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Learning of Tree-Structured Gaussian Graphical
Models on Distributed Data under

Communication Constraints
Mostafa Tavassolipour, Seyed Abolfazl Motahari, and Mohammad-Taghi Manzuri Shalmani

Abstract—In this paper, learning of tree-structured Gaussian graphical models from distributed data is addressed. In our model,
samples are stored in a set of distributed machines where each machine has access to only a subset of features. A central machine is
then responsible for learning the structure based on received messages from the other nodes. We present a set of communication
efficient strategies, which are theoretically proved to convey sufficient information for reliable learning of the structure. In particular, our
analyses show that even if each machine sends only the signs of its local data samples to the central node, the tree structure can still
be recovered with high accuracy. Our simulation results on both synthetic and real-world datasets show that our strategies achieve a
desired accuracy in inferring the underlying structure, while spending a small budget on communication.

Index Terms—Structure learning, Chow-Liu algorithm, Gaussian Graphical Model.
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1 INTRODUCTION

MANY modern systems acquire data at several reposi-
tories which are stored at different locations. In many

situations, it is impossible to transfer the distributed data
completely to a central machine due to communication
constraints. Designing communication-efficient learning al-
gorithms is desired to transfer enough information from
repositories to the central machine and to reliably infer the
learning model.

Many learning algorithms can be modified to run dis-
tributively at several machines to perform a learning task.
There are many papers that propose distributed (parallel)
version of various learning algorithms [1], [2], [3], [4].
However, some learning algorithms could not be efficiently
parallelized on distributed data. For example, when each
local machine has access to some attributes (dimensions)
of data samples, many learning algorithms could not be
run distributively. In such situations, typically, there exists
a central machine which is responsible for running the
learning algorithm. Due to communication constraints, local
machines could not transmit their whole datasets to the cen-
tral machine. In fact, the central machine may have access to
a lossy compressed version or a subset of the original data.
Thus, designing and analysis of the learning algorithms to
make an appropriate trade-off between accuracy and the
amount of communication is of great importance.

In general, three models can be considered for data in
distributed settings: horizontal model, where the data are
distributed across samples; vertical model, where data are
distributed over dimensions; and hybrid model which is the
combination of both horizontal and vertical models. Design-
ing distributed learning systems for the horizontal model
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has been addressed in many papers [3], [5]. In [6] and [7], the
vertical model is studied from information theoretic point of
view. This paper, in fact, addresses structure learning of tree-
structured Gaussian Graphical Models (GGM) in the case of
vertical model.

A GGM is a Markov Random Field (MRF) with normal
variables which indeed form a joint normal distribution
with mean µ and covariance matrix Q. If the ij-th com-
ponent of Q−1 is zero, then the variables i and j are
conditionally independent given the other variables. From
this fact, one can construct the structure of the GGM by
connecting node i to j iff the ij-th component of Q−1 is
non-zero. GGMs are widely used in many applications such
as gene regulatory networks [8], [9], [10], brain connectivity
learning [11], etc.

In this paper, we analyze and propose structure learn-
ing methods based on the Chow-Liu algorithm over dis-
tributed data [12]. We assume that the data are split across
dimensions (vertical model) among multiple machines. It
worths mentioning that, unlike the horizontal model, the
local machines are not capable of summarizing any statistics
reflecting dependencies between dimensions in the verti-
cal model. Hence, any inference requires some amount of
communication between machines. This makes the problem
nontrivial and challenging. We have assumed that the local
machines are connected to a central machine over commu-
nication limited channels. Each machine compresses and
transmits its local dataset to the central machine. Finally,
the central machine by applying the Chow-Liu algorithm
on the received distorted data, estimates the structure of the
underlying GGM.

Interestingly, we convey an important message regard-
ing accuracy of structure learning on distributed data for
tree-structured GGMs: spending few bits per symbol is
sufficient to transmit enough information to the central
machine for the purpose of estimating the structure with
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high accuracy. We justify this result by rigorous analysis and
numerical experiments on synthetic and real datasets.

The paper is organized as follows. Section 2 provides a
comprehensive literature review on structure learning and
distributed statistical inference. In Section 3, we describe the
problem in great detail and present our main contributions.
Section 4 is devoted to structure learning using signs of the
Gaussian data with theoretical analyses on its estimation
error. In Section 5, a per-symbol quantization scheme is
proposed and analyzed. We present the results of some
experiments on real and synthetic datasets in Section 6.
Section 7 concludes the paper.

2 RELATED WORK

2.1 Structure Learning
In the context of graphical models, inferring the underlying
graph structure from data samples is of great importance.
The structure learning is a model selection problem in which
one estimates the underlying graph from i.i.d. samples
drawn from some MRFs or Bayesian networks. The struc-
ture learning plays an important role in many applications
such as reconstructing gene regulatory networks from gene
expressions [13], [14], brain connectivity learning [11], rela-
tionship analysis in social networks [15], etc.

Structure learning of GGMs is equivalent to recovering
the support (fill pattern) of the inverse covariance matrix
(concentration matrix). The sparse structure estimation of
the concentration matrix is discussed in many works [16],
[17], [18], [19]. Among the sparse methods, maximizing
the `1-regularized likelihood is the most popular one. [17]
and [18] proposed the graphical lasso (glasso), which finds
the ML concentration matrix by an `1 regularization term.
There are some coordinate-descent algorithms for solving
the glasso problem [17], [20]. More recently, Hsieh et al. [21]
proposed a new algorithm for solving the glasso problem
enjoying super linear convergence rate. The consistency of
the estimated graph using the glasso for high dimensional
problems is studied in [22].

GGMs have an interesting property: one can obtain the
neighborhood of each node by solving a linear regression
problem for the corresponding variable on other variables.
This approach of structure recovering is also known as
neighborhood selection in the literature. For the sparse struc-
tures, combination of `1 regularization and the method of
neighborhood selection is studied in [23]. In this method, an
`1 regularized linear regression problem is solved separately
for each node. Such a method may lead to inconsistencies
between the inferred neighborhoods. Chen et al. [24] pro-
posed some rules to resolve the inconsistencies.

Tan et al. [25] measured the complexity of the tree
structures in view of the Chow-Liu algorithm. They also
provided the analysis of the error exponent of the Chow-
Liu algorithm on tree-structured GGMs in [26]. Moreover,
they discussed the extreme structures which yield the best
and worst error exponents. Resembling some features of this
paper, the results in [26] differ from our results in two major
aspects. First, our analysis is non-asymptotic while theirs is
asymptotic in the number of samples. Second, we address
the distributed version of the problem where only quantized
data is available at the central machine. Having limited

access to the original data poses a significant challenge in
the design and analysis.

2.2 Distributed Statistical Inference

The early works on distributed parameter estimation mainly
focused on the asymptotic analysis of error exponents for
given bit rates (see [6] and refs therein). More recently, stud-
ies are focused on characterizing the dependence between
estimation performance and the communication constraint
(see [27], [28], [29], [30], [31]). For example, Zhang et. al.
[28] and Duchi et. al. [29] obtained some lower bounds
on the minimax risks for distributed statistical parameter
estimation under a given communication budget. They have
studied the problem under single-round (non-interactive)
and multiple-round (interactive) communication protocols
between the local machines and the central one. A similar
problem is addressed in some other papers such as [32] and
[27]. Luo [32] showed that if each machine has a single
one dimensional sample and transmits only one bit to the
central machine, one can achieve the centralized minimax
rate up to a constant factor for some specific problems. In a
more recent work, Xu and Raginsky in [27] obtained lower
bounds on Bayes risk in estimating parameters in a similar
distributed setting. They studied the problem under both
interactive and non-interactive communication protocols.

Some basic problems in machine learning such as clas-
sification, regression, hypothesis testing, etc. in distributed
fashion are studied in [3], [33], [34]. Raginsky in [33] stud-
ied the classification and regression problem in distributed
settings. He obtained an information-theoretic characteriza-
tion of achievable predictor performance. He evaluated the
results on non-parametric regression with Gaussian noise.
The distributed hypothesis testing is studied by Amari [34]
where a central machine makes decision on the correlation
coefficient of two sequences stored in two different ma-
chines.

In this paper, we focus on the problem of distributed
tree-structured GGM learning which is not studied pre-
viously. This work is similar to the problems studied by
Ahlswede [35] and El-gamal [7] due to the fact that each
local machine cannot estimate the parameters without any
communication with other machines. This is in contrast to
the most of the mentioned works where the local machines
can have their own estimate of the underlying parameters.
This fact makes the problem challenging as the local ma-
chines communicate with the central machine blindly.

3 PROBLEM STATEMENT AND PROPOSED METH-
ODS

We are given n i.i.d. random vectors {x(1), · · · ,x(n)}
drawn from a d-dimensional zero mean normal distribu-
tion N (0, Q). Assume that the normal distribution can be
factorized according to a tree model T = (V, E) where
V = {1, · · · , d} is the set of nodes and E is the set of edges.
Factorization according to T means that (Q−1)jk 6= 0 if
and only if (j, k) ∈ E . Our goal is to find the structure of
T in a situation where data is stored in M machines such
that each machine possesses some dimensions of the sample
vectors. All machines are connected to a central machine via
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Machine 1

,⋯ ,x (1)1 x (n)1 ψ
,⋯ ,u(1)1 u(n)1

Machine M

,⋯ ,x (1)M x (n)M ψ
,⋯ ,u(1)M u(n)M

Central Machine

Chow-Liu
Algorithm

Estimated
Tree

Mutual
Information
Estimation

Fig. 1. The overall block diagram of our proposed model.

some communication limited links. This limitation makes it
impossible for a machine to communicate its local dataset
without any distortion to the central machine.

In this paper, we aim at proposing a communication effi-
cient algorithm for estimating the underlying tree structure.
In this setting, each machine transmits some information
from its local dataset to the central machine which is respon-
sible for estimating the structure from the received data.

Without loss of generality, we assume that the under-
lying normal distribution has zero mean and unit variance
for all dimensions (i.e. Qjj = 1). For convenience, we also
assume that the machineMj contains the j-th dimension of
the sample vectors. In this way, the number of machines is
equal to the dimensionality of the normal distribution (i.e.
M = d). We denote the j-th dimension of i-th sample by
x

(i)
j , i.e. x(i) = [x

(i)
1 , · · · , x(i)

d ]T . Therefore, the local dataset
on machine Mj is {x(1)

j , · · · , x(n)
j }. Throughout the paper,

we denote the quantized (compressed) version of x(i)
j by

u
(i)
j .

We assume that the communication budget is R bits
for each x

(i)
j . Thus, the overall communication cost for

transmitting local datasets to the central machine is ndR
bits.

The overall block diagram of our system is depicted
in Fig. 1. In this system, Mj encodes (quantizes) its lo-
cal dataset using an R-bit encoder that can be repre-
sented by a function ψj which maps the samples to one
of the predefined 2nR reconstruction points denoted by
(u

(1)
j , · · · , u(n)

j ) , i.e. (u
(1)
j , · · · , u(n)

j ) = ψj(x
(1)
j , · · · , x(n)

j ).

Since (u
(1)
j , · · · , u(n)

j ) can take only one of the 2nR different
reconstruction points, it can be transmitted to the central
machine with nR bits. We assume that all machines incor-
porate the same encoding strategy. In this way, we have one
encoder which is denoted by ψ.

Remark 1. The quantized datasets received by the central ma-
chine are not distributed according to the normal distribution.
Moreover, in general, the tree structure is no longer a property of
the new distribution. These facts make the recovery of the structure
a rather challenging problem.

In case of having access to the original datasets, the
central machine can run the Chow-Liu algorithm in [12]
which gives the maximum likelihood (ML) tree structure
[26]. In the Chow-Liu algorithm, the mutual information
between any pair of vertices are estimated and used as the
edges weights of a complete graph between vertices. The
maximum weight spanning tree (MWST) gives the ML tree.

Therefore, the central part of the Chow-Liu algorithm is to
estimate the mutual information efficiently.

In graph theory, there are two efficient algorithms for
solving the MWST problem: Kruskal [36] and Prim [37] algo-
rithms. Throughout this paper we incorporate the Kruskal
algorithm for finding the MWST. In Kruskal algorithm, the
edges weighs are sorted in descending order and at each
step an edge with the highest weight which does not form a
cycle is added to the current forest. This algorithm continues
until all vertices are covered. The output of this algorithm
depends only on the order of edges weights.

In GGMs, the mutual information between any pair of
variables, say xj and xk, is obtained by

I(xj ;xk) = −1

2
ln
(
1− ρ2

jk

)
, (1)

where ρjk is the correlation coefficient between xj and xk.
According to (1), one way to estimate the mutual informa-
tion of two normal variables is to estimate their correlation
coefficients first. In our problem setting where each variable
is stored in a different machine, estimation of the correlation
coefficients is a difficult task. This is due to the fact that one
needs to calculate the statistic

∑
i x

(i)
j x

(i)
k . Computing such

a statistic needs transmission of xj and xk samples to the
central machine imposing high communication cost which
is prohibitive in band-width limited networks.

3.1 Proposed Methods

Based on our system model, we need to design some ef-
ficient ways that machines communicate with the central
machine and to implement an algorithm to recover the tree
structure at the central machine. We propose two techniques
to achieve these goals which are described as follow.

Sign Method
Each data point is quantized to a single bit by the sign
function, i.e.(

sign(x
(1)
j ), · · · , sign(x

(n)
j )

)
= ψ

(
x

(1)
j , · · · , x(n)

j

)
.

Since the encoder maps each data point to a single re-
construction point independent of the other points, i.e.
u

(i)
j = sign(x

(i)
j ), the received data at the central machine

is an i.i.d. sequence. However, as it mentioned earlier, the
received data does not possess the tree structure of the
original data.

Even though the Chow-Liu algorithm is only applicable
for reconstructing tree structures, the central machine uses it
to infer “a tree” structure embedded in the new distribution.
This scheme is called sign method.

Through analysis presented in Section 4 we show that
the tree reconstructed by the sign method is the true under-
lying structure with high probability. Our simulation results
also support our analysis.

Per-symbol Quantization
In this scheme, each machine quantizes its data points to
2R possible reconstruction points independent of the other
points. Therefore, the received quantized points are i.i.d.
and non-Gaussian. However, at the central machine, the
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distribution is assumed to be normal and the correlations
are estimated based on the received quantized datasets.

It worth mentioning that the encoder part of the sign
method is a special case of the encoder used here with R =
1. In contrary, the tree reconstruction algorithms used at the
central machine are different.

We provide an upper bound on the error of the correla-
tion estimation in this case in Section 5. Simulation results
also indicate by consuming a few bits for quantization, the
estimated structure is often same as the structure obtained
by the original data.

4 STRUCTURE LEARNING WITH SIGNS

In the sign method, the machine Mj transmits u
(i)
j =

sign
(
x

(i)
j

)
for i = 1, · · · , n to the central machine. Note that

since xj ∼ N (0, 1), uj is a uniform Bernoulli variable over
{−1,+1}.

The central machine receives the binary data from all
machines to form the quantized dataset {u(1), · · · ,u(n)}
where u(i) ∈ {−1,+1}d. Since the dimensions of the
original normal vector x are correlated, dimensions of u
are dependent as well. Although there is a simple map
between the original normal vector and the signs, no closed
form probability mass function (pmf) exists for d ≥ 4.
However, some approximations with desirable accuracies
are proposed in [38].

Applying the Chow-Liu algorithm on {u(1), · · · ,u(n)},
the central machine obtains an estimate of the underlying
structure. The remainder of this section is devoted to ana-
lyze the probability of incorrect structure recovery in a non-
asymptotic regime.

4.1 Order Preserving of Mutual Information

Essential to the analysis, we show that the order of the true
mutual information values between variables remains the
same after applying the sign function. In this way, one can
claim that by reliable estimating of the mutual information
values of the signs, the true structure can be recovered using
the Chow-Liu algorithm.

First, note that if xj ∼ N (0, 1) and xk ∼ N (0, 1) are
jointly normal with the correlation coefficient ρjk, then the
joint pmf of the corresponding signs uj and uk can be
expressed as [38]

uj\uk −1 +1
−1 θjk/2 (1− θjk)/2
+1 (1− θjk)/2 θjk/2

(2)

where

θjk =
1

2
+

arcsin(ρjk)

π
. (3)

Therefore, the mutual information between uj and uk can
be written as

I(uj ;uk) = 1− h(θjk), (4)

where h(.) is the binary entropy function given by

h(θ) = −θ log(θ)− (1− θ) log(1− θ). (5)

Lemma 1. The sign function is an order preserving of the mutual
information on Gaussian random variables.

Proof. Consider two pairs of variables (xj , xk) and (xr, xs)
from a GGM such that I(xj ;xk) > I(xr;xs). Let (uj , uk)
and (ur, us) be the corresponding sign variables. We need
to show that I(uj ;uk) > I(ur, us).

According to (1), if I(xj ;xk) > I(xr;xs) then |ρjk| >
|ρrs|. Since the arcsin is a monotonic function, we have

arcsin |ρjk| > arcsin |ρrs|. (6)

Since arcsin is odd, using (6) and (3) we have

|θjk −
1

2
| > |θrs −

1

2
|. (7)

Consider the case where θjk > 1
2 and θrs >

1
2 . Then, from

(7) we have θjk > θrs. Since h(θ) is a descending function
for 1/2 < θ < 1, we have 1 − h(θjk) > 1 − h(θrs) which is
the desired result.

For the case where θjk > 1
2 and θrs <

1
2 , from (7) we

have θjk > 1−θrs. Since h(θ) = h(1−θ) and it is descending
for 1/2 < θ < 1, we have 1−h(θjk) > 1−h(1− θrs) which
is again the desired result. Similar arguments can be applied
to the other two cases.

4.2 Probability of Incorrect Ordering

In the Chow-Liu algorithm on the signs, we rely on the
estimates of the mutual information between all pairs of
variables, (j, k) ∈ V2. It is shown in [7] that the following
estimator for θjk is optimal in the sense that it is unbiased
and has minimum variance (UMVE),

θ̂jk =
1

n

n∑
i=1

I(u(i)
j u

(i)
k = 1), (8)

where I(.) is the indicator function. By substituting θ̂jk into
(4), an estimator for the mutual information of uj and uk is
obtained which we denote it by Î(uj ;uk).

Let e = (j, k) ∈ V2 be a pair of nodes in the network. For
simplicity in the notation, we use ρe, θe and Ie for ρjk, θjk
and I(uj ;uk), respectively.

Definition 1 (Crossover Event). Let e and e′ be two pairs of
nodes in the graph such that Ie > Ie′ , the crossover event occurs
when we estimate the mutual information in the reverse order, i.e.
Îe ≤ Îe′ .

The notion of crossover event was previously used by
Tan et al. in [26]. The crossover event indicates a change in
the ordering of the values of mutual information estimates.
However, it does not necessarily lead to an incorrect tree
recovery. On the other hand, if the estimated tree differs
from the original tree T , then at least one crossover event
has occurred.

The mutual information in (4) is a monotonic function
of |θ − 1/2| (see the proof of Lemma 1). Therefore, the
probability of crossover event for pairs e and e′ with Ie > Ie′
can be stated as

Pr
(
Îe ≤ Îe′

)
= Pr

(
|θ̂e −

1

2
| ≤ |θ̂e′ −

1

2
|
)
. (9)

Lemma 2. For the probability of the crossover event, it can be
assumed θjk > 1/2 for all (j, k) ∈ V2.
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Proof. Let e = (j, k) and e′ = (r, s) be two arbitrary pairs
of variables such that Ie > Ie′ or equivalently, |θe − 1/2| >
|θe′ − 1/2|. The probability of crossover event is

Pr

(
|θ̂e −

1

2
| ≤ |θ̂e′ −

1

2
|
∣∣∣∣ |θe − 1

2
| > |θe′ −

1

2
|
)
. (10)

Let us assume θe < 1/2 and θe′ > 1/2 (the other cases can
be argued similarly). We define new variable ũj = −uj . It
is clear that the joint pmf of ũj and uk is given by (2) with
parameter θ̃ = 1−θe. Thus, |θe−1/2| = |θ̃e−1/2|. Similarly,
there exists the following relation between the estimators θ̂e
and ˆ̃

θ

ˆ̃
θ =

1

n

n∑
i=1

I(ũ(i)
j u

(i)
k = 1) =

1

n

n∑
i=1

I(−u(i)
j u

(i)
k = 1)

=
1

n

n∑
i=1

(
1− I(u(i)

j u
(i)
k = 1)

)
= 1− θ̂e.

Thus, |θ̂e − 1/2| = | ˆ̃θ − 1/2|. Therefore, the crossover
probability in (10) can be expressed as

Pr

(
| ˆ̃θ − 1

2
| ≤ |θ̂e′ −

1

2
|
∣∣∣∣ |θ̃ − 1

2
| > |θe′ −

1

2
|
)
,

where both θ̃ and θe′ are greater than 1/2.

Lemma 2 shows that without loss of generality, we can
assume all θjks are greater than 1/2 which is equivalent
to assuming all correlations are positive (see equation (3)).
Note that, the condition θjk > 1

2 does not imply that the
estimator θ̂jk is also greater than 1/2.

In the following lemma, to make the exposition of the
ideas easier, we assume both θ̂e and θ̂e′ are greater than
1/2. However, in the supplementary material, we provide
an upper bound on (9) for all cases.

Lemma 3. Let {x(1), · · · ,x(n)} be n i.i.d. samples drawn from a
d-dimensional GGM. Assume that the variables have zero means
and unit variances. Then, the probability of crossover event for
two pairs e = (j, k) and e′ = (r, s) with θe > θe′ , is upper
bounded by

Pr
(
θ̂e ≤ θ̂e′

)
≤ e−nE , (11)

where E = ln(p0 + 2
√
p1p2) and

p0 = Pr (ujuk = urus) , (12)
p1 = Pr (ujuk = −1, urus = 1) , (13)
p2 = Pr (ujuk = 1, urus = −1) . (14)

Moreover, the exponent E is the tightest possible, i.e.,

E = lim
n→∞

− 1

n
ln Pr

(
θ̂e ≤ θ̂e′

)
. (15)

Proof. Consider two pairs of nodes e = (j, k) and e′ = (r, s).
By defining a random variable Ti as

Ti = I(u(i)
r u(i)

s = 1)− I(u(i)
j u

(i)
k = 1), (16)

the probability of crossover event can be written as

Pr
(
θ̂e ≤ θ̂e′

)
= Pr

(
n∑
i=1

Ti ≥ 0

)
= Pr

(
eλ

∑n
i=1 Ti ≥ 1

)
, λ > 0

(a)

≤ E
[
eλ

∑n
i=1 Ti

]
=
(
E
[
eλT

])n
=
(
p0 + p1e

λ + p2e
−λ
)n
,

where the inequality (a) is by Markov’s inequality. The
random variable T can take values [0, 1,−1] with proba-
bilities [p0, p1, p2] defined in (12)-(14). By minimizing the
last expression for λ > 0, we obtain the Chernoff bound as
follows

Pr
(
θ̂e ≤ θ̂e′

)
≤ (p0 + 2

√
p1p2)

n
= e−nE , (17)

where E = ln(p0 + 2
√
p1p2). Incorporating Theorem 2.1.24

in [39], the exponent E is indeed tight.

Unfortunately, there is no closed-form solution for the
probabilities in (12)-(14). However, when e and e′ share
a common variable, these probabilities can be obtained
analytically. For example, if uk = us (i.e. uk is the common
variable between e and e′), then the probabilities are given
by [38]

p0 =
1

2
+

arcsin ρjkρks
π

, (18)

p1 =
1

4
+
− arcsin ρjk + arcsin ρks − arcsin ρjkρks

2π
, (19)

p2 =
1

4
+

arcsin ρjk − arcsin ρks − arcsin ρjkρks
2π

. (20)

In particular, for the star structure, where all the true edges
share a common node, the bound of Lemma 3 can be
calculated in a closed-form.

In the following lemma, we propose another upper
bound on the probability of the crossover event using
Hoeffding’s bound. This bound is not tight, but it yields a
closed form expression which can be used to obtain a closed
form bound on the probability of incorrect tree estimation.

Lemma 4. The probability of the crossover event for two pairs e
and e′ with θe > θe′ , is upper bounded by

Pr
(
θ̂e ≤ θ̂e′

)
≤ e−

1
2n∆θ2

e,e′ , (21)

where ∆θe,e′ = θe − θe′ .

Proof. Since θ̂e and θ̂e′ are unbiased estimators for θe and
θe′ , we have

Pr
(
θ̂e ≤ θ̂e′

)
= Pr

(
θ̂e′ − θ̂e − E

[
θ̂e′ − θ̂e

]
≥ ∆θe,e′

)
.

Defining variable Ti as (16), we can write the above proba-
bility as

Pr
(
θ̂e ≤ θ̂e′

)
= Pr

(
1

n

n∑
i=1

(Ti − E [Ti]) ≥ ∆θe,e′

)
.
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It is clear that Ti ∈ {−1, 0, 1}, thus it is bounded in interval
[−1, 1]. Using the Hoeffding’s inequality we can obtain an
upper bound on the probability of crossover event as

Pr
(
θ̂e ≤ θ̂e′

)
≤ e−

1
2n∆θ2

e,e′ .

4.3 Probability of Incorrect Recovery

In this section, we are interested in bounding Pr
(
T̂ 6= T

)
where T̂ = (V, Ê) refers to the estimated tree from our
proposed sign method. If we assume that any error in
the ordering of mutual information estimates may lead to
incorrect recovery of the tree structure, then by the union
bound we have

Pr
(
T̂ 6= T

)
≤

∑
e,e′∈V2

e−
1
2n∆θ2

e,e′ (22)

In the following theorem, we improve on the preceding
bound by removing some of the crossover events. Moreover,
we obtain a more compact and suitable formula for the
bound.

Theorem 1. Let {x(1), · · · ,x(n)} be n i.i.d. samples drawn from
a d-dimensional tree-structured GGM. We construct n binary
vectors {u(1), · · · ,u(n)} where u(i) ∈ {−1,+1}d is the sign
vector of x(i). Assume for all (j, k) ∈ E , α ≤ ρjk ≤ β where
0 < α < β < 1. Then the probability of incorrect tree recovering
using the Chow-Liu algorithm via the binary vectors is upper
bounded by

Pr
(
T̂ 6= T

)
≤ d3e−

1
2nh

2(α,β), (23)

where h(α, β) =
1

π
(arcsinα− arcsinαβ).

The rest of this section is devoted to the proof of the
theorem. By removing any edge of the tree, T splits into two
separate sub-trees. Let us assume that in the procedure of
tree reconstruction, a true edge e = (j, k) does not appear in
T̂ . Removing e from the tree splits T into T1 = (V1, E1) and
T2 = (V2, E2). Hence, there should be an edge e′ = (r, s) ∈ Ê
which is not in E and connects T1 and T2. This is due the
fact that we constrain the tree to be connected. The following
lemma shows that e is in fact the strongest edge connecting
T1 and T2.

Lemma 5. Consider a tree-structured GGM T = (V, E). Let
e ∈ E be an edge which connects two sub-trees T1 = (V1, E1)
and T2 = (V2, E2). Then for any node pair (r, s) where r ∈ V1

and s ∈ V2, we have
θe ≥ θrs.

Proof. In any tree-structured Gaussian distributions, we
have [40]

ρrs =
∏

e∈Path(r,s)

ρe, (24)

where Path(r, s) is the set of edges in the path connecting r
and s in the tree. This means that the correlation of (r, s) is
less than any edge in the path connecting them. Since r ∈ V1

and s ∈ V2, then the path connecting r and s must include

the edge e. On the other hand, according to (3), if ρrs ≤ ρe
then θrs ≤ θe since the function arcsin is monotonic.

According to the Kruskal algorithm, the estimated θ̂jks
for all (j, k) ∈ V2 are sorted in a descending order. Scanning
from the top of the list, an edge is selected as a part of the
tree if it does not create any cycle with the previous picked
edges. In the case of error, a true edge like e ∈ E is replaced
by another false edge e′ /∈ E if θ̂e′ > θ̂e and e′ connects
the two subtrees created by removing e. On the other hand,
from Lemma 1, we know that θe′ < θe. Thus, replacing e by
e′ implies a crossover event on them.

Let e ∈ E be an edge which connects two sub-trees T1 =
(V1, E1) and T2 = (V2, E2). Let

C(e) = {e′ | e′ /∈ E and connects T1 and T2},

be the set of all candidate false edges which can substitute
the edge e in the estimated tree. Then, from the union bound
and incorporating Lemma 4 and Lemma 5, we have

Pr
(
T 6= T̂

)
≤
∑
e∈E

Pr
(
e /∈ Ê

)
≤
∑
e∈E

∑
e′∈C(e)

Pr
(
θ̂e′ ≥ θ̂e

)
≤
∑
e∈E

∑
e′∈C(e)

e−
1
2n∆θ2

e,e′ . (25)

If we obtain a lower bound on ∆θe,e′ which is indepen-
dent of the tree structure, say ∆0 ≤ ∆θe,e′ , then we have

Pr
(
T 6= T̂

)
≤ d3e−

1
2n∆2

0 . (26)

To this end, we need the following definition.

Definition 2 (Strongest Rival). The strongest rival of an edge e
is an edge e∗ ∈ C(e) with the highest θe∗ .

To find the strongest rival for an edge e = (j, k), we use
the correlation decay property of the tree-structured GGMs.
In fact, it is easy to see that e∗ is either an edge connecting
node j to one of the neighbors of node k or vice versa. In
other words, the strongest rival of an edge e, is one of the its
neighbor edges (two edges are neighbor if share a common
node). Fig. 2 illustrates the strongest rival of the edge e =
(j, k) in a sample tree. The following lemma gives a lower
bound on ∆θe,e∗ .

Lemma 6. Let e∗ be the strongest rival of an edge e ∈ E . If the
correlation coefficients ρjk for all (j, k) ∈ E satisfy α ≤ ρjk ≤ β
where 0 < α < β < 1, then ∆θe,e∗ ≥ h(α, β) where

h(α, β) =
1

π
(arcsinα− arcsinαβ). (27)

Proof. Let e = (j, k). Since e∗ /∈ E and it connects a neighbor
of j to k (or vice versa), using (24) we have

αρe ≤ ρe∗ ≤ βρe.
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Fig. 2. Illustration of the strongest rival edge for e = (j, k) in a sample
tree. The weights are the correlation coefficients.

Therefore, in order to obtain a lower bound on ∆θe,e∗ ,
we need to solve the following constrained optimization
problem:

min
ρe,ρe∗

arcsin ρe − arcsin ρe∗ , (28)

subject to:
αρe ≤ ρe∗ ≤ βρe,
α ≤ ρe ≤ β.

Defining a new parameter η = ρe∗/ρe, the above optimiza-
tion problem can be written as

min
ρe,η

arcsin ρe − arcsin ηρe, (29)

subject to:
α ≤ ρe ≤ β
α ≤ η ≤ β.

Taking derivative with respect to ρe and η we have,

∂

∂ρe
=

1√
1− ρ2

e

− η√
1− η2ρ2

e

> 0,

∂

∂η
=

−ρe√
1− η2ρ2

e

< 0.

Hence, the minimum is attained at (ρe, η) = (α, β). Thus,
ρe∗ = ηρe = αβ. By substituting (ρe, ρe∗) = (α, αβ) into
∆θe,e∗ the lower bound in (27) is obtained.

With the above lemma, we obtain ∆0 = h(α, β) in (26).
Hence, we complete the proof of Theorem 1.

Remark 2. Since we have not imposed any constraint on the tree
structure, the upper bound in Theorem 1 is obtained for the worst
case of the structure resulting the prefactor of d3 which is tight
for the chain structure. However, the prefactor can be reduced
in many cases such as the star structure which requires d2 as the
prefactor. However, the prefactor has negligible effect if sufficiently
large sample size n is available.

Remark 3. Replacing ∆0 for all the rival edges is not optimal
in general. However, in the special case of the star structure with
equal edge weights, for instance, it is tight. Hence, some prior
knowledge about the tree structure can lead to possibly better
bounds.

5 STRUCTURE LEARNING WITH DIRECT CORRE-
LATION ESTIMATION

The Chow-Liu algorithm requires a good estimate of the
mutual information between pairs of variables. In GGMs,

according to (1), quality of the mutual information estima-
tion depends on the accuracy of correlation estimation. In
the sign method (Section 4), we do not estimate the corre-
lations between normal variables based on the binary data.
By contrast, in this section, we aim to quantize data with R
bits and to estimate the correlation coefficients between the
normal variables using the quantized data.

Instead of estimating the mutual information in (1) using
the quantized data, we use an unbiased estimator for ρ2.
This is due to the fact that obtaining an unbiased estimator
for the mutual information is a hard problem. The following
estimator for ρ2 is unbiased:

ρ̂2 =
n

n+ 1

(
ρ̄2 − 1

n

)
, (30)

where ρ̄ is the sample correlation coefficient, i.e.

ρ̄ =
1

n

n∑
i=1

x
(i)
j x

(i)
k . (31)

In our problem setting, we calculate ρ̄ using the R-bit
quantized data. We define

ρ̄q =
1

n

n∑
i=1

u
(i)
j u

(i)
k , (32)

which is the sample correlation coefficient of the quantized
data. Obviously, by increasing the bit rate R, ρ̄q approaches
ρ̄. To measure the performance of the quantization method,
we define the relative error as

errrel , E [|ρ̄− ρ̄q|] , (33)

where the expectation is taken over all original and quan-
tized variables (xj , xk, uj , uk). We call the error function
in (33) as relative correlation error. It measures the expected
difference between sample correlation coefficient on the
original and quantized data. Our main objective is to obtain
a good estimate for the true correlation coefficient. Thus, we
define the estimation error of a quantization method as

errest = E [|ρ− ρ̄q|] , (34)

where the expectation is taken over the quantized variables
(uj , uk).

Although we aim at designing a quantization method
which have a small estimation error, most of existing effi-
cient source coding schemes are designed to minimize the
reconstruction error. More precisely, denoting the original and
quantized versions by x and u. These methods quantize the
data with the following constraint

E
[
(x− u)2

]
≤ D, (35)

where D is the maximum allowable reconstruction error.
For example, there exists an optimal coding scheme for
normal variables based on the rate-distortion theory [40].
In our problem setting, minimizing the reconstruction error
is not the main objective. Our goal is to minimize the error
functions defined in (33) and (34). However, the following
theorem guarantees that upper bounding the reconstruction
error results in upper bounding the relative correlation error.

Theorem 2. Let {x1, · · · , xn} and {y1, · · · , yn} be two sets
of i.i.d. samples from any joint distribution P (x, y) such that x
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and y have zero means and unit variances. If {u1, · · · , un} and
{v1, · · · , vn} are the corresponding encoded sequences by any
quantizer with

E

[
1

n

n∑
i=1

(xi − ui)2

]
≤ D1,

E

[
1

n

n∑
i=1

(yi − vi)2

]
≤ D2,

then

errrel ≤
√
D1 +

√
D2 +

√
D1D2. (36)

The proof of the theorem is presented in Appendix A.
The above theorem suggests that designing a coding scheme
with small reconstruction error yields a desirable relative
correlation error.

Lemma 7. The estimation error in (34) can be upper bounded as
follow

errest ≤
√

1 + ρ2

n
+ errrel. (37)

Proof. Using the triangle inequality, we have

E [|ρ− ρ̄q|] ≤ E [|ρ− ρ̄|] + E [|ρ̄− ρ̄q|] . (38)

On the other hand, using the Jensen’s inequality and the
convexity of the square function, we have

E2 [|ρ− ρ̄|] ≤ E
[
(ρ− ρ̄)2

]
=

1 + ρ2

n
. (39)

By combining (38) and (39), the bound in (37) is obtained.

Next, we obtain upper bounds on errest and errrel for our
per-symbol quantization method. In this method, we first
quantize each sample to a discrete random variable u ∈ U
where |U| = 2R. Thus, each sample u can be encoded by R
bits. Assume we have a standard normal random variable
x ∼ N (0, 1) which we want to quantize by R bits. To this
end, we construct 2R equally probable bins over the real axis
and use bins’ centroids as the reconstruction points. These
centroids are indeed the members of U which is used for
compression of x. To compress x, we send index of the bin
that x belongs to it by R bits.

For the standard normal distribution, u can have a
value from the codebook U = {c1, · · · , c2R} where ci is
the centroid of i-th bin. Denoting the i-th bin interval by
(ai, ai+1), its centroid ci is obtained by

ci =
2R√
2π

(
e−a

2
i /2 − ea

2
i+1/2

)
, i = 1, · · · , 2R. (40)

Interval boundaries {ai} are obtained as follow. We first set
a1 = −∞. Then, given ai−1, we iteratively obtain ai as the
solution of the following equation:∫ ai

ai−1

N (x; 0, 1)dx = 2−R; i = 2, · · · , 2R + 1.

The expectation of reconstruction error for this coding
scheme is obtained as follows,

E
[
(x− u)

2
]

= 1 + σ2
u − 2

2R∑
i=1

∫ +∞

−∞
cixp(x)p(u|x)dx

= 1 + σ2
u − 2

2R∑
i=1

∫ ai+1

ai

cixp(x)dx

= 1 + σ2
u − 2 · 2−R

2R∑
i=1

c2i

= 1− σ2
u, (41)

where σ2
u is the variance of discrete variable u. Evidently, by

increasing the bit rate R, σ2
u approaches 1. After encoding

the normal variables using the above method, the central
machine estimates the correlation between xj and xk for any
(j, k) ∈ V2 using (32). Then, it estimates ρ2 by substituting
ρ̄q in (30). Finally, by applying the Chow-Liu algorithm, the
structure of underlying GGM is estimated.

According to Theorem 2 and the reconstruction error in
(41), the relative correlation estimation error in (33) is upper
bounded by

errrel ≤ 2
√

1− σ2
u + 1− σ2

u. (42)

The variance σ2
u is a function of the bit rateR, but it does not

have an explicit closed form expression. By incorporating
Lemma 7, the estimation error of per-symbol quantizer is
upper bounded by

errest ≤ 2
√

1− σ2
u + 1− σ2

u +

√
1 + ρ2

n
. (43)

In Section 6, we will evaluate the performance of this
method for structure estimation on real and synthetic
datasets.

6 EXPERIMENTS

In this section, we evaluate the performance of our proposed
structure learning methods empirically on some synthetic
and real-world datasets. The results show that quantizing
samples to few bits is enough to estimate the underlying
structure of the model. In all the experiments, double-
precision floating-points (64 bit) are used for the original
data.

6.1 Synthetic Data
Synthetic data are generated from a random tree with d
nodes. Then, a random weight is assigned to each edge
of the tree which corresponds to the correlation coefficient
between endpoint variables of the edge. The correlation
coefficient between any pair of variables which are not
neighbor, can be obtained by (24). Thus, using this weighted
tree, the covariance matrix of the GGM is obtained and
n i.i.d. samples are drawn from the underlying normal
distribution. Finally, dimensions of the data are distributed
among d machines.

In Fig. 3, the performance of the sign method and per-
symbol quantization for different values of n and R is
plotted. In this experiment, the underlying GGM has 20



9

500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

E
rr

o
r 

P
ro

b
.

 

 

Sign Method

Per−Symbol (R = 1)

Per−Symbol (R = 2)

Per−Symbol (R = 3)

Per−Symbol (R = 4)

Original Data

Fig. 3. The structure estimation error for different values of R and n.
Here, the random GGM has 20 nodes.

Fig. 4. A sample sub-tree of three nodes for evaluation of the crossover
error bound.

variables. To approximate the probability of error, for each
sample size n, we run the algorithms 1000 times and count
the number of incorrect estimated trees. The experiment
shows that recovering the structure from the sign method
yields better performance than the per-symbol method
for R = 1. Interestingly, the error of 4-bit per-symbol is
very close to the non-quantized (original data) curve. This
means that the accuracy of correlation estimation using 4-
bit quantized data is sufficient to achieve the centralized
performance in structure estimation.

6.1.1 Evaluation of the Error Bounds

We first focus on a simple tree with three nodes and cor-
relations coefficients ρ1 = 0.9 and ρ2 = 0.1, as depicted
in Fig. 4. A crossover event happens if the estimate of the
mutual information associated to e′ exceeds that of e. To
evaluate the error bounds of this event obtained in Lemma
3 and Lemma 4, we also provide the exact error which can be
calculated by a brute force summation of the tail probability
of Pr(θ̂e ≤ θ̂e′). Fig. 5 depicts the probability of crossover
event versus the number of samples. As can be seen, the
upper bound of Lemma 3 converges to the exact error faster
than the bound of Lemma 4.

In Fig. 6, the exponent of exact error, Chernoff bound
(Lemma 3) and Hoeffding bound (Lemma 4) for the struc-
ture of Fig. 4 are compared. In the figure, the quantity
− 1
n ln Pr(θ̂e ≤ θ̂e′) is plotted for various sample sizes. As

stated in Lemma 3, the bound obtained based on Chernoff
bound is tight in the exponent. However, Hoeffding bound
is not tight in this case.

Fig. 7 shows the probability of incorrect recovery of the
tree structure using the sign method as a function of sample
size. We have used a star structured tree with 20 nodes
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Fig. 5. Probability of the crossover event for e and e′ in Fig. 4.
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Fig. 6. The crossover error exponent for e and e′ in Fig. 4.

and correlations of 0.5 which due to Remark 3 is the worst
structure.

In Fig. 8, the exponent of the bound of Theorem 2 on
errrel is plotted as a function of bit rateR. In this experiment,
the true correlation coefficient is ρ = 0.5 and the sample
size is n = 1000. The empirical error curve is obtained by
averaging over 1000 runs. In the figure, the y axis represents
the quantity − 1

R ln(errrel). As can be seen from the figure,
the upper bound is not tight in the exponent for Gaussian
data. Note that the error bound in Theorem 2 is valid for
any distribution and any quantization method.

6.1.2 Quality versus Quantity

Generally, quantization of data samples decreases the ac-
curacy of any parameter estimation. The quantization of
all samples, which is considered so far, may not be the
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Fig. 9. The mean absolute error of correlation estimation. The total
communication cost for each machine is limited to K = 1000 bits.

best strategy for decreasing the communication complexity.
In fact, if the budget of total number of transmission bits
is fixed, then one may want to sub-sample from the local
datasets and allocate the available bits to these samples and
discard the rest.

Based on the bound in (43) and through an experiment,
we show that there is a trade-off between the quality of
quantized samples and the size of sub-sampled data to
achieve the best performance.

For example, assume that the budget of communication
is K = 1000 bits and the number of local data samples
is n = 1000. This means each local machine can, for
instance, transmit 1000 samples which are quantized by 1
bit. However, machines can select the first 500 samples and
quantize them to 2 bits. Which method is better in the sense
of minimizing the estimation error errest?

To answer the question, we have simulated our proposed
algorithm with K = 1000 and n = 1000. In Fig. 9, the
estimation error in (34) for the estimator in (32) is plotted
for various bit rates. In this experiment, the true value of
correlation is 0.5. As can be seen from the figure, the error
is minimized when R = 4 bits are used for quantization
which is correspond to the sub-sampling size of 250. The
figure also shows that the estimation with large number of
highly distorted (quantized) samples is inefficient as well
as estimating with low number of high quality samples. In
fact, this experiment suggests that in situations with large
local datasets and limited communication cost, the optimal
strategy is to quantize some portion of the whole dataset
with an acceptable distortion. The upper bound in (43)
for the per-symbol scheme is also plotted for the sake of
comparison.

6.2 Real-World Dataset: Skeleton Recovering
To assess our methods on real datasets, the MAD1 dataset
is used. This dataset is designed for human activity recog-
nition and event detection in the computer vision area [41],
[42]. The MAD dataset is generated by a Microsoft Kinect
sensor in indoor environment. In the dataset, there are 20
sensors attached to 20 joints of the human body. Each sen-
sor records 3D coordinate of its corresponding joint while
the subject does an activity. The MAD dataset has three
modalities includes RGB video, 3D depth, and skeleton (3D
coordinate of the joints). In this experiment, we have used
the skeleton modality.

In the dataset, 20 subjects perform 35 different actions
(e.g. jumping, walking, running, etc.) and each subject re-

1. Multi-modal Action Database (available at: http://www.
humansensing.cs.cmu.edu/mad)

(a) (b) (c) (d)

Fig. 10. Structure learning of the human body skeleton on x dimension
of the MAD dataset. (a) The true human body skeleton. The estimated
structures using quantized data with rates 1, 3, and 6 bits are shown
in (b), (c), and (d), respectively. The skeleton of (b) is obtained by both
signs and 1-bit per-symbol methods.

(a) (b) (c) (d)

Fig. 11. Structure learning of the human body skeleton on z dimension
of the MAD dataset. The recovered structure using the original data is
shown in (a) . The estimated structures using quantized data with 1-bit
sign method, 1-bit per-symbol method, and 7-bit per-symbol are shown
in (b), (c), and (d), respectively.

peats the actions twice. Finally, the skeleton dataset contains
243586 3D coordinates per joint.

We assume that the skeleton dataset follows from a tree-
structured GGM which its structure is identical to the hu-
man body skeleton as depicted in Fig. 10-(a). This assump-
tion intuitively makes sense for such a dataset. Gaussian
assumption for similar datasets are proposed in [43] and
[44].

In this experiment, the skeleton dataset is quantized to
several bit rates using the proposed per-symbol quantizer.
Fig. 10 shows the results for bit rates 1, 3, 5, and 6 bits.
Applying the Chow-Liu algorithm on x dimension of the
original (non-quantized) data, perfectly recovers the body
skeleton. Quantizing the x dimension to 1 bit (using per-
symbol and the sign method) results in merely two disagree-
ment edges as showed in Fig. 10-(b). Quantizing to 3 bits has
only one incorrect edge and quantizing to 6 bits recovers the
body skeleton perfectly.

A similar experiment is performed on the z dimension.
The results are depicted in Fig. 11. Interestingly, the z dimen-
sion does not follow a tree structured GGM even for the case
where the original data is available. However, as the bit rate
increases the original structure can be recovered reliably. We
have not presented the experiment on the y dimension here.
This is due to the fact that the structure inferred from the
original data has no relation with the human skeleton.

http://www.humansensing.cs.cmu.edu/mad
http://www.humansensing.cs.cmu.edu/mad
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7 CONCLUSION

In this paper, we have studied the structure learning of tree-
structured GGMs on distributed datasets. Due to commu-
nication constraints, we have jointly designed quantization
and learning algorithms to achieve high accuracy in infer-
ring the underlying tree structure. In particular, we have
proposed two methods for compressing the local datasets:
sign method and per-symbol quantizer.

Being rather simple and intuitive, the experimental re-
sults show that the per-symbol quantizer yields high accu-
racy for structure estimation by spending a few bits per sam-
ple. Pushing down the number of bits per sample to one, we
have proved through experiments and analytical reasoning
that even in this case, one can obtain exponentially decaying
error probabilities in structure learning.

Our result can be extended in several directions. For
instance, the tree structure can be generalized to sparse
structures where sparse learning methods such as glasso
over the quantized data might be crucial. As another ex-
tension, one can study and solve a similar problem on
discrete variables with sparse MRFs. Removing the central
machine and allowing communication between local ma-
chines change the problem significantly and it worths of
investigations.

APPENDIX A
PROOF OF THEOREM 2

Since variables x and y have unit variances, we have
0 ≤ D1, D2 ≤ 1. The relative correlation error can be upper
bounded as follows

errrel = E

[∣∣∣∣∣ 1n
n∑
i=1

xiyi −
1

n

n∑
i=1

uivi

∣∣∣∣∣
]

= E

[∣∣∣∣∣ 1n
n∑
i=1

yi (xi − ui) +
1

n

n∑
i=1

ui (yi − vi)
∣∣∣∣∣
]

≤ E

[∣∣∣∣∣ 1n
n∑
i=1

yi (xi − ui)
∣∣∣∣∣
]

+ E

[∣∣∣∣∣ 1n
n∑
i=1

ui (yi − vi)
∣∣∣∣∣
]
.

Using the Cauchy-Schwartz inequality, we obtain

errrel

(a)

≤ E

( 1

n

n∑
i=1

y2
i

)1/2(
1

n

n∑
i=1

(xi − ui)2

)1/2
+

E

( 1

n

n∑
i=1

u2
i

)1/2(
1

n

n∑
i=1

(yi − vi)2

)1/2


(b)

≤
(
E

[
1

n

n∑
i=1

y2
i

])1/2(
E

[
1

n

n∑
i=1

(xi − ui)2

])1/2

+

(
E

[
1

n

n∑
i=1

u2
i

])1/2(
E

[
1

n

n∑
i=1

(yi − vi)2

])1/2

≤
√

E [y2]D1 +

√√√√D2 E

[
1

n

n∑
i=1

u2
i

]
. (44)

On the other hand, we have

D1 ≥ E

[
1

n

n∑
i=1

(xi − ui)2

]

= 1 + E

[
1

n

n∑
i=1

u2
i

]
− 2E

[
1

n

n∑
i=1

xiui

]

≥ 1 + E

[
1

n

n∑
i=1

u2
i

]
− 2E

( 1

n

n∑
i=1

x2
i

)1/2(
1

n

n∑
i=1

u2
i

)1/2


≥ 1 + E

[
1

n

n∑
i=1

u2
i

]
− 2

(
E

[
1

n

n∑
i=1

x2
i

]
E

[
1

n

n∑
i=1

u2
i

])1/2

=


√√√√E

[
1

n

n∑
i=1

u2
i

]
− 1

2

.

Hence,

E

[
1

n

n∑
i=1

u2
i

]
≤
(√

D1 + 1
)2
. (45)

By substituting the above bound into (44), we obtain

errrel ≤
√
D1 +

√
D2 +

√
D1D2, (46)

which completes the proof of Theorem 2.
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