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Abstract

Recent breakthroughs in machine learning especially artificial intelligence shift the paradigm of

wireless communication towards intelligence radios. One of their core operations is automatic modula-

tion recognition (AMR). Existing research focuses on coherent modulation schemes such as QAM, PSK

and FSK. The AMR of (non-coherent) space-time modulation remains an uncharted area despite its wide

deployment in modern multiple-input-multiple-output (MIMO) systems. The scheme using a so called

Grassmann constellation (comprising unitary matrices) enables rate-enhancement using multi-antennas

and blind detection. In this work, we propose an AMR approach for Grassmann constellation based on

data clustering, which differs from traditional AMR based on classification using a modulation database.

The approach allows algorithms for clustering on the Grassmann manifold (or the Grassmannian), such as

Grassmann K-means and depth-first search (DFS), originally developed for computer vision to be applied

to AMR. We further develop an analytical framework for studying and designing these algorithms in

the context of AMR. First, the maximum-likelihood (ML) Grassmann constellation detection is proved

to be equivalent to clustering on the Grassmannian. Thereby, a well-known machine-learning result

that was originally established only for the Euclidean space is rediscovered for the Grassmannian.

Next, despite a rich literature on algorithmic design, theoretical analysis of data clustering is largely

overlooked due to the lack of tractable techniques. We tackle the challenge by introducing probabilistic

metrics for measuring the inter-cluster separability and intra-cluster connectivity of received space-time

symbols and deriving them using tools from differential geometry and Grassmannian packing. The

results provide useful insights into the effects of various parameters ranging from the signal-to-noise

ratio to constellation size, facilitating algorithmic design.

Y. Du, G. Zhu, and K. Huang are with the Dept. of Electrical and Electronic Engineering and J. Zhang the Dept. of Computer
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I. INTRODUCTION

Recent breakthroughs in machine learning has motivated researchers to apply the technology

to the design of intelligent radios for automating communication systems so as to simplify their

architectures or improve their performance. For instance, statistical learning has been used to

merge channel estimation and data detection [1]–[3]. Moreover, it is also believed that radios

with artificial intelligence can solve the long-standing challenge of spectrum scarcity [4]. Recent

research trends in intelligent radios led to the revival of the classic areas of cognitive radios and

software defined radios (SDR) [5] focusing on leveraging machine learning to attain a higher

level of intelligence. In the areas of SDR or intelligent receivers, one important problem is

automatic modulation recognition (AMR), where a receiver blindly detects the modulation type

and order of the received signals. This problem is challenging due to many unknown parameters

at the receiver such as the signal power, carrier frequency-and-phase offsets, and timing as well

as channel hostility. In the last two decades, extensive research has been conducted on AMR for

linear and coherent modulation schemes (such as BPSK, QPSK, and QAM) and frequency-shift

keying [6], [7]. Interestingly, there exists little AMR technique for nonlinear and non-coherent

space-time modulation (or called Grassmann modulation) despite the extensive deployment in

multiple-input-multiple-output (MIMO) systems. Grassmann modulation has emerged to be a

promising solution for low-latency machine-type communication as it enables blind detection

without channel state information (CSI) and high data rates [8], [9]. This motivates the current

work on filling the void of the area by developing a novel AMR approach for Grassmann

modulation, which will find applications in next-generation multi-antenna intelligent radios.

A. Related Work and Motivation

1) Grassmann Modulation: Developed for MIMO systems, the modulation scheme features

a constellation consisting a set of subspace matrices embedded in the space-time signal space.

Mathematically, the matrices are points on a Grassmann manifold, giving the name Grassmann

constellation. The idea of Grassmann modulation was originally proposed in [8], [10] for achiev-

ing a linear growth of data rate with respect to the array sizes and the feature of blind symbol

detection without CSI. The feature results from the invariance of a Grassmann modulated symbol

(an orthonormal matrix) to MIMO channel rotation, which gives the technology an alternative

name of non-coherent MIMO. Extensive research in this area focuses on designing practical
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Grassmann constellations including Fourier based [10] and hierarchical designs [11] for efficient

constellation generation, differential modulation for coping with fast fading [8], [12], and error

probability minimization [13]. From the information-theoretic perspective, the capacity of a

MIMO channel with Grassmann modulation was studied in [14]. A key finding is that the

capacity maximizing constellation is a solution of subspace packing on the Grassmannian.

Recent years have seen the resurgence of research interests on developing Grassmann modula-

tion for next-generation wireless systems. The main reason is that its CSI-free feature makes it a

promising solution for tackling the key challenges of reducing CSI overhead [15] and latency as

faced by many next-generation technologies including massive MIMO using large-scale arrays

[16], full-duplex relaying [17], and ultra-fast short-packet machine type communications [9]. In

view of its applications in future systems, it is thus important to consider Grassmann modulation

in intelligent receiver design.

2) Automatic Modulation Recognition: The principle design approach adopted in existing

AMR algorithms is classification that maps the received signal to an element of a modulation

database combining different modulation types and orders [6]. The algorithms can be separated

into two groups based on two typical mapping criteria, namely likelihood function and feature

distance [7]. In the presence of additive white Gaussian noise (AWGN) and given a set of

signal samples, a likelihood based algorithm typically computes a likelihood function for each

modulation scheme in the database and then selects the most likely scheme used for modulating

the signal (see e.g., [18], [19]). Though operating in a similar way, a feature-based algorithm

instead computes the feature vector of a modulated signal based on its distribution cumulants

and then measures its vector distance to each modulation scheme (see e.g., [20]).

For feature-based AMR, the signal features derived from cumulants are design choices and

may not be optimal especially for channels more complex than the AWGN channels. This

motivates researchers to apply machine learning to train the modulation classifiers for improving

the AMR accuracy [21]–[23]. Specifically, in [21], a hierarchical AMR algorithm was proposed

that integrates genetic programming (GP) and the K-nearest-neighbour algorithm, both of which

are classic machine learning techniques. Furthermore, a deep neural network was applied in

[22] to AMR. For transmission over a MIMO channel, the received signal mixes a number of

spatially multiplexed symbols, which increases the difficulty of AMR. It has been proposed in

[23] that the challenge can be tackled using an artificial intelligent network.
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Interestingly, though Grassmann modulation has been extensively studied and implemented

in MIMO systems as discussed in the sequel, there exists no relevant AMR technique targeting

the scheme. One possible reason is that existing designs cannot be straightforwardly extended to

the Grassmann modulation due to its unique manifold structure. To be specific, existing AMR

algorithms differentiate modulation schemes essentially by exploiting the statistical properties

of a signal waveform in terms of phase, magnitude and frequency. This approach is suitable for

signal reception using a single antenna but is insufficient for MIMO transmission. For a MIMO

receiver, matrix based properties of array observations arise and it is important to exploit such

properties in AMR. In particular, Grassmann modulated symbols are orthonormal matrices that

are mathematically points on a Grassmannian embedded in the space-time signal space. How to

exploit the unique manifold structure of Grassmann modulation in AMR remains an unexplored

but important issue for its relevance to next-generation intelligent MIMO receivers.

From the perspective of intelligent radios, the classic AMR algorithms lack the desired

intelligence and flexibility. To be specific, most algorithms involve a search over a modula-

tion database comprising a set of combinations of modulation types and orders [6], [7]. It

is impractical to include all possible combinations in the database as the required computing

complexity is overwhelming. As the result, the recognition capability of a receiver is limited

by the modulation database, which is a drawback of the classic AMR approach. The rapid

advancement in unsupervised learning calls for the development of a modern intelligent AMR

approach without the need of pre-specifying modulation types and orders.

B. Contributions

In this work, we attempt to fill a void in the AMR area by investigating automatic recognition of

Grassmann modulation, referred to as Grassmann AMR. Specifically, the current work establishes

a novel approach of Grassmann AMR based on data clustering on the Grassmannian via bridging

the two areas of Grassmann AMR and unsupervised learning. Grassmann clustering algorithms

were originally developed for computer vision (see e.g., [24]) and this is the first attempt

on applying them to Grassmann AMR to the best of authors’ knowledge. In the presence of

channel noise, received Grassmann modulated symbols form clusters on the Grassmannian with

corresponding codewords as their centers. Thus, it is a natural approach to apply manifold

clustering techniques for AMR. Nevertheless, understanding its optimality and performance is
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challenging but important for guiding algorithmic design. This motivates the current work whose

main contributions are summarized as follows.

The first contribution of this work is to identify the connection between maximum-likelihood

(ML) detection of Grassmann modulation and data clustering on the Grassmannian. To this

end, we formulate the problem of ML constellation detection and consider the well-known

expectation-maximization (EM) algorithm for solving the problem. The algorithm iterates be-

tween two steps, called the E-step and the M-step, till it converges. Under the assumption

on high signal-to-noise ratio (SNR), it is proved that the E-step is equivalent to projecting a

block of received symbols onto the Grassmann manifold and clustering the projections using a

given initial or updated Grassmann constellation. On the other hand, it is further proved that

the M-step is equivalent to inferring the Grassmann constellation via computing the centroids

of the clusters of projected symbols. Combining the two equivalent steps is in fact the well-

known Grassmann K-means algorithm in computer vision [24]. The connection establishes the

optimality of the proposed low-complexity AMR approach. From the perspective of learning,

the result represents a significant finding that the well-known connection between ML detection

and data clustering originally known only for the linear Euclidean space [25] also holds on the

non-linear Grassmannian.

The second contribution is to analyze the performance of the proposed approach of Grassmann

constellation detection by data clustering. The developed framework not only yields theoretic

insights useful for designing Grassmann AMR, but also fills the void of the data-clustering area

that lacks tractable performance analysis [24], [25]. Specifically, we consider the K-means and

depth-first search (DFS) algorithms for constellation detection with and without prior knowledge

of constellation size, respectively. The performance of both algorithms depends on the separabil-

ity of clusters in the dataset (the set of received symbols) and furthermore that of DFS requires the

intra-cluster connectivity. To measure these dataset characteristics, suitable probabilistic metrics

are defined and analyzed by developing novel techniques such as “Grassmannian bin packing”

(see Fig. 3) for analyzing intra-cluster connectivity. These techniques leverage results from

differential geometry and subspace packing [26]. The derived results quantify the effects of

various parameters on the detection performance, such as the SNR, constellation and dataset

sizes, space-time dimension, and the DFS threshold.

The last contribution of the work addresses the issue of how to embed a symbol-and-bit
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mapping in a Grassmann constellation so as to enable a receiver to detect bits following the

blind symbol-and-constellation detection. A simple method is proposed that assigns ordered

bit sequences to constellation codewords following the order of their subspace distances to a

reference matrix, which is designed to be a truncated Fourier matrix.

II. MATHEMATICAL PRELIMINARIES

To facilitate the subsequent exposition, several basic concepts and definitions related to Grass-

mann manifolds are introduced in this section.

A. Stiefel and Grassmann Manifolds

The (n,m) Stiefel manifold is the set of all n-by-m orthonormal matrices for 1 ≤ m ≤ n,

denoted by Tn,m. Mathematically, the Stiefel manifold can be defined as follows:

Tn,m = {Ψ ∈ Cn×m : ΨHΨ = Im}. (1)

On the other hand, the (n,m) Grassmann manifold is a set of all m-dimensional subspaces in

Cn, denoted by Gn,m. The manifold can be seen as the quotient space of Tn,m. To be specific,

a point on the Grassmann manifold corresponds to a class of n-by-m orthonormal matrices

on the Stiefel manifold that span the same column subspace defined by the point. Choose an

arbitrary matrix Υ from this class, called a generator. Then the class, denoted as [Υ], can be

mathematically written as

[Υ] = {ΥQ : Q ∈ Om}. (2)

where Om denotes the group of m×m unitary matrices. The said relation between the Grass-

mannian Gn,m and the Stiefel Tn,m is typically represented by Gn,m = Tn,m/Om. Based on this

relation and the definition of the class [Υ] in (2), a Grassmann point mapped to this class can

be then represented by the generator Υ for ease of notation.

B. Tangent and Normal Spaces of Grassmann Manifold

To perform differential calculus on a manifold, one needs to specify its tangent and normal

spaces. As illustrated in Fig. 1, for each point Υ on the Grassmann manifold, there exists

a tangent space, referred to the hyperplane tangent to the manifold at Υ and having the same

dimensions as that of the manifold. For any vector ∆ in the tangent space, it satisfies ΥH∆ = 0.

A normal space with respect to a given tangent space is defined to be the orthogonal complement

of the latter. For each vector N in a normal space, it can be represented as N = ΥS, where Υ

is the point of tangency on the Grassmann manifold and S is some m-by-m symmetric matrix.



7

Origin⌥(0)

A Geodesic ⌥(t) determined
by tangent vector T

Tangent plane

⌥(1) = exp⌥(0)(T)

T = log⌥(0)(⌥(1))
Normal space

Figure 1. A Grassmann manifold and related subspaces and mappings.

C. Geodesics on Grassmann Manifold

Roughly speaking, a geodesic is the shortest curve linking two points on a Grassmannian as

illustrated in Fig. 1. By representing the geodesic as a function Υ(t) with |t| ≤ 1, its two end

points are Υ(0) and Υ(1). An important property of geodesics on a Grassmannian is given as

follows.

Lemma 1 ( [27]). For any geodesic Υ(t) on a Grassmannian, it must satisfy the following

equation:

Ϋ + Υ(t)(Υ̇
H

Υ̇) = 0, (3)

where Υ̇ = dΥ(t)/dt is the velocity vector and Ϋ = d2Υ(t)/dt2 is the acceleration vector. The

vectors Υ̇ and Ϋ lie in the tangent and normal space of the manifold, respectively.

D. Exponential and Logarithm Mappings

Definition 1 (Exponential Mapping [27]). As illustrated in Fig. 1, The exponential mapping,

denoted by expΥ(0)(tT) = Υ(t) with |t| ≤ 1, is a one-to-one mapping from a velocity vector

tT = tΥ̇(0) in the tangent plane with the tangency at the point Υ(0) to a point Υ(t) on the

Grassmannian. Mathematically, by denoting Υ(0) as Υ0 and decomposing T by singular-value

decomposition (SVD) as T = UΣVH , the exponential mapping can be computed as

expΥ0
(T) = (Υ0V U)


cos Σ

sin Σ


VH . (4)

Definition 2 (Logarithm Mapping [27]). The logarithm mapping, denoted as logΥ(0) Υ(t) = tT

with |t| ≤ 1, is the inverse exponential mapping and maps a point on the Grassmann manifold
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back to the corresponding velocity vector. Mathematically, given two points A and B on the

Grassmann manifold, the logarithm mapping that generates a velocity vector T pointing from

A to B can be computed as

logA B = T = UΣVH , (5)

where the SVD components U, V and Σ can be obtained via the cosine-sine decomposition:

V(cos Σ)VH

U(sin Σ)VH


 =


 AHB

(I−AAH)B


 . (6)

III. SYSTEM MODEL

Consider a point-to-point MIMO system comprising a pair of multi-antenna transmitter and

receiver. The numbers of transmit and receive antennas are denoted as Nt and Nr, respectively.

It is assumed that Nr is larger than Nt so that the receiver can observe the space-time symbols.

Time is slotted. Each space-time symbol occupies T slots. The block-fading channel model

is adopted, where the channel coefficients remain unchanged within a symbol duration and

change independently over different durations. The Nt×Nr MIMO channel matrix H comprises

independent and identically distributed (i.i.d.) CN (0, 1) coefficients. Consider the i-th symbol

duration in a block of N space-time symbols. Let X(i) denote the transmitted space-time symbol

that is a T × Nt matrix, H(i) the channel matrix, and Y(i) the T × Nr received symbol. For

ease of notation, following [10], [11], the baseband input-output relationship of the system can

be written as

Y(i) = X(i)H(i) +

√
Nt

ρT
W(i), i = 1, 2, · · · , N, (7)

where ρ represents the transmit SNR and W(i) ∈ CT×Nr the AWGN comprising i.i.d. CN (0, 1)

elements.

Assumption 1 (Receiver Knowledge). The receiver has no knowledge of the Grassmann constel-

lation used by the transmitter. However, the receiver has information on the size of the transmit

array, Nt, the symbol duration T and symbol boundaries so as to receive the symbol block

{Y(i)} in (7).1

1Under the assumption of Nr ≥ Nt, Nt can be estimated by observing the ranks of received data symbols. For receiver

synchronization, the symbol duration and boundaries can be estimated using standard methods in the literature (see e.g., [6]).
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Transmitted symbols {X(i)} are modulated using a Grassmann constellation codebook, denoted

as F . On the other hand, the codebook detected by the receiver is denoted as F̂ . To combat fading

and enable non-coherent detection without CSI, the T ×Nt modulated symbols are designed to

be “tall” matrices with T ≥ Nt. Consequently, information is embedded in the column space of

each symbol. It is important to note that given tall symbol matrices, propagation over the MIMO

channel changes only the symbol’s row space but not its column space. Therefore, the symbols

{X(i)} can be detected at the receiver by computing the column spaces of received symbols

{Y(i)} without requiring CSI [8], [10]. For consistency in matrix notation, let the Grassmann

codebook F be a set of T × Nt tall orthonormal matrices, called codewords: F = {µ`} with

µ` ∈ OT×Nt , where O represents the group of orthonormal matrices.

From the perspective of communication performance, it is well known that it is desirable to

maximize the pairwise distances between elements of the constellation F . In other words, the

optimal constellation design is related to the following problem of subspace packing [28], [29]:

(Subspace Packing) max
F⊂G

min
`6=n

d(µ`,µn), (8)

where d(·, ·) is a subspace distance metric. Among many others, two commonly used metrics are

considered in this paper, namely geodesic distance, denoted as dg(·, ·) and Procrustes distance,

denoted as dp(·, ·). Given two points Υ and Υ′ on the Grassmannian, dg(Υ,Υ′) measures the

length of the geodesic and dp(Υ,Υ′) the Euclidean distance between them:

dg(Υ,Υ′) = ‖ logΥ(Υ′) ‖F , (9)

d2
p(Υ,Υ′) = Nt − tr

{
ΥΥHΥ′(Υ′)H

}
, (10)

where logΥ(Υ′) is the logarithm mapping defined in (5) and Nt denotes the dimension of the

Grassmannian. Finding the optimal constellation by subspace packing is in general intractable

and typically relies on numerical computation [28]. However, the computed constellation is not

unique, which further motivates the assumption of unknown constellation at the receiver and the

need of AMR.

IV. PROBLEM FORMULATION

In this section, we first formulate the problem of ML symbol detection and then build on it

to formulate the problem of ML Grassmann constellation detection.
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A. Maximum-Likelihood Symbol Detection

Consider the communication model in (7) and the assumed Gaussian distributions of channel

and noise. Given the transmitted symbols {X(i)} and no CSI, the received symbols {Y(i)}
are i.i.d. complex Gaussian random matrices whose conditional distribution is Y(i)|X(i) ∼

CN
(
0,X(i)(X(i))H + Nt

ρT
IT

)
. Specifically, the distribution is given by [11]

p(Y(i)|X(i)) =
exp

(
−ρT
Nt

tr
(

(Y(i))H(IT − 1
1+Nt/ρT

X(i)(X(i))H)Y(i)
))

(πNt/ρT )TNt(1 + ρT/Nt)NtNr
. (11)

For the conventional case where the constellation codebook F∗ is known at receiver, the problem

of ML symbol detection can be mathematically formulated as (see e.g., [11])

X̂
(i)

= max
X(i)∈F∗

p(Y(i)|X(i)), ∀i. (12)

Based on (11), an equivalent problem is

X̂
(i)

= arg max
X(i)∈F∗

tr
{

(Y(i))HX(i)(X(i))HY(i)
}
, ∀i. (13)

B. Maximum-Likelihood Constellation Detection

For the current case that the ground-true constellation F∗ is unknown a priori, we need to

first infer F∗ from the block of received symbols Y = {Y(i)}Ni=1. To simplify exposition, even

though F∗ is unknown, its size, denoted as L, is assumed to be known at the receiver. The

issue of unknown constellation size at the receiver is addressed in Sections VI-B. Then the ML

problem formulation is

F̂ = arg max
F

log p(Y|F) = arg max
F

N∑

i=1

log p(Y(i)|F). (14)

The likelihood function p(Y(i)|F) follows the mixture of Gaussian (MoG) model given by

p(Y(i)|F)=
∑

`

p(Y(i)|X(i) = µ`,F)p(X(i) = µ`|F), ∀i. (15)

To facilitate subsequent analysis, we introduce a new latent variable Z = [z1, . . . , zN ] where zi =

[zi,1, zi,2, · · · , zi,L]T is a L-dimensional binary random vector indicating the index of codeword

modulating the i-th transmitted symbol X(i). For instance, if {X(i) = µ`}, we have zi,` = 1

with the remaining elements in zi being zeros. Due to the equivalence between the two events

{zi,` = 1} and {X(i) = µ`}, the MoG model in (15) can be rewritten as

p(Y(i)|F) =
∑

`

p(Y(i)|zi,` = 1,F)p(zi,` = 1|F), ∀i. (16)
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By substituting (16) into (14), the problem of constellation detection is rewritten as

F̂ = arg max
F

N∑

i=1

log
∑

`

p(Y(i)|zi,` = 1,F)p(zi,` = 1|F). (17)

Directly solving this optimization problem is intractable due to the non-convexity of the objective

function arising from the existence of the latent random variable (r.v.) Z (or equivalently the

symbols {X(i)}). A commonly used approach for solving such a non-convex ML problem with

latent variables is the EM algorithm as discussed in the following section.

V. GRASSMANN CONSTELLATION DETECTION: FROM EM TO DATA CLUSTERING

In this section, we consider the application of the well-known EM algorithm for solving the

problem of ML constellation detection formulated in the preceding section. The main task of

this section is to prove the equivalence between the EM algorithm and the proposed detection

approach of data clustering on the Grassmannian.

A. Grassmann Constellation Detection by EM

1) Implementation of EM: Consider the problem of ML estimation of the codebook F based

on the observation Y and given a latent variable Z. The EM algorithm for solving the problem

specified in (17) iterates between the two main steps [25]:

(E−step) : Evaluate p(Z|Y, F̂) =
N∏

i=1

L∏

`=1

r
zi,`
i,` , (18)

(M−step) : Solve F̂ = arg max
F

EZ[log p(Y,Z|F)], (19)

where we define ri,` = p(zi,` = 1|Y(i), F̂). For the E-step in (18), the posterior distribution of

the latent variable Z is calculated using the current estimation of the codebook F̂ , where the

calculation involves evaluating the set of variables {ri,`}. For the M-step in (19), the codebook

F̂ is updated by maximizing the expectation of the complete-data log-likelihood, which can be

evaluated using the posterior distribution updated in the E-step as follows:

EZ[log p(Y,Z|F)] =
∑

Z

p(Z|Y,F) log p(Y,Z|F) (20)

=
∑

Z

p(Z|Y,F) log (p(Y|Z,F)p(Z)) . (21)

The specific expressions of the E-step and M-step can be derived as follows. For ease of

notation, denote π` = p(zi,` = 1). It follows that p(Z) =
∏N

i=1

∏L
`=1 π

zi,`
` and p(Y|Z,F) =
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∏N
i=1

∏L
`=1 p(Y

(i)|X(i) = µ`,F)zi,` . Substituting them into (21) and following the standard

procedure in [25, Section 9.3], the E-step variables {ri,`} and EZ[log p(Y,Z|F)] for the M-

step are given by:

ri,` =
π`p(Y

(i)|X(i) = µ̂`, F̂)∑L
j=1 πjp(Y

(i)|X(i) = µ̂j, F̂)
, (22)

EZ[log p(Y,Z|F)] =
N∑

i=1

L∑

`=1

ri,`(log π` + log p(Y(i)|X(i) = µ`,F)). (23)

Note that the probability ri,` can be interpreted as a soft assignment of the i-th received symbol

Y(i) to the `-th codeword µ̂`. Moreover, given the estimated {ri,`} and using (11), one can show

that maximizing (23) in the M-step is equivalent to maximizing
∑N

i=1

∑L
`=1 ri,`tr

{
(Y(i))Hµ`µ

H
` Y(i)

}
.

Thereby, the EM algorithm for Grassmann constellation detection can be implemented as:

(E−step) : Evaluate {ri,`} using (22). (24)

(M−step) : Solve F̂ = arg max
F

N∑

i=1

L∑

`=1

ri,`tr
{

(Y(i))Hµ`µ
H
` Y(i)

}
. (25)

2) Difficulties of EM Implementation: The direct application of the EM algorithm faces two

main difficulties described as follows.

• The optimization problem in the M-step in (25) is non-convex and thus difficult to solve.

Specifically, the non-convexity is due to the maximimization of a convex object function un-

der the constraints that the codewords (variables) {µ`} are subspace matrices or equivalently

points on the Grassmannian.

• The convergence for implementing the EM algorithm based on the MoG model in (15) is

potentially slow as the model involves Gaussian components with overlapping means (that

are all zeros). As proved in [30], the convergence rate of the EM algorithm on a MoG

model is faster if the Gaussian components are better separated.

To overcome these difficulties, we prove in the sequel the equivalence of the EM algorithm with

the Grassmann K-means algorithm, a widely used clustering algorithm. The latter algorithm has

a faster convergence rate and lower complexity due to the well-separated symbol clusters “seen”

on the Grassmannian as revealed in Lemma 7 in the sequel and the discussion therein.
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B. Asymptotic Equivalence between EM and Data Clustering

In this sub-section, we prove that the EM algorithm for Grassmann constellation detection as

derived in the preceding section is asymptotic equivalent to data clustering on the Grassmannian

when the transmit SNR is high and the dataset size N is sufficiently large. The result allows the

replacement of the complex EM algorithm with the low-complexity clustering algorithms from

machine learning.

1) From E-step to symbol detection: Consider the EM E-step in (24). First, substituting the

conditional distribution of the received symbol Y(i) in (11) into the soft assignments {ri,`} in

(22) leads to the following result.

Lemma 2. (From Soft to Hard Assignments). For a high transmit SNR (ρ → ∞), the soft

assignments of received symbols, {ri,`}, become hard assignments taking only binary values:

ri,` →





1, ` = arg max
j

tr
{

(Y(i))Hµ̂j(µ̂j)
HY(i)

}
;

0, otherwise,
(26)

where Y(i) is the i-th received symbol and µ̂j the j-th codeword in the estimated codebook F̂ .

Next, we can show that the hard assignments of symbols to codewords in Lemma 2 are

approximately based on the criterion of shortest subspace distance. To this end, define the i-

th received Grassmann symbol Υ(i) as the dominant Nt dimensions of the left eigen-space of

the received symbol Y(i), which is its only SVD component containing information on the

transmitted symbol. Specifically, consider the following SVD of Y(i)

Y(i) =
[
U

(i)
Y U

(i)
W

]

Σ

(i)
Y 0

0 Σ
(i)
W




(V

(i)
Y )H

(V
(i)
W )H


 , (27)

where the diagonal elements of Σ
(i)
Y and Σ

(i)
W are the q = min(Nr, T ) singular-values σ1, σ2, · · · , σq

arranged in the descending order, and U
(i)
Y and (V

(i)
Y )H are the dominant Nt dimensional left and

right eigen-subspace, respectively. Then the Grassmann symbol (a tall matrix) is Υ(i) = U
(i)
Y .

Lemma 3. The hard assignment criteria in Lemma 2 can be bounded as follows:
(
σ

(i)
Nt

)2 [
Nt − d2

p

(
Υ(i), µ̂j

)]
≤ tr

{
(Y(i))Hµ̂j(µ̂j)

HY(i)
}

(28)

≤
(
σ

(i)
1

)2 [
Nt − d2

p

(
Υ(i), µ̂j

)]
, (29)
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where σ
(i)
k denotes the k-th singular value of the received symbol Y(i), and dp(·, ·) is the

Procrustes distance defined in (10).

The proof is presented in Appendix A. Approximating the hard assignment criteria in Lemma

2 by either the lower or the upper bound in Lemma 3 leads to the following hard-assignment

based on the Procrustes distance:

ri,` →





1, ` = arg min
j
d2
p

(
Υ(i), µ̂j

)
;

0, otherwise.
(30)

It follows that the E-step of the EM algorithm in (24) can be approximated by the computation

of the assignment variables {ri,`} using (30). As a result, the E-step is equivalent to clustering

the received symbols using the estimated codewords {µ̂j} and the criteria of shortest Procrustes

distance. Note that in the high SNR regime, one can infer from the system equation in (7) that

the singular values of Y(i) are approximately equal to those of the channel matrix H(i). Thus,

when the channel is well conditioned
(
σ

(i)
Nt
≈ σ

(i)
1

)
, the approximation of the E-step by (30) is

accurate.

2) From M-step to codeword optimization: Consider the EM M-step in (25). For a sufficiently

high SNR and a sufficiently large dataset size, it is proved in the sequel that the M-step is

equivalent to codeword optimization. Specifically, each estimated codeword in the constellation

codebook is updated by computing the Grassmann centroid, which has the minimum sum

subspace distances to the cluster of estimated Grassmann symbols associated with the codeword.

Consider a particular cluster of received symbols detected as the `-th codeword in the E-step.

Their indices can be grouped in the set C` = {i | ri,` = 1} with the assignments {ri,`} given in

Lemma 2. The number of symbols in C` is denoted as N` = |C`|. Consider the M-step in (25).

Using the definition of the index set C`, the M-step can be rewritten as

F̂ = arg max
F

L∑

`=1

∑

i∈C`

tr
{

(Y(i))Hµ`µ
H
` Y(i)

}
. (31)

This is equivalent to optimizing the codewords as follows:

µ̂` = arg max
µ`∈G

∑

i∈C`

tr
{

(Y(i))Hµ`µ
H
` Y(i)

}
, ∀`. (32)

Next, an asymptotic form of the above codeword optimization is obtained for the case of large

dataset size. To this end, define the minimum (pairwise) distance of the constellation codebook
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F as

dmin = min
µ,µ′∈F
µ 6=µ′

dp(µ,µ
′). (33)

Lemma 4. If the minimum distance of the codebook F is strictly positive and all codewords

are transmitted with equal probabilities, as the symbol dataset size N →∞, the symbol cluster

size N` →∞ for all `.

The proof is presented in Appendix B. Using the result and applying the law of large numbers,

we can obtain the following important asymptotic form of the summation term in (32).

Lemma 5. As the dataset size grows (N →∞),
∑

i∈C`

tr
{

(Y(i))Hµ`µ
H
` Y(i)

}
−→

∑

i∈C`

[
Nt − d2

p

(
Υ(i),µ`

)]
, ∀`. (34)

The proof is provided in Appendix C. Substituting the result in Lemma 5 into (32) yields the

following asymptotic form of the M-step in (25) in the case of high SNR and large dataset size:

µ̂` = arg min
µ`∈G

∑

i∈C`

d2
p

(
Υ(i),µ`

)
, ∀`. (35)

In this form, the M-step updates each codeword by computing the Grassmann centroid of the

cluster of Grassmann symbols associated with the codeword in the E-step in (24).

3) Asymptotic EM Algorithm: Combining the results in (30) and (35), in the case of a high

SNR and a large dataset size, the asymptotic EM algorithm for detecting the Grassmann codebook

F iterates between the following two steps:

(Symbol detection) X̂(i) = arg min
µ̂`∈F̂

d2
p

(
Υ(i), µ̂`

)
, ∀i, (36)

(Codeword optimization) µ̂` = arg min
µ`∈G

∑

i∈C`

d2
p(Υ

(i),µ`), ∀`. (37)

This is exactly the well-known Grassmann K-means algorithm, thereby relating the ML constel-

lation detection to data clustering on the Grassmannian.

VI. GRASSMANN CONSTELLATION DETECTION BY DATA CLUSTERING

In the preceding section, the ML constellation detection is shown to be asymptotically equiva-

lent to Grassmann data clustering under a high SNR. In this section, building on this connection,

several algorithms for Grassmann data clustering are briefly discussed and applied to constellation
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Algorithm 1 K-means Algorithm for Grassmann Constellation and Symbol Detection
Input: A block of Grassmann symbols {Υ(i)}Ni=1 and the constellation size L.

Output: The estimated codewords {µ̂`} of the Grassmann constellation F̂ .

Initialization: Randomly choose L symbols from {Υ(i)} as the initial codewords.

Iterate

• Step 1 (Symbol Detection): Separate the symbols into L clusters each is associated with

a single codeword. To this end, assign each Grassmann symbol, say Υ(i), to the codeword

with the shortest geodesic distance, namely X̂(i) = arg min
µ̂`∈F̂

d2
g(Υ

(i), µ̂`).

• Step 2 (Codeword Optimization): For each symbol cluster, update the associated codeword

as the sample Karcher mean of the cluster that is computed using Algorithm 2.

Until Convergence

detection. Furthermore, it is even possible to detect a Grassmann constellation without the

knowledge of the constellation size, which is required by the previously considered EM algorithm

for ML detection.

A. Data Clustering with a Known Constellation Size

Consider the case that the constellation size, L = |F|, is known at the receiver. As derived

in the preceding section, the Grassmann K-means algorithm for constellation detection iterates

between two steps: 1) symbol detection in (36) and 2) codeword optimization in (37) until

convergence. An efficient implementation of the algorithm is proposed in [24] and presented in

Algorithm 1 that replaces the current Procrustes distance with the geodesic distance as defined

in (9). This allows the step of codeword optimization in (37) to be efficiently solved using the

following algorithm of sample Karcher mean.

Considering a cluster of Grassmann symbols, say {i ∈ C`}, the sample Karcher mean, denoted

as µ̂`, can be defined as follows [31]:

µ̂` = arg min
µ`∈G

1

N`

∑

i∈C`

d2
g

(
µ`,Υ

(i)
)
. (38)

One can observe that the definition is equivalent to the derived codeword-optimization step in

(37) except for replacing the Procrustes distance with the geodesic distance. The algorithm of

sample Karcher mean as presented in Algorithm 2 solves the optimization problem in (38) by

gradient descend on the Grassmannian [24], [32]. The key idea of the algorithm is computing
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Algorithm 2 Algorithm of Sample Karcher Mean for Codeword Optimization
Input: A block of Grassmann symbols {Υ(i)}Mi=1.

Output: The Karcher mean of the cluster, denoted as µ∗.

Initialization: Set µ∗ as a randomly selected point from {Υ(i)}.
Iterate

• Step 1: Project the points in {Υ(i)} onto the tangent space with µ0 = µ∗ as the point of

tangency by applying the logarithm mapping in (5), i.e., T(i) = logµ0
(Υ(i)).

• Step 2: Calculate the mean direction T̄ in the tangent space by averaging: T̄ = 1
M

∑M
i=1 T(i).

• Step 3: Update the Karcher mean µ∗ by moving it in the direction of T̄ via the exponential

mapping in (4): µ∗ = expµ0
(τT̄), where the step size τ is typically set as 0.5.

Until Convergence.

the descend direction on the Grassmannian in a tangent Euclidean space exploiting exponential

and logarithm mappings between the two spaces [see (4) and (5)]. Last, it is worth mentioning

that besides the Karcher mean, there exist other mean metrics such as Procrustes mean and

related optimization algorithms [33]. As observed from simulation, the choices of the subspace

distance metric (e.g., geodesic versus Procrustes distances) and mean metrics of a cluster of

Grassmann symbols (e.g., Karcher versus Procrustes means) seem to have an insignificant effect

on the performance of Grassmann constellation detection by data clustering. For this reason, the

specific metric in a particular part of analysis is selected for tractability without affecting the

resultant general insights.

B. Data Clustering with a Unknown Constellation Size

Consider the case that the constellation size, L = |F|, is unknown at the receiver. Without

the knowledge, the K-means algorithm discussed in the last sub-section cannot be applied since

it requires L as the input. Specifically, the algorithm relies on randomly choosing L Grassmann

symbols as the centroids to generate L clusters. Alternatively, a standard algorithm for connected-

component identification such as DFS [34] can be applied to recognizing Grassmann symbol

clusters by examining the pair-wise subspace distance against a pre-specified threshold denoted

as γ0. The main procedure of the DFS algorithm is summarized in Algorithm 3. Note that a

single calling of the DFS algorithm Algorithm outputs only one recognized cluster. As a result,

repeatedly implementation of DFS on the remaining unlabelled symbols is needed for resolving
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Algorithm 3 DFS-Based Algorithm for Grassmann Symbol Clustering
Input: The block of Grassmann symbols {Υ(i)}Ni=1.

Output: All {Υ(i)| Υ(i) 6= Υ} reachable from Υ labeled as discovered.

Procedure DFS(M,Υ):

• Label Υ as discovered.

• For all {Υ′} in an adjacent set defined as AΥ =
{
Υ(i)| dp

(
Υ(i),Υ

)
≤ γ0

}
do

• If Υ
′ is not labeled as discovered then recursively call DFS(M,Υ

′).

all clusters.

Upon the completion of the DFS algorithm, the constellation size and the estimated codewords

can be computed as the number of clusters and their sample Karcher means using (38). Then

the received symbols are detected as their associated codewords.

VII. PERFORMANCE OF GRASSMANN CONSTELLATION DETECTION

Due to the difficulty in tractable analysis, there exists few theoretic result on the performance

of data clustering while prior work focuses on algorithmic design (see e.g., [24], [34]). In this

section, we make an attempt to tackle the challenge by developing a framework for analyzing the

performance of data clustering on the Grassmannian in the context of Grassmann constellation

detection. In particular, by deriving the conditions of data forming well separable clusters, we

can quantify the effects of various system and algorithmic parameters, ranging from the SNR to

the connectivity threshold in the DFS algorithm, on the detection performance.

A. Approximate Signal Distribution

A key step in the tractable analysis of Grassmann constellation detection is to approximate

the distribution of received signals. Let span(A) denote a basis spanning the column space of

a matrix A. Then it follows from (27) that in the presence of noise, the received Grassmann

symbol Υ(i) is

Υ(i) = span


X(i) +

√
Nt

ρT
W(i)




λ−1
1 · · · 0
... . . . ...

0 · · · λ−1
Nt





 , (39)

where X(i) is the transmitted (Grassmann) symbol and W(i) an i.i.d. Gaussian matrix representing

noise. The distribution of the random subspace distance of Υ(i) from the centroid X(i) determines
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Figure 2. Signal distribution approximation.

the size of received signal cluster centered at X(i). It is difficult to characterize the distribution

due to the eclipse distribution of the noise process after scaling by the inverse channel singular

values {λ−1
1 , · · · , λ−1

Nt
}. To overcome the difficulty, replacing all singular values in (39) with the

expectation of a typical one, denoted as λ̄, yields a random orthonormal matrix Υ̃(i) defined as:

Υ̃(i) = span

(
X(i) +

1

λ̄

√
Nt

ρT
W(i)

)
, (40)

which results from X(i) perturbed by isotropic Gaussian noise. Then the distribution of the

distance dp
(
Υ(i),X(i)

)
is approximated by that of dp

(
Υ̃(i),X(i)

)
:

(Approximate distance distribution) dp
(
Υ(i),X(i)

) d≈ dp

(
Υ̃(i),X(i)

)
, (41)

where
d≈ represents approximation in distribution.

Remark 1. (Accurate distance-distribution approximation). The approximation in (41) is accurate

in the case that the transmit antennas are far outnumbered by receive ones, i.e., Nr � Nt,

and the resultant large spatial diversity gain makes the channel matrix well conditioned with

λ1 ≈ λ2 · · · ≈ λNr . Furthermore, empirical results with typical setting Nt = 2, Nr = 10 is

provided in Fig. 2 to further support the statement.

For convenience, given a codeword µ`, denote dp
(
Υ(i),µ`

)
and dp

(
Υ̃(i),µ`

)
as d(i)

` and d̃(i)
` ,

respectively. Unlike d(i)
` , the distribution of d̃(i)

` is independent of the direction from µ` to Υ̃(i)

due to the isotropicity of noise in (40). As a result, the distribution of d̃(i)
` , which approximates

that of the desired r.v. d(i)
` , can be characterized mathematically. To this end, a useful result is

provided.
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Lemma 6 ( [33]). Let Υ = span(µ + A) with µ ∈ OM×N and A an M × N matrix having

i.i.d. CN (0, σ2) elements. Then given µ and as σ2 → 0, the distance dp(Υ,µ) has the following

distribution:

[dp(Υ,µ)]2 ∼ σ2X 2
D, (42)

where D = 2N(M −N) and X 2
D represents a Chi-squared r.v. with D degrees of freedom.

The distance d(i)
` defined earlier represents the random deviation of a received symbol from the

corresponding transmitted symbol. Using Lemma 6, its distribution is characterized as follows.

Lemma 7. Consider an arbitrary Grassmann codeword µ` and the approximation in (41). In the

high-SNR regime (ρ→∞), d(i)
`

d≈ d̃
(i)
` with the distribution of d̃(i)

` given as

Pr
(
d̃

(i)
` ≥ r

)
=

1

Γ(D
2

)
Γ

(
D

2
,
ρT λ̄2r2

2Nt

)
, ∀i ∈ C` (43)

=

(
ρT λ̄2r2

2Nt

)D
2
−1

Γ(D
2

)
exp

(
−ρT λ̄

2r2

2Nt

)(
1 + o

(
1

ρ

))
. (44)

with r ≥ 0 and the upper incomplete Gamma function Γ(D, x) =
∫∞
x
tD−1e−tdt.

One can observe from the result that Pr(d
(i)
` ≥ r) decays exponentially as the SNR ρ grows.

This suggests that at a high SNR, received symbols tend to cluster around their corresponding

transmitted codewords and the clusters shrink rapidly as the SNR grows. This makes them

well separated, facilitating constellation detection using a clustering algorithm. This insight

is rigorously studied in the following sub-sections building on the approximation in (41) and

distance distribution in Lemma 7.

B. Constellation Detection with a Known Size

Considering the case that the receiver has prior knowledge of the constellation size L such

that the the K-means algorithm in Algorithm 1 can be applied to constellation detection. For

the algorithm to be effective, the received symbols should form well separated clusters on the

Grassmannian. In this section, the conditions for forming clusters are derived and then applied

to study the effects of system parameters on the algorithmic performance.

First, a metric, called separability probability, is defined to measure the level of clustering of

the received symbols. To begin with, using the codewords {µ`} in F as centroids and applying
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the nearest-neighbour rule, the Grassmannian GNt,T can be partitioned into L Voronoi cells. The

cell with the centroid µ` is denoted as V(µ`) and defined as

V(µ`) = {Υ ∈ GNt,T | dp(Υ,µ`) < dp(Υ,µm) ∀ m 6= `} . (45)

Intuitively, the received symbol clusters are separable if each of them is contained mostly within

the correct Voronoi cell, namely the one having the corresponding transmitted codeword as the

centroid. Then an effective initiation of the K-mean algorithm (see Algorithm 1), namely the L

initial centroids are all within different Voronoi cells, can lead to convergence to their centroids

or equivalently the correct detection of the constellation. Inspired by this fact, we define the

separability probability as the probability that a received Grassmann symbol lies in the correct

Voronoi cell. Then a larger separability probability corresponds to a higher level of separability

of the received symbol clusters and hence better performance of constellation detection, and vice

versa. The mathematical definition of the metric is given below.

Definition 3. (K-means Separability Probability). Let X denote a typical transmitted symbol and

Υ the corresponding received symbol. The separability probability, denoted as psep, is defined

as

psep =
1

L

L∑

`=1

Pr (Υ ∈ V(µ`) | X = µ`) . (46)

Though direct analysis of psep is difficult, a tractable lower bound can be obtained as follows.

For the codebook F , with the minimum codeword pairwise distance dmin defined in (33). The

optimal codebook design by packing in (8) attempts to maximize dmin. It is well known in the

literature of Grassmannian packing that dmin can be bounded as (see e.g., [35])

d2
min ≥ 4Nt

(
1

L

) 1
TNt

. (47)

Given dmin, a sufficient condition for a cluster of received symbols, say those with the indices

C`, originating from the same codeword, say µ`, to be contained within the correct Voronoi cell

is:

max
i∈C`

dp(Υ
(i),µ`) ≤

dmin

2
.

Then jointly considering the sufficient conditions for all clusters of symbols leads to

psep ≥ Pr

(
L⋂

`=1

max
i∈C`

dp(Υ
(i),µ`) ≤

dmin

2

)
. (48)
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Combining this result and that in Lemma 7 gives the following main result of the sub-section.

Theorem 1 (K-means Separability Probability). Consider Grassmann constellation detection

using the K-means algorithm. In the high SNR regime (ρ → ∞), the separability probability

satisfies

psep ≥
[

1

Γ(D
2

)
γ

(
D

2
,
ρT λ̄2d2

min

8Nt

)]N
(49)

= 1−Ne−
ρT λ̄2d2min

8Nt Gm(ρ) +O(e−2ρ), ρ→∞, (50)

where Gm(ρ) is a polynomial function of ρ defined as Gm(ρ) =
∑D

2
−1

m=0
(T λ̄2d2

min)m

m!(8Nt)m
ρm and γ

denotes the lower incomplete Gamma function defined as γ(D, x) =
∫ x

0
tD−1e−tdt.

By measuring the performance of constellation detection by the separability probability, the

effects of two parameters, the SNR and dataset size, on the performance can be inferred from

the result in Theorem 1 as described below.

• Effect of SNR: One can observe from (50) that psep converges to one exponentially fast as

ρ grows. Intuitively, in the high SNR regime, the received symbols form highly compact

clusters on the Grassmannian. This enhances the pairwise differentiability of the clusters

and leads to accurate constellation detection.

• Effect of Dataset Size: According to (50), in the high SNR regime, the separability

probability may decay linearly with the dataset size N as confirmed by simulation. The

reason is that as the dataset size grows, it is more likely that there exist symbols having

large distances from the centroids of their correct Voronoi cells. As a result, the separation

gaps between clusters narrow or they even overlap, increasing the difficulty in accurate

clustering and thereby degrading the detection performance.

• Dataset-SNR Tradeoff: Based on (50), the lower bound on psep can be written in a simple

form to reflect the tradeoff between the SNR and dataset size:

psep ≈ 1− elogN−cρ, ρ→∞, (51)

with c being a constant. One can infer from the result that under a constraint on the

separability probability, as N grows, the SNR should scale up linearly with logN .
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• Effect of Constellation Size: The dependency of psep on d2
min in (50) can be further

translated to that on L. Specifically, by substituting (47) to (50),

psep ≈ 1− a0e
−b0ρL

− 1
TNt , ρ→∞, (52)

where a0 and b0 are constants. It can be clearly seen that psep monotonically decreases

with respect to L. This aligns with our intuition that packing more constellation points

(codewords) on a fixed Grassmann manifold will decrease dmin, thus making different

clusters harder to be distinguished. Furthermore, one can infer from the result that given a

target separability probability, as L grows, the SNR should approximately scale up linearly

with L
1

TNt .

C. Constellation Detection with an Unknown Size

Considering the case that the constellation size L is unknown at the receiver and the DFS

algorithm in Algorithm 3 is applied to constellation detection. The algorithm is based on a

different principle from that of the K-means algorithm in the preceding case. While K-means

relies on iterative centroid computation and clustering, the DFS attempts to connect neighbouring

symbols to form clusters by applying a distance threshold γ0 (see Algorithm 3), called the DFS

threshold. Consequently, two factors of the dataset distribution affect the DFS performance. One

is the separability of symbol clusters as for the K-means algorithm, which is measured by the

separability probability. By slight abuse of notation, the metric for the DFS is also denoted as

psep. The other is the connectivity within each single cluster, which is unique for the DFS. A

metric, called connectivity probability and denoted as pcon, is defined in the sequel to measure

the intra-cluster connectivity of the received dataset. Given the metrics, the effectiveness of

constellation detection by the DFS can be ensured by applying constraints on their values:

psep ≥ 1− ε, pcon ≥ 1− δ, (53)

where 0 < ε, δ < 1. In the sequel, psep and pcon are analyzed separately and the results are then

combined to quantity the effects the parameters of the system and algorithm on the detection

performance.

1) Inter-cluster Separation: For the DFS, the separation between two clusters of Grassmann

symbols specified by the index sets Cm and C` can be measured by the minimum pairwise
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distance, referred to as the inter-cluster distance and defined mathematically as

dclu(Cm, C`) = min
i∈Cm,j∈C`

dp(Υ
(i),Υ(j)). (54)

The two clusters can be separated by the DFS when their distance exceeds the DFS threshold

γ0. Based on this fact, the separability probability for the DFS can be defined as follows.

Definition 4. (DFS Separability Probability). For constellation detection using the DSF algo-

rithm, the separability probability psep is defined as

psep = Pr
(

min
m 6=`

dclu (Cm, C`) > γ0

)
. (55)

Though the direct analysis of psep is difficult, a lower bound can be derived by designing

a sufficient condition for cluster separation. Specifically, given the codebook F with dmin, the

symbol clusters are separable in terms of the criterion in (55) if all received symbols deviate

from their transmitted codewords no more than a distance of dmin−γ0

2
(see Fig. 3). Therefore, psep

can be lower bounded as

psep ≥
L∏

`=1

Pr
(

max
i∈C`

dp
(
Υ(i),µ`

)
≤ dmin − γ0

2

)
. (56)

Following the same procedure for deriving Theorem 1, we obtain the following corollary.

Corollary 1 (DFS Separability Probability). Consider Grassmann constellation detection using

the DFS algorithm. In the high SNR regime (ρ→∞), the separability probability satisfies

psep(ρ, L,N, γ0) ≥
[

1

Γ(D
2

)
γ

(
D

2
,
ρT λ̄2(dmin − γ0)2

8Nt

)]N
(57)

= 1−Ne−
ρT λ̄2(dmin−γ0)2

8Nt Cm(ρ) +O(e−2ρ), (58)

where Cm(ρ) is a polynomial function of ρ defined as Cm(ρ) =
∑D

2
−1

m=0
(T λ̄2(dmin−γ0)2)m

m!(8Nt)m
ρm.

The effects of the parameters including SNR, dataset size and constellation size are similar

to their K-means counterparts discussed in the preceding sub-section. A remark is given below

on the effect of the DFS threshold γ0.

Remark 2 (Effect of DFS Threshold). Choosing a too small value of the threshold γ0 leads

to the failure of connecting points within a same cluster and thereby causes it to be split into

multiple clusters. On the other hand, if γ0 is too large, multiple clusters may be connected into
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a single one. Both cases lead to incorrect constellation detection. Thus γ0 should be optimized

in practice to balance inter-cluster separability and intra-cluster connectivity.

2) Intra-cluster Connectivity: The analysis of intra-cluster connectivity is much more chal-

lenging than that of inter-cluster separation. In the context of DFS, two points on the Grassman-

nian are neighbours if their subspace distance is shorter than γ0. A path is a sequence of points

where every pair of adjacent points are neighbours. Then two points are connected if there exists

a path connecting them. Based on this definition, the direct analysis of connectivity probability

is intractable. Inspired by the analysis in the classic area of network connectivity (see e.g, [36]),

we develop a geometric technique for deriving a lower bound on the metric and its principle is

described as follows.

Principle of Connectivity Analysis: Consider a cluster of points (symbols) on the Grassmannian

that are bounded by a disk. The disk is then packed by uniform bins (small disks) each with a

diameter γ0

2
as illustrated in Fig. 3. As a result, a sufficient condition for all points in the cluster

being connected is that all bins are non-empty, namely that each bin contains at least one point.

The probability of this event can be derived in closed form that lower bounds the connectivity

probability.

Based on the principle, the specific mathematical technique is developed and the desired result

obtained as follows. First, for ease of exposition, consider the (intra-cluster) disconnect proba-

bility defined as pdis = 1− pcon. Consider the symbols cluster corresponding to the transmitted

codeword µ`. Let pdis(N`) denote the disconnect probability for the cluster conditioned the

cluster size N`. Then pdis = E[pdis(N`)]. Since the L codewords have equal probabilities to be

transmitted, N` follows the binomial distribution with parameters N and 1/L, i.e. N` ∼ B
(
N, 1

L

)
.

Next, consider a cluster of symbols originating from the same transmitted codeword µ. A
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disk with the centroid µ and a radius r is defined on the Grassmannian as B(µ, r) = {Φ ∈ G |
dp(Φ,µ) ≤ r}. It is known in the literature that in the presence of Gaussian noise, the received

symbols with the transmitted codeword µ lie with high probability in a disk B(µ, r), whose

radius r is proportional to the standard deviation of noise or equivalently proportional to 1√
ρ

with ρ being the SNR [11], [14]. Therefore, the disk radius can be chosen as a√
ρ

with a being a

constant (see Fig. 3). The constant can be appropriately chosen such that a symbol lies within

the disk with probability no smaller than e.g., (1− ε
N

), which, as implied by (58), is sufficient

for satisfying the separability constraint in (53).

Assumption 2. The dataset size N is sufficiently large such that the points within each disk

are dense. Then the required DFS threshold γ0 for connecting the points within a disk is much

smaller than its radius: γ0 � a√
ρ
.

Based on the assumption, the disk can be packed with small disks each with the diameter γ0

2
,

called bins, as illustrated in Fig. 3. Each of the bins thus is placed contacted with at least one

another bin. The cluster of symbols can be treated as i.i.d. random points. A bin is nonempty if

it contains at least one point. In the event that all bins are nonempty, all points are guaranteed

to be connected regardless of if they are inside or outside bins. Therefore, given that the number

of points in the cluster is N`, the corresponding disconnect probability can be lower bounded as

pdis(N`) ≤ Pr( ∃ one empty bin|N`). (59)

Note that the number of bins in the disk is M = η
D

( a√
ρ

γ0
4

)D
where η

D
represents the fraction of

the disk area covered by bins which is a constant given the space dimensions of D. Define an

indicator function I(Ai) = 1 if the ith bin is empty, and I(Ai) = 0 otherwise. The inequality in

(59) can be rewritten by

pdis(N`) ≤ Pr

(
M∑

i=1

I(Ai) ≥ 1|N`

)
, (60)

By applying Markov inequality,

pdis(N`) ≤ E

(
M∑

i=1

I(Ai)|N`

)
=

M∑

i=1

(1− pi)N` , (61)

where pi denotes the probability that a typical point falls into the ith bin. Define pmin = min
i
pi.
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It follows from (60) that

pdis(N`) ≤M(1− pmin)N` . (62)

By invoking the Binomial distribution of N`,

pdis = E[pdis(N`)] ≤M
(

1− pmin

L

)N
.

Then the result below follows.

Lemma 8. In the high SNR regime, the disconnect probability satisfies: pdis ≤Me−
pmin
L

N .

Next, to obtain a concrete upper bound on pdis, an expression is derived for pmin as follows.

In the presence of isotropic noise, the probability that a receive symbol Υ originating from a

codeword µ falls into a bin B(Φ, γ0

4
) depends on the distance dp(Φ,µ) as well as the bin volume,

denoted as Volbin, but is independent of the direction from µ to Φ. Define a ring with the center

µ, width γ0

2
, and radius r as R(µ, r) = {Φ ∈ G | r − γ0

2
≤ dp(Φ,µ) ≤ r} which is illustrated

in Fig. 3. Then the symbol Υ falls with equal probabilities into the bins lying in a same ring

R(µ, r). Let the probability be denoted as p(r) and the volume of the ring as Volrin(r). Then

p(r) =
η−1
D

Volbin(r)

Volrin(r)
× Pr

(
r − γ0

2
≤ dp(Υ,µ) ≤ r

)

(a)
=

η−1
D

(γ0

4
)D

rD − (r − γ0

2
)D
× 1

Γ(D
2

)

{
Γ

(
D

2
,
ρT λ̄2(r − γ0

2
)2

2Nt

)
− Γ

(
D

2
,
ρT λ̄

2
r2

2Nt

)}
, (r ≥ γ0

2
),

(63)

where D = 2Nt(T−Nt) is the dimensions and (a) applies the distance distribution in (42). Given

p(r), pmin can be equivalently written as pmin = min γ0
2
≤r≤ a√

ρ
p(r). By analyzing the derivative

of p(r), it is straightforward to prove that the function is monotonically decreasing in the range

of r ≥ γ0

2
(see Appendix D), leading to the following result.

Lemma 9. If the disk radius a√
ρ
≥ γ0

2
, pmin = p

(
a√
ρ

)
with p(r) given in (63).

The above lemma shows that the bin with pmin locates at the boundary of the disk. Under

Assumption 2 and using (63) and Lemma 9, a simplified asymptotic expression for pmin can be

derived as:

pmin =
η−1
D

2−
5D
2

+1

DΓ
(
D
2

)
(
T λ̄

2

Nt

)D
2

γ0
Dρ

D
2 e
−a

2Tλ̄2

2Nt + o(γ0
Dρ

D
2 ). (64)
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The derivation details can be found in Appendix E. Finally, substituting (64) and M = η
D

(
4a

γ0
√
ρ

)D

into the result in Lemma 8, we can derive a lower bound of the success probability of intra-cluster

connectivity, which is presented as follows.

Theorem 2 (DFS Connectivity Probability). In the high SNR regime, the connectivity probability

satisfies

pcon ≥ 1− η
D

(4a)Dγ0
−Dρ−

D
2 e−c0γ0

Dρ
D
2 N
L , (65)

where c0 =
η−1
D

2−
5D
2 +1

DΓ(D2 )

(
T λ̄

2

Nt

)D
2
e
−a

2Tλ̄2

2Nt is a constant and N/L denotes the expected number of

received symbols in each cluster.

3) Effects of Parameters on Detection Performance: Comparing the results in Corollary 1

and Theorem 2, we obtain the following insights into the effects on various parameters on the

constellation detection performance.

• Effect of SNR: One can observe from (58) and (65) that both psep and pcon converge

exponentially to one as ρ grows. A higher SNR makes the dataset distributed in more con-

centrated clusters centered at the codewords, improving their separability and connectivity

in terms of psep and pcon, respectively.

• Effect of Dataset Size: Unlike the SNR, the effect of increasing N is double-sided. On one

hand, (65) suggests that the intra-cluster connectivity improves exponentially with growing

N due to the increasing point-density of each cluster. On the other hand, (58) shows that the

separability between clusters may decrease exponentially as N increases. This is because

that increasing N may shorten the inter-cluster distance defined in (54) due to the more

likely existence of “outliers” and the resultant growth of cluster radius.

• Effect of Constellation Size: Last, a larger constellation size L reduces both psep and pcon

and makes it harder to perform accurate detection by DFS algorithm. Specifically, one can

observe from (57) that the separability of different clusters reduces as L increases. This

is aligned with our intuition that packing more constellations points on a fixed Grassmann

manifold reduces dmin, thereby increasing the difficulty of clustering in the presence of

noise. Moreover, given the dataset size N , as suggested by (65), a smaller L benefits intra-

cluster connectivity since each cluster is expected to comprise more points (the expected

number of points is given by N/L), thus denser clusters are formed.



29

Bits Mapping Codewords

00

01

10

11 µ⇤
1

µ⇤
2

µ⇤
3

µ⇤
4

descending

dp(F, µ⇤
` )

Figure 4. Illustration of bit-symbol-mapping for constellation size of four.

VIII. CONSTELLATION EMBEDDED BIT-SYMBOL MAPPING

Given the inferred constellation codewords, the information retrieval process contains two

substeps: 1) associate the observed data to the closest constellation codeword in terms of

their distance; 2) map the codeword to corresponding bit sequence according to a pre-defined

mapping rule. In this sub-section, we aim to propose an intelligent mechanism for resolving

the mapping between the constellation codewords and the embedded information bits without

compromising the spectrum efficiency. Specifically, the novel scheme we proposed encodes the

mapping information to the subspace distance between the transmit codewords and a well-devised

orthonormal reference point such as a truncated Fourier matrix, denoted by F. Concretely, the

transmit codewords are one-to-one mapped to a set of information bits following a pre-defined

order determined by their subspace distances to the selected reference point (see Fig. 4). The

order that encodes the mapping information can be accurately recovered at the receiver since

the subspace distances between codewords and F are invariant to the channel rotation. Note that

the reference point should be carefully selected to ensure the subspace distance differentiation

to each codeword. To this end, two candidate schemes are proposed: 1) fix a reference point

first and select from a set of packing based codebooks the one having the most differentiation of

subspace distances; 2) fix a packing based codebook first and then choose the optimal in terms

of subspace distance differentiation. The advantage of the scheme 2) over 1) is that codewords

only need to be generated once, but at the additional expense of reference point transmission.

Note that communicating the reference point can incur overhead (coding and high power) due

to the requirement of high accuracy as it affects the detection of all data. The tradeoff between

the decoding accuracy and the communication overhead is non-trivial but out of the scope of

the paper and leaves for future work.
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Figure 5. Convergence-rate comparison between K-means and EM algorithms for Grassmann constellation detection.

IX. SIMULATION RESULTS

The default simulation settings are as follows. The numbers of antennas are Nr = 4, Nt = 2.

The channel follows block fading channel model and channel coefficients i.i.d. CN (0,1) r.v.. The

noise follows the same distribution. The constellation size and symbol length are L = 8 and

T = 4.

Consider the equivalence of Grassmann K-means and EM algorithms derived in Section V.

Their convergence rates are compared in Fig. 5. One can observe that the former converges faster

than the latter. This aligns with the discussion in Section V-A2 and confirms the advantage of

the proposed data-clustering approach for Grassmann constellation detection.

In Fig. 6, we compare the performance of Grassmann constellation detection with and without

the prior knowledge of constellation size L, which are implemented using the K-means and

DFS algorithms respectively. Furthermore, each of key parameters is varied to demonstrate its

effect on the detection performance and thereby corroborate the analytical results. Define the

successful detection probability as the probability that the received symbols are correctly clustered

according to their corresponding transmitted codewords. Using this metric for measuring the

detection performance and by observing Fig. 6(a)-(c), the K-means is observed to substantially

outperform the DFS, showing the value of the prior knowledge. Next, comparing Fig. 6(a) and

6(b) reveals that the detection performance can be monotonically improved by increasing the

SNR or reducing the constellation size L, which agrees with the insights from the analysis. On

the other hand, as observed from Fig. 6(c), increasing the dataset size N can have opposite

effects on DFS performance but continuously degrades the K-means performance. The reason is

revealed in the analysis: large N improves the intra-cluster connectivity of DFS but degrades its

inter-cluster separability while K-means performance only concerns separability. In particular, the
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Figure 6. Comparison of Grassmann constellation detection with and without knowledge of constellation size and the effects

of parameters.

linear decay rate of success detection probability for K-means is predicted in (50). Last, Fig. 6(d)

shows the sensitivity of the DFS performance towards the changes on the DFS threshold and

thus its optimization is important, which agrees with the analysis in Section VII-C.

X. CONCLUDING REMARKS

We have proposed an approach of automatic recognition of Grassmann constellations and

developed an analytical framework for performance analysis. The work makes contributions to

next-generation intelligent radios and opens up several interesting directions for further research

including multiuser constellation detection and detection using more complex machine learning

tools such as deep learning.

Acknowledgement: Comments from Dr. Jun Zhang, Dr. Rahul Vaze and Dr. Sheng Yang have

led to substantial improvements of this work.
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APPENDIX

A. Proof of Lemma 3

According to (27), one can decompose the eigenspace of the received signal as:

Y(i) = U
(i)
Y Σ

(i)
Y (V

(i)
Y )H + U

(i)
WΣ

(i)
W (V

(i)
W )H . (66)

where the first term captures the dominant signal subspace while the second one corresponds to

the noise subspace. In the high SNR regime, the noise is negligible and we have the following

result

Y(i) = U
(i)
Y Σ

(i)
Y (V

(i)
Y )H , ρ→∞. (67)

It follows that

tr
{

(Y(i))Hµ̂jµ̂
H
j Y(i)

}
−→ tr

{
(Σ

(i)
Y )2(U

(i)
Y )Hµ̂jµ̂

H
j U

(i)
Y

}
, ρ→∞. (68)

With bk denoting the kth column of the matrix µ̂H
j U

(i)
Y and

{
σ

(i)
k

}Nt
k=1

singular values of Σ
(i)
Y ,

tr
{

(Σ
(i)
Y )2(U

(i)
Y )Hµ̂jµ̂

H
j U

(i)
Y

}
=

Nt∑

k=1

(
σ

(i)
k

)2

‖bk‖2. (69)

By replacing
{
σ

(i)
k

}
with the largest singular value denoted as σ(i)

1 ,

tr
{

(Y(i))Hµ̂jµ̂
H
j Y(i)

}
≤
(
σ

(i)
1

)2

tr
{

(U
(i)
Y )Hµ̂jµ̂

H
j U

(i)
Y

}
, ρ→∞. (70)

Similarly, the lower bound of tr
{

(Y(i))Hµ̂jµ̂
H
j Y(i)

}
can be obtained by replacing

{
σ

(i)
k

}
in

(69) with the smallest singular value denoted as σ(i)
Nt

:

tr
{

(Y(i))Hµ̂jµ̂
H
j Y(i)

}
≥
(
σ

(i)
Nt

)2

tr
{

(U
(i)
Y )Hµ̂jµ̂

H
j U

(i)
Y

}
, ρ→∞. (71)

Given that U
(i)
Y = Υ(i),

(
σ

(i)
Nt

)2

tr
{

(Υ(i))Hµ̂jµ̂
H
j Υ(i)

}
≤ tr

{
(Y(i))Hµ̂jµ̂

H
j Y(i)

}
≤
(
σ

(i)
1

)2

tr
{

(Υ(i))Hµ̂jµ̂
H
j Υ(i)

}
.

(72)

Rewriting the bounds in (72) in terms of Procrustes distance defined in (10) gives the desired

result.
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B. Proof of Lemma 4

Let p` denote the joint probability of two events, namely A: a symbol generated from the

`-th codeword and B: a symbol is assigned to cluster `. One can easily see that N` ≥ p`N .

Therefore, as long as p` is bounded by some strictly positive value, the statement holds. To

show this, according to the equal-probability codeword assumption, we have p(A) = 1
L

, and by

definition we also have p(B|A) ≥ p(dp(Υ,µ) ≤ dmin

2
). It follows that p` ≥ 1

L
p(dp(Υ,µ) ≤ dmin

2
),

where p(dp(Υ,µ) ≤ dmin

2
) can be directly derived from Lemma 7. Thus p` is indeed strictly

positive. Consequently, N →∞ can lead to N` →∞, completing the proof.

C. Proof of Lemma 5

By substituting µ∗`H
(i) +

√
Nt
ρT

W(i) into Y(i), 1
N`

∑
i∈C`

tr
{

(Y(i))Hµ`µ
H
` Y(i)

}
can be rewritten

as
1

N`

∑

i∈C`

tr





(
µ∗`H

(i) +

√
Nt

ρT
W(i)

)(
µ∗`H

(i) +

√
Nt

ρT
W(i)

)H

µ`µ
H
`



 . (73)

Using the law of large numbers, as N` →∞, 1
N`

∑
i∈C`

tr
{

(Y(i))Hµ`µ
H
` Y(i)

}
can thus be simplified

as
1

N`

∑

i∈C`

tr
{

(Y(i))Hµ`µ
H
` Y(i)

}
−→ tr

{
µ∗`(µ

∗
`)
Hµ`µ

H
`

}
+
N2
t

ρT
. (74)

Let Q(i) denote the unitary matrix,

tr
{
µ∗`(µ

∗
`)
Hµ`µ

H
`

}
= tr

{
1

N`

(∑

i∈C`

(µ∗`Q
(i))(µ∗`Q

(i))H

)
µ`µ

H
`

}
. (75)

Moreover, as ρ → ∞, the noise effect is negligible, resulting in U
(i)
Y → µ∗`Q

(i) = Υ(i). This

can be interpreted as as an approximation of the column space spanned by the received signal

Y(i). Thereby, we have the following result.

1

N`

∑

i∈C`

tr
{

(Y(i))Hµ`µ
H
` Y(i)

}
−→ 1

N`

∑

i∈C`

tr
{
Υ(i)(Υ(i))Hµ`µ

H
`

}
, ρ→∞. (76)

This completes the proof.

D. Proof of monotonous decreasing property of p(r)

Note that the first term in (63), i.e.
η−1
D

(
γ0
4

)D

rD−(r− γ0
2

)D
, decreases monotonically with respect to r,

hence, it is sufficient to prove the monotonically decreasing characteristics of the second term
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for r ≥ γ0

2
. By defining f(r) = Γ

(
D
2
,
ρT λ̄2(r− γ0

2
)2

2Nt

)
−Γ

(
D
2
, ρT λ̄

2
r2

2Nt

)
and setting its first derivative

to 0, the following equality holds

γ0

2r
= 1− e−

ρT λ̄2γ0(r− γ0
4 )

2Nt(D−1) . (77)

Observe that as ρ → ∞, e−
ρT λ̄2γ0(r− γ0

4 )

2Nt(D−1) → 0, we thus have r = γ0

2
, which implies that f(r)

decreases monotonically for r ≥ γ0

2
. We complete the whole proof.

E. Computation of pmin

By substituting x in (63) with a√
ρ
, we have

pmin =
η−1
D

(γ0

4
)D

Γ(D
2

)
(

( a√
ρ
)D−( a√

ρ
− γ0

2
)D
)





Γ


D

2
,
ρT λ̄2

(
a√
ρ
− γ0

2

)2

2Nt


− Γ

(
D

2
,
T λ̄

2
a2

2Nt

)

. (78)

Next, consider Γ

(
D
2
,
ρT λ̄2

(
a√
ρ
− γ0

2

)2

2Nt

)
= Γ

(
D
2
,
a2T λ̄2+ρT λ̄2 γ0

2

4
−aγ0T λ̄2√ρ

2Nt

)
. Under the assumption

that γ0

2
� a√

ρ
, we have ρT λ̄2 γ0

2

4

aγ0T λ̄2√ρ = 1
2

γ0
2
a√
ρ
→ 0, holds. Ignoring the high-order term ρT λ̄2 γ0

2

4
, one

can have

Γ


D

2
,
ρT λ̄2

(
a√
ρ
− γ0

2

)2

2Nt


 = Γ

(
D

2
,
a2T λ̄2 − aγ0T λ̄

2√ρ
2Nt

)
+ o(γ0

Dρ
D
2 )

= Γ

(
D

2
,
a2T λ̄2

2Nt

)
+

∫ a2Tλ̄2

2Nt

a2Tλ̄2−aγ0Tλ̄
2√ρ

2Nt

x
D
2
−1e−xdx+ o(γ0

Dρ
D
2 ).

(79)

Realizing the fact that aγ0T λ̄2√ρ
a2T λ̄2 = γ0

a√
ρ
→ 0, the second term of (79) can be rewritten as

∫ a2Tλ̄2

2Nt

a2Tλ̄2−aγ0Tλ̄
2√ρ

2Nt

x
D
2
−1e−xdx = x

D
2
−1

0 e−x0∆x0 + o(γ0
√
ρ), (80)

where ∆x0 =
aγ0T λ̄2√ρ

2Nt
, x0 = a2T λ̄2

2Nt
. Moreover, since xD −

(
x− γ0

2

)D
= Dγ0

2
xD−1 + o(γ0x

D−1)

for γ0

2
� x, which can be directly proved using Taylor expansion, we thus have

(
a√
ρ

)D
−
(
a√
ρ
− γ0

2

)D
=
Dγ0

2

(
a√
ρ

)D−1

+ o(γ0ρ
−D−1

2 ). (81)

By integrating the above approximations, i.e. (79) ∼ (81), into (78), the whole proof is completed.
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