≪ 1, we get

‖Jk3‖2 . (C4)
2 µ√

m

√
µ2sK log9 m

m
, (60)

provided that m ≫ (µ+ σ2)s2κK log5/2 m.

Combining the bounds (55), (58), (59), (60) and the equation

(57), there exist a constant C > 0 such that

dist
(
zt+1,(l), z̃t+1

)

≤√
sκmax

{∣∣∣∣
αt+1
i

αt
i

∣∣∣∣ ,
∣∣∣∣
αt
i

αt+1
i

∣∣∣∣
}{(

1− η

16κ
+

C6

log2 m
+

CC7η

log2 m

)
·

∥∥∥∥ẑ
t,(l)
k − z̃tk

∥∥∥∥
2

+ C(C4)
2η

µ√
m

√
µ2sK log9 m

m

}

≤C2
sκµ√
m

√
µ2K log9 m

m
, (61)

with m ≫ (µ2 + σ2)s2κK log13/2 m, C2 ≫ (C4)
2 and the

bound that max{|αt+1
i /αt

i|, |αt
i/α

t+1
i |} ≤ 1−η/(21κ)

1−η/(20κ) which is

derived from Lemma 10. Hence the inequality (61) verifies the

induction hypothesis (14b) at (t + 1)-iterate with sufficiently

large C2 and sufficiently large m.

Finally, we establish the second claim in the lemma based

on the technical methods in [10, Section C.3] and the induction

hypothesis (15b), we deduced that

∥∥∥z̃t+1,(l) − z̃t+1
∥∥∥
2
.
∥∥∥ẑt+1,(l) − z̃t+1

∥∥∥
2

. C2
sµ√
m

√
µ2K log9 m

m
. (62)

APPENDIX G

PROOF OF LEMMA 4

Similar to the strategy used in [10, Section C.4], it suffices

to control |b∗l 1

αt
i

ht+1
i | to finish the proof, as

max
1≤i≤s,1≤l≤m

∣∣∣∣∣b
∗
l

1

αt+1
i

ht+1
i

∣∣∣∣∣ · ‖h
♮
i‖−1

2

≤(1 + δ)

∣∣∣∣∣b
∗
l

1

αt
i

ht+1
i

∣∣∣∣∣ · ‖h
♮
i‖−1

2 (63)

for some small δ ≍ 1/ log2 m. The gradient update rule for

ht+1
i is written as

1

αt
i

ht+1
i =h̃t

i − ηξi

m∑

j=1

s∑

k=1

bjb
∗
j (h̃

t
kx̃

t∗
k − h♮

kh
♮∗
k )akja

∗
ijx̃

t
i

+ ηξi

m∑

j=1

ejbja
∗
ijx̃

t
i, (64)

where ξi = 1
‖x̃t

i‖2
2

and h̃t
i = 1

αt
i

ht
i and x̃t

i = αt
ix

t
i for i =

1, · · · , s. The formula (64) can be further decomposed into
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the following terms

1

αt
i

ht+1
i = h̃t

i − ηξi

m∑

j=1

s∑

k=1

bjb
∗
j h̃

t
kx̃

t∗
k akja

∗
ijx̃

t
i+

ηξi

m∑

j=1

s∑

k=1

bjb
∗
jh

♮
kx

♮∗
k akja

∗
ijx̃

t
i + ηξi

m∑

j=1

ejbja
∗
ijx̃

t
i

=h̃t
i − ηξi

s∑

k=1

h̃t
k‖x♮

k‖22 − ηξivi1 − ηξivi2 + ηξivi3 + ηξivi4,

(65)

where

vi1 =
m∑

j=1

s∑

k=1

bjb
∗
j h̃

t
k

(
x̃t∗
k akja

∗
ijx̃

t
i − x♮∗

k akja
∗
ijx

♮
i

)

vi2 =

m∑

j=1

s∑

k=1

bjb
∗
j h̃

t
k

(
x
♮∗
k akja

∗
ijx

♮
i − ‖x♮

k‖22
)

vi3 =

m∑

j=1

s∑

k=1

bjb
∗
jh

♮
kx

♮∗
k akja

∗
ijx̃

t
i

vi4 =

m∑

j=1

ejbja
∗
ijx̃

t
i,

which is based on the fact that
∑m

j=1 bjb
∗
j = IK . In what

follows, we bound the above four terms respectively.

1. Based on the inductive hypothesis (14), the incoherence

inequality (5) and the concentration inequality [10]

max
1≤i≤s,1≤j≤m

∣∣∣a∗
ijx

♮
i

∣∣∣ · ‖x♮
i‖−1

2 ≤ 5
√
logm, (66)

with the probability at least 1−O(m−10), we have

|b∗l vi1| · ‖h♮
i‖−1

2 ≤ 0.1s max
1≤k≤s,1≤j≤m

|b∗j h̃t
k| · ‖h♮

i‖−1
2 ,

(67)

as long as C3 is sufficiently small,

|b∗1vi2| · ‖h♮
i‖−1

2 ≤(0.1 + 0.1
√
s) max

1≤k≤s,1≤l≤m

∣∣∣b∗l h̃t
k

∣∣∣ ·

‖h♮
i‖−1

2 +O(cC4
sµ√
m

log2 m), (68)

as long as m ≫ s2K log2 m with some sufficiently large

constant C4 > 0 and some sufficiently small constant c >
0,

|b∗l vi3| · ‖h♮
i‖−1

2 . (1 + C3

√
s)

µ√
m
, (69)

as long as picking up sufficiently small C3 > 0.

2. We end the proof with controlling |b∗l vi4|:

|b∗l vi4| · ‖h♮
i‖−1

2 ≤
m∑

j=1

|b∗l bj |
{

max
1≤k≤s,1≤j≤m

|a∗
kjx̃

t
k|

‖x♮
i‖2

}
|ej |

(i)

. σ2 log
3/2 m

m
≤ logm, (70)

as long as m ≫ σ2
√
logm. Here the step (i) arises from

the inequality that with probability at least 1−O(m−10),

max
1≤k≤s,1≤j≤m

∣∣a∗
kjx̃

t
k

∣∣ · ‖x♮
i‖−1

2

≤ max
1≤k≤s,1≤j≤m

∣∣∣a∗
kj(x̃

t
k − x♮

k)
∣∣∣

‖x♮
k‖2

+ max
1≤k≤s,1≤j≤m

∣∣∣a∗
kjx

♮
k

∣∣∣
‖x♮

k‖2
≤ 6
√
logm, (71)

as long as m is sufficiently large, the inequality that∑m
j=1 |b∗l bj | ≤ 4 logm [10, Lemma 48], and the assump-

tion |ej | ≤ σ2/m ≪ 1 provided in Section II.

Putting the above results together, there exists some constant

C8 > 0 such that∣∣∣b∗l h̃t+1
i

∣∣∣
‖h♮

i‖2
≤ (1 + δ)

{(
|b∗l h̃t

i| − ηξi

s∑

k=1

|b∗l h̃t
k|+ (1 + 0.1

√
s

+0.1s) max
1≤k≤s,1≤j≤m

|b∗j h̃t
k|
)
· ‖h♮

i‖−1
2 + C8(1 + C3

√
s)·

ηξi
µ√
m

+ C8cC4ηξi
sµ√
m

log2 m+ C8ηξi logm

}

≤ C4
µ√
m

log2 m. (72)

The last step holds as long as c > 0 is sufficiently small,

i.e., (1 + δ)C8ηξic ≫ 1, and the stepsize obeys η > 0 and

η ≍ s−1. To accomplish the proof, we need to pick the sample

size that m ≫ (µ2 + σ2)τK log4 m, where τ = c10s
2 log4 m

with some sufficiently large constant c10 > 0.

APPENDIX H

PROOF OF LEMMA 5

Recall that ȟ0
i and x̌0

i are the leading left and right

singular vectors of Mi, i = 1, · · · , s, where Mi =∑m
j=1

∑s
k=1 bjb

∗
jh

♮
kx

♮∗
k akja

∗
ij +

∑m
j=1 ejbja

∗
ij . By exploit-

ing a variant of Wedin’s sinΘ theorem [23, Therorem 2.1], we

derive that

min
αi∈C,|αi|=1

∥∥∥αiȟ
0
i − h♮

i

∥∥∥
2
+
∥∥∥αix̌

0
i − x♮

i

∥∥∥
2

≤ c1‖Mi − E[Mi]‖
σ1(E[Mi])− σ2(Mi)

, (73)

for some constant c1 > 0, where σ1(A) and σ2(A) denote the

largest eigenvalue and second largest eigenvalue of the matrix

A. In the view of the numerator of (73), it has been specified

in [8, Lemma 6.16] that for any ξ > 0,

‖Mi − E[Mi]‖ ≤ ξ

κ
√
s
, (74)

with probability at least 1 − O(m−10), provided that m ≫
c2(µ

2 + σ2)sκ2K logm/ξ2, for some constant c2 > 0. In-

spired by the technical method used in [10, Section C.5]. We

further bound the denominator of (73) via combining (74) and

Weyl’s inequality, derived as σ1(E[Mi])−σ2(Mi) ≥ 1− ξ
κ
√
s
.

We then get

min
αi∈C,|αi|=1

∥∥∥αiȟ
0
i − h♮

i

∥∥∥
2
+
∥∥∥αix̌

0
i − x♮

i

∥∥∥
2
≤ 2c1

ξ

κ
√
s
,

(75)



13

as long as ξ < 1/2. Moreover, we extend the bound (75) to the

inequality with the scaled singular vector h0
i =

√
σ1(Mi)ȟ

0
k

and x0
i =

√
σ1(Mi)x̌

0
k via using the inequality provided in

[10, Section C.5]. It yields that

∥∥∥αih
0
i − h♮

i

∥∥∥
2
+
∥∥∥αix

0
i − x♮

i

∥∥∥
2

≤
∥∥∥αiȟ

0
i − h♮

i

∥∥∥
2
+
∥∥∥αix̌

0
i − x♮

i

∥∥∥
2
+ 2

ξ

κ
√
s
. (76)

We thus conclude that

min
αi∈C|αi|=1

{∥∥∥αih
0
i − h♮

i

∥∥∥
2
+
∥∥∥αix

0
i − x♮

i

∥∥∥
2

}

≤2c1
ξ

κ
√
s
+ 2

ξ

κ
√
s
. (77)

Since ξ is arbitrary, we accomplish the proof for (19) by taking

m ≫ (µ2+σ2)sκ2K logm. Under similar arguments, we can

also establish (20) in Lemma 5, which is omitted here. We

further obtain the last claim in Lemma 5 via combining the

inequality (19) and [10, Lemma 54], given as ||α0
i | − 1| .

ξ
κ
√
s
< 1/4, 1 ≤ i ≤ s.

APPENDIX I

PROOF OF LEMMA 6

With the similar strategy in [10, Section C.6], we first show

that the normalized singular vectors of Mi and M
(l)
i , i =

1, · · · , s are close enough. We further extend this inequality

to the scaled singular vectors, thereby converting the ℓ2 metric

to the distance function defined in (3). We finally prove the

incoherence of {hi}si=1 with respect to {bj}mj=1.

Recall that ȟ0
i and x̌0

i are the leading left and right singular

vectors of Mi, i = 1, · · · , s, and ȟ
0,(l)
i and x̌

0,(l)
i are the lead-

ing left and right singular vectors of M
(l)
i , i = 1, · · · , s. By

exploiting a variant of Wedin’s sinΘ theorem [23, Therorem

2.1], we derive that

min
αi∈C,|αi|=1

∥∥∥αiȟ
0
i − ȟ0,(l)

i

∥∥∥
2
+
∥∥∥αix̌

0
i − x̌0,(l)

i

∥∥∥
2

≤
c1

∥∥∥(Mi −M (l)
i )x̌

0,(l)
i

∥∥∥
2
+ c1

∥∥∥ȟ0,(l)∗
i (Mi −M (l)

i )
∥∥∥
2

σ1(M
(l)
i )− σ2(Mi)

,

(78)

for i = 1, · · · , s with some constant c1 > 0. According to [10,

Section C.6], for i = 1, · · · , s, we have

σ1(M
(l)
i )− σ2(Mi)

≥ 3/4− ‖M (l)
i − E[M

(l)
i ]‖ − ‖Mi − E[Mi]‖ ≥ 1/2, (79)

where the last step comes from [8, Lemma 6.16] provided

that m ≫ (µ2 + σ2)sK logm. As a result, we obtain that for

i = 1, · · · , s
∥∥∥β0,(l)

i ȟ0
i − ȟ0,(l)

i

∥∥∥
2
+
∥∥∥β0,(l)

i x̌0
i − x̌0,(l)

i

∥∥∥
2

≤2c1

{∥∥∥(Mi −M (l)
i )x̌

0,(l)
i

∥∥∥
2
+
∥∥∥ȟ0,(l)∗

i (Mi −M (l)
i )
∥∥∥
2

}
,

(80)

where

β
0,(l)
i := argmin

α∈C,|α|=1

∥∥∥αȟ0
i − ȟ0,(l)

i

∥∥∥
2
+
∥∥∥αx̌0

i − x̌0,(l)
i

∥∥∥
2
.

(81)

It thus suffices to control the two terms on the right-hand side

of (80). Therein,

Mi −M (l)
i = blb

∗
l

s∑

k=1

h
♮
kx

♮∗
k akla

∗
il + elbla

∗
il. (82)

Inspired the similar strategy used in [10, Section C.6], we

conclude that

∥∥∥β0,(l)
i ȟ0

i − ȟ0,(l)
i

∥∥∥
2
+
∥∥∥β0,(l)

i x̌0
i − x̌0,(l)

i

∥∥∥
2

≤2C1

{
30

µ√
m

·

√
s2K log2 m

m
+

5σ2

m

√
K logm

m
(
15

√
µ2s2K logm

m
+ 3

√
K

σ2

m

)
|b∗l ȟ0

i | · ‖h♮
i‖−1

2 +

(
15

√
µ2s2K logm

m

√
K

m
+ 3

√
K

σ2

m

)
κ
∥∥∥α̃iȟ

0
i − ȟ0,(l)

i

∥∥∥
2

}

(83)

via exploiting the fact that ‖bl‖2 =
√
K/m, the incoherence

condition (5), the bound (66), the assumption |ej | ≤ σ2

m ≪ 1
provided in Section II and the condition that with probability

exceeding 1−O(m−10),

max
1≤l≤m

|a∗
ilx̌

0,(l)
i | · ‖x♮

i‖−1
2 ≤ 5

√
logm, (84)

due to the independence between x̌
0,(l)
i and ail [10, Section

C.6].

Since the inequality (83) holds for any |α̃i| = 1, we can

pick up α̃i = β0,(l). With the assumption that m ≫ (µ +

σ2)sκK log1/2 m such that 1 − 30c1κ
√

µ2s2K logm
m ·

√
K
m −

6κ
√
K σ2

m ≤ 1
2 , we get

max
1≤i≤s,1≤j≤m

∥∥∥β0,(l)
i ȟ0

i − ȟ0,(l)
i

∥∥∥
2
+
∥∥∥β0,(l)

i x̌0
i − x̌0,(l)

i

∥∥∥
2

≤120c1
µ√
m

·

√
s2K log2 m

m
+

20c1σ
2

m

√
K logm

m

+

(
60c1

√
µ2s2K logm

m
+ 12c1

√
K

σ2

m

)
·

max
1≤i≤s,1≤j≤m

|b∗l ȟ0
i | · ‖h♮

i‖−1
2 . (85)

It thus suffices to control max1≤i≤s,1≤j≤m |b∗l ȟ0
i | · ‖h♮

i‖−1
2 .

We further define that Mix̌
0 = σ1(Mi)ȟ

0
i and Wi =
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∑m
j=1 bj(

∑
k 6=i b

∗
jh

♮
kx

♮∗
k akj + ej)a

∗
ij , A which further leads

to

max
1≤i≤s

|b∗l ȟ0
i | · ‖h♮

i‖−1
2

=
1

σ1(Mi) · ‖h♮
i‖2

|b∗lMix̌
0
i |

(i)

≤2




m∑

j=1

|b∗l bj |


 max

1≤i≤s,1≤j≤m

{
|b∗jh♮

i | · |a∗
ijx

♮
i | · |a∗

ijx̌
0
i |
}
·

‖h♮
i‖−1

2 + 2‖bl‖2 · ‖Wi‖ · ‖x̌0
i ‖2 · ‖h♮

i‖−1
2 ·

max
1≤i≤s,1≤j≤m

{ ∣∣∣a∗
j x̌

0,(j)
i

∣∣∣+ ‖aij‖2
∥∥∥β0,(j)

i x̌0
i − x̌0,(j)

i

∥∥∥
2

}

(ii)

≤κ

√
K

m logm
+ 200

µ log2 m√
m

+ 120κ

√
µ2K log3 m

m
·

max
1≤i≤s,1≤j≤m

∥∥∥β0,(j)
i x̌0

i − x̌0,(j)
i

∥∥∥
2
, (86)

where β
0,(j)
i is defined in (81). Here, (i) arises from the

low bound σ1(Mi) ≥ 1
2 , the triangle inequality and the

Cauchy-Schwarz inequality. The step (ii) comes from com-

bining the assumption that ‖h♮
i‖2 = ‖x♮

i‖2, for i =
1, · · · , s, max1≤i≤s ‖h♮

i‖2 = 1, the incoherence condition

(5), the bound (66), the triangle inequality, the estimate:∑m
j=1 |b∗l bj | ≤ 4 logm [10, Lemma 48], ‖bl‖ =

√
K/m,

‖x̌0
i ‖2 = 1, the inequality (84) and the bound that with

probability 1−O(m−9) [8],

‖Wi‖ ≤ ‖h♮
i‖2 · ‖x♮

i‖2
2
√
logm

, (87)

if m ≫ (µ2 + σ2)sK log2 m. Combining the bound (85) and

(86) and the assumption m ≫ (µ2+σ2)s2κK log2 m such that

(60c1

√
µ2s2K logm

m +12c1
√
K σ2

m ) · 120κ
√

µ2K log3 m
m ≤ 1/2,

we have

max
1≤i≤s,1≤l≤m

∥∥∥β0,(l)
i ȟ0

i − ȟ0,(l)
i

∥∥∥
2
+
∥∥∥β0,(l)

i x̌0
i − x̌0,(l)

i

∥∥∥
2

≤C4
µ√
m

√
µ2s2K log5 m

m
, (88)

for some constant C4 > 0. Taking the bound (88) together with

(86), it yields max1≤i≤s,1≤l≤m |b∗l ȟ0
i |‖h♮

i‖−1
2 ≤ c2

µ log2 m√
m

,

for some constant c2 > 0, as long as m ≫ (µ2 +
σ2)sκ2K log2 m.

We further scaled the preceding bounds to the final version.

Based on [10, Section C.6], one has

∥∥∥αh0 − h0,(l)
∥∥∥
2
+
∥∥∥αx0 − x0,(l)

∥∥∥
2

≤
∥∥∥(Mi −M (l)

i )x̌
0,(l)
i

∥∥∥
2
+ 6

{∥∥∥αȟ0
i − ȟ0,(l)

i

∥∥∥
2

+
∥∥∥αx̌0

i − x̌0,(l)
i

∥∥∥
2

}
. (89)

Taking the bounds (88) and (89) collectively yields

min
αi∈C,|αi|=1

∥∥∥αih
0
i − h0,(l)

i

∥∥∥
2
+
∥∥∥αix

0
i − x0,(l)

i

∥∥∥
2

≤ c5
µ√
m

√
µ2s2K log5 m

m
, (90)

for some constant c5 > 0, as long as m ≫ (µ2 +
σ2)s2K log2 m.

Furthermore, by exploiting the technical methods pro-

vided in [10, Section C.6], we have dist
(
z0,(l), z̃0

)
≤

4c5
sκµ√
m

√
µ2sK log5 m

m . This accomplishes the proof for the

claim (23). We further move to the proof for the claim (24).

In terms of |b∗l h̃0
i |, one has

|b∗l h̃0
i |

‖h♮
i‖2

≤

∣∣∣∣b∗l
1

α0
i

h0
i

∣∣∣∣
‖h♮

i‖2
≤
∣∣∣∣∣
1

α0
i

∣∣∣∣∣
|b∗l h0

i |
‖h♮

i‖2
≤ 2

∣∣∣
√
σ1(Mi)b

∗
l ȟ

0
i

∣∣∣
‖h♮

i‖2

≤ 2
√
2c2

µ log2 m√
m

, (91)

based on fact that 1
2 ≤ σ1(Mi) ≤ 2.
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