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Abstract—Multifractal analysis has become a powerful signal
processing tool that characterizes signals or images via the
fluctuations of their pointwise regularity, quantified theoretically
by the so-called multifractal spectrum. The practical estimation
of the multifractal spectrum fundamentally relies on exploiting
the scale dependence of statistical properties of appropriate
multiscale quantities, such as wavelet leaders, that can be robustly
computed from discrete data. Despite successes of multifractal
analysis in various real-world applications, current estimation
procedures remain essentially limited to providing concave upper-
bound estimates, while there is a priori no reason for the multi-
fractal spectrum to be a concave function. This work addresses
this severe practical limitation and proposes a novel formalism
for multifractal analysis that enables nonconcave multifractal
spectra to be estimated in a stable way. The key contributions
reside in the development and theoretical study of a generalized
multifractal formalism to assess the multiscale statistics of wavelet
leaders, and in devising a practical algorithm that permits
this formalism to be applied to real-world data, allowing for
the estimation of nonconcave multifractal spectra. Numerical
experiments are conducted on several synthetic multifractal
processes as well as on a real-world remote-sensing image and
demonstrate the benefits of the proposed multifractal formalism
over the state of the art.

Index Terms—Multifractal analysis, nonconcave multifrac-
tal spectrum, wavelet leaders, Legendre transform, generalized
canonical ensemble

I. INTRODUCTION

A. Context
Multifractal analysis is a signal and image processing tool

that permits to study a function (signal, image) X : Rd → R
based on properties of its pointwise regularity, which is
quantified by a pointwise regularity exponent h(y) (such as the
Hölder exponent, see, e.g., [1] and Section II-A). More pre-
cisely, multifractal analysis characterizes the (temporal/spatial)
repartition of h(y) by means of the multifractal spectrum,
DH(h) (defined as the Hausdorff dimension of the set of
points where h(y) = h), that provides a global and geometric
description of the fluctuations of the regularity of X along y.
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Along the last decade, multifractal analysis has become
a standard statistical signal and image processing multiscale
methodology, massively popularized by its naturally being
based on wavelet transforms, available in most recent and
up-to-date signal/image processing toolboxes, cf. e.g., [2]–[7].
It has been successfully applied in various contexts for the
characterization of real-world data of different natures, ranging
from natural signals (physics [8], geophysics [9], [10], biology
and biomedical applications [11]–[13], neurosciences [14]–
[16]), to man-made signals (Internet traffic [17]–[19], finance
[20], art investigations [21], [22]), to name but a few.

In practice, for discrete data, DH(h) cannot be estimated
from its definition because neither h(y) nor Hausdorff dimen-
sions can be computed in a stable way. Instead, use must be
made of theoretical connections between DH(h) and the statis-
tics of suitable multiscale coefficients TX(a, y) computed from
X , i.e., quantities that jointly depend on position y and scale a.
Different TX were proposed in the literature, e.g., increments,
oscillations, wavelet or multifractal-detrended fluctuation anal-
ysis coefficients [23], [24] and, recently, wavelet leaders [1],
[25], [26]. Wavelet leaders are specifically designed to meet
theoretical requirements for multifractal analysis and will
be used in this work. The choice of TX has been studied
elsewhere, e.g., [5], and will not be further discussed here.

The purpose of multifractal analysis is to establish a link
between the multifractal spectrum DH(h) of X and the way
the statistics of the quantity h(a, y) = log(|TX(a, y)|)/ log(a)
depend on scale a as a → 0. Importantly, in practice, the
quantities h(a, y) can be robustly computed from X . There
exist several ways, reviewed in the next paragraph, that relate
the multiscale statistics of h(a, y) to the theoretical multifractal
spectrum DH(h).

B. State of the art

Large deviations. The large deviation principle and the
Gartner-Ellis theorem [27] allow to establish a connection
between DH(h) and h(a, y), as historically first put into
light by B. Mandelbrot and collaborators (cf., e.g., [1], [28]).
Let D(h, a, ε) = log

(
card{h(a, y) : h − ε ≤ h(a, y) ≤

h + ε}
)
/ log a; the large deviation spectrum associated with

the multiscale quantity TX(a, y) is defined as the double limit
DLD(h) , limε→0 lim supa→0D(h, a, ε). It is well known
that DLD yields an upper bound for DH: DLD(h) ≥ DH(h)
∀h [1], [28], which suggests its use as an estimate of the
multifractal spectrum. It is, however, also well documented
that taking the double limit in the definition of DLD is
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numerically difficult if not impossible to handle, so that the
large deviation spectrum remains rarely used in practice, cf.
[29] and references therein. One notable attempt for computing
DLD was proposed in [29]. However, it relies on oscillations
for TX , and on a specific coupling of the rates of the two
limits, which is theoretically grounded for the concave parts
of multifractal spectra only.
Multifractal formalism. As a robust alternative to the large
deviation attempt, the multifractal formalism [1], [28], [30]
provides another upper-bound estimate for DH, the so-called
Legendre spectrum L. It is fundamentally based on the sample
moments of order q of |TX(a, y)|, and consists in taking the
Legendre transform L(h) , infq(d+qh−ζ(q)) of the function
ζ(q) = lim infa→0 log

(
1
na

∑na
y=1 |TX(a, y)|q

)
/ log a. The

Legendre spectrum L provides a conceptually simple and
numerically stable way to estimate DH, and is widely used
in practice. This multifractal formalism, using wavelet leaders
as multiscale quantities TX(a, y), constitutes one of the state-
of-the-art methods for estimating multifractal spectra, cf., e.g.,
[5], [31].

However, as detailed in Section II-C2, L yields a poorer
bound, compared to DLD, for DH: L(h) ≥ DLD(h) ≥
DH(h). Further, the main conceptual and practical limitation
of using L arises from the fact that it can only provide concave
estimates for DLD, hence for DH. This constitutes a strong
practical restriction, since there is a priori no reason for DH,
nor for DLD, to be concave functions. Thus, the practical
estimation of nonconcave multifractal spectra currently con-
stitutes one of the open challenges in multifractal analysis:
Theoretically, there are well-defined stochastic processes (such
as Levy motions with Brownian components) for which DH is
known to be nonconcave; practically, estimating nonconcave
spectra could permit to detect that empirical observations
actually mix several phenomena of different origins, and are
hence characterized by the supremum of independent (possibly
concave) spectra (cf. Section IV for examples).
Robust statistics. While the limitations of the Legendre
spectrum have long been recognized, numerically robust pro-
cedures that allow to obtain stable nonconcave estimates for
nonconcave multifractal spectra have been proposed only re-
cently: The quantile spectrum, LQ [32], and the leader profile
method [33]. Both methods rely on wavelet leaders and on a
modification of the large deviation spectrum using alternative
ways for studying the distributions of h(a, y). In essence,
the leading idea is to replace D(h, a, ε) with robust statistics
(such as quantiles). These approaches permit to estimate the
increasing hull (resp. the decreasing hull) of DLD, i.e., the
least increasing (resp. decreasing) function larger than DLD,
hence yielding L(h) ≥ LQ(h) ≥ DLD(h) ≥ DH(h).
However, they cannot work for ranges of h where DLD(h)
has a local minimum, which is at the heart of the current
work.

C. Goals and contributions

The goal of the present work is to construct and study a gen-
eralized multifractal formalism that permits the numerically
stable estimation of potentially nonconcave large deviation

spectra. The originality of the proposed solution consists in
tackling the conceptual limitation of the multifractal formalism
to concave estimates directly at its origin, i.e., in modifying
the Legendre transform underlying the multifractal formalism
(which is recalled in Section II-C2). The procedure is inspired
from a general ensemble thermodynamic formalism in statis-
tical physics (cf. [34]–[37] and preliminary results in [38]).

The main contributions of this work are the following.
First, we develop the theoretical principle of this generalized
multifractal formalism in the context of wavelet leaders (cf.
Sections III-A and III-B), and prove that it preserves the
computational advantages of the Legendre-transform-based
multifractal formalism while permitting the estimation of
nonconcave multifractal spectra, thus yielding tight bounds
for DLD(h) (hence for DH(h)). Second, we construct the
corresponding practical algorithm, the generalized multifractal
formalism, that can be used to robustly compute accurate
numerical estimates for multifractal spectra of general shape
from finite-resolution data (cf. Section III-C). Third, we study
and validate numerically the proposed generalized multifractal
formalism for several examples of synthetic (1D) signals and
(2D) images with known and prescribed multifractal spectra,
of both concave and nonconcave shapes, and compare them
with the Legendre spectrum and quantile spectrum methods
(cf. Section IV). The results indicate that the proposed method
yields excellent estimates for multifractal spectra, be they of
concave or nonconcave shapes. Finally, we illustrate the use
of the formalism for the multifractal analysis of a real-world
satellite image. The corresponding MATLAB routines will be
made available at the time of publication.

II. MULTIFRACTAL ANALYSIS

A. Pointwise regularity and multifractal spectrum

Local regularity: Hölder exponent. Let X(y), y ∈ Rd,
denote the signal, image or function to analyze. Hereafter, we
assume that X is locally bounded. This assures that pointwise
Hölder regularity, used here to characterize the fluctuations of
regularity in X , is well defined and that wavelet leaders, the
corresponding multiscale quantity, cf. (3), also are well defined
(see, e.g., [25], [31], [32] for details and ways to relax this
condition). The function X belongs to the pointwise Hölder
space Cα(y) if there exist K > 0 and a polynomial Py (with
deg(Py) < α) such that |X(y + x) − Py(x)| ≤ K|x|α for
x→ 0. The Hölder exponent of X at y is defined as

h(y) , sup{α : X ∈ Cα(y)} (1)

and quantifies the regularity of X at y (see, e.g., [1]): the
smaller (larger) h(y), the “rougher” (smoother) X is at y.
Global description: Multifractal spectrum. The goal of
multifractal analysis is to study the repartition of the pointwise
regularity h along time (or space) y. Importantly, this is not
achieved locally by the function h(y) itself, but rather globally
and geometrically via the multifractal spectrum, defined as the
fractal (Hausdorff) dimension of the sets of points where the
Hölder exponent takes a given value h

DH(h) , dimH({y ∈ Rd : h(y) = h}) ≤ d, (2)
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where dimH denotes the Hausdorff dimension (by convention,
dimH(∅) = −∞) [1], [28], [30].

B. Wavelet leaders and pointwise regularity

Wavelet coefficients. Let {ψ(i)}i=1,...,2d−1 be a family of
mother wavelets, i.e., oscillating functions with fast decay,
good joint time-frequency localization, and such that the
collection {2dj/2ψ(i)(2jy − k), i = 1, . . . , 2d − 1, j ∈
Z, k = (k1, . . . , kd) ∈ Zd} of dilated (to scale a = 2−j) and
translated versions of ψ(i) is an orthonormal basis of L2(Rd).
The functions ψ(i) guarantee a number of vanishing moments
Nψ ∈ N, i.e.,

∫
ykψ(i)(y)dy = 0 for k = 0, · · · , Nψ − 1.

The discrete wavelet coefficients of X are defined as: c(i)j,k =

2dj/2
∫
Rd X(y)ψ(i)(2jy − k)dy, c.f., e.g., [39] for details.

Wavelet leaders. Let λj,k =
[
2−jk1, 2

−j(k1 + 1)
)
× · · · ×[

2−jkd, 2−j(kd + 1)
)

denote a dyadic cube of width 2−j at
position 2−jk, and 3λj,k denote the union of λ and its 3d− 1
closest neighbors. The wavelet leaders are defined as [1]

Lj,k , sup
i,λj′,k′⊂3λj,k

2dj/2|c(i)j′,k′ |, (3)

that is, as the supremum of the L1-normalized discrete wavelet
coefficients in a narrow time neighborhood of y = 2−jk for
all finer scales j′ ≥ j.
Wavelet leaders and pointwise regularity. Further, let λj,ky
denote the only cube at scale 2−j that includes y. The local
decay rate of wavelet leaders reproduces the Hölder exponent
in the limit of fine scales as [1]

h(y) = lim inf
j→∞

log2 Lλj,ky
−j . (4)

C. Wavelet leaders and spectra

1) Large deviation spectrum: As sketched in the introduc-
tion, the large deviation spectrum DLD, here formally defined
on wavelet leaders, permits to approximate the Hausdorff
spectrum DH. Motivated by (4), let us define

h(y, 2−j) =
log2 Lλj,ky
−j . (5)

Then, the large deviation spectrum is defined as

D(h, 2−j , ε) =
log2

(
card{h(y, 2j) : h−ε ≤ h(y, 2j) ≤ h+ε}

)

−j ,

(6)
DLD(h) , lim

ε→0
lim sup
2−j→0

D(h, 2−j , ε). (7)

Importantly, in general, spectra DH or DLD need not be con-
tinuous functions. However, while the Hausdorff spectrum DH
can be a function of any shape (and as general as an arbitrary
supremum of a countable family of continuous functions [40]),
DLD is, by construction, upper-semicontinuous.

Proposition 1. The large deviation spectrum DLD, as defined
in (7), is an upper-semicontinuous function on R ∪ {+∞},
satisfying: ∀h, h0 ∈ R,∀ε > 0, ∃δ > 0, if |h − h0| ≤ δ, then
DLD(h) ≤ DLD(h0) + ε.

The proof is postponed to Appendix A.

2) Multifractal formalism and Legendre transform: Also
inspired from (4), the multifractal formalism is fundamentally
based on the evolution across scales of the qth sample mo-
ments of Lj,k (with nj the number of Lj,k at scale j)

S(q, j) ,
1

nj

nj∑

k=1

(Lj,k)
q
, (8)

often referred-to as the structure function. Let the scaling
function (or scaling exponents) be defined as

ζ(q) , lim inf
j→+∞

log2 S(q, j)

−j , (9)

i.e., S(q, j) ∼ 2−jζ(q), j → +∞. The scaling function
can be related to DLD, by combining the following heuristic
arguments (cf, e.g., [1], [28], [30]): From (7), there are
roughly ∼ 2jDLD(h) cubes λj of width 2−j which cover
locations y where h(y) = h, and, owing to (4), each of
these contributes to S(q, j) as ∼ 2−jqh(y). Therefore, since
nj ∼ 2dj , S(q, j) ∼ ∑h 2−j(d+qh−DLD(h)). In the limit of
fine scales the smallest exponent dominates, it hence follows
that

ζ(q) = DLD?(q) , inf
h
{d+ qh−DLD(h)} , (10)

i.e., DLD? is the Legendre (or Legendre-Fenchel) transform
of DLD, cf., [1], [28], [41]. The Legendre transform satisfies
(cf., e.g., [36], [41]):

Property 1. f?(h) is always a concave function of h.
Property 2. Let f?? = (f?)? be the double Legendre

transform of f(h), thus f??(x) ≥ f(x) with equality when
f is concave.

Remarkably, while the lim inf in (4) cannot practically
be replaced by a lim so that pointwise exponents cannot
be robustly estimated by log-log plot regressions, it usually
turns out to be the case after a space averaging as performed
by S(q, j). Thus, robust estimates of ζ can be practically
obtained, as well as of the so-called Legendre spectrum L
(using Property 2)

L(h) , (DLD)??(h) = ζ?(h) = inf
q

(d+ qh− ζ(q)). (11)

The Legendre spectrum L provides a robust and numerically
stable estimate of DH because the scaling function ζ can be
assessed numerically in a robust manner, by linear regressions
of log2 S(q, j) versus j, cf., e.g., [5] and Section III-C.
However, from Properties 1 and 2, it follows that L always is
a concave function, regardless of the shape of DLD

L = ζ? = (DLD)?? ≥ DLD ≥ DH. (12)

III. GENERALIZED MULTIFRACTAL FORMALISM

A. Generalized Multifractal Formalism: Principle

1) Definition and properties: Following [34]–[37], the intu-
ition underlying the construction of the proposed generalized
multifractal formalism is to lift DLD by a known and well-
chosen function g, to perform a Legendre-transform-type
estimate of the lifted spectrum, and then to subtract g to yield
a new, sharper bound for DLD. This bound is not necessarily
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concave, and the method preserves the computational advan-
tages of the Legendre transform.

Definition 1 (Generalized Legendre Spectrum). Let g : R 7→
R∪{−∞} be an admissible continuous function satisfying: i)
g(x)→ −∞ when x→ ±∞; ii) g(x) 6= −∞ on an arbitrary
interval I of nonempty interior; iii) g is continuous on I . The
generalized Legendre spectrum is defined as:

Lg(h) , (DLD + g)??(h)− g(h). (13)

Functions g(x) = −x2 and g(x) = −|x| constitute two
simple examples of admissible functions, with conditions ii)
and iii) being satisfied for any interval I = [a, b] ⊂ R [37].

The generalized Legendre spectrum possesses the following
property of key practical importance:

Proposition 2. Lg ≥ DLD, and equality holds if and only if
DLD + g is concave.

Proof. By Property 2, (DLD + g)?? ≥ DLD + g, and equality
holds if and only if DLD + g is concave. Using this in (13)
implies Lg = (DLD+g)??−g ≥ (DLD+g)−g = DLD.

From Proposition 2, Lg , like L, yields an upper bound for
DLD. However, unlike L, Lg can be nonconcave and can
hence potentially provide a better bound. Indeed, if DLD + g
is a concave function but DLD is nonconcave, then Lg is
nonconcave; in this case Lg = DLD while L ≥ DLD. The
following proposition formalizes the intuition that Lg provides
better upper bounds for DLD than L.

Proposition 3. Let g : R 7→ R be a concave function. Then,

∀h, L(h) ≥ Lg(h) ≥ DLD(h). (14)

The proof is postponed to Appendix B.
2) Intuition and illustration: The classical Legendre spec-

trum DLD?? provides the concave envelope of DLD obtained
from the set of supporting lines of DLD [36], [37]. When
gγ(h) = −γh2, the generalized version of the Legendre trans-
form Lgγ provides the parabolic envelope of DLD, obtained
from the set of supporting parabolas. Interested readers are
referred to, e.g., [36], [37] for further details.

To gain intuition, the generalized Legendre spectrum and
its properties are illustrated with a simple example consisting
of a nonconcave large deviation spectrum, composed of two
parabolas

DLD(h) =

{
1− (h+ 1)2 if − 2 < h < 0,

1− (h− 1)2 if 0 ≤ h ≤ 2,
(15)

and DLD(h) = −∞ otherwise. L can be computed analyti-
cally and is compared to DLD in Fig. 1 (top row), showing
that L(h) > DLD(h) for h ∈ (−1, 1), and that L does not
recover the nonconcave parts of DLD. With gγ(h) = −γh2,
γ ≥ 0, the generalized Legendre spectrum Lgγ can also be
computed analytically

Lgγ (h)=





1−(h+1)2 −2<h<− 1
1+γ ,

1
1+γ + γh2 |h| ≤ 1

1+γ ,

1−(h−1)2 1
1+γ <h<2.

(16)

-2 -1 0 1 2
0

0.5

1

h

DLD(h)

-2 -1 0 1 2
0

0.5

1

h

D??
LD(h)

-2 -1 0 1 2
0

0.5

1

h

(DLD + gγ)
??(h) DLD + gγ

γ

-2 -1 0 1 2
0

0.5

1

h

Lg. (h)

γ

Figure 1. Generalized Legendre spectra. Top left: Large deviation spectrum
DLD(h), defined as a double parabolic function. Top right: L(h) =
DLD

??(h). Bottom left: For several values of γ, DLD(h) + gγ(h) (dashed
lines) and (DLD(h) + gγ)?? (solid lines). Bottom right: Generalized Leg-
endre spectra Lgγ (h).

Fig. 1 (bottom left) compares DLD(h) + gγ(h) (dotted lines)
and (DLD + gγ)??(h) (solid lines), for several values of
γ. It shows that the difference between DLD + gγ and
(DLD + gγ)?? (e.g., the area of the nonconcave region)
decreases as γ increases, and thus that the double Legendre
transform provides increasingly better estimates. Indeed, the
corresponding generalized Legendre spectra Lgγ (bottom right
panel) show that Lgγ (h) = DLD(h) for h outside of the
interval h ∈ (− 1

1+γ ,
1

1+γ ). Within that interval, L(h) >
Lgγ (h) > DLD(h), hence for any γ > 0, Lgγ provides a
more accurate bound for DLD than L(h) does. Further, one
observes that when γ →∞, Lgγ (h)→ DLD(h), thus showing
that tuning γ permits to achieve arbitrarily sharp bounds.

3) Extension to a complete family of functions g: The
example above suggests that Lgγ can provide better bounds
for DLD by using several functions g. This intuition is
formalized in the following key theoretical result, that shows
that practically any DLD can be recovered from the minimum
of Lgγ obtained from a (possibly large) collection of dilated
and translated templates of g.

Theorem 1. Let g be an admissible function. Let {gγ,δ(x) =
g(γ(x − δ))}(γ,δ)∈(R+,R) denote the collection of all dilated
and translated templates of g. For any dense countable set
Υ ⊂ R+ × R, and ∀(γ, δ) ∈ Υ,

Lgγ,δ(h) ≥ LΥ(h) , inf
(γ,δ)∈Υ

{
Lgγ,δ(h)

}
= DLD(h). (17)

The proof is detailed in Appendix C. In (17), the inf , for
different values of h, may be attained for different (γ, δ), an
outcome of major importance in practice as further discussed
in Section III-C3.

B. Generalized Multifractal Formalism: Definition

It will now be explained how the classical multifractal
formalism (recalled in Section II-C2) must be modified to
permit the actual estimation from data of the generalized
Legendre spectrum Lg .
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First, new multiscale quantities, the generalized wavelet
leaders, need to be defined for measuring Lg , as the coun-
terpart of the wavelet leaders for measuring L.

Definition 2 (Generalized Wavelet Leaders). For an admis-
sible function g and q ∈ R, the generalized wavelet leaders
L

(q,g)
j,k are defined as follows. Let c1,0 be defined from the

linear regression

1

nj

nj∑

k=1

log2 Lj,k = c1,0 + c1j, (18)

then φj,k ,
log2(Lj,k)− c1,0

−j , (19)

and L(q,g)
j,k , 2−j(qφj,k−g(φj,k)). (20)

The occurrence of c1,0 stems from interpreting (4) as stating
that Lλj,ky ∼ κ(y)2−jh(y), and replacing pointwise estimates
by averages.

Second, from these L
(q,g)
j,k , a generalized multifractal for-

malism is devised and shown to yield a tight upper bound
for DLD, the key theoretical contribution of this work. Let
Sg(q, j) denote the generalized structure functions,

Sg(q, j) =
1

nj

nj∑

k=1

L
(q,g)
j,k (21)

and let the generalized scaling exponents ζg(q) be defined as

ζg(q) = lim inf
j→+∞

log2 Sg(q, j)

−j . (22)

Theorem 2 (Generalized Multifractal Formalism). The gener-
alized Legendre spectrum Lg can be computed as the Legendre
transform of ζg

Lg(h) = ζ?g (h)− g(h). (23)

The proof is detailed in Appendix D. Heuristically, the
argumentation follows the intuition yielding the classical mul-
tifractal formalism (Section II-C2 (10-12)): Each location y
where h(y) = h contributes to Sg(q, j) as ∼ 2qh(y)+g(h(y)).
Therefore, Sg(q, j) ∼ 2j(d+qh−g(h)−DH(h)). In the limit
of fine scales, ζg(q) = infh {d+ qh− g(h)−DH(h)} and
therefore Lg(h) = infq {d+ qh− ζg(q)} − g(h).

A major consequence of Theorem 2 is a sequence of
inequalities in the bounds for the multifractal spectrum.

Corollary 1. For any dense countable set Υ ⊂ R+×R, with
g an admissible function,

L ≥ LQ ≥ LΥ = DLD ≥ DH. (24)

C. Generalized Multifractal Formalism: Computation

1) Estimation for finite-resolution data: The generalized
multifractal formalism can be computed for finite-resolution,
discrete data X as follows. First, the wavelet coefficients and
leaders of X are computed for each scale from (3). Second, the
generalized wavelet leaders L(q,g)

j,k and structure functions are
computed using (18) to (21), for each scale j, for a range
of positive and negative values for q. Third, because (22)

essentially means that Sg(q, j) ∼ Kq2
−jζg(q), the exponents

ζg(q) are estimated by linear regressions of log 2
(
Sg(q, j)

)

versus scales j

ζ̂g(q) =
∑

j1≤j≤j2
wj log2

(
Sg(q, j)

)
(25)

where j1, j2 delimit the range of scales where the regression
is performed, and wj are suitable linear regression weights,
cf. [5], [31] and references therein for details. Finally, apply-
ing the Legendre transform as in (23) provides Lg . As an
alternative to the direct numerical calculation of the Legendre
transform, Lg can equivalently be obtained by a parametric
formulation

(
h(q),Lg(h(q))

)
similar to the original proposi-

tion in [5], [42].
2) Choosing the function g: In choosing g, the only funda-

mental requirement lies in its being an admissible function
(cf. Definition 1). Further, Propositions 2 and 3 advocate
for the use of concave functions, therefore leaving a large
freedom. In principle, for each DLD with particular departures
from concavity, there might exist a theoretically optimal g.
For instance, the example in Section III-A2 may suggest that
g(h) = −γ|h| is optimal as DLD contains a nondifferentiable
point. However, adjusting g to an unknown DLD would require
the design of a complex adaptive/iterative strategy. Instead,
in [36] (Theorem 5.2), it is proven that g(h) = −γh2 can
recover any nonconcave spectrum DLD(h) as long as the
parameter γ is large enough: γ ≥ suphDLD′′(h). Even though
such a theoretical optimality relies on twice differentiable
spectra, in practice, numerical simulations reported in Sec.
IV-C2 show that even for nonconcave spectra that are locally
nondifferentiable, the generic choice g(h) = −γh2 remains as
good as any ad hoc choice, thanks to the joint use of several
different γ.

Therefore, aiming to propose a generic procedure that works
for any a priori unknown DLD, we promote for real-world
applications the generic use of tunable collection of functions

gγ,δ(h) = −γ(h− δ)2, γ ≥ 0, (26)

parametrized by the curvature and shift parameters γ and δ, re-
spectively. Section IV-C3 further comforts that this constitutes
a versatile and generic enough choice.

3) Parameter tuning: The practical use of the generalized
multifractal formalism proposed in Sections III-B and III-C
with the choice in (26) for g implies the selection of three
parameters q, γ and δ, which can not be tuned independently.
In principle, a large range of values of γ (ideally, up to
γ → ∞) are needed to allow for multifractal spectra of any
nonconcave shape to be estimated. Also in principle, a large
set of values of q, both positive and negative, is needed to
recover the spectrum on all of its support (cf., e.g., [1], [5]).
In practice, however, large values for both γ and |q| give rise
to a well-known numerical issue in multifractal analysis: the
so-called linearization effect, extensively studied in e.g. [8],
[43]. In an nutshell, large values of |q| and/or γ cause the
sum in (21) to be dominated by the largest Lj,k and hence
to be heavily biased, cf. [43]. This is illustrated in Fig. 2
(left), showing that estimates for large values of γ become
increasingly biased towards the limits of the support of the
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Figure 2. Generalized Legendre spectrum Lg�,� estimation and param-
eter �, � and q tuning. Left: Using a large range of q, q 2 {�60, 60},
and a few values of � yields numerically unstable estimates of Lg�,� (h) (for
illustration, � = 0.65 is fixed); Right: using a restricted range of q 2 [�4, 4]
and a large collection of � 2 [0.48, 0.88] (marked by alternating colors and
markers) yields far more stable and very satisfactory estimates of of Lg�,� (h)
(for illustration, � = 200 is fixed).

spectrum (with large values |q|). The numerical issues can be
mitigated by restricting q to a narrow range of smaller values.
To compensate for the resulting restriction to a smaller range
of h, g�,� is shifted using several values of �, i.e., g�,� sweeps
over the full support of the spectrum, as illustrated in Fig. 2
(right). Thus, a family of spectra Lg�,�

is obtained, and their
infimum is taken to produce the final estimates Lg in (17).

IV. PERFORMANCE ASSESSMENT

To assess the relevance and statistical efficiency of the
proposed generalized multifractal formalism, several synthetic
multifractal (1D or 2D) processes are analyzed. Performance
is assessed both for single sample paths and statistically
as averages across Monte Carlo realizations. The proposed
generalized Legendre spectra Lg are compared against the
conventional Legendre spectrum estimates L, and against the
quantile spectrum LQ, mentioned in Section I-B and studied
in [32], [33].

A. Synthetic multifractal processes and functions

Several representative examples are used to cover a large
variety of multifractal stochastic processes and deterministic
functions. Levy stable processes with a Brownian component
and Thresholded Deterministic Wavelet Cascade are chosen
as representative examples amongst the very few cases hav-
ing proven and theoretically studied nonconcave multifractal
spectra. Such examples are very different in nature: the former
is an additive selfsimilar processes, while the latter is con-
structed from multiplicative cascades, the generic multifractal
paradigm. Further, concatenations of processes having differ-
ent multifractal spectra are used as potentially generic models
for real-world data with possible changes of states. Notably,
these provide interesting models for mixtures of textures in
images (2D fields). Finally, the classical multifractal random
walk, with concave multifractal spectra, is used to show that
the proposed procedure does not create spurious nonconcavity
in the estimates.

a) Lévy-stable process with additional Brownian compo-
nent: Lévy-stable processes are stochastic processes, whose
increments are independent and stationary, and have stable
distributions, governed by parameter ↵, ↵ 2 (0, 2), cf., e.g.,
[44]. A Brownian component is added to produce a more
general class of Lévy processes, whose multifractal spectrum,

theoretically established in [45], is in general nonconcave and
noncontinuous

DH(h) =

8
><
>:

↵h if h 2 [0, 1/2)

1 if h = 1/2

�1 otherwise.
(27)

b) Thresholded Deterministic Wavelet Cascade (DWC):
Let w 2 [0, 1]. A binomial DWC f is obtained by prescribing
its wavelet coefficients as c0,1 = 1, cj,2k = wcj�1,k, and
cj,2k+1 = (1�w)cj�1,k. Its multifractal spectrum is given by

DH(h) = (1� ↵(h)) log2(1� ↵(h))� ↵(h) log2 ↵(h), (28)

where ↵(h) = (h + log2(1 � w))/(log2(1 � w) � log2 w)
[8]. The thresholded-DWC f̆✓ is defined by applying a
hard threshold 2�✓j to the wavelet coefficients of the DWC
f : c̆✓j,k = cj,k1|cj,k|�2�✓j [46]. The multifractal spectra

DH(h) and D̆H
✓
(h) of f and f̆✓ are related as D̆H

✓
=

(sup(DH(h), DH(⌦�1(h))), with ! the increasing function
u 2 [✓, hmax] ! ✓(u+log(1�w))/(✓+log(1�w)) 2 (0,1)
[46, Theorem 5.2]. A thresholded-DWC is thus characterized
by a nonconcave multifractal spectrum.

c) Concatenation of Multifractal Random Walk (MRW):
MRW is defined from two independent Gaussian processes,
with specific covariance structures chosen to mimic that
of multiplicative cascades. The multifractal spectrum of d-
dimensional MRW consists of a parabola: DH(h) = d �
(h � (H + �2/2))2/2�2 [47]. To simulate the situation
where a nonconcave multifractal spectrum arises as a result
of nonstationarity, we concatenate two MRW with different
multifractal spectra DH1 and DH2, yielding a multifractal
spectrum DH(h) = sup(DH1(h), DH2(h)).

B. Monte Carlo simulation set-up

For each random process, NMC = 100 independent real-
izations are analyzed, with sample sizes of N = 220 (for 1D
processes) and N1 ⇥N2 = 210 ⇥ 210 (for 2D processes). The
synthesis parameters for the processes were set to: a) ↵ = 1.25
for the Lévy process, b) H1 = 0.6, H2 = 0.75, and �1 =
�2 =

p
0.01 for the concatenation of MRW, and c) w = 0.45

for the binomial wavelet cascade. A Daubechies wavelet with
N = 3 vanishing moments was used, and scaling exponents
were computed using unweighted linear regressions over a
range of scales that is hand-tuned for each example. The
parameters � and � were set to � 2 {0, 5, 10, 100, 200, 500}
and � 2 [c1 � 0.3, c1 + 0.3] (with c1 as defined in (18)
corresponding to the mode of L, cf., [31]). For the computation
of LQ, following the method in [32], the quantiles for DH and
h were computed over 600 and 60 intervals, respectively.

C. Estimated (non necessarily concave) spectra

1) Logscale diagrams: Fig. 3 displays log-log plots of
Sg�,�

(q, j), for several values of q, �, and � (for concatenated
MRW). It shows power-law decays of the Sg�,�

(q, j) across
a wide range of scales and for any sets of parameters, as
postulated in (22). These empirical observations constitute
crucial results that, per se, validate the practical applicability of

Figure 2. Generalized Legendre spectrum Lgγ,δ estimation and param-
eter γ, δ and q tuning. Left: Using a large range of q, q ∈ {−60, 60},
and a few values of γ yields numerically unstable estimates of Lgγ,δ (h) (for
illustration, δ = 0.65 is fixed); Right: using a restricted range of q ∈ [−4, 4]
and a large collection of δ ∈ [0.48, 0.88] (marked by alternating colors and
markers) yields far more stable and very satisfactory estimates of of Lgγ,δ (h)
(for illustration, γ = 200 is fixed).

spectrum (with large values |q|). The numerical issues can be
mitigated by restricting q to a narrow range of smaller values.
To compensate for the resulting restriction to a smaller range
of h, gγ,δ is shifted using several values of δ, i.e., gγ,δ sweeps
over the full support of the spectrum, as illustrated in Fig. 2
(right). Thus, a family of spectra Lgγ,δ is obtained, and their
infimum is taken to produce the final estimates Lg in (17).

IV. PERFORMANCE ASSESSMENT

To assess the relevance and statistical efficiency of the
proposed generalized multifractal formalism, several synthetic
multifractal (1D or 2D) processes are analyzed. Performance
is assessed both for single sample paths and statistically
as averages across Monte Carlo realizations. The proposed
generalized Legendre spectra Lg are compared against the
conventional Legendre spectrum estimates L, and against the
quantile spectrum LQ, mentioned in Section I-B and studied
in [32], [33].

A. Synthetic multifractal processes and functions

Several representative examples are used to cover a large
variety of multifractal stochastic processes and deterministic
functions. Levy stable processes with a Brownian component
and Thresholded Deterministic Wavelet Cascade are chosen
as representative examples amongst the very few cases hav-
ing proven and theoretically studied nonconcave multifractal
spectra. Such examples are very different in nature: the former
is an additive selfsimilar processes, while the latter is con-
structed from multiplicative cascades, the generic multifractal
paradigm. Further, concatenations of processes having differ-
ent multifractal spectra are used as potentially generic models
for real-world data with possible changes of states. Notably,
these provide interesting models for mixtures of textures in
images (2D fields). Finally, the classical multifractal random
walk, with concave multifractal spectra, is used to show that
the proposed procedure does not create spurious nonconcavity
in the estimates.

a) Lévy-stable process with additional Brownian compo-
nent: Lévy-stable processes are stochastic processes, whose
increments are independent and stationary, and have stable
distributions, governed by parameter α, α ∈ (0, 2), cf., e.g.,
[44]. A Brownian component is added to produce a more

general class of Lévy processes, whose multifractal spectrum,
theoretically established in [45], is in general nonconcave and
noncontinuous

DH(h) =





αh if h ∈ [0, 1/2)

1 if h = 1/2

−∞ otherwise.
(27)

b) Thresholded Deterministic Wavelet Cascade (DWC):
Let w ∈ [0, 1]. A binomial DWC f is obtained by prescribing
its wavelet coefficients as c0,1 = 1, cj,2k = wcj−1,k, and
cj,2k+1 = (1−w)cj−1,k. Its multifractal spectrum is given by

DH(h) = (1− α(h)) log2(1− α(h))− α(h) log2 α(h), (28)

where α(h) = (h + log2(1 − w))/(log2(1 − w) − log2 w)
[8]. The thresholded-DWC f̆θ is defined by applying a
hard threshold 2−θj to the wavelet coefficients of the DWC
f : c̆θj,k = cj,k1|cj,k|≥2−θj [46]. The multifractal spectra

DH(h) and D̆H
θ
(h) of f and f̆θ are related as D̆H

θ
=

(sup(DH(h),DH(Ω−1(h))), with ω the increasing function
u ∈ [θ, hmax]→ θ(u+log(1−w))/(θ+log(1−w)) ∈ (0,∞)
[46, Theorem 5.2]. A thresholded-DWC is thus characterized
by a nonconcave multifractal spectrum.

c) Concatenation of Multifractal Random Walk (MRW):
MRW is defined from two independent Gaussian processes,
with specific covariance structures chosen to mimic that
of multiplicative cascades. The multifractal spectrum of d-
dimensional MRW consists of a parabola: DH(h) = d −
(h − (H + λ2/2))2/2λ2 [47]. To simulate the situation
where a nonconcave multifractal spectrum arises as a result
of nonstationarity, we concatenate two MRW with different
multifractal spectra DH1 and DH2, yielding a multifractal
spectrum DH(h) = sup(DH1(h),DH2(h)).

B. Monte Carlo simulation set-up

For each random process, NMC = 100 independent real-
izations are analyzed, with sample sizes of N = 220 (for 1D
processes) and N1 ×N2 = 210 × 210 (for 2D processes). The
synthesis parameters for the processes were set to: a) α = 1.25
for the Lévy process, b) H1 = 0.6, H2 = 0.75, and λ1 =
λ2 =

√
0.01 for the concatenation of MRW, and c) w = 0.45

for the binomial wavelet cascade. A Daubechies wavelet with
Nψ = 3 vanishing moments was used, and scaling exponents
were computed using unweighted linear regressions over a
range of scales that is hand-tuned for each example. The
parameters γ and δ were set to γ ∈ {0, 5, 10, 100, 200, 500}
and δ ∈ [c1 − 0.3, c1 + 0.3] (with c1 as defined in (18)
corresponding to the mode of L, cf. [31]). For the computation
of LQ, following the method in [32], the quantiles for DH and
h were computed over 600 and 60 intervals, respectively.

C. Estimated (non necessarily concave) spectra

1) Logscale diagrams: Fig. 3 displays log-log plots of
Sgγ,δ(q, j), for several values of q, γ, and δ (for concatenated
MRW). It shows power-law decays of the Sgγ,δ(q, j) across
a wide range of scales and for any sets of parameters, as
postulated in (22). These empirical observations constitute
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Figure 3. Logscale diagrams. Plots of log2 Sg�,� (q, j) vs. log2 2j show
satisfactory linear (hence scale-free) behaviors for any choice of parameters
�, � and q (averages over 100 realizations and 95% confidence intervals).

the generalized multifractal formalism. Notably, it permits the
robust estimation of the generalized scaling exponents ⇣g�,�

(q)
from log2 Sg�,�

(q, j) by linear regressions (25). Similar plots
are obtained for all tested processes.

2) 1D processes: single realization and ensemble estimation
performance: Fig. 4 (right column) reports L⌥ estimated from
a single realization (left column) for each of the four examples.
Fig. 5 (left column) reports, for the three stochastic processes
used here, estimates of L⌥ averaged across independent
realizations, as well as confidence intervals. In both cases,
estimates L⌥ are compared to the theoretical multifractal
spectra DH, to the estimated Legendre L and quantile LQ

spectra.
Fig. 4 and Fig. 5 both show that nonconcavity is well

evidenced by the proposed generalized multifractal spectra
L⌥, on average as well as when applied to a single realization
of data. Further, for processes with concave spectra, estimates
L⌥ are in excellent agreement with conventional Legendre
spectra L, clearly showing that L⌥ does not introduce spurious
nonconcave regions. This is the case even on single real-
izations, suggesting that the absence of spurious nonconcave
regions is not a product of the smoothing performed by the
ensemble average.

Fig. 4 and Fig. 5 also show that the estimates yielded by
L⌥ outperform the quantile-based LQ. Focusing on the first
example (top row), one can see that L⌥ provides estimates
across the full support of the multifractal spectrum while LQ

does not, which can be explained by the small number of
wavelet leaders actually corresponding to missing h, see [33,
Fig. 9]. Further, the estimates L⌥ are overall of better quality
than those of LQ for the nonconcave parts of DH. First, for the
thresholded-DWC (Fig. 4 second row), they provide a better
estimation of the weakly nonconcave part on the decreasing
branch caused by the thresholding. Second, they show a clear
evidence of nonconcavity for the concatenated MRW (Fig. 4
third row), while LQ completely misses the nonconcavity, as
expected for processes whose spectra contain several local
maxima.

At the statistical performance level, confidence intervals,
being extremely narrow, see Fig. 5, suggest overall low es-
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Figure 4. 1D multifractal processes: single realization spectra. Sample
realization (left column) and multifractal spectra (right column) obtained from
a single realization of (from top to bottom) Levy process with Brownian
component, thresholded binomial wavelet cascade, concatenated MRW, and
homogeneous MRW.

timation variances. Further, root mean-squared errors (rmse)
of estimates for L⌥, L and LQ are compared in Fig. 6,
showing that L⌥ global yields the lowest rmse, notably in
the nonconcave regions, where it has the lowest bias.

3) Varying function g: Fig. 5 (right column) further shows
that estimated spectra for the three stochastic processes pro-
duced with the choice g(h) = �|h � �| are essentially
equivalent to those obtained with the promoted choice g(h) =
�(h � �)2 (left column). This indicates that, though it may a
priori appear as a critical issue, selecting the function g turns
out to have far less impact on achieved results than expected. It
thus comforts the choice, proposed in [36] and promoted here,
of using a parabolic g as an universal admissible function.

4) 2D processes: We further show that the generalized
multifractal spectrum approach is also operational for the
analysis of images (i.e., d = 2), with extension to higher
dimensions being straightforward and only requiring to sub-
stitute higher dimensional wavelet leaders (here, 2D leaders,
cf., e.g., [31]) for the 1D leaders in (19). Fig. 7 shows
a synthetic image produced as the concatenation of two
patches of MRW (left), its theoretical multifractal spectrum
DH and the corresponding estimates L and Lg (right; averages
over 100 independent realizations). Fig. 7 illustrates that L⌥

yields an excellent estimate for DH, and in particular a very
satisfactory performance for the nonconcave region of the

Figure 3. Logscale diagrams. Plots of log2 Sgγ,δ (q, j) vs. log2 2j show
satisfactory linear (hence scale-free) behaviors for any choice of parameters
γ, δ and q (averages over 100 realizations and 95% confidence intervals).

crucial results that, per se, validate the practical applicability of
the generalized multifractal formalism. Notably, it permits the
robust estimation of the generalized scaling exponents ζgγ,δ(q)
from log2 Sgγ,δ(q, j) by linear regressions (25). Similar plots
are obtained for all tested processes.

2) 1D processes: single realization and ensemble estimation
performance: Fig. 4 (right column) reports LΥ estimated from
a single realization (left column) for each of the four examples.
Fig. 5 (left column) reports, for the three stochastic processes
used here, estimates of LΥ averaged across independent
realizations, as well as confidence intervals. In both cases,
estimates LΥ are compared to the theoretical multifractal
spectra DH, to the estimated Legendre L and quantile LQ
spectra.

Fig. 4 and Fig. 5 both show that nonconcavity is well
evidenced by the proposed generalized multifractal spectra
LΥ, on average as well as when applied to a single realization
of data. Further, for processes with concave spectra, estimates
LΥ are in excellent agreement with conventional Legendre
spectra L, clearly showing that LΥ does not introduce spurious
nonconcave regions. This is the case even on single real-
izations, suggesting that the absence of spurious nonconcave
regions is not a product of the smoothing performed by the
ensemble average.

Fig. 4 and Fig. 5 also show that the estimates yielded by
LΥ outperform the quantile-based LQ. Focusing on the first
example (top row), one can see that LΥ provides estimates
across the full support of the multifractal spectrum while LQ
does not, which can be explained by the small number of
wavelet leaders actually corresponding to the missing h, see
also [33, Fig. 9]. Further, the estimates LΥ are overall of
better quality than those of LQ for the nonconcave parts of
DH. First, for the thresholded-DWC (Fig. 4 second row), they
provide a better estimation of the weakly nonconcave part on
the decreasing branch caused by the thresholding. Second, they
show a clear evidence of nonconcavity for the concatenated
MRW (Fig. 4 third row), while LQ completely misses the
nonconcavity, as expected for processes whose spectra contain
several local maxima.

At the statistical performance level, confidence intervals,
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Figure 3. Logscale diagrams. Plots of log2 Sg�,� (q, j) vs. log2 2j show
satisfactory linear (hence scale-free) behaviors for any choice of parameters
�, � and q (averages over 100 realizations and 95% confidence intervals).

the generalized multifractal formalism. Notably, it permits the
robust estimation of the generalized scaling exponents ⇣g�,�

(q)
from log2 Sg�,�

(q, j) by linear regressions (25). Similar plots
are obtained for all tested processes.

2) 1D processes: single realization and ensemble estimation
performance: Fig. 4 (right column) reports L⌥ estimated from
a single realization (left column) for each of the four examples.
Fig. 5 (left column) reports, for the three stochastic processes
used here, estimates of L⌥ averaged across independent
realizations, as well as confidence intervals. In both cases,
estimates L⌥ are compared to the theoretical multifractal
spectra DH, to the estimated Legendre L and quantile LQ

spectra.
Fig. 4 and Fig. 5 both show that nonconcavity is well

evidenced by the proposed generalized multifractal spectra
L⌥, on average as well as when applied to a single realization
of data. Further, for processes with concave spectra, estimates
L⌥ are in excellent agreement with conventional Legendre
spectra L, clearly showing that L⌥ does not introduce spurious
nonconcave regions. This is the case even on single real-
izations, suggesting that the absence of spurious nonconcave
regions is not a product of the smoothing performed by the
ensemble average.

Fig. 4 and Fig. 5 also show that the estimates yielded by
L⌥ outperform the quantile-based LQ. Focusing on the first
example (top row), one can see that L⌥ provides estimates
across the full support of the multifractal spectrum while LQ

does not, which can be explained by the small number of
wavelet leaders actually corresponding to missing h, see [33,
Fig. 9]. Further, the estimates L⌥ are overall of better quality
than those of LQ for the nonconcave parts of DH. First, for the
thresholded-DWC (Fig. 4 second row), they provide a better
estimation of the weakly nonconcave part on the decreasing
branch caused by the thresholding. Second, they show a clear
evidence of nonconcavity for the concatenated MRW (Fig. 4
third row), while LQ completely misses the nonconcavity, as
expected for processes whose spectra contain several local
maxima.

At the statistical performance level, confidence intervals,
being extremely narrow, see Fig. 5, suggest overall low es-
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Figure 4. 1D multifractal processes: single realization spectra. Sample
realization (left column) and multifractal spectra (right column) obtained from
a single realization of (from top to bottom) Levy process with Brownian
component, thresholded binomial wavelet cascade, concatenated MRW, and
homogeneous MRW.

timation variances. Further, root mean-squared errors (rmse)
of estimates for L⌥, L and LQ are compared in Fig. 6,
showing that L⌥ global yields the lowest rmse, notably in
the nonconcave regions, where it has the lowest bias.

3) Varying function g: Fig. 5 (right column) further shows
that estimated spectra for the three stochastic processes pro-
duced with the choice g(h) = �|h � �| are essentially
equivalent to those obtained with the promoted choice g(h) =
�(h � �)2 (left column). This indicates that, though it may a
priori appear as a critical issue, selecting the function g turns
out to have far less impact on achieved results than expected. It
thus comforts the choice, proposed in [36] and promoted here,
of using a parabolic g as an universal admissible function.

4) 2D processes: We further show that the generalized
multifractal spectrum approach is also operational for the
analysis of images (i.e., d = 2), with extension to higher
dimensions being straightforward and only requiring to sub-
stitute higher dimensional wavelet leaders (here, 2D leaders,
cf., e.g., [31]) for the 1D leaders in (19). Fig. 7 shows
a synthetic image produced as the concatenation of two
patches of MRW (left), its theoretical multifractal spectrum
DH and the corresponding estimates L and Lg (right; averages
over 100 independent realizations). Fig. 7 illustrates that L⌥

yields an excellent estimate for DH, and in particular a very
satisfactory performance for the nonconcave region of the

Figure 4. 1D multifractal processes: single realization spectra. Sample
realization (left column) and multifractal spectra (right column) obtained from
a single realization of (from top to bottom) Levy process with Brownian
component, thresholded binomial wavelet cascade, concatenated MRW, and
homogeneous MRW.

being extremely narrow, see Fig. 5, suggest overall low es-
timation variances. Further, root mean-squared errors (rmse)
of estimates for LΥ, L and LQ are compared in Fig. 6,
showing that LΥ globally yields the lowest rmse, notably in
the nonconcave regions, where it has the lowest bias.

3) Varying function g: Fig. 5 (right column) further shows
that estimated spectra for the three stochastic processes pro-
duced with the choice g(h) = γ|h − δ| are essentially
equivalent to those obtained with the promoted choice g(h) =
γ(h− δ)2 (left column). This indicates that, though it may a
priori appear as a critical issue, selecting the function g turns
out to have far less impact on the results than expected. It thus
comforts the choice, proposed in [36] and promoted here, of
using a parabolic g as an universal admissible function.

4) 2D processes: We further show that the generalized
multifractal spectrum approach is also operational for the
analysis of images (i.e., d = 2), with extension to higher
dimensions being straightforward and only requiring to sub-
stitute higher dimensional wavelet leaders (here, 2D leaders,
cf., e.g., [31]) for the 1D leaders in (19). Fig. 7 shows
a synthetic image produced as the concatenation of two
patches of MRW (left), its theoretical multifractal spectrum
DH and the corresponding estimates L and Lg (right; averages
over 100 independent realizations). Fig. 7 illustrates that LΥ
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Figure 5. 1D multifractal processes: Monte Carlo-averaged spectra.
Estimated spectra with g(h) = ��h2 (left) and g(h) = ��|h|, obtained
as averages over 100 realizations, for (from top to bottom) Levy process
with Brownian component, concatenated MRW, homogeneous MRW. 95%
confidence bands are reported using lightly shaded areas.
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Figure 6. 1D multifractal processes: estimation performance. Root mean-
squared error (rmse) for the estimated multifractal spectra, for ↵-stable Lévy
process with Brownian component (left), and concatenated MRW (right).

multifractal spectrum. This example also suggests the use of
estimators of nonconcave multifractal spectra as methods to
detect nonstationarities. It is indeed not obvious to the naked
eye that the texture in Fig. 7 (left) is formed by two patches
with distinct regularity properties. The information provided
by L⌥ can thus shed light onto this situation and, for instance,
suggest that segmentation and/or further analysis is needed.

5) Conclusions: Overall, this set of simulations unambigu-
ously demonstrates that the proposed generalized multifractal
formalism i) can be used to estimate concave as well as
nonconcave multifractal spectra, and ii) significantly improves
the estimation over the state of the art estimates L and LQ,
by being closer to the theoretical DH, confirming numerically
that L(h) & L⌥(h) & DH(h), as expected from (24).

V. REAL WORLD DATA

We finally illustrate the application of the proposed gener-
alized multifractal formalism to the analysis of a real-world
satellite image corresponding to a patch of a hyperspectral
image of the Moffett field, acquired by the AVIRIS instrument
(spectral band 90), shown in Fig. 8 (left). The analysis was
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Figure 7. 2D multifractal processes. Sample realization (left column) and
multifractal spectra (right column; averages over 100 realizations) for the
horizontal concatenation of two rectangular 2D MRW. 95% confidence bands
are reported in lightly shaded areas.
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Figure 8. Real-world data. Satellite image (left column) and multifractal
spectrum estimates L(h) and L⌥(h) (right column): The generalized spec-
trum L⌥(h) clearly reveals the existence of a phenomenon leading to a
nonconcave multifractal spectrum.

performed using parameters � 2 {0, 100, 500, 750}, � 2
[0.6, 1.2], and q 2 [�10, 10]. The estimates L and L⌥ are
plotted in Fig. 8 (right) and lead to the following conclusions.
First, the smooth, well-behaved and artifact free shape of the
estimated multifractal spectra and its large support suggest
that a multifractal model can be reasonably assumed for the
image. Second, the Legendre spectrum L and generalized
Legendre spectrum L⌥ coincide for a large part of their
support, indicating that estimates are robust and stable. Third,
there is a clear difference between L(h) and L⌥(h) for
the interval h 2 [0.98, 1.1]: indeed, the proposed method
allows to detect a nonconcave behavior of the multifractal
spectrum for this interval, leading to an estimate L⌥ with two
modes that are clearly separated by a pronounced, nonconcave
dip. In the absence of a ground truth, we cannot conclude
on the phenomenological origin of the observed nonconcave
spectrum, although the example studied in Section IV-C4 could
suggest that the nonconcavity reflects the existence of two
visually discernable textures in the image (a rougher texture on
the lower-right corner, and a smoother one on the upper-left).
Nonetheless, we can conclude that the generalized multifractal
formalism enables the detection of nonconcave multifractal
spectrum from real-world data, whatever its precise origin,
while it remains hidden when use is made of the conventional
Legendre spectrum L.

VI. CONCLUSIONS AND PERSPECTIVES

We proposed a generalized multifractal formalism that can
be used to accurately estimate nonconcave multifractal spectra.
This formalism is based on a generalized version of the
Legendre transform underlying the conventional multifractal
formalism and leads to numerically stable, yet not necessarily
concave, estimates for the multifractal spectrum. This formal-
ism is inspired from generalized canonical ensembles studied

Figure 5. 1D multifractal processes: Monte Carlo-averaged spectra.
Estimated spectra with g(h) = −γh2 (left) and g(h) = −γ|h|, obtained
as averages over 100 realizations, for (from top to bottom) Levy process
with Brownian component, concatenated MRW, homogeneous MRW. 95%
confidence bands are reported using lightly shaded areas.
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multifractal spectrum. This example also suggests the use of
estimators of nonconcave multifractal spectra as methods to
detect nonstationarities. It is indeed not obvious to the naked
eye that the texture in Fig. 7 (left) is formed by two patches
with distinct regularity properties. The information provided
by L⌥ can thus shed light onto this situation and, for instance,
suggest that segmentation and/or further analysis is needed.

5) Conclusions: Overall, this set of simulations unambigu-
ously demonstrates that the proposed generalized multifractal
formalism i) can be used to estimate concave as well as
nonconcave multifractal spectra, and ii) significantly improves
the estimation over the state of the art estimates L and LQ,
by being closer to the theoretical DH, confirming numerically
that L(h) & L⌥(h) & DH(h), as expected from (24).

V. REAL WORLD DATA

We finally illustrate the application of the proposed gener-
alized multifractal formalism to the analysis of a real-world
satellite image corresponding to a patch of a hyperspectral
image of the Moffett field, acquired by the AVIRIS instrument
(spectral band 90), shown in Fig. 8 (left). The analysis was
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nonconcave multifractal spectrum.

performed using parameters � 2 {0, 100, 500, 750}, � 2
[0.6, 1.2], and q 2 [�10, 10]. The estimates L and L⌥ are
plotted in Fig. 8 (right) and lead to the following conclusions.
First, the smooth, well-behaved and artifact free shape of the
estimated multifractal spectra and its large support suggest
that a multifractal model can be reasonably assumed for the
image. Second, the Legendre spectrum L and generalized
Legendre spectrum L⌥ coincide for a large part of their
support, indicating that estimates are robust and stable. Third,
there is a clear difference between L(h) and L⌥(h) for
the interval h 2 [0.98, 1.1]: indeed, the proposed method
allows to detect a nonconcave behavior of the multifractal
spectrum for this interval, leading to an estimate L⌥ with two
modes that are clearly separated by a pronounced, nonconcave
dip. In the absence of a ground truth, we cannot conclude
on the phenomenological origin of the observed nonconcave
spectrum, although the example studied in Section IV-C4 could
suggest that the nonconcavity reflects the existence of two
visually discernable textures in the image (a rougher texture on
the lower-right corner, and a smoother one on the upper-left).
Nonetheless, we can conclude that the generalized multifractal
formalism enables the detection of nonconcave multifractal
spectrum from real-world data, whatever its precise origin,
while it remains hidden when use is made of the conventional
Legendre spectrum L.

VI. CONCLUSIONS AND PERSPECTIVES

We proposed a generalized multifractal formalism that can
be used to accurately estimate nonconcave multifractal spectra.
This formalism is based on a generalized version of the
Legendre transform underlying the conventional multifractal
formalism and leads to numerically stable, yet not necessarily
concave, estimates for the multifractal spectrum. This formal-
ism is inspired from generalized canonical ensembles studied
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detect nonstationarities. It is indeed not obvious to the naked
eye that the texture in Fig. 7 (left) is formed by two patches
with distinct regularity properties. The information provided
by LΥ can thus shed light onto this situation and, for instance,
suggest that segmentation and/or further analysis is needed.

5) Conclusions: Overall, this set of simulations unambigu-
ously demonstrates that the proposed generalized multifractal
formalism i) can be used to estimate concave as well as
nonconcave multifractal spectra, and ii) significantly improves
the estimation over the state of the art estimates L and LQ,
by being closer to the theoretical DH, confirming numerically
that L(h) & LΥ(h) & DH(h), as expected from (24).
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multifractal spectrum. This example also suggests the use of
estimators of nonconcave multifractal spectra as methods to
detect nonstationarities. It is indeed not obvious to the naked
eye that the texture in Fig. 7 (left) is formed by two patches
with distinct regularity properties. The information provided
by L⌥ can thus shed light onto this situation and, for instance,
suggest that segmentation and/or further analysis is needed.

5) Conclusions: Overall, this set of simulations unambigu-
ously demonstrates that the proposed generalized multifractal
formalism i) can be used to estimate concave as well as
nonconcave multifractal spectra, and ii) significantly improves
the estimation over the state of the art estimates L and LQ,
by being closer to the theoretical DH, confirming numerically
that L(h) & L⌥(h) & DH(h), as expected from (24).

V. REAL WORLD DATA

We finally illustrate the application of the proposed gener-
alized multifractal formalism to the analysis of a real-world
satellite image corresponding to a patch of a hyperspectral
image of the Moffett field, acquired by the AVIRIS instrument
(spectral band 90), shown in Fig. 8 (left). The analysis was
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performed using parameters � 2 {0, 100, 500, 750}, � 2
[0.6, 1.2], and q 2 [�10, 10]. The estimates L and L⌥ are
plotted in Fig. 8 (right) and lead to the following conclusions.
First, the smooth, well-behaved and artifact free shape of the
estimated multifractal spectra and its large support suggest
that a multifractal model can be reasonably assumed for the
image. Second, the Legendre spectrum L and generalized
Legendre spectrum L⌥ coincide for a large part of their
support, indicating that estimates are robust and stable. Third,
there is a clear difference between L(h) and L⌥(h) for
the interval h 2 [0.98, 1.1]: indeed, the proposed method
allows to detect a nonconcave behavior of the multifractal
spectrum for this interval, leading to an estimate L⌥ with two
modes that are clearly separated by a pronounced, nonconcave
dip. In the absence of a ground truth, we cannot conclude
on the phenomenological origin of the observed nonconcave
spectrum, although the example studied in Section IV-C4 could
suggest that the nonconcavity reflects the existence of two
visually discernable textures in the image (a rougher texture on
the lower-right corner, and a smoother one on the upper-left).
Nonetheless, we can conclude that the generalized multifractal
formalism enables the detection of nonconcave multifractal
spectrum from real-world data, whatever its precise origin,
while it remains hidden when use is made of the conventional
Legendre spectrum L.

VI. CONCLUSIONS AND PERSPECTIVES

We proposed a generalized multifractal formalism that can
be used to accurately estimate nonconcave multifractal spectra.
This formalism is based on a generalized version of the
Legendre transform underlying the conventional multifractal
formalism and leads to numerically stable, yet not necessarily
concave, estimates for the multifractal spectrum. This formal-
ism is inspired from generalized canonical ensembles studied

Figure 7. 2D multifractal processes. Sample realization (left column) and
multifractal spectra (right column; averages over 100 realizations) for the
horizontal concatenation of two rectangular 2D MRW. 95% confidence bands
are reported in lightly shaded areas.

SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. X, NO. X, JANUARY 2018 8

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

h

DH(h)
L(h)
L⌥(h)
LQ(h)

0 0.2 0.4 0.6
0

0.5

1

h

0.4 0.6 0.8 1
0

0.5

1

h

0.4 0.6 0.8 1
0

0.5

1

h

0.6 0.8 1 1.2
0

0.5

1

h

0.6 0.8 1 1.2
0

0.5

1

h

Figure 5. 1D multifractal processes: Monte Carlo-averaged spectra.
Estimated spectra with g(h) = ��h2 (left) and g(h) = ��|h|, obtained
as averages over 100 realizations, for (from top to bottom) Levy process
with Brownian component, concatenated MRW, homogeneous MRW. 95%
confidence bands are reported using lightly shaded areas.

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4
RMSE

h

DH(h)
L(h)
L⌥(h)
LQ(h)

0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4
RMSE

h

Figure 6. 1D multifractal processes: estimation performance. Root mean-
squared error (rmse) for the estimated multifractal spectra, for ↵-stable Lévy
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multifractal spectrum. This example also suggests the use of
estimators of nonconcave multifractal spectra as methods to
detect nonstationarities. It is indeed not obvious to the naked
eye that the texture in Fig. 7 (left) is formed by two patches
with distinct regularity properties. The information provided
by L⌥ can thus shed light onto this situation and, for instance,
suggest that segmentation and/or further analysis is needed.

5) Conclusions: Overall, this set of simulations unambigu-
ously demonstrates that the proposed generalized multifractal
formalism i) can be used to estimate concave as well as
nonconcave multifractal spectra, and ii) significantly improves
the estimation over the state of the art estimates L and LQ,
by being closer to the theoretical DH, confirming numerically
that L(h) & L⌥(h) & DH(h), as expected from (24).

V. REAL WORLD DATA

We finally illustrate the application of the proposed gener-
alized multifractal formalism to the analysis of a real-world
satellite image corresponding to a patch of a hyperspectral
image of the Moffett field, acquired by the AVIRIS instrument
(spectral band 90), shown in Fig. 8 (left). The analysis was
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spectrum estimates L(h) and L⌥(h) (right column): The generalized spec-
trum L⌥(h) clearly reveals the existence of a phenomenon leading to a
nonconcave multifractal spectrum.

performed using parameters � 2 {0, 100, 500, 750}, � 2
[0.6, 1.2], and q 2 [�10, 10]. The estimates L and L⌥ are
plotted in Fig. 8 (right) and lead to the following conclusions.
First, the smooth, well-behaved and artifact free shape of the
estimated multifractal spectra and its large support suggest
that a multifractal model can be reasonably assumed for the
image. Second, the Legendre spectrum L and generalized
Legendre spectrum L⌥ coincide for a large part of their
support, indicating that estimates are robust and stable. Third,
there is a clear difference between L(h) and L⌥(h) for
the interval h 2 [0.98, 1.1]: indeed, the proposed method
allows to detect a nonconcave behavior of the multifractal
spectrum for this interval, leading to an estimate L⌥ with two
modes that are clearly separated by a pronounced, nonconcave
dip. In the absence of a ground truth, we cannot conclude
on the phenomenological origin of the observed nonconcave
spectrum, although the example studied in Section IV-C4 could
suggest that the nonconcavity reflects the existence of two
visually discernable textures in the image (a rougher texture on
the lower-right corner, and a smoother one on the upper-left).
Nonetheless, we can conclude that the generalized multifractal
formalism enables the detection of nonconcave multifractal
spectrum from real-world data, whatever its precise origin,
while it remains hidden when use is made of the conventional
Legendre spectrum L.

VI. CONCLUSIONS AND PERSPECTIVES

We proposed a generalized multifractal formalism that can
be used to accurately estimate nonconcave multifractal spectra.
This formalism is based on a generalized version of the
Legendre transform underlying the conventional multifractal
formalism and leads to numerically stable, yet not necessarily
concave, estimates for the multifractal spectrum. This formal-
ism is inspired from generalized canonical ensembles studied

Figure 8. Real-world data. Satellite image (left column) and multifractal
spectrum estimates L(h) and LΥ(h) (right column): The generalized spec-
trum LΥ(h) clearly reveals the existence of a phenomenon leading to a
nonconcave multifractal spectrum.

satellite image corresponding to a patch of a hyperspectral
image of the Moffett field, acquired by the AVIRIS instrument
(spectral band 90), shown in Fig. 8 (left). The analysis was
performed using parameters γ ∈ {0, 100, 500, 750}, δ ∈
[0.6, 1.2], and q ∈ [−10, 10]. The estimates L and LΥ are
plotted in Fig. 8 (right) and lead to the following conclusions.
First, the smooth, well-behaved and artifact-free shape of the
estimated multifractal spectra and its large support suggest
that a multifractal model can be reasonably assumed for the
image. Second, the Legendre spectrum L and generalized
Legendre spectrum LΥ coincide for a large part of their
support, indicating that estimates are robust and stable. Third,
there is a clear difference between L(h) and LΥ(h) for
the interval h ∈ [0.98, 1.1]: indeed, the proposed method
allows to detect a nonconcave behavior of the multifractal
spectrum for this interval, leading to an estimate LΥ with two
modes that are clearly separated by a pronounced, nonconcave
dip. In the absence of a ground truth, we cannot conclude
on the phenomenological origin of the observed nonconcave
spectrum, although the example studied in Section IV-C4 could
suggest that the nonconcavity reflects the existence of two
visually discernable textures in the image (a rougher texture on
the lower-right corner, and a smoother one on the upper-left).
Nonetheless, we can conclude that the generalized multifractal
formalism enables the detection of nonconcave multifractal
spectrum from real-world data, whatever its precise origin,
while it remains hidden when use is made of the conventional
Legendre spectrum L.

VI. CONCLUSIONS AND PERSPECTIVES

We proposed a generalized multifractal formalism that can
be used to accurately estimate nonconcave multifractal spectra.
This formalism is based on a generalized version of the
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Legendre transform underlying the conventional multifractal
formalism and leads to numerically stable, yet not necessarily
concave, estimates for the multifractal spectrum. This formal-
ism is inspired from generalized canonical ensembles studied
in statistical physics, and yields a multifractal formalism
that inherits numerical robustness while capturing multifractal
spectra of general shape. Moreover, we showed theoretically
that this generalized multifractal formalism leads to tighter
bounds and is hence theoretically superior. Based on these
methodological developments, we devised a practical proce-
dure for the estimation of nonconcave multifractal spectra
from actual discrete, finite resolution data. The algorithm is
operational and applicable to real-world data and will be
made available. The proposed methodology, theoretical results
and practical algorithm have been validated by numerical
simulations using both 1D and 2D synthetic multifractal
processes, both with purely concave multifractal spectra and
with different types of nonconcavity. The results illustrate
the practical benefits of the proposed method and confirm
numerically that it improves on state-of-the-art techniques.
Future work will include the systematic analysis of real-world
biomedical signals and images, and the study of recently
introduced second generation regularity exponents.

APPENDIX

A. Proof of Proposition 1

Denote by Λj the set of dyadic cubes of width 2−j . Let ε >
0 and h be given. Let h′ be such that |h−h′| ≤ ε; by definition
of DLD, the quantity Aε,jn = card{λ ∈ Λjn : 2−(h′+ε)jn ≤
Lλ ≤ 2−(h′−ε)jn} satisfies ∀ε > 0,∃jn → +∞ : Aε,jn ≥
2(DLD(h′)−ε)jn . Thus, for such scales jn, the quantity Bε,jn =
card{λ ∈ Λjn : 2−(h+2ε)jn ≤ Lλ ≤ 2−(h−2ε)jn} satisfies
Bε,jn ≥ 2(DLD(h′)−ε)jn , so that DLD(h) ≥ DLD(h′) − ε,
hence the upper-semicontinuity.

B. Proof of Proposition 2

The second inequality is given by Prop. 1. The first one
can be written as f?? + g?? ≥ (f + g)??, with f = DLD and
L = f??, noting that g = g?? (because g is concave).

Denote by P1 the set of all affine functions. Then f?? can
be written as f??(x) = inf{a(x) : a ∈ P1 and a ≥ f} (see
e.g. [36], [41]). Note that a ∈ P1 a ≥ f , b ∈ P1, b ≥ g implies
that a+ b ∈ P1 and a+ b ≥ f + g.

Therefore, if we define A = {c = a+b with a, b ∈ P1, a ≥
f and b ≥ g} and B = {c ∈ P1 : c ≥ f + g}, it follows that
that A ⊂ B. But (f + g)??(x) = inf{c(x) with c ∈ B} and
f??(x) + g??(x) = inf{c(x) with c ∈ A}. Since A ⊂ B, an
infimum taken on B is smaller than the same infimum on A;
therefore f?? + g?? ≥ (f + g)??, which completes the proof.

C. Proof of Theorem 1

Without loss of generality, we can suppose that g is non-
positive, and that, at its maximum, it takes the value 0. Let
D be a large deviation spectrum; we first assume that h0 is
a point where D(h0) ≥ 0. Let ε > 0; since D is upper-
semicontinuous at h0, ∃δ > 0 such that ∀h ∈ [h0− δ, h0 + δ],

D(h) ≤ D(h0) + ε. Note that one also has ∀h,D(h) ≤ d.
It follows from the assumptions on g that there exists a
translation-dilation gε of g, such that ∀h /∈ [h0 − ε, h0 + ε],
gε(h) ≤ −d (and, by continuity, it is clear that the choice
of gε can be restricted to a dense subset of the collection of
all translates and dilates). Thus, the function D(h) + gε(h)
is negative outside of [h0 − ε, h0 + ε] and is less than
D(h0)+gε(h)+ε in [h0−ε, h0+ε]. Therefore it is everywhere
less than D(h0) + ε; thus it is also the case for its concave
hull. Consequently, the generalized Legendre spectrum of D
at h0 is bounded by D(h0) + ε (and it is also larger than
D(h0)). Since this is true ∀ε > 0, we can approximate
arbitrarily well the value of D at h0. We now assume that h0

is a point where D(h0) = −∞. By upper-semicontinuity, D
takes the value −∞ in a neighborhood of h0, and by picking
gε(h) = g(ah+ b) with a arbitrarily large, it is clear that the
GLT of D can take arbitrarily large negative values at h0.

D. Proof of Theorem 2

Let H be given and let EH = {x : h(x) = H}. If x ∈ EH ,
then (4) implies that there exists a sequence λjn,kx of dyadic
cubes such that x0 ∈ λjn,kx and − log2(Lλjn,kx )/jn → h(x).
Let J > 0 be given; we pick a collection of maximal subcubes
in the set of cubes λjn,kx for x ∈ EH , jn ≥ J and∣∣− log2(Lλjn,kx )/jn − h(x)

∣∣ ≤ ε; and we denote by Λj,H
the subcubes of this collection which are of width 2−j ; by
construction,

⋃
j≥J Λj,H is a covering of EH . Restricting the

sum in (8) to the cubes λ ∈ Λj,H yields the lower bound:
∀j, Sg(q, j) ≥ 2−dj

∑
λj′,k′∈Λj,H

(Lj′,k′)
q2g(φj′,k′ )j . But, if

λj′,k′ ∈ Λj,H , then (Lj′,k′)
q ∼ 2−Hqj and 2g(φj′,k′ )j ∼

2g(H)j , so that

∀j, Sg(q, j) ≥ 2−djcard(Λj,H)2−Hqj2g(H)j . (29)

Since
⋃
j≥J Λj,H is a covering of EH , by definition of

the Hausdorff dimension, ∀ε > 0,
∑
j≥J 2−j(DH(H)−ε) =

+∞, so that there exists a sequence jl → +∞ such that
card(Λjl,H)2−jl(DH(H)−ε) ≥ 1/j2

l . It follows from (29) that,
for this sequence jl,

Sg(q, jl) ≥ 2−djl2−Hqjl2g(H)jl2−jl(DH(H)−ε)/j2
l

so that ζg(q) = lim inf log2(Sg(q, j))/(−j) satisfies
∀q,∀H, ζg(q) ≤ d + Hq − g(H) − DH(H) and the result
follows.

REFERENCES

[1] S. Jaffard, “Wavelet techniques in multifractal analysis,” in Fractal
Geometry and Applications: A Jubilee of Benoı̂t Mandelbrot, M. Lapidus
and M. van Frankenhuijsen, Eds., Proc. Symposia in Pure Mathematics,
vol. 72(2). AMS, 2004, pp. 91–152.

[2] H. Ji, X. Yang, H. Ling, and Y. Xu, “Wavelet domain multifractal
analysis for static and dynamic texture classification,” IEEE Transactions
on Image Processing, vol. 22, no. 1, pp. 286–299, 2013.

[3] J. Zhong and R. Ning, “Image denoising based on wavelets and
multifractals for singularity detection,” IEEE Transactions on Image
Processing, vol. 14, no. 10, pp. 1435–1447, 2005.

[4] Y. Xia, D. Feng, and R. Zhao, “Morphology-based multifractal estima-
tion for texture segmentation,” IEEE Transactions on Image Processing,
vol. 15, no. 3, pp. 614–623, 2006.

[5] H. Wendt, P. Abry, and S. Jaffard, “Bootstrap for empirical multifractal
analysis,” IEEE Signal Proc. Mag., vol. 24, no. 4, pp. 38–48, 2007.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, NOVEMBER 2018. IN PRESS. DOI: 10.1109/TSP.2018.2879617 10

[6] R. Leonarduzzi, H. Wendt, P. Abry, S. Jaffard, and C. Melot, “Finite
resolution effects in p-leader multifractal analysis,” IEEE T. Signal
Proces., vol. 65, no. 13, pp. 3359–3368, 2017.

[7] S. Combrexelle, H. Wendt, N. Dobigeon, J.-Y. Tourneret, S. McLaughlin,
and P. Abry, “Bayesian estimation of the multifractality parameter for
image texture using a whittle approximation,” IEEE T. Image Proces.,
vol. 24, no. 8, pp. 2540–2551, 2015.

[8] B. B. Mandelbrot, “Intermittent turbulence in self-similar cascades:
divergence of high moments and dimension of the carrier,” J. Fluid
Mech., vol. 62, pp. 331–358, 1974.

[9] L. Telesca and M. Lovallo, “Analysis of the time dynamics in wind
records by means of multifractal detrended fluctuation analysis and the
Fisher–Shannon information plane,” J. Stat. Mech. Theor. Exp., vol.
2011, no. 07, p. P07001, 2011.

[10] Y. Tessier, S. Lovejoy, and D. Schertzer, “Universal multifractals: Theory
and observations for rain and clouds,” J. Applied Meteorology, vol. 32,
no. 2, pp. 223–250, 1993.

[11] R. Lopes and N. Betrouni, “Fractal and multifractal analysis: a review,”
Medical Image Analyis, vol. 13, pp. 634–649, 2009.

[12] F. Soares, F. Janela, M. Pereira, J. Seabra, and M. M. Freire, “3d
lacunarity in multifractal analysis of breast tumor lesions in dynamic
contrast-enhanced magnetic resonance imaging,” IEEE Transactions on
Image Processing, vol. 22, no. 11, pp. 4422–4435, 2013.

[13] T. Nakamura, K. Kiyono, H. Wendt, P. Abry, and Y. Yamamoto,
“Multiscale analysis of intensive longitudinal biomedical signals and its
clinical applications,” Proc. IEEE, vol. 104, no. 2, pp. 242–261, 2016.

[14] P. Ciuciu, P. Abry, C. Rabrait, and H. Wendt, “Log wavelet leaders
cumulant based multifractal analysis of evi fmri time series: evidence
of scaling in ongoing and evoked brain activity,” IEEE J. of Selected
Topics in Signal Proces., vol. 2, no. 6, pp. 929–943, 2009.

[15] P. Ciuciu, G. Varoquaux, P. Abry, S. Sadaghiani, and A. Kleinschmidt,
“Scale-free and multifractal dynamic properties of fmri signals during
rest and task,” Frontiers in Physiology, vol. 3, no. 186, pp. 1–18, 2012.

[16] B. J. He, J. Zempel, A. Snyder, and M. Raichle, “The temporal structures
and functional significance of scale-free brain activity,” Neuron, vol. 66,
pp. 353–69, 2010.

[17] R. H. Riedi, M. S. Crouse, V. J. Ribeiro, and R. G. Baraniuk, “A
multifractal wavelet model with application to network traffic,” IEEE
Transactions on Information Theory, vol. 45, no. 3, pp. 992–1018, 1999.

[18] P. Abry, R. Baraniuk, P. Flandrin, R. Riedi, and D. Veitch, “Multiscale
nature of network traffic,” IEEE Signal Process. Mag., vol. 19, no. 3,
pp. 28–46, 2002.

[19] R. Fontugne, P. Abry, K. Fukuda, D. Veitch, K. Cho, P. Borgnat, and
H. Wendt, “Scaling in internet traffic: a 14 year and 3 day longitudinal
study, with multiscale analyses and random projections,” IEEE/ACM T.
Networking, vol. 25, no. 4, pp. 2152–2165, 2017.

[20] B. B. Mandelbrot, “A multifractal walk down wall street,” Scientific
American, vol. 280, no. 2, pp. 70–73, Feb. 1999.

[21] P. Abry, H. Wendt, and S. Jaffard, “When Van Gogh meets Mandelbrot:
multifractal classification of painting’s texture,” Signal Process., vol. 93,
no. 3, pp. 554–572, 2013.

[22] P. Abry, S. G. Roux, H. Wendt, P. Messier, A. G. Klein, N. Tremblay,
P. Borgnat, S. Jaffard, B. Vedel, J. Coddington, and L. Daffner, “Mul-
tiscale anisotropic texture analysis and classification of photographic
prints: art scholarship meets image processing algorithms,” IEEE Signal
Process. Mag., vol. 32, no. 4, pp. 18–27, July 2015.

[23] J. F. Muzy, E. Bacry, and A. Arneodo, “Multifractal formalism for fractal
signals: The structure-function approach versus the wavelet-transform
modulus-maxima method,” Phys. Rev. E, vol. 47, no. 2, p. 875, 1993.

[24] J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin,
A. Bunde, and H. E. Stanley, “Multifractal detrended fluctuation analysis
of nonstationary time series,” Physica A, vol. 316, no. 1, pp. 87–114,
2002.

[25] S. Jaffard, C. Melot, R. Leonarduzzi, H. Wendt, P. Abry, S. G. Roux,
and M. E. Torres, “p-exponent and p-leaders, part i: Negative pointwise
regularity.” Physica A, vol. 448, pp. 300–318, 2016.

[26] R. Leonarduzzi, H. Wendt, P. Abry, S. Jaffard, C. Melot, S. G. Roux, and
M. E. Torres, “p-exponent and p-leaders, part ii: Multifractal analysis.
relations to detrended fluctuation analysis.” Physica A, vol. 448, pp.
319–339, 2016.

[27] R. S. Ellis, Entropies, large deviations and statistical mechanics.
Springer, New York, 1985.

[28] R. H. Riedi, “Multifractal processes,” in Theory and applications of
long range dependence, P. Doukhan, G. Oppenheim, and M. Taqqu,
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