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Spectrum and Energy Efficient Multiple Access for

Detection in Wireless Sensor Networks
Kobi Cohen, Amir Leshem

Abstract—We consider a binary hypothesis testing problem
using Wireless Sensor Networks (WSNs). The decision is made
by a fusion center and is based on received data from the sensors.
We focus on a spectrum and energy efficient transmission scheme
used to reduce the spectrum usage and energy consumption
during the detection task. We propose a Spectrum and Energy
Efficient Multiple Access (SEEMA) transmission protocol that
performs a censoring-type transmission based on the density of
observations using multiple access channels (MAC). Specifically,
in SEEMA, only sensors with highly informative observations
transmit their data in each data collection. The sensors transmit
a common shaping waveform and the fusion center receives a
superposition of the analog transmitted signals. SEEMA has
important advantages for detection tasks in WSNs. First, it is
highly energy and bandwidth efficient due to transmission savings
and narrowband transmission over MAC. Second, it can be
implemented by simple dumb sensors (oblivious to observation
statistics, and local data processing is not required) which
simplifies the implementation as compared to existing MAC
transmission schemes for detection in WSNs. We establish a
finite sample analysis and an asymptotic analysis of the error
probability with respect to the network size and provide system
design conditions to obtain the exponential decay of the error.
Specific performance analysis is developed for common non-
i.i.d. observation scenarios, including local i.i.d. observations,
and Markovian correlated observations. Numerical examples
demonstrate SEEMA performance.

I. INTRODUCTION

We consider a binary detection problem in WSNs in which

sensor nodes measure a certain phenomenon and upon request

(i.e., a data collection event) transmit some function of their

observations to the fusion center (FC) through a block fading

channel. The FC makes decisions whether an unknown hy-

pothesis is H0 or H1 based on the received data. We assume

that observation statistics is only available at the FC1. The

sensor nodes can be simple and dumb [3], [4] and are not

aware of their task or the environment characteristics.
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1Learning the observation statistics is typically done by scattering reference
nodes in the field [2].

A. Main Results

Algorithm Development: We propose a Spectrum and Energy

Efficient Multiple Access (SEEMA) transmission protocol that

performs a censoring-type transmission scheme based on the

density of observations using multiple access channels (MAC).

Specifically, in SEEMA, only sensors with highly informative

observations transmit their data in each data collection. The

sensors transmit a common shaping waveform and the fusion

center receives a superposition of the analog transmitted

signals. We propose a closed-form threshold-based detector

that requires observation statistics only at the FC (and not

at each sensor as required by the Likelihood-Based Multiple

Access (LBMA) scheme described in Section I-B).

Efficient and Low-Complexity Implementation: SEEMA

has important advantages for detection tasks in WSNs. In

practical implementations of WSN tasks reducing the number

of transmitted sensors is a key goal for reducing the energy

consumption involved in each data collection. Thus, SEEMA

performs censoring-type transmissions which lead to signif-

icant energy saving in this respect. In the traditional com-

munication approach to detection in WSNs, sensors transmit

some function of their observations over parallel channels

(for instance, FDM/TDM fashion). However, the bandwidth

increases linearly with the number of sensors in this scheme.

Therefore, for a large-scale WSN, transmission over multiple

access channels (MAC) is advantageous. By using MAC in

SEEMA, all sensors transmit simultaneously in one dimension

(or a small number of dimensions). As a result, the bandwidth

requirement does not depend on the number of sensors. Imple-

menting the threshold-based detector is simple and does not

require computing a complex rate function that depends on the

channel distribution of each sensor node as is the case for the

Type Based Multiple Access (TBMA) scheme [5] described

in Section I-B. Furthermore, the bandwidth usage does not

depend on data dimension size, unlike the TBMA scheme

(that uses MAC as well), where the bandwidth increases

linearly with the number of (independent) data dimensions.

Finally, SEEMA can be implemented by simple dumb sensors

(oblivious to observation statistics and local data processing is

not required) which simplifies the implementation as compared

to existing MAC transmission schemes for detection in WSNs,

e.g., TBMA and LBMA (a detailed discussion of existing

methods appears in Section I-B).

Performance Analysis: We establish both finite sample analy-

sis and asymptotic analysis of the error probability with respect

to the network size and provide system design conditions for

obtaining exponential decay of the error. Our analysis is valid

for models with additive white sub-Gaussian noise, which is

http://arxiv.org/abs/1809.08468v1
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more general than the classic AWGN model. Specifically, we

use large deviation (LD) theory to characterize the detector’s

error exponent when the number of sensor nodes approaches

infinity. We also establish performance bounds on the error

probability for a finite number of sensor nodes. For the case of

i.i.d. observations and equal channel gains, we provide tighter

finite-sample bounds that coincide with the asymptotic error

exponent. By contrast, under TBMA, there is a gap between

the finite sample bounds and the asymptotic error exponent [4],

[5]. Specific performance analysis is developed for common

non-i.i.d. observation scenarios, including local i.i.d. obser-

vations, and Markovian correlated observations. Numerical

experiments then demonstrate SEEMA performance.

B. Related Work

Event detection has attracted much attention in the field

of WSNs in past and recent years. Available methods and

technology appear in [6]–[8] and references therein. Develop-

ing energy and spectrum efficient transmission protocols for

WSNs has attracted much attention in past and recent years.

In traditional communication protocols for inference tasks

in WSNs, each sensor transmits using orthogonal channels

(e.g., FDM/TDM). Such methods have focused on various

ways to reduce spectrum and energy consumption. In [9],

the focus was on sensors that measure conditionally i.i.d.

observations and transmit a binary function of their observa-

tions (based on the likelihood-ratio information) to a fusion

center (through parallel channels with equal gains) which

then decides which one of two alternative hypotheses is

true. Refinements and asymptotic analysis of the detection

error have been established in [10]. In this paper, however,

the focus is on transmissions through multiple access fading

channels, the observation distributions are assumed to be

known only at the FC, observations can be non-i.i.d., and both

finite and asymptotic analysis are derived. In [11]–[14], the

focus was on exploiting the channel diversity among sensors

by scheduling sensors that experienced better channels for

transmission to reduce the transmission energy. Active fusion

strategies for event detection have been developed in [15]–

[17]. In [18]–[20], measures of the quality of observations

for scheduling sensors with better informative observations

were exploited to reduce the number of transmissions. This

approach is also known as censoring [18]. A distributed

access protocol that reduces the number of transmissions by

ordering transmissions according to the magnitude of the log

likelihood ratio was proposed in [21], [22]. In our previous

work we developed a method that combines both channel

state and quality of observations to achieve energy savings

[23], [24]. In [25], [26], the authors proposed a detection

scheme that only uses one transmission based on the highest

magnitude of the log likelihood ratio, and showed that it

is asymptotically consistent. However, these schemes require

knowing the observation statistics at the sensor nodes for local

data processing, which is assumed to be known only at the FC

in this paper. Furthermore, the bandwidth increases linearly

with the network size when using schemes that transmit on

parallel channels (i.e., dimension per sensor). Therefore, for

large-scale WSNs, transmissions over multiple access channels

(MAC) is advantageous in terms of bandwidth efficiency,

which is why this is the focus of this paper. In [27], the

authors investigated a counting rule that counts local binary

decisions of a DC signal in noise model. In [28], copula-

based fusion was investigated for detection under correlated

observations. However, it requires transmissions over parallel

channels and the complexity increases exponentially with the

network size. Low-complexity approximations were proposed

in [28]. In [29], [30], channel-aware methods for detection

were investigated.

It is well known that digital communication (where sensor

nodes convert their observations into a bit stream) does not

lead to optimal performance in general network problems.

The correct way of understanding the nature of information

is in an analog form, rather than as bits [31]. In [32],

joint source-channel strategies over MAC were developed

that often outperformed separation-based strategies. A well

known transmission scheme that uses MAC for detection is

Likelihood Based Multiple Access (LBMA) [4], [33] (which

was also used for estimation tasks in [34]). In LBMA, each

sensor computes the log-likelihood ratio (LLR) locally based

on its current random observation, and then amplifies the

transmitted waveform by the LLR. However, computing the

LLR locally requires knowing the distribution observation

under each hypothesis at each sensor, which is assumed to

be known only at the FC in this paper. Furthermore, the

hardware implementation is more complex than SEEMA since

transmitting the random LLRs, which have a large dynamic

range, can cause signal distortion due to a saturation effect in

the analog amplifiers. By contrast, in SEEMA the transmitted

waveform amplitude is deterministic, which is a desired prop-

erty in analog transmissions. A well-known access scheme

that can be implemented by dumb sensors is termed Type

Based Multiple Access (TBMA) [4], [5]. In TBMA, the ob-

servations are quantized before communication to K possible

levels. Sensors that observe level k transmit a corresponding

waveform k from a set of K orthonormal waveforms. In each

data collection all the sensors transmit their waveforms in a

one-shot transmission and the FC receives a superposition of

the waveforms over MAC. In the TBMA scheme, observation

statistics is only needed at the FC. In terms of bandwidth

requirement, TBMA is much less efficient than SEEMA. The

bandwidth requirement grows linearly with K and the number

of (independent) data dimensions d (since each dimension

must be quantized and transmitted to obtain its type at the

FC). By contrast, under SEEMA, the bandwidth requirement

is independent of d. In terms of the number of transmissions,

under TBMA, all sensors participate in each data collection,

whereas SEEMA performs censoring-type transmissions. Gen-

eralizations of TBMA using non-coherent transmissions and

i.i.d. observations were studied in [35], [36]. However, here

we assume coherent transmissions by phase correction at the

transmitter as in [5], [33], [37] and the non-i.i.d. observation

case, which make the problem fundamentally different. Other

related works have investigated MAC for detection in WSN

using multiple antennas at the FC [38], detection with a

non-linear sensing behavior [39], and detecting a stationary
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random process distributed in space and time with a circularly-

symmetric complex Gaussian distribution [40], [41]. However,

these studies are fundamentally different from the settings

considered in this paper.

C. Organization

The remainder of this paper is organized as follows. In

section II we present the network model, and present the

SEEMA scheme and the proposed detector. In section III we

detail the theoretical performance analysis of the algorithm. In

section IV we provide simulation results.

II. DETECTION SCHEME USING SPECTRUM AND ENERGY

EFFICIENT MULTIPLE ACCESS (SEEMA)

We consider a binary detection problem using a WSN

containing N sensors. The sensors measure a certain phe-

nomenon and deliver some function of their observations to a

FC through a multiple access channel. We assume that sensor

n experiences a block fading channel hn with a non-zero

channel mean2 µh,n. The FC determines whether an unknown

hypothesis is H0 or H1 based on the received data from

the sensors. The a-priori probabilities of the two hypotheses

H0, H1 are denoted by P (H0) and P (H1), respectively. Let

xn and fXn
(x|Hm) be the random observation (vector) at

sensor n and the Probability Density Function (PDF) of xn

conditioned on Hm, respectively.

A. Transmission Scheme

Under SEEMA, all sensors that observe xn in a predeter-

mined transmission region of observations transmit a common

waveform. Let Γn be the (multi-dimensional) transmission

region of sensor n observation, and let

p0,n ,

∫

x∈Γn

fXn
(x|H0)dx,

p1,n ,

∫

x∈Γn

fXn
(x|H1)dx ,

(1)

so that pi,n is the probability that sensor n transmits under

Hi. We design Γn such that p1,n > p0,n for all n (i.e., it is

more likely to transmit when event H1 occurs). In practice,

the transmission region is predetermined by the FC based on

the density of observations to increase the distance between

the hypotheses under constraint on the expected number of

transmissions. A discussion about design principles of Γn is

given later. Throughout the paper we will focus on detector

performance assuming that Γn is given.

Let s(t), 0 < t < T be a baseband equivalent normalized

waveform,
∫ T

0
s2(t)dt = 1. In each data collection, all sen-

sors that observe xn in the transmission region Γn transmit

An

√
EN · s(t). None of the other sensors transmit. EN can

be any fixed constant or a function of the number of sensors

N , such that the power constraint is satisfied. An is a finite

amplification and is given by:

An = log
(

(1−p0,n)p1,n

(1−p1,n)p0,n

)

e−jφh . (2)

2As explained in the introduction, this is done by correcting the phase at
the transmitter.

where e−jφh is due to phase correction at the receiver as in [5],

[33], [37]. The motivation for amplifying the signal by An is

to enable SEEMA to achieve the best error exponent which is

obtained by the maximum likelihood detector with respect to

the transmitted signal when the observations are independent

and the channel gains are equal across sensors, as shown in

Theorem 1.c. It should be noted that phase correction is only

needed to produce channel gains with nonzero means at the

receiver. In the case where the channel gains have nonzero

means, φh can be set to zero and phase correction is not

required3.

In the case where the channel gains have zero mean,

correcting the phase with an error less than π/4 is sufficient

to yield channel gains with nonzero means at the receiver.

Therefore, only partial information about the channel phase is

required. Let 1Γn
(xn) = 1 if xn ∈ Γn, or 1Γn

(xn) = 0 if

xn 6∈Γn be the indicator function. The received signal at the

FC is given by:

r(t) =

N
∑

n=1

hnAn1Γn
(xn)

√

EN · s(t) + w(t) , 0 < t < T ,

(3)

where w(t) is a zero-mean additive interference, and hn is a

non-zero mean r.v. due to phase correction.

After matched-filtering by the corresponding waveform at the

FC, we have:

r =
√
EN

N
∑

n=1

hnAn1Γn
(xn) + w, (4)

where w ∼ subG(σ2) is a zero-mean σ2-sub-Gaussian r.v.

(see Remark 1 for more details). Let

y
N
,

r

N
√
EN

=
1

N

N
∑

n=1

hnAn1Γn
(xn) + w̃, (5)

where w̃ ∼ subG(σ2/N2EN ).

We propose the following threshold-based detector:

Decide H1 if:

y
N

Z
>

log(η)

N
+

1

N

N
∑

n=1

log

(

1− p0,n
1− p1,n

)

. (6)

Otherwise, decide H0.

We use a threshold-based detector since it is practically appeal-

ing, achieves the desired decay of the error probability, and

maximizes the error exponent as the network size increases

and the channels have equal gains, as shown in the analysis

in Section III. The term Z > 0 is a normalization constant

and is discussed in Section III. Under the MAP criterion

η = P (H0)/P (H1), and under the Neyman Pearson (NP)

criterion η is determined according to the desired false-alarm

probability.

3The exact expressions for the error exponent in the analysis holds under
the ideal assumption that the channel phase is completely corrected. However,
receiving non-zero mean signals is sufficient to achieve the same order of
decay (i.e., exponential decay of the error probability for En = Ω(N−1)
and sub-exponential decay for En = Ω(Nǫ−2), for any fixed ǫ > 0).



4

Remark 1: Note that our model takes into account a sub-

Gaussian interference model. Specifically, a random variable

w is said to be σ2-sub-Gaussian with variance proxy σ2 if

it has zero mean and its moment generating function (MGF)

satisfies E[esw] ≤ eσ
2s2/2 for all s ∈ R. Clearly, the classic

AWGN model is a special case of our model, in which w ∼
N (0, σ2). A more general common communication model that

our model captures is the case where the desired signal is

attenuated by the fading channel and received with an additive

external bounded interferer plus white Gaussian noise [42].

B. Implementation of SEEMA

The implementation of the SEEMA scheme has important

advantages for detection using WSN. It is highly bandwidth-

efficient because only a single waveform s(t) is transmitted

by the sensors. Furthermore, the number of transmissions can

be significantly reduced depending on the desired detection

performance (see Section III) and system constraints. In prac-

tical implementations of WSN tasks reducing the number of

transmitted sensors is a key goal for reducing the energy

consumption involved in each data collection. Unlike LBMA

and TDMA that use all sensors for transmitting data in each

data collection, SEEMA applies self censoring-type transmis-

sions over MAC, where only sensors that measure observations

which lie inside the transmission region participate in the data

collection. Therefore, SEEMA is an energy-efficient scheme

in this respect.

We point out that SEEMA readily applies to the case where

sensors measure d-dimensional observations. In this case, all

sensors that measure a d-dimensional observation that lies

inside the d-dimensional transmission region transmit the same

waveform s(t). As a result, the bandwidth requirement does

not depend on4 d. Note that finding the optimal Γn in terms

of minimizing the number of transmissions under reliability

constraints might not obey a simple structure, and is likely

to require non-convex search algorithms. This issue arises in

the TBMA scheme as well, where finding the optimal K
quantization values for each dimension is even more complex.

Finally, the scheme can be implemented by dumb simple

sensors (oblivious to the observation statistics and without

local data processing at sensors). SEEMA simplifies both

transmitter and receiver, since the FC receiver can be imple-

mented using a simple AM detector while the sensor requires

only an AM transmitter. Unlike LBMA that requires complete

knowledge of the observation distributions to compute and

transmit the random LLR value by each sensor node, under

SEEMA, the sensor nodes only need a few instructions from

the FC (i.e., only knowing An, Γn is required). Furthermore,

transmitting the random LLR values, which suffer from a large

dynamic range, might cause signal distortion due to nonlinear

effects.

For instance, when detecting a parameter θ in AWGN

with variance σ2
v , the observation distributions are given by

4By contrast, under the TBMA scheme [4], [5], each dimension must be
quantized and transmitted to obtain the type of dimension at the FC. While
efficient fusion can be done when the features are correlated by whitening
or Distributed KLT methods [43]–[45], in the worst case the bandwidth
requirement grows linearly with d when the dimensions are independent.

xn ∼ N (0, σ2
v) under H0 and xn ∼ N (θ, σ2

v) under H1. A

good choice of Γn is Γn = {x : XL < xn < ∞}, since

the distance between p0,n and p1,n increases in this region.

We illustrate this observation in Fig. 1 by evaluating the error

exponent, defined as the rate function of the error probability

as detailed in Section III-A, as a function of the normalized

expected number of transmitting sensors (which is equal to

P (H0)p0+P (H1)p1). The maximal error exponent is achieved

at XL = θ/2, as expected. Setting XL > θ/2 reduces the

expected number of transmissions but concomitantly reduces

the error exponent. On the other hand, setting XL < θ/2 is

undesirable because it increases the number of transmissions

and decreases the error exponent as well, since that setting

XL < θ/2 decreases the distance between hypotheses due to

the single-waveform transmission. For example, if XL = −∞
all sensors transmit the same waveform and we cannot dis-

tinguish between hypotheses. By contrast, when detecting a
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Fig. 1. Error exponent as a function of the normalized expected number of
transmitting sensors. Simulation parameters: θ = 2, σ2

v = 1.

normal distributed signal θ ∼ N (0, σ2
θ) in AWGN, we have

xn ∼ N (0, σ2
v) under H0 and xn ∼ N (0, σ2

θ +σ2
v) under H1.

Therefore, a good choice of Γn in this case would be Γn =
{x : XL < |xn| < ∞}. Determining the transmission region

Γn can be done numerically over fXn
(x|H0), fXn

(x|H1) at

the FC. Performance can be improved by optimizing the error

exponent over the couples p0,n, p1,n.

III. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the proposed

threshold-based detector (6) in the case of finite N and in

the asymptotic regime (where N → ∞). We first define

the notations that will be used in this section. For Bernoulli

random variables (r.v) x, z with success probability q0 and q1,

respectively, the Kullback Leibler (KL) divergence between

x, z is defined by:

D(x||z) , D(q0||q1) = q0 log
(

q0
q1

)

+ (1− q0) log
(

1−q0
1−q1

)

.

(7)
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Note that under SEEMA, 1Γn
(xn) is a Bernoulli r.v. with

success probability pi,n under Hi. Let

D(pi||pj) ,
1

N

N
∑

n=1

D(pi,n||pj,n) , for i, j = 0, 1 (8)

denote the average KL divergence across the sensors, and let

Λ(t) , lim
N→∞

1

N
logE

{

eNty
N

}

. (9)

Function Λ(t) will be used to evaluate the rate function of

the detection error by the Gatner-Ellis Theorem, as detailed in

Section III-A.

The error probability Pe,N under SEEMA used in a WSN

that contains N sensors is defined by:

Pe,N = P (H0)PN (H0 → H1) + P (H1)PN (H1 → H0) ,
(10)

where PN (H0 → H1) is the probability of declaring H1 when

H0 is true (Type-I error probability), and PN (H1 → H0) is

the probability of declaring H0 when H1 is true (Type-II

error probability) in a WSN that contains N sensors. Note

that PN (H0 → H1) , PN (H1 → H0) depend on the number

of sensors N . However, for convenience we often remove

the index N and simply write P (H0 → H1) , P (H1 → H0).
We are interested in characterizing the rate at which Pe,N

approaches zero as N increases.

A. Background on Large Deviations

Throughout this section we use the Large Deviations Prin-

ciple (LDP) to characterize the limiting behavior of the error

probability under SEEMA scheme. Assuming that Pe,N ≈
e−NI(x), we are interested in evaluating the rate function I(x)
(known as the error exponent) of the error probability. To

simplify the presentation we assume Z = 1 in this section.

Otherwise, y
N

should be replaced by y
N
/Z .

Definition 1 [46]: Let Go, Ḡ be the interior and closure of

a set G ⊂ R, respectively. We say that y
1
, ..., y

N
satisfy the

LDP with a rate function I if, for any G ⊂ R, we have:

− inf
x∈Go

I(x) ≤ lim inf
N→∞

1

N
logPr (y

N
∈ G)

≤ lim sup
N→∞

1

N
logPr (y

N
∈ G)

≤ − inf
x∈Ḡ

I(x) ,

(11)

where I : R → [0,∞]. The effective domain of I is defined

by DI , {x : I(x) < ∞}.

In hypothesis testing, G mostly satisfies the I-continuity prop-

erty [46]:

inf
x∈Go

I(x) = inf
x∈Ḡ

I(x) , IG .

Then,

lim
N→∞

1

N
logPr (y

N
∈ G) = −IG . (12)

The Gartner-Ellis Theorem [46] is used throughout this paper

to characterize the rate function:

Let

ΛN(t) , logE
{

etyN

}

, (13)

and let

Λ(t) , lim
N→∞

1

N
ΛN (Nt) = lim

N→∞
1

N
logE

{

eNty
N

}

.

(14)

Theorem (Gartner-Ellis): If Λ(t) (9) exists as an extended

real number, smooth and continuous, then y
1
, ..., y

N
satisfy

the LDP with a rate function

Λ∗(x) = sup
t∈R

(xt− Λ(t)) , x ∈ R . (15)

Λ∗(x) is the Fenchel-Legendre transform of Λ(t).
In this paper we focus on a threshold-based detector for

binary hypothesis testing (6). Without loss of generality we

assume that E {y
N
|H1} > E {y

N
|H0}. We are interested

in characterizing the error exponent of the detector. Let

G0 , {y|y < T } and G1 , {y|y > T } denote the de-

cision regions. The detector decides H0 if y
N

∈ G0 or

decides H1 if y
N

∈ G1. Under hypothesis H0, an error

occurs if y
N

∈ G1, thus G = G1 in (11)-(15). Therefore,

P (H0 → H1) = Pr (y
N
∈ G1|H0) = Pr (y

N
> T |H0). Un-

der hypothesis H1, an error occurs if y
N
∈ G0, thus G = G0 in

(11)-(15). Therefore, P (H1 → H0) = Pr (y
N
∈ G0|H1) =

Pr (y
N
< T |H1). Assume that Λ(t) (9) exists as an extended

real number, smooth and continuous. Then, applying the

Gartner-Ellis Theorem to characterize the error exponent of

the detector yields:

− lim
N→∞

1

N
logP (H0 → H1)

= − lim
N→∞

1

N
logPr (y

N
> T |H0) = inf

x>T
Λ∗
0 (x) ,

− lim
N→∞

1

N
logP (H1 → H0)

= − lim
N→∞

1

N
logPr (y

N
< T |H1) = inf

x<T
Λ∗
1 (x) ,

(16)

where Λ∗ (x) = Λ∗
i (x) under hypothesis Hi in (11)-(15).

Typically, in hypothesis testing, T ∈
(E {y

N
|H0} , E {y

N
|H1}). In this case we have:

− lim
N→∞

1

N
logP (H0 → H1) = Λ∗

0 (T ) ,

− lim
N→∞

1

N
logP (H1 → H0) = Λ∗

1 (T ) .

(17)

B. The Case of Equal Channel Gains

We start by analyzing the performance under the no-fading

case. To simplify the presentation, we present the results for

normalized channels, i.e., hn = hm = 1 ∀n,m ∈ {1, ..., N}.

In this case we set Z = 1 in (6). For hn = hm 6= 1 ∀n,m ∈
{1, ..., N} we set Z = hn in (6), and the analytic results

follow by replacing σ2 by σ2/Z2.

Theorem 1: Assume that the proposed threshold-based de-

tector (6) is implemented. Let ∆0,N = D(p0||p1) + log(η)/N
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and ∆1,N = D(p1||p0) − log(η)/N . Let N0 be the minimal

number of sensors such that ∆0,N > 0 and ∆1,N > 0. Then:

a ) Consider the case of independent observations under Hi.

Then, for all N > N0, the error probability is upper bounded

by:

P (H0 → H1) ≤ exp

{

−N
2∆

2

0,N
1

N

∑

N
n=1

A2
n+4σ2/NEN

}

,

P (H1 → H0) ≤ exp

{

−N
2∆

2

1,N
1

N

∑

N
n=1

A2
n+4σ2/NEN

}

.

(18)

b ) (tighter bound (coincides with (20)) under the conditionally

i.i.d. case:) Consider the case of i.i.d. observations under Hi.

Let A , An, p0 , p0,n, p1 , p1,n, Γ , Γn , ∀1 ≤ n ≤
N be equal for all sensors. Then, for all N > N0, the error

probability is upper bounded by:

P (H0 → H1)
≤ exp

{

−N
[

D
(

p0 +∆0,N/A||p0
)

− ǫ0(N)
]}

,

P (H1 → H0)

≤ exp
{

−N
[

D
(

p1 −∆1,N/A||p1
)

− ǫ1(N)
]}

,
(19)

where

ǫ0(N) = σ2

2NA2EN
log2

(

1 +
∆0,N/A

p0(1−p0−∆0,N/A)

)

,

ǫ1(N) = σ2

2NA2EN
log2

(

1 +
∆1,N/A

(p1−∆1,N/A)(1−p1)

)

.

Furthermore, if5 EN = Ω
(

N ǫ−1
)

, for any ǫ > 0, then in the

asymptotic regime (N → ∞) the following holds:

c ) Assume that sensors observations are independent but non-

necessarily identically distributed (i.ni.d) under Hi. Then, the

error exponent under the SEEMA scheme is maximized, and

achieves the best error exponent which is obtained by the

maximum likelihood detector with respect to the transmitted

signal 1Γn
(xn).

d ) Consider the case of non-i.i.d. observations under Hi.

Assume that Λ(t) (9) exists as an extended real number, smooth

and continuous. Then, y
N

satisfies the LDP with a rate function:

Ii(x) = supt∈R
(xt− Λ(t)) , x ∈ R, under Hi and the error

probability decays exponentially with N . Furthermore, if the

observations are i.i.d. under Hi, then the rate function is given

by Ii(x) = D(x||pi) under Hi. The asymptotic error exponent

is given explicitly by:

− lim
N→∞

1

N
log (P (H0 → H1))

= − lim
N→∞

1

N
log (P (H1 → H0))

= D(p0 +D(p0||p1)/A||p0) = D(p1 −D(p1||p0)/A||p1) .
(20)

Proof: We start by proving Statement (a). Let

τ ,
log(η)

N
+

1

N

N
∑

n=1

log

(

1− p0,n
1− p1,n

)

.

5The notation f(N) = Ω (g(N)) is used for big Omega notation, i.e.,
there exist constants C,N0 > 0 such that for all N > N0 we have f(N) >
Cg(N).

Note that after algebraic manipulations we have:

τ =
1

N

N
∑

n=1

p0,nAn +∆0,N ,

where 1
N

∑N
n=1 p0,nAn is the expectation of y

N
under H0.

Applying the Chernoff bound yields:

Pr

(

1

N

N
∑

n=1

An1Γn
(xn) + w̃ > τ

)

≤ e−sNτ
∏

n

E [exp {An1Γn
(xn)}]E

[

exp
{

w/
√

EN

}]

.

Since An is bounded by the construction of the transmission

scheme, using algebraic manipulations as in the construction

of the Hoeffding bound yields:

Pr

(

1

N

N
∑

n=1

An1Γn
(xn) + w̃ > τ

)

≤ exp

{

−N
2∆

2

0,N
1

N

∑

N
n=1

A2
n+4σ2/NEN

}

,

where we used the fact that w̃ ∼ subG(σ2/NEN ), so that

E
[

esw̃
]

≤ es
2σ2/2EN . The second term in (18) can be

developed similarly under H1.

Next, we prove Statement (b). Rewriting (6) with Z = 1
yields:

N
∑

n=1

1Γ(xn) + w′ > N

log(η)/N + log

(

1− p0
1− p1

)

A
,

(21)

where w′ ∼ subG(σ2/(ENA2)).

Let

τ ′ , τ/A =

(

log(η)/N + log

(

1− p0
1− p1

))

/A.

be a threshold normalized by A = log (1−p0)p1

(1−p1)p0
used in the

detector (6). Since the observations are conditionally i.i.d.,

after algebraic manipulations we have:

τ ′ = p0 +
∆0,N

A
. (22)

Next, applying the Chernoff bound and using the i.i.d. property

yields for all t ≥ 0:

Pr

(

N
∑

n=1

1Γ(xn) + w′ > Nτ ′
)

≤
[

E
{

et·1Γ(xn)
}

etτ

]N

E
{

etw
′
}

≤
[

(

et
)−

(

p0+
∆0,N

A

)

(

p0e
t + (1− p0)

)

]N

e
t2 σ2

2ENA2 .

(23)
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Since the bound holds for all t > 0, by placing t =

log
(1−p0)

(

p0+
∆0,N

A

)

(1−p0−
∆0,N

A
)p0

> 0 (or et =
(1−p0)

(

p0+
∆0,N

A

)

(1−p0−
∆0,N

A
)p0

) in (23),

we obtain:

Pr

(

N
∑

n=1

1Γ(xn) + w′ > Nτ ′
)

≤















(1− p0)
(

p0 +
∆0,N

A

)

(1− p0 − ∆0,N

A )p0





−
(

p0+
∆0,N

A

)

×





(1 − p0)
(

p0 +
∆0,N

A

)

(1 − p0 − ∆0,N

A )
+ (1− p0)









N

×

exp







σ2

2ENA2
log2

(1− p0)
(

p0 +
∆0,N

A

)

(1− p0 − ∆0,N

A )p0







.

(24)

We can rewrite the RHS of (24) as:








(

p0 +
∆0,N

A

p0

)−
(

p0+
∆0,N

A

)

×

(

1− p0

1− p0 − ∆0,N

A

)−
(

p0+
∆0,N

A

)

(

1− p0

1− p0 − ∆0,N

A

)







N

×

exp







σ2

2ENA2
log2



1 +
∆0,N/A

(

1− p0 − ∆0,N

A

)

p0











=









(

p0 +
∆0,N

A

p0

)−
(

p0+
∆0,N

A

)

×

(

1− p0

1− p0 − ∆0,N

A

)1−
(

p0+
∆0,N

A

)

×

exp







σ2

2NENA2
log2



1 +
∆0,N/A

(

1− p0 − ∆0,N

A

)

p0















N

.

(25)

Finally, taking logarithm and exponent yields (19).

Next, we prove Statement (c). Let

Ln = log (p(1Γn
(xn)|H1)/p(1Γn

(xn)|H0))

be the log-likelihood ratio of sensor n regarding the r.v.

1Γn
(xn). The observation 1Γn

(xn) that is used in the SEEMA

scheme has pmf:

p (1Γn
(xn)|Hj) = p

1Γn (xn)
j,n (1− pj,n)

1−1Γn (xn).

Then, we get,

Ln = 1Γn
(xn) log

(

p1,n

p0,n

)

+ (1− 1Γn
(xn)) log

(

1−p1,n

1−p0,n

)

.

An optimal ML detector decides H1 if

N
∑

n=1

Ln > log(η).

Therefore,

N
∑

n=1

Ln =

N
∑

n=1

1Γn
(xn)An + log

(

1− p1,n
1− p0,n

)

> log(η) .

(26)

Otherwise, it decides H0.

Rearranging (26) yields (6) in a no-fading and noise-free

channel scenario. Then, (6) can be rewritten as:

N
∑

n=1

Ln + w′ > log(η) ,

where w′ ∼ subG(σ2/EN ). Since E
[

etw
′
]

≤ e
t2σ2

2EN , we

have:

1

N
logE

{

et(
∑

N
n=1

Ln+w′)
}

=
1

N
log

N
∏

n=1

E
{

etLn
}

+O(1/(ENN))

−→ 1

N

N
∑

n=1

logE

(

p(1Γn
(xn)|H1)

p(1Γn
(xn)|H0)

)t

= Λ(t)

as N → ∞ and EN = Ω(N ǫ−1)

Since we obtained the rate function of the optimal noise-free

LLR test that minimizes the error probability, the statement

follows.

Next, we prove Statement (d). The Gartner-Ellis conditions are

assumed to be satisfied. Note that after algebraic manipulations

of the threshold τ we have:

τ =
1

N

N
∑

n=1

p0,nAn +∆0,N =
1

N

N
∑

n=1

p1,nAn −∆1,N ,

where 1
N

∑N
n=1 p0,nAn and 1

N

∑N
n=1 p1,nAn are the expec-

tations of y
N

under H0 and H1, respectively. Since an error

under H0 occurs when y
N
> τ = E[y

N
|H0] +∆0,N , an error

under H1 occurs when y
N

< τ = E[y
N
|H1] − ∆1,N , and

∆0,N , ∆1,N are strictly positive, the error probability decays

exponentially with N since the Gartner-Ellis conditions are

satisfied by the assumption.

We continue by proving the statement under the i.i.d.

observations case. Rewriting (6) yields:

y′ ,
1

N

N
∑

n=1

1Γn
(xn) + w′ >

log(η)/N + log

(

1− p0
1− p1

)

A
,

(27)

where w′ ∼ subG(σ2/(N2ENA2)).
We need to show that y′ satisfies the LDP.

Let

ΛN (t) , logE
{

ety
′
}

,
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and let

Λ(t) , lim
N→∞

1

N
ΛN (Nt) = lim

N→∞
1

N
logE

{

eNty′
}

.

The Gartner-Ellis Theorem states that if Λ(t) exists as an

extended real number, smooth and continuous, then y′ satisfies

the LDP with a rate function

Λ∗(x) = sup
t∈R

(xt− Λ(t)) , x ∈ R ,

dubbed the Fenchel-Legendre transform of Λ(t). Due to the

i.i.d. property, and the fact that 1
N logE

{

eNtw′
}

≤ σ2t2

2NEN
,

we have:

1
N logE

{

eNty′
}

= 1
N log

[

E
{

et·1Γn (xn)
}]N

+ 1
N logE

{

eNtw′
}

−→ logE
{

et·1Γn (xn)
}

, as N → ∞ and EN = Ω(N ǫ−1)

= log (p0e
t + 1− p0) = Λ(t) .

Λ(t) is smooth and continuous. Hence, y′ satisfies the LDP

with a rate function Λ∗(x) = supt∈R
(xt− Λ(t)). Differenti-

ating and equating the derivative to zero, yields:

Λ∗(x) = x log x
p0

+ (1 − x) log 1−x
1−p0

= D(x||p0) .
Finally, similar to (22), the RHS of (27) satisfies

[log(η)/N + log ((1− p0)/(1− p1))] /A → p0 +
D(p0||p1)/A as N → ∞. Hence, the theorem follows.

�

C. The Case of Fading Channels

We next deal with the case where hn = hm may not

hold. Note that in the SEEMA transmission scheme, sensors

transmit the analog waveform without directly correcting the

channel gain (although correcting the phase is assumed to

avoid zero-mean channels). As a result, the received signals

at the FC are multiplied by random channel gains. Nev-

ertheless, this transmission scheme is applicable to many

common applications: (i) The case where the channel gain

is not corrected at the transmitter to make the scheme robust

against changes in the channel statistics. Thus, the average

transmission energy of the signal is determined according

to the observations statistics purely to satisfy the average

energy constraints. This transmission scheme is very simple to

implement and is generally preferred in WSNs with a mobile

access point [47]; for instance, where the channel statistics

can vary rapidly and are not available at the sensors. Note that

correcting the channel phase (by transmitting a signal with the

complex conjugate channel phase) is assumed to avoid zero-

mean channels, as was done in [5], [33], [37], [48]; however,

the signal energy is not affected by this operation. Correcting

the channel phase can be done by transmitting a pilot signal by

the FC before the sensor transmissions to estimate the channel

phase [14], [49]. In fact, estimating the channel phase by

sensors with an estimation error of less than π/4 is sufficient to

correct the phase at the transmitter to guarantee positive I,Q
components at the receiver. (ii) The case where sensors exploit

the channel state to correct the fading effect (for instance,

by dividing the signal amplitude at the transmitters by the

channel state to obtain identical channels at the FC). However,

due to channel estimation errors, the signal amplitudes are

still multiplied by random gains at the FC. (iii) The case

where the sensors adapt their transmission power according

to the channel state to obtain discrete channels at the FC. For

example, consider a transmission scheme where each sensor

transmits its waveform divided by the channel state only if

the channel gain is greater than a predetermined threshold

(to satisfy a power constraint). Otherwise, the sensor does

not transmit (to save energy). As a result, the FC receives

the transmitted signals multiplied by 1 (good channel) with

probability p, where p is the probability that the channel gain

is greater than the predetermined threshold. All other signals

are multiplied by 0 (bad channel) with probability 1− p. This

scenario is known as a transmission scheme over ON/OFF

fading channels.

As discussed in Section III-A, we need to set Z in (6) such

that τ ∈
(

E
{y

N

Z |H0

}

, E
{y

N

Z |H1

})

to achieve the desired

decay of error, where τ = log(η)
N + 1

N

∑N
n=1 log

(

1−p0,n

1−p1,n

)

is the detector’s threshold in (6). When the channel gains

are i.i.d. across sensors, we have µh,n = µh,m for all

n,m ∈ {1, ..., N}. In this case, by setting6 Z = µh,n, and

using algebraic manipulations we have:

τ =
1

N

N
∑

n=1

p0,nAn +∆0,N =
1

N

N
∑

n=1

p1,nAn −∆1,N ,

where 1
N

∑N
n=1 p0,nAn, 1

N

∑N
n=1 p1,nAn, are the expecta-

tions of y
N
/Z under hypotheses H0, H1, respectively, and

∆0,N = D(p0||p1) + log(η)/N and ∆1,N = D(p1||p0) −
log(η)/N . As a result, there exists a number N0 of

sensors such that for all N > N0 we have: τ ∈
(

E
{y

N

Z |H0

}

, E
{y

N

Z |H1

})

. When the channel gains are not

i.i.d. across sensors we assume that Z satisfies the desired

property 7.

Assumption A1: Let ∆0,N = τ − E
{y

N

Z |H0

}

, and ∆1,N =
E
{y

N

Z |H1

}

− τ . There exists a number N0 of sensors such

that for all N > N0 we have: ∆0,N > 0 and ∆1,N > 0.

In contrast to the case of identical channels and i.i.d.

observations, SEEMA does not achieve the centralized error

exponent when transmitting using fading channels. However,

exponential decay is still obtained when transmitting with

energy EN ∼ N−1 as shown below.

Theorem 2: Assume that the proposed threshold-based de-

tector (6) is implemented and Assumption A1 holds. Then:

a ) Consider the case of independent observations under Hi

6Note that letting the sensors transmit a few pilot signals which are
coherently aggregated at the FC yields a good estimate of µh,n under the
i.i.d. fading channels case.

7Note that satisfying τ ∈ (E {y
N
/Z|H0} , E {y

N
/Z|H1}) does

not require high accuracy when the FC estimates the expectations
E {y

N
/Z|H0} , E {y

N
/Z|H1}. We point out that such (and even more

complex) learning mechanisms are required in other schemes as well, such as
computing a complex rate function that depends on the channel distribution
of each sensor node for TBMA [5].
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and independent channel gains which are upper bounded by

|hn/Z| < hmax for all n ∈ {1, ..., N}. Let N0 be the minimal

number of sensors such that ∆0,N > 0 and ∆1,N > 0. Then,

for all N > N0, the error probability is upper bounded by:

P (H0 → H1) ≤ exp
{

−N
2∆2

0,N

h2
max

1

N

∑

N
n=1

A2
n+4σ2/(NENZ2)

}

,

P (H1 → H0) ≤ exp
{

−N
2∆2

1,N

h2
max

1

N

∑

N
n=1

A2
n+4σ2/(NENZ2)

}

.

(28)

Furthermore, if EN = Ω
(

N ǫ−1
)

, for any ǫ > 0, then in the

asymptotic regime (N → ∞) the following holds:

b ) Consider the case of non-i.i.d. observations and non-i.i.d.

fading channels under Hi. Assume that Λ(t) (9) exists as an ex-

tended real number, smooth and continuous. Then, y
N

satisfies

the LDP with a rate function: Ii(x) = supt∈R
(xt− Λ(t)) , x ∈

R, under Hi and the error probability decays exponentially

with N . Furthermore, consider the case of i.i.d. observations

under Hi, i.i.d. channel gains, and assume that the moment

generating function of the channels is finite E
{

ethn
}

< ∞.

Let A , An, p0 , p0,n, p1 , p1,n, Γ , Γn , ∀1 ≤ n ≤ N
be equal for all sensors. Then, y

N
satisfies the LDP with a

rate function: Ii(x) = supt∈R
(xt− Λ(t)), where Λ(t) =

log
(

piE
{

e
tAhn

Z

}

+ 1− pi

)

under Hi, i = 0, 1, and the error

probability decays exponentially with N .

Proof: We start by proving Statement (a) under hypothesis H0.

Since an error occurs under H0 when y
N
> τ , we can apply

the Chernoff bound to upper bound the error probability:

Pr

(

1

N

N
∑

n=1

hnAn1Γn
(xn)/Z + w̃/Z > τ

)

≤ e−sNτ
∏

n

E

[

exp

{

hnAn1Γn
(xn)

Z

}]

×

E
[

exp
{

w
Z
√
EN

}]

.

Since Pr(hnAn1Γn
(xn)/Z ∈ [−hmaxAn, hmaxAn]) = 1 and

Assumption A1 holds, using algebraic manipulations as in the

construction of the Hoeffding bound yields:

Pr

(

1

N

N
∑

n=1

hnAn1Γn
(xn)/Z + w̃/Z > τ

)

≤ exp
{

−N
2∆2

0,N

h2
max

1

N

∑

N
n=1

A2
n+4σ2/(NENZ2)

}

,

where we used the fact that w̃/Z ∼ subG(σ2/ENZ2), so that

E
[

esw̃/Z
]

≤ es
2σ2/2ENZ2

. The second term in (28) can be

developed similarly under H1.

Statement (b) follows by similar steps as in the proof of

Theorem 1.d under the non-i.i.d. case by taking expectation

with respect to the channel gain. Under the i.i.d. case, the

statement follows by using the fact that we have: Λ(t) =

log
(

piE
{

e
tAhn

Z

}

+ 1− pi

)

due to the i.i.d. property. �

Remark 2: Note that the noise decay in (5) implies that the

detector’s performance could be improved by increasing the

number of sensors in the network without increasing the total

transmission energy. Theorems 1, 2 characterize the decay rate

of the error probability, which holds if the transmitted energy

satisfies EN = Ω
(

N ǫ−1
)

. These results provides important

design principles for detection under resource constraints.

D. Explicit Analysis in Common Non-I.I.D. Scenarios

For non-i.i.d. observations, the conditions on Λ(t) are

used to apply the Gartner-Ellis Theorem to obtain the rate

function. Next, we illustrate common cases in WSNs when

the conditions hold.

1) The Case of Local Conditionally I.I.D. Observations:

First, consider a common scenario where sensors are located in

K different areas, where a set of Nk sensors with cardinality

N(k) is located in area k, and their observations are indepen-

dent but not necessarily identically distributed under Hi. How-

ever, sensor observations in the same area k (1 ≤ k ≤ K) are

assumed to be i.i.d. under Hi (due to the small geographical

distance between them). Let Ãk = An for all sensors (say n)

in area k. Assume that the sensor deployment process follows

a multinomial distribution with probabilities p1, ..., pK , where
∑K

i=1 pi = 1. Specifically, when deploying the sensors in the

field, each sensor has a probability pi of being located in area i.
Assume that the channel gains hn are i.i.d. within each region,

and EN = Ω
(

N ǫ−1
)

, for fixed ǫ > 0. In this scenario, we

have:

1

N
log
(

E
{

eNty
})

=
1

N
log



E







e
t

N
∑

n=1

hnAn1Γn (xn)+Ntw̃











=
1

N
log

(

E

{

K
∏

k=1

e
t

∑

n∈Nk

hnÃk1Γn (xn)
})

+
1

N
logE

{

etNw̃
}

=
K
∑

k=1

N(k)

N
log
(

E
{

ethÃk1Γn (x)
})

+O(1/(NEN ))

−→ ENk

{

log
(

piEh

{

ethnÃk

}

+ 1− pi

)}

= Λ(t) ,

as N → ∞, and EN = Ω
(

N ǫ−1
)

,

(29)

under Hi, i = 0, 1, by the law of large numbers. The first

expectation is with respect to the sensor deployment process,

and the second expectation is with respect to the channel gain

given that sensors lie in the set Nk. In this case, we only

need to require that the moment generating function of the

channel fading be finite to guarantee that Statement (b) in

Theorem 2 holds. For example, the detection performance over

a Rayleigh fading channel with received power Pr = E
{

|h|2
}

is evaluated by setting:
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Eh

{

ethnÃk

}

= 1 +
1√
2

√
Pr

Ãk

te
Prt2

4Ã2
k

√

π

2

(

erf

(√

Prt

4Ã2
k

)

+ 1

)

in Λ(t), and solving Ii(x) = supt∈R
(xt− Λ(t)) under Hi,

for detection threshold x.

2) The Case of Spatially Correlated Markovian Observa-

tions: In this section we examine the case of correlated

Markovian observations across sensors, in which the random

variables 1Γn
(xn) form a Markov chain across n = 1, ..., N

(i.e., a one-dimensional field), i.e., a spatial Gilbert-Elliot

model. Specifically, let πm(i, j) be the transition probabil-

ity to observe 1Γn
(xn) = j given that the neighbor node

observes 1Γn
(xn−1) = i, for i, j ∈ {0, 1} under Hm. For

convenience, we will neglect subscript m during the analysis.

Let Π = {π(i, j)}1i,j=0 be the transition probability matrix of

1Γn
(xn) across the sensors. Let P π

s be the Markov probability

measure with the initial state s ∈ {0, 1}:

P π
s (1Γ1

(x1) = α1, ..., 1ΓN
(xN ) = αN )

= π(s, α1)

N−1
∏

n=1

π(αn, αn+1) ,

where αn ∈ {0, 1} for each sensor n.

Let ỹ , y/A. Next, we compute

limN→∞ 1
N logEπ

s

{

eNtỹ
}

, where Eπ
s

{

eNtỹ
}

is the

expectation of eNtỹ with respect to P π
s (1Γ1

(x1) =
αk1

, ..., 1ΓN
(xN ) = αkN

), to use the Gartner-Ellis Theorem.

Note that under Hm we have:

1
NΛN (Nt)

= 1
N logEπ

s

{

eNtỹ
}

= 1
N logEπ

s

{

et
∑

N
n=1

hn1Γn (xn)+Ntw̃
}

= 1
N log

∑

α1=0,1

· · ·
∑

αN=0,1

P π
s (1Γ1

(x1) = α1, ..., 1ΓN
(xN ) = αN )×

N
∏

n=1

Eh

{

ethnαn
}

+O(1/(NEN ))

= 1
N log

∑

α1=0,1

· · ·
∑

αN=0,1

π(s, α1)Eh

{

eth1α1

}

× · · ·

×π(αN−1, αN )Eh

{

ethNαN
}

+O(1/(NEN))

−→ 1
N log

∑

αN=0,1

(Πt)
N
(s, αN ) ,

as N → ∞ and EN = Ω
(

N ǫ−1
)

,

where Πt is a non-negative matrix, whose elements are

πt(i, j) = π(i, j)Eh

{

ethj
}

. (Πt)
N

denotes the N th power

of the matrix Πt. Let Dt be the following diagonal matrix:

Dt =

[

1 0
0 Eh

{

eth
}

]

.

Then, Πt can be rewritten as:

Πt = Π ·Dt =

[

π(0, 0) (1− π(0, 0))Eh

{

eth
}

1− π(1, 1) π(1, 1)Eh

{

eth
}

]

.

(30)

By applying the Perron-Frobenius Theorem [46] we have:

Λ(t) = lim
N→∞

1

N
ΛN (Nt) = log ρ (Πt) , (31)

where ρ (Πt) denotes the Perron-Frobenius eigenvalue of the

matrix Πt, and is given by:

ρ (Πt) =
βEh

{

eth
}

+ α

2

+

√

(

βEh{eth}+α
2

)2

− Eh {eth} (αβ − (1− α)(1 − β)),

(32)

where α , π(0, 0), β , π(1, 1), and Eh

{

eth
}

is the

moment generating function of the fading channel. Note that

ρ (Πt) is the isolated root of the characteristic equation of the

matrix Πt, positive, finite and differentiable with respect to t
[50]. Therefore, we can apply the Gartner-Ellis Theorem and

Theorem 2.b holds. In fact, we only need to require that the

moment generating function of the channel fading be finite to

guarantee that Statement (b) in Theorem 2 holds. Then, the rate

function is given by Ii(x) = supt∈R
(xt− Λ(t)) under Hi,

where ρ (Πt) under hypothesis Hi is evaluated with respect to

Πt governed by Hi.

IV. SIMULATION RESULTS

In this section we provide numerical examples illustrating

detection performance under the SEEMA algorithm. The sim-

ulations were implemented in Matlab. We simulated a network

that contains N sensors. We simulated various scenarios which

are captured by the theoretical analysis, including i.i.d. obser-

vations, non-i.i.d. observations (where the correlated observa-

tions were examined by Markovian models), equal channel

gains, and Rayleigh fading channel gains. Other simulation

parameters are described under each scenario in what follows.

We start by examining the detection of a Gaussian signal,

which appears for example in radar signals, communication

signals, and radio astronomy signals [51]–[53]. The signal

follows a distribution θn ∼ N (0, σ2
θ,n) independently across

sensors, where n denotes the sensor index, (n = 1, 2, ..., N ).

A random observation at sensor n can be written under H0

and H1 as:

H0 : xn = vn , H1 : xn = θn + vn , (33)

where vn ∼ N (0, σ2
v) is the additive Gaussian observation

noise, where we set σ2
v = 1. The observation noise is assumed

to be i.i.d. across sensors. The transmission region was set to

Γ , Γn = {x : XL < |xn| < ∞} , ∀n, where XL was set

such that the average number of transmissions under SEEMA

equaled 0.2·N . Note that a similar censoring-type transmission

region can be applied when handling the multi-dimensional

case as well, as discussed in Section II-B.
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First, we examine the case of equal channel gains, as

discussed in section III-B. We consider the case of i.i.d. ob-

servations under Hi, where we set σ2
θ,n = 3, ∀n. We obtained

XL = 1.9. The channel AWGN was set to w ∼ N (0, 5). In

addition to the SEEMA algorithm, we simulated the following

algorithms for comparison: (i) the well-known TDMA scheme,

where each sensor transmits its exact observation in a different

time slot (i.e., using orthogonal noisy channels), referred to

as the TDMA - noisy channel in Fig. 2. Note that similar

to SEEMA, TDMA can be implemented with dumb sensors

(oblivious to the observation statistics). Observation statistics

are only needed at the FC. However, the bandwidth increases

linearly with N under the TDMA scheme, whereas only a

single waveform is required under the SEEMA scheme. We

simulated TDMA using a noise-free channel as well, to obtain

a benchmark on detection performance, which is referred to as

the TDMA - noiseless channel in Fig. 2. (ii) We have modified

the counting rule in [27] used for detecting deterministic

signals in noise by first making local binary decisions at

each sensor for random signals in noise. We have used the

transmission region applied by SEEMA for making the local

decisions, and a noiseless channel for transmission. Since we

consider the equal channel gain case in this scenario, the

received signal counts the local decisions (i.e., number of

ones). Therefore, it serves as a benchmark for the detection

performance under SEEMA, referred to as the Counting rule

- noiseless cannel in Fig. 2. (iii) The LBMA scheme, where

each sensor transmits its local LLR over a noisy MAC channel,

is referred to as the LBMA - noisy channel in Fig. 2. Note

that LBMA approaches optimal detection performance as the

number of sensors increases since the noise term vanishes, and

the summation of the LLRs in the independent observation

case [4]. However, LBMA requires knowing the observation

distribution under each hypothesis at each sensor, and the

hardware implementation is more complex than SEEMA since

transmitting the random LLRs, which have a large dynamic

range, can cause signal distortion from the saturation effect in

the analog amplifiers. (iv) We also present the theoretical error

probability (up to a constant factor), e−nI , by computing the

theoretical error exponent, I , in (20) proved by Theorem 1.d.

Fig. 2 confirms the results of Theorem 1. We set EN =
ET = 1 fixed. Fig. 2(a) shows that the error probability

decays exponentially with the total number of sensors in the

network N , and achieved the theoretical error exponent (20)

in Theorem 1. Note that SEEMA outperformed TDMA in the

noisy channel scenario, although all the sensors transmitted

their exact measurements under the TDMA scheme. This is

because TDMA suffers from channel noise in each dimen-

sion, which becomes negligible under the SEEMA scheme

(due to the single-dimension transmission). In Fig. 2(b), we

compare the performance of the TDMA, LBMA, and SEEMA

algorithms for noisy channels in terms of average transmission

energy as a function of the error probability. It can be seen that

SEEMA significantly outperforms both TDMA and LBMA in

terms of energy efficiency, thanks to its self censoring-type

transmission scheme.

Fig. 3 confirms the results of Theorem 1 and Remark

2 regarding the performance of SEEMA. Here we set the
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Fig. 2. Simulation parameters: Equal channel gain, i.i.d. observations under
Hi, EN = ET fixed.

channel AWGN to w ∼ N (0, 1). The error probability decayed

exponentially with N when EN = N−0.3 and achieved the

theoretical error exponent (20) in Theorem 1, but decayed sub-

exponentially with N when EN = N−1.3.

Next, we examine the case where the sensors experience

an i.i.d. Rayleigh fading channel gain, hn ∼ Rayleigh(σh)
(where the phase uncertainty is eliminated, as discussed in

section III-C). We considered the case of independent but

non-identically distributed (i.ni.d.) observations under Hi.

Specifically, we assumed that N/2 sensors observe θn ∼
N (0, 3), n = 1, ..., N/2 and N/2 sensors observe θn ∼
N (0, 4), n = N/2 + 1, ..., N (i.e., non-identically distributed

observations). We set EN = ET = 1 fixed. We obtained

XL = 1.97. In addition to SEEMA, we have simulated the

following algorithms for comparison: (i) the TDMA scheme,

where each sensor transmits its LLR in a different time slot

(i.e., using orthogonal noisy fading channels), referred to as

the TDMA - noisy channel. (ii) The LBMA scheme, where

each sensor transmits its local LLR over a noisy fading MAC
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Fig. 3. Error probability as a function of the number of sensors. Simulation
parameters: Equal channel gain, i.i.d. observations under Hi, transmission
energy decreases with N .

channel, is referred to as the LBMA - noisy channel. (iii) The

Chair-Varshney fusion rule-based two-stage approximation (C-

V-TSA) method that was investigated in [5]. The C-V-TSA

method first makes local binary decisions at each sensor node,

and makes a second binary decision for each signal received

at the FC, which is multiplied by the channel gain. The

detection statistics is then evaluated for decision. Note that

the bandwidth increases linearly with N under the C-V-TSA

method. (iv) We also present the theoretical error probability

(up to a constant factor), e−nI , by computing the theoretical

error exponent, Ii(x) = supt∈R
(xt− Λ(t)) under Hi, for

detection threshold x, where Λ(t) is computed by the closed-

form expression developed in (29). Fig. 4 confirms the results

of Theorem 2. We set EN = ET = 1 fixed. Fig. 4(a)

shows that the error probability decayed exponentially with

the total number of sensors in the network N and achieved

the theoretical error exponent (20). Note that SEEMA outper-

formed TDMA in the noisy channel scenario again. Fig. 4(b)

compares the performance of C-V-TSA, TDMA, LBMA, and

SEEMA algorithms in terms of average transmission energy

as a function of the error probability. SEEMA significantly

outperformed the other algorithms, as a result of its self

censoring-type transmission scheme.

Finally, we examine the case of correlated Markovian

observations across sensors as analyzed in Section III-D2.

Specifically, each sensor measures an observation 0 or 1.

Under hypothesis H0, the transition probabilities were set

to: π0(0, 0) = 0.65, π0(1, 1) = 0.35. Under hypothesis

H1, the transition probabilities were set to: π1(0, 0) = 0.35,

π1(1, 1) = 0.65. We consider equal channel gains. In addition

to SEEMA, we have simulated the following algorithms for

comparison: (i) the TDMA scheme with copula-based fusion,

where each sensor transmits its observation (one or zero) in a

different time slot (i.e., using orthogonal noiseless channels),

referred to as the Copula-Based TDMA Fusion - noiseless

channel. Then, the optimal detector computes the LLR forward

Total number of sensors in the network
0 10 20 30 40 50 60 70 80 90 100

E
rr

o
r 

p
ro

b
ab

ili
ty

10-4

10-3

10-2

10-1

100

SEEMA - theoretic LD
C-V-TSA - noisy channel
TDMA - noisy channel
SEEMA - noisy channel
LBMA - noisy channel

(a) Error probability as a function of the number of sensors.

10-310-210-1

Error probability

0

20

40

60

80

100

120

140

160

180

200

T
o

ta
l a

ve
ra

g
e 

tr
an

sm
is

io
n

 e
n

er
g

y 
[E

T
]

C-V-TSA - noisy channel
TDMA - noisy channel
LBMA - noisy channel
SEEMA - noisy channel

(b) Total average energy as a function of the error probability.

Fig. 4. Simulation parameters: i.i.d. Rayleigh fading channel, hn ∼
Rayleigh(σh), i.ni.d. observations under Hi, EN = ET fixed.

based on the transition matrix for detection, which simplifies

the implementation as compared to the general correlated case

[28]. Note that the bandwidth requirement increases linearly

with N under this scheme. (ii) The LBMA scheme, where

each sensor transmits its local LLR over a noisy fading MAC

channel, referred to as the LBMA - noisy channel. (iii) We

also present the theoretical error probability (up to a constant

factor), e−nI , by computing the theoretical error exponent,

Ii(x) = supt∈R
(xt− Λ(t)) under Hi, for detection threshold

x, where Λ(t) is computed by the closed-form expression

developed in (31). Fig. 5 confirms the results of Theorem 2 and

the analysis in Section III-D2. We set EN = ET = 1 fixed.

Fig. 5(a) shows that the error probability decays exponentially

with the total number of sensors in the network N and achieves

the theoretical error exponent. In Fig. 5(b), we compare the

performance of LBMA, and SEEMA algorithms in terms

of average transmission energy as a function of the error

probability. SEEMA significantly outperforms LBMA in terms

of energy-efficiency due to its self censoring-type transmission
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scheme.
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Fig. 5. Simulation parameters: Equal channel gain, correlated Markovian
observations across sensors, EN = ET fixed.

V. CONCLUSION

We proposed a Spectrum and Energy Efficient Multiple

Access (SEEMA) scheme for spectrum and energy efficient

detection in WSNs. In SEEMA, only sensors with highly infor-

mative observations transmit their data in each data collection

using a common analog waveform. SEEMA has important

advantages for detection tasks in WSN. It is highly energy and

bandwidth efficient as compared to existing methods because

of its transmissions savings and narrowband transmission over

MAC. It can be implemented by simple dumb sensors which

simplifies the implementation for detection tasks in WSNs.

Both finite sample analysis and asymptotic analysis of the

error probability have been established with respect to the

network size, and conditions for obtaining exponential decay

of the error were developed. Specific performance analysis has

been developed for common non-i.i.d. observation scenarios,

including local i.i.d. observations, and Markovian correlated

observations. Numerical examples demonstrated the strong

performance of SEEMA.

REFERENCES

[1] K. Cohen and A. Leshem, “Density-based multiple access for detection
in wireless sensor networks,” in IEEE International Symposium on
Information Theory (ISIT), pp. 776–780, June 2018.

[2] Y. Hong, K. Lei, and C. Chi, “Channel-aware random access control
for distributed estimation in sensor networks,” IEEE Trans. on Signal
Process., vol. 56, pp. 2967–2980, Jul. 2008.

[3] S. Marano, V. Matta, P. Willett, and L. Tong, “DOA estimation via a
network of dumb sensors under the SENMA paradigm,” IEEE Signal
Process. Letters, vol. 12, pp. 709–712, Oct. 2005.

[4] K. Liu and A. Sayeed, “Type-based decentralized detection in wireless
sensor networks,” IEEE Trans. on Signal Process., vol. 55, pp. 1899
–1910, May 2007.

[5] G. Mergen, V. Naware, and L. Tong, “Asymptotic detection performance
of type-based multiple access over multiaccess fading channels,” IEEE

Trans. on Signal Process., vol. 55, pp. 1081 –1092, Mar. 2007.

[6] J. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks,” Comm. Mag., IEEE, vol. 40, pp. 102–114, Aug.
2002.

[7] T. Sujithra, N. S. Kumar, K. K. Kumar, and V. Vinayagam, “Survey on
data gathering approaches in wireless sensor networks,” Indian Journal

of Science and Technology, vol. 10, no. 25, 2017.

[8] A. Puzanov and K. Cohen, “Deep reinforcement one-shot learning for
artificially intelligent classification systems,” submitted to IEEE Journal

on Selected Areas in Communications, preliminary version is available

at arXiv: 1808.01527, 2018.

[9] J. N. Tsitsiklis, “On threshold rules in decentralized detection,” in 25th

IEEE Conference on Decision and Control (CDC), vol. 25, pp. 232–236,
1986.

[10] J. N. Tsitsiklis, “Decentralized detection,” Advances in Signal Process-

ing, vol. 2, pp. 297–344, 1993.

[11] Q. Zhao and L. Tong, “Opportunistic carrier sensing for energy-efficient
information retrieval in sensor networks,” EURASIP J. Wireless comm.

Netw., vol. 2, pp. 231–241, 2005.

[12] Y. Chen and Q. Zhao, “An integrated approach to energy aware medium
access for wireless sensor networks,” IEEE Trans. on Signal Process.,
vol. 55, pp. 3429–3444, July 2007.

[13] K. Cohen and A. Leshem, “Time-varying opportunistic protocol for
maximizing sensor networks lifetime,” in Proc. of the 2009 IEEE
International Conference on Acoustics, Speech and Signal Process.

(ICASSP)., pp. 2421–2424, Apr. 2009.

[14] K. Cohen and A. Leshem, “A time-varying opportunistic approach to
lifetime maximization of wireless sensor networks,” IEEE Trans. on

Signal Process., vol. 58, pp. 5307–5319, Oct. 2010.

[15] K. Cohen and Q. Zhao, “Active hypothesis testing for anomaly de-
tection,” IEEE Transactions on Information Theory, vol. 61, no. 3,
pp. 1432–1450, 2015.

[16] K. Cohen and Q. Zhao, “Asymptotically optimal anomaly detection via
sequential testing,” IEEE Transactions on Signal Processing, vol. 63,
no. 11, pp. 2929–2941, 2015.

[17] B. Huang, K. Cohen, and Q. Zhao, “Active anomaly detection in
heterogeneous processes,” IEEE Transactions on Information Theory,
pp. 1–1, 2018.

[18] C. Rago, P. Willett, and Y. Bar-Shalom, “Censoring sensors: A low
communication-rate scheme for distributed detection,” IEEE Trans. on

Aerospace and Electronic Sys., vol. 32, pp. 554–568, Apr. 1996.

[19] S. Appadwedula, V. V. Veeravalli, and D. L. Jones, “Decentralized
detection with censoring sensors,” IEEE Trans. on Signal Process.,
vol. 56, pp. 1362–1373, Apr. 2008.

[20] N. Patwari, A. O. Hero, and B. M. Sadler, “Hierarchical censoring
sensors for change detection,” Statistical Signal Process., 2003 IEEE

Workshop on, pp. 21–24, Sep. 2003.

[21] R. S. Blum and B. M. Sadler, “Energy efficient signal detection in sensor
networks using ordered transmissions,” IEEE Trans. on Signal Process.,
vol. 56, pp. 3229–3235, Jul. 2008.

[22] J. Zhang, Z. Chen, R. S. Blum, X. Lu, and W. Xu, “Ordering for reduced
transmission energy detection in sensor networks testing a shift in the
mean of a gaussian graphical model,” IEEE Transactions on Signal

Processing, vol. 65, no. 8, pp. 2178–2189, 2017.



14

[23] K. Cohen and A. Leshem, “Likelihood-ratio and channel based access
for energy-efficient detection in wireless sensor networks,” in Proc. of
the 6th IEEE Sensor Array and Multichannel Signal Process. Workshop

(SAM)., pp. 17–20, Oct. 2010.
[24] K. Cohen and A. Leshem, “Energy-efficient detection in wireless sensor

networks using likelihood ratio and channel state information,” IEEE
Journal on Selected Areas in Comm.,, vol. 29, pp. 1671–1683, Sep.
2011.

[25] P. Braca, S. Marano, and V. Matta, “Asymptotically consistent one-bit
detection in large sensor networks,” in Proc. European Signal Process.

Conf., pp. 1035–1039, Aug. 2011.
[26] P. Braca, S. Marano, and V. Matta, “Single-transmission distributed

detection via order statistics,” IEEE Transactions on Signal Processing,
vol. 60, pp. 2042–2048, Apr. 2012.

[27] R. Niu, P. K. Varshney, and Q. Cheng, “Distributed detection in a large
wireless sensor network,” Information Fusion, vol. 7, pp. 380–394, Dec.
2006.

[28] A. Sundaresan, P. K. Varshney, and N. S. V. Rao, “Copula-based fusion
of correlated decisions,” IEEE Transactions on Aerospace and Electronic

Systems, vol. 47, pp. 454–471, Jan. 2011.
[29] B. Chen, R. Jiang, T. Kasetkasem, and P. K. Varshney, “Channel aware

decision fusion in wireless sensor networks,” IEEE Transactions on

Signal Processing, vol. 52, pp. 3454–3458, Dec. 2004.
[30] B. Chen, L. Tong, and P. K. Varshney, “Channel-aware distributed de-

tection in wireless sensor networks,” IEEE Signal Processing Magazine,
vol. 23, pp. 16–26, Jul. 2006.

[31] M. Gastpar, “Uncoded transmission is exactly optimal for a simple
gaussian sensor network,” IEEE Transactions on Information Theory,
vol. 54, no. 11, pp. 5247–5251, 2008.

[32] B. Nazer and M. Gastpar, “Computation over multiple-access channels,”
IEEE Transactions on information theory, vol. 53, no. 10, pp. 3498–
3516, 2007.

[33] K. Cohen and A. Leshem, “Performance analysis of likelihood-based
multiple access for detection over fading channels,” IEEE Transactions
on Information Theory, vol. 59, no. 4, pp. 2471–2481, 2013.

[34] S. Marano, V. Matta, T. Lang, and P. Willett, “A likelihood-based
multiple access for estimation in sensor networks,” IEEE Trans. on

Signal Process., vol. 55, pp. 5155–5166, Nov. 2007.
[35] A. Anandkumar and L. Tong, “Type-based random access for distributed

detection over multiaccess fading channels,” IEEE Transactions on

Signal Processing, vol. 55, no. 10, pp. 5032–5043, 2007.
[36] F. Li, J. S. Evans, and S. Dey, “Decision fusion over noncoherent fading

multiaccess channels,” IEEE Transactions on Signal Processing, vol. 59,
no. 9, p. 4367, 2011.

[37] T. Wimalajeewa and P. K. Varshney, “Wireless compressive sensing
over fading channels with distributed sparse random projections,” IEEE

Transactions on Signal and Information Processing over Networks,
vol. 1, no. 1, pp. 33–44, 2015.

[38] I. Nevat, G. W. Peters, and I. B. Collings, “Distributed detection in
sensor networks over fading channels with multiple antennas at the
fusion centre,” IEEE transactions on signal processing, vol. 62, no. 3,
pp. 671–683, 2014.

[39] P. Zhang, I. Nevat, G. W. Peters, and L. Clavier, “Event detection in sen-
sor networks with non-linear amplifiers via mixture series expansion,”
IEEE Sensors Journal, vol. 16, no. 18, pp. 6939–6946, 2016.

[40] J. A. Maya, L. R. Vega, and C. G. Galarza, “Optimal resource allocation
for detection of a gaussian process using a mac in wsns,” IEEE

Transactions on Signal Processing, vol. 63, no. 8, pp. 2057–2069, 2015.
[41] J. A. Maya, C. G. Galarza, and L. R. Vega, “Exploiting spatial

correlation in energy constrained distributed detection,” arXiv preprint

arXiv:1509.04119, 2015.
[42] R. Heimann, A. Leshem, E. Zehavi, and A. J. Weiss, “Non-asymptotic

performance bounds of eigenvalue based detection of signals in non-
gaussian noise,” in IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pp. 2936–2940, 2016.
[43] M. Gastpar, P. L. Dragotti, and M. Vetterli, “The distributed karhunen–

loeve transform,” IEEE Transactions on Information Theory, vol. 52,
no. 12, pp. 5177–5196, 2006.

[44] H. I. Nurdin, R. R. Mazumdar, and A. Bagchi, “Reduced-dimension
linear transform coding of distributed correlated signals with incomplete
observations,” IEEE Transactions on Information Theory, vol. 55, no. 6,
pp. 2848–2858, 2009.

[45] A. Amar, A. Leshem, and M. Gastpar, “Recursive implementation of
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