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Abstract—We propose an iterative channel estimation algo-
rithm based on the Least Square Estimation (LSE) and Sparse
Message Passing (SMP) algorithm for the Millimeter Wave
(mmWave) MIMO systems. The channel coefficients of the
mmWave MIMO are approximately modeled as a Bernoulli-
Gaussian distribution and the channel matrix is sparse with
only a few non-zero entries. By leveraging the advantage of
sparseness, we propose an algorithm that iteratively detects the
exact locations and values of non-zero entries of the sparse
channel matrix. At each iteration, the locations are detected
by the SMP, and values are estimated with the LSE. We
also analyze the Cramér-Rao Lower Bound (CLRB), and show
that the proposed algorithm is a minimum variance unbiased
estimator under the assumption that we have the partial priori
knowledge of the channel. Furthermore, we employ the Gaussian
approximation for message densities under density evolution to
simplify the analysis of the algorithm, which provides a simple
method to predict the performance of the proposed algorithm.
Numerical experiments show that the proposed algorithm has
much better performance than the existing sparse estimators,
especially when the channel is sparse. In addition, our proposed
algorithm converges to the CRLB of the genie-aided estimation
of sparse channels with only five turbo iterations.

Index Terms—Millimeter wave, iterative channel estima-
tion, sparse message passing, Gaussian-Bernoulli distribution,
Cramér-Rao lower bound, minimum variance unbiased estima-
tor, Gaussian approximation.

I. INTRODUCTION

Millimeter wave (mmWave) has been receiving tremendous
interests from the academia, industry, and government for
future 5G cellular systems [I]-[[I0] due to the available
spectrum from 30 GHz to 300 GHz. However, mmWave poses
new challenges. One of them is the severe path-loss. Recent
urban model experiments show that path losses are 40 dB
worse at 28 GHz compared to 2.8 GHz [11], [12].

One way to overcome this severe path-loss of mmWave
signal propagation is to increase the number of transmit and
receive antennas [7]], [13]], [14]. With the large number of

The work of C. Yuen was supported by the MIT-SUTD International design
center and NSFC 61750110529 Grant, and that of C. Huang by the PHC
Merlion PhD program.

Chongwen Huang and Chau Yuen are with the Singapore Unversity of
Technology and Design, Singapore. Lei Liu is with the Singapore Unversity
of Technology and Design and City University of Hong Kong, Hong Kong,
China. Sumei Sun is with the Institute for Infocomm Research (I2R), Agency
for Science, Technology and Research (A*STAR), 138632, Singapore. (e-
mail: chongwen_huang@mymail.sutd.edu.sg, leiliuxidian@gmail.com, yuen-
chau@sutd.edu.sg, sunsm@i2r.a-star.edu.sg).

The material in this paper was presented in part at the conference of
the IEEE Globecom 2016 workshop on mobile communications in higher
frequency bands, Washington D.C., USA, Dec. 2016 [1].

antennas and relatively fewer channel paths, the mmWave
channel is approximately sparse [7], [14]-[17]. The sparse
feature is recently verified by measurements, for example,
[11], [12], [18]] reported that mmWave channels typically
exhibit only 3-4 scattering clusters in dense-urban non-line-of-
sight environments. Therefore, conventional MIMO iterative
channel estimation methods [[19]-[25]] are not suitable for
mmWave systems due to the different channel characteristic
and system model (i.e., mmWave systems usually employ the
hybird anlog/digital architecture for reducing hardware cost
and power consumption [7]], [11].). This prompts the need to
design efficient channel estimation techniques for the mmWave
systems.

For sparse channel estimation, several algorithms have been
proposed in [26]-[29]], [31]-[34]. They can be classified into
three categories according to the required priori information
(except the noise variance) of the channel. The algorithm
in the first category requires to know the full knowledge
of the channel’s distribution, structure, etc., for example, the
approximate message passing (AMP) algorithm [26] proposed
by Donoho and Maleki. AMP is a low-complexity iterative
Bayesian algorithm that can achieve approximately maximum
a posteriori and minimum mean-squared error signal estimates.
Iterative Detection/Estimation With Threshold (ITD-SE) [27]],
Adaptive Compressed Sensing (ACS) estimation algorithm
proposed in [28] and Orthogonal Matching Pursuit (OMP)
[29] are classified into the second category, which needs partial
priori information of the channel, e.g., the degree of sparsity L.
ITD-SE based Least Square Estimation (LSE) needs the fewer
iterations, but its performance depends on the adaptive thresh-
old selection scheme. ACS leverages the advanced compressed
sensing theory and combines with the hybrid beamforming
technique. Therefore, it is very suitable for the mmWave
systems. The algorithms in the third category do not need any
priori knowledge of the channel distribution except the noise
variance, e.g., Sparse Bayesian Learning (SBL) [30], LASSO
[32], Expectation-maximization Bernoulli-Gaussian Approx-
imate Message Passing (EM-BG-AMP) [33], etc. However,
most of these algorithms need to learn the channel in order to
improve the estimation performance, for example, SBL that is
implemented via the more robust T-MSBL [31]. In addition,
although LASSO [32] and EM-BG-AMP [33]] have the lower
complexity, their solutions are generally not the sparsest,
and EM-BG-AMP also requires independent and identically
distributed (i.i.d.) zero-mean Gaussian training matrix. [33],
[35]. Recently, [34] proposed a modified mean field (MF)
message passing-based algorithm, which also belongs to the



third category and can deliver even better performance with
the lower complexity than the conventional vector-form MF
SBL algorithm by introducing a few hard constraint factors.
This also provides a promising method for the future mmWave
channel estimation.

In this paper, we develop an iterative channel estimation
algorithm based on the LSE, Expectation-Maximization (EM)
and Sparse Message Passing (SMP) for mmWave MIMO
systems with large antenna arrays at both the transmitter
and receiver. A beamspace channel representation model is
adopted which can capture the sparseness of physical mmWave
channel and provides simple geometric interpretation of the
scatter environment ([see [[15]], [16]]]). Based on this represen-
tation, we further model the mmWave channel as a Bernoulli-
Gaussian distribution. We summarize our main contributions
of this paper as follows.

o We formulate a sparse channel estimation problem and
propose a novel sparse channel estimation algorithm.
Compared with existing sparse channel estimation meth-
ods, ours can yield a better performance since it not only
can take full advantage of the inherent sparseness of the
mmWave channel, but also can leverage both virtues of
the LSE and SMP algorithms.

o« We give the performance analysis of the proposed al-
gorithm, and derive its upper bound and CRLB. Fur-
thermore, we show that the proposed algorithm is the
Minimum Variance Unbiased Estimator (MVUE) under
the assumption that we have the partial priori knowledge
of the channel.

o We employ the Extrinsic Information Transfer (EXIT)
chart-based technique for the convergence analysis of
the key part of the proposed algorithm, and provide
insights on the iteration evolution of the proposed algo-
rithm, based on which design parameters we optimize.
This analysis use a Gaussian approximation for message
densities under the density evolution, and adopt the Log-
Likelihood Ratios (LLRs) of messages, which can reduce
the complexity of the analysis.

« We evaluate the performance of the proposed estimation
algorithm. Numerical simulations show that our algorithm
exhibits far better performance than the classical LSE
estimator, as well as existing sparse channel estimators
(e.g., LASSO, ITD-SE, EM-BG-AMP, etc.). In addition,
we also find that this algorithm can approximately achieve
the CRLB with the fast convergence speed.

The rest of the paper is organized as follows. In Section
II, we present the beamspace channel representation model
for mmWave MIMO systems and formulate a sparse channel
estimation problem. In Section III, we propose an iterative
sparse channel estimation algorithm. The performance analysis
of the proposed algorithm is given in Section IV. In Section
V, simulation results demonstrating the performance of the
proposed algorithms are given, before concluding the paper in
Section VI.

Notation: a is a scalar, a is a vector and A is a matrix.
AT, A" A~! AT and |A| F represent transpose, Hermitian
(conjugate transpose), inverse, pseudo-inverse and Frobenius

norm of a matrix A, respectively. A®B denotes the Kronecker
product of A and B, and vec(A) is a vector stacking all the
columns of A. diag(a) is a diagonal matrix with the entries
of a on its diagonal, and diag(A) is a block diagonal matrix
with the matrix A as the block on its diagonal. A (x;m, V)
is the Probability Distribution Function (PDF) of a complex
Gaussian random vector x with mean m and covariance
V. We use the E{-}, Var{-}, exp(:), and R to denote the
expectation, variance, nature exponential operation and the real
field respectively. In addition, E{a|b} denotes the conditional
expectation of variable a given b, and Var{a|b} denotes the
conditional variance of the variable a given b.

II. SYSTEM MODEL

We consider a hybrid analog-digital mmWave communica-
tion system that has [V; transmit and [V,- receive antennas at the
transmitter and receiver respectively, and both of them have
Ngrr RF chains []_1 The transmitter and receiver communicate
via N, data streams, such that N, < Nip < N, and
Ny < Nrrp < Ng [28], [35]]. Assuming frequency-flat fading
channel, and that there is a Nypr X N baseband precoder Fgp
followed by an N; x Nrr RF precoder Frp in the downlink
transmission, we can denote F = FrpFgp as a N; x Ng
combined precoding matrix, and similarly, we denote C as
the N, x N, combining matrix, which is composed of the
RF combiners Crg and baseband combiners Cgg. For the
traditional hybrid analog-digital model, the observed signal at
the receiver can be written as [28]], [35]-[38]],

y = CHHFs + CHz, 1)

where H € CM*Mt ig the channel matrix, s € CM+*1 is
the transmitted signal, y € CV=*! is the received signal and
z € CNVr*1 is the Gaussian noise with z ~ A(0,021) .
Since mmWave channels are expected to have limited
scattering, we adopt a geometric channel model with L scat-
terers. Each scatterer is further assumed to contribute a single
propagation path between transmitters and receivers [11]], [28]],
[35]. Under this model, the channel H can be expressed as

N, N, &
5> aa(0)ay (¢), 2)

=1
where p denotes the average path-loss between the transmitter

and receiver, o is the gain of the Ith path, ¢; € [0,27] and
0; € [0, 27] denote the Ith path’s azimuth angles of departure
and arrival of the transmitter and receiver respectively. Finally,
a;(¢;) and a,.(6;) are the antenna array response vectors at
the transmitter and receiver respectively [28], [36]-[38]. If a
uniform linear arrays is used, a;(¢;) can be written as
_ L[} izdsinen j(Nt—l)z%dsm(m)r
ai (o) oA 1,e e , 3
where ) is the signal wavelength, and d is the distance between
antenna elements. The array response vectors at the receiver,
a,(0;), can be written in a similar fashion. Then, the channel
can be written in a more compact form as
H = A, diag(a)A/, )

H =

IFor simiplicity, we assume the same number of RF chains at the transmitter
and receiver. The proposed architecture also can be extended to the case where
has different numbers of RF chains.
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Fig. 1. The hybrid analog-digital communication architecture based on the beamspace channel representation. Essentially, the beamspace channel representation
is to map the signal of the spatial domain to the signal of the beam domain by employing a carefully designed discrete lens antenna array instead of the
electromagnetic antenna array. The Fourier transformation W and W,. can be seen as a mapping from the antenna domain onto a beam domain and the
entries of the matrix H, can be interpreted as the channel gains between the N; transmit and the N, receive beams.

where o = ,/%[al,ag, ..., oqy]T. The matrices

A; = [ai(f1), ai(d2), -, ai(P1)], S
and

AT’ = [ar(el)vaT(GQ)v WaaT(el)]a (6)

contain the transmitter and receiver array response vectors.
The mmWave multipath propagation channel usually con-
sists of a few reflected path clusters [18], [35], [38], [39].
Large antenna arrays are deployed in the mmWave systems
for combatting the high path loss. Hence, we usually have
L < min{N,, N, }.

For capturing the inherent sparse characteristic of the phys-
ical mmWave modeling, we adopt a hybrid analog-digital
communication architecture that is based on the beamspace
channel representation as shown in Fig. [I| This beamspace
representation also provides a tractable linear channel char-
acterization, and offers a simple and transparent interpreta-
tion to the effects of scattering and array characteristics on
channel capacity and diversity [15], [40]-[43]. Essentially,
the beamspace channel representation is to map the signal
of the spatial domain to the signal of the beam domain by
employing a carefully designed discrete lens antenna array
instead of the electromagnetic antenna array [10]], [40]—[44].
In particular, the lens acts as a virtual passive phase shifter,
focusing the incident electromagnetic wave to a certain region.
This lens, when used jointly with antennas, exhibits two
significant properties: (i) focused signal power at the front end
achieving high directivity and gain, and (ii) concentrated signal
power directed to a sub-region of the antenna array. These
properties make the lens a practical and energy efficiency tool
for implementing the RF frontend in beamforming systems
[6], [45]-[47]. The finite dimensionality of the signal space
allows the beamspace channel model that can be expressed as

H, = W/HW, (7)
where W, € CN-*Nr and W, € CM*Nt are channel-
invariant unitary DFT matrices [17]], [40], and W, W} =
Iy,, W, WH = Iy . Note that H, € CV*™¢ is no longer
diagonal. We recast by the beamspace channel representa-
tion as

y = CEW, H, W Fs + CHW, z, (®)

The Fourier transformation W; and W, can be seen as a
mapping from the antenna domain onto a beam domain and
the entries of the matrix H,, can be interpreted as the channel
gains between the N; transmit and the N, receive beams
[40]. Assuming the channel is time-invariant in the blocks

te {1,,T} Then, Y S [yh ...,yT], s [Sl, ...,ST] , and
N 2 [CHW,z,,...,CHEW,z7] £ [ni,...,n7]. The channel
model is rewritten as

Y = CHW,H,WFAFS + N, 9)

where Y € CN+XT § ¢ CN+*T and N € CN=*T We define
D2 CHW, and X £ WfIFS. Then, we recast the @) as

Y =DH,X + N. (10)
Then, vectorizing (10) [28] yields
vec(Y) = vec(DH,X) + vec(N) (1n

= (XT @ D)vec(H,) + vec(N).

By defining the § = vec(Y), S £ XT ® D, h, £ vec(H,)
and i £ vec(N), (11) is equivalently rewritten as follows:

y = Sh, + 0, (12)

where ¥ € CN-Tx1 § ¢ CNsT*NeNe ', ¢ CN-Nex1 and
n € CNsTx1 The mmWave channel estimation problem is
simplified to estimate the beamspace channel vector h, by
the equivalent training matrix S and the observed vector ¥.

I1I. SPARSE CHANNEL ESTIMATION

In this section, we present an iterative channel estimation
algorithm based on the LSE and SMP algorithm as shown in
Fig. 2, which is named LSE-SMP. It consists of four phases:
LSE Coarse Estimation (Step 1), Sparse Message Passing
Detection (Step 2), Update for LSE Estimation and Sparsity
Ratios (Step 3), and Decision and Output (Step 4). Since
there is no priori knowledge of h,, we initially adopt the
LSE method to obtain its coarse estimation. Then, in the
Step 2, we consider the estimation of non-zero positions in
the channel vector h, as a detection problem, and propose
an SMP algorithm to find these non-zero positions under the
estimated sparsity ratio. In the Step 3, we apply LSE method
again by leveraging the estimated non-zero positions in the
Step 2 to obtain the fine estimation of h,, and estimate the
sparsity ratio by the Expectation-Maximization (EM) method.
The fourth Step is to make the decision according to the
performance requirements (MSE, number of iterations, etc.)
and the estimation of the Step 2 and Step 3. If the MSE of
LSE-SMP meets the requirement or the number of iterations
reaches the limit, the final estimation of h, will be output,
otherwise the Step 2 and Step 3 will repeat until we obtain a
fine estimation.
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Fig. 2. The processing for the proposed LSE-SMP algorithm, which consists
of four phases: LSE Coarse Estimation, Sparse Message Passing Detection,
Update for LSE Estimation and Sparsity Ratios, and Decision and Output.

A. LSE Coarse Estimation

To find the Coarse Estimation flv based on the observed
vector y with a Mean Square Error (MSE) E{||h, — h,|?},
we can solve the following Least Square (LS) problem,

h, = argmin |¥ — Sh, |3
b (13)
_ §¥§)'§"y.

It is noted that it is MVUE in the sense of MSE for the
deterministic signal when the estimator does not have any prior
knowledge about either the sparsity structure of h,, (i.e., the
distribution and location of non-zero entries), or its degree of
sparsity (i.e., L).

B. Sparse Message Passing Algorithm

After we get the Coarse Estimation of h,, we propose
a fast iterative algorithm to find the positions of non-zero
entries. This algorithm is named sparse message passing since
it can take full advantage of the channel sparsity and message
passing algorithm.

1) Factor Graph Representation of the mmWave Channel:
In order to get better understanding of our proposed algorithm,
we show the factor graph representation of the channel vector
h, in the following. Firstly, we decompose the h,, into a diago-
nal coefficient matrix Uy, and a column array b. The column
array b = [b;]nNx1(6 € {0,...,N},j € {0,...,N;}) is
called the position vector, and it represents the positions of
non-zero in the coefficient matrix Uy, . The b;; € {1,0} can
be seen as a Bernoulli distribution. Then, the h, can be recast
as

hi1 0 b11
h, = hin, 1N,
) . (14)
0 hn, N, bn,.N,
=Uh, =b
Then, we rewrite (12) as
H = _
[ yn T yn.r | =Sh, +1
7 (15)
= SUhvb + n.

According to factor graph analysis rules [19]], [48]—[50],
we can plot the factor graph to represent above equations,
and it is shown in the Fig. The nodes (ni1,...,nN,T)
and (hi1,..., hy,n,) are named the sum and variable nodes
respectively.

The proposed SMP algorithm is considered for estimating
positions of non-zero entries. It is similar to the belief propa-
gation decoding process of the low density parity check code,
in which the output message called extrinsic information on
each edge is calculated by the messages on the other edges
that are connected with the same node [[19], [51]-[54].

2) Message Update at Sum Nodes : To analyze a sum
node that is shown in the Fig. 4, we can obtain the kth
(k € {0, ..., N}) data stream at the tth (¢ € {0,...,T}) time
block, and it can be expressed as [[55[]—[57]]

N. N
Ykt = Z Z Skt,ijhigbij + Mt
i=1 j=1
As we mentioned beforej, there are L non-zero entries in the
vector of b. Then, we have the definition of the sparsity ratio
n= NLNt Assuming that the entries of b = [b1, ..., by, N,.]
are i.i.d., we can know the probability of the Bernoulli
distribution, which can be denoted as
{ po(bi; =1) =1, 17)
po(bij =0) =1-17, (18)
where 7 is the estimation of 7, and it will be updated by the
EM method in the next phase. It should be pointed out that
the initial value of 7 is set as 0.5. When NV, or N, goes very
large, the term S~ Z;\gl Skt,ijhijbij can be approximated
as the Gaussian distribution [50], [54], [58] according to the
law of large numbers. When we compute the probability of
p(bi; = 1) from the kt sum node to the ¢j variable node,
we consider the messages from the other variable nodes ¢m
(L #im#jand £ € {1,2,....N.},m € {1,2,...,N;}) to
the sum node kt as the equivalent Gaussian noise n7,. This
can be expressed as

(16)

N, Ny
Ykt=sktijhip(0i; = 1)+ Y > Skt emhemp(bem =1) +1s .
T~ #imy

Desired Item

Equivalent Gaussian noise: nj,
(19)
Furthermore, we can compute the mean value and variance
of the equivalent Gaussian noise nj, [58], [59]. These mes-
sages update at the sum nodes are given by

Chiorig (1) = B {nislsn, (7). 0 (1)}
= Z Z Skt,ZmiLZm(T)pZmakt(T)v
041 m#£] )
Viosig (1) = Var {nf, s, B(r), p7(7), ¥a(7) |

(20)

- 2
=33 B P2 ()} E{p" ()}
0#£i m#j
~ 2
- Sit,fthZW ()P ot (T)
= Zzsit,fmp;m—)kt (T)h%m(T)(l_pz)m—ﬂct (T))
L#im#£]
+ 5%t mPim—kt (T) Vs, (T) + 00
(21)
where 7 denotes the iteration number, and U,QL is
the variance of the Gaussian noise, and sy =
[Skt,lla < Sktyigy ey Skt,NTNt]H’ h = [hlla ...hij, ceey hNTNt]Ha
p’ = [PV 1kt oo PYjsits - PR N )| and
Vi = [Uhys s [Ohyy oo Uny, v, ). In addtion, €ht—ij (T)

and vg,_,;; (1) denote the mean and variance of the equivalent
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Fig. 3. The factor graph representation for the proposed sparse message passing detection algorithm. This factor graph is plotted on the basis of equations
(T4)-(T6) and factor graph rules. The nodes (n11, ..., ny, ) and (hi1, ..., AN, N,) are named the sum and variable nodes respectively.

Gaussian noise nj, when the message sg;;jhi;p(bi; = 1)
passes from the k¢t sum node to the ij variable node at the
rth iteration. Similarly, pj . ..(7) denotes the probability
message of p(bg, = 1) passing from the ¢m variable node to
the kt sum node at the 7th iteration. Bgm and vy, that denote
the mean and variance of hy,, are estimated in the Step 3.
Once we obtain the mean and variance of the equivalent
Gaussian noise, we can compute the statistical probability
of b;; = 1 and b;; = 0 as below equations in accordance to

(Yt — skt ighijp(bi; = 1)) ~ N(eZteij(T)vvlitaij(T))'

P(bij = Uyke, kt,i5(7), hij (1), vn,; (7))

= N (ynt; eztaij(T) + Skt,ijhij (T), UZtaij () + s?jvhi]‘ (7))

P(bij = Olyke, k1,6 (7), i (7), vy, (7))

=N (ykt; €Zt—>ig‘ (7), Ve (7))
Then, we can give the probability message of b;; 1
passing from the k¢ sum node to the ¢j variable node as
follows

pZt—m'j (T) _ P(b’bj = 0|ykt7 Skt,ij (7—); {LZ] (7—)7 Uh,; (T)
P(bij = Ukt Skt,i5 (7), hij (1), vn,; (7))

—(1+ Ulsctﬁij (T) + S?jvhij (T) (yk't - ezt*)ij (T))2
Vjitsif (T) —2u3,45(7)

- -1
(ke = €35 (T) = Sktijhij(7))?
2(v2t—>ij () + ngvhij (7))
(23)

3) Message Update at Variable Nodes : In terms of the
message update at variable nodes, we consider variable nodes
as a broadcast process [60], [61] and the message update at
the variable node is given by

[I pZt—n'j(T) “po(bij = 0)\ -1
14 r#£k

I;IkpZtﬁij (7) - po(bi; = 1)
where r € {1,..., Ny}, and pj, ,,;(7 + 1) denotes the prob-
ability message of b;; = 1 passing from the it sum node to
the ij variable node at the (7 + 1)th iteration. Furthermore,
we can obtain the estimation of the Bernoulli variable b;; at

the (7 + 1)th iteration as
N,

lpZtﬁij(T) “po(bi; = 0)\ —1

Pijsk(TH1) = (24

bij(r+1)=[1+%

N
kljl Pri—ij(T) - po(biy = 1)

(25)

Variable node updating

Sum node updating

Fig. 4. Messages update at sum nodes and variable nodes. The output message
called extrinsic information on each edge is calculated by the messages on the
s other edges that are connected with the same node. For the Gaussian-Bernoulli
sparse signals, the messages passing on each edge are the probabilities of a
Bernoulli distribution. The mean and variance of a Gaussian distribution are

(22)updated at the sum nodes, and they are used for computing the probability of

a Bernoulli distribution.

Remark 1: 1t should be pointed out that pj, ;. (7 + 1) is

_, the extrinsic information and will be used to update messages

of the sum nodes in the next iteration. On the other hand,
bi;j(T + 1) is updated based on the full information coming
from all the sum nodes, and it will be used in the Step 3 for
the estimation of h,,.

Remark 2: The proposed SMP that is based on the mes-
sage passing can obtain near optimal performance without
heavy computational complexity by approximating the term
S E;y:tlskt,ijhijbij as the Gaussian distribution. This
is because the number of transmit antennas NV, is large in
mmWave communication systems as they operate at the higher
communication spectrum, therefore, the approximation is ac-
curate due to the law of large numbers. This also shows that
our proposed algorithm is specialized for mmWave systems.

C. Update for LSE Estimation and Sparsity Ratio

1) LSE Fine Estimation: Once the positions of the non-
zero entries have been estimated, the next step is to estimate
the value of the coefficient matrix Uy,. For the problem,
we propose a novel strategy based on the LSE method. This
strategy is to swap the positions of h;; and b;; in the (T4),
so that we can get an accurate estimation by leveraging the
sparsity of b. Rewriting (I3) as

y = SUzh, + A, (26)
where h, € CNeN-x1 and b = [lA)ij}NrNtxl is the vector
estimated by the SMP algorithm. Similar with the LSE Coarse



Estimation, the estimation of h, can be obtained by solving
the following LS problem

h, = argmin{||y - SUgh, |3} 27)
Solving the above expressfon, we get the following estimator
for h, as

b, (r) = Q'(7) (SUg() "3, (28)

~ 2 o H 5 i

w(r) = o2 (SUs(1)"SUL(M) . @9
where  Q(7) = Uy (1)SHSUL (1), W =

diag[vn,,|N, N, x NN, - hy(7) and ¥ (7) denotes the estimated
value and variance of h, at 7th iteration. After we obtain
h,(7) and ¥5,(7), these values will replace the h,(k — 1)
and Vp,(k — 1) for calculating the mean and variance of the
equivalent Gaussian noise nj, in the iteration.

2) EM update for the sparsity ratio : We now present a
classical EM algorithm [33[], [62] to learn the sparsity ratio 7.
Since the channel vector h, can be modeled as i.i.d Bernoulli-
Gaussian, then we have the marginal PDF as

p(hijin, un,,vn,) = (1=0)8(hi;) +nN (hij; un, , vn, ), (30)
where §(-) is the Dirac delta, and wy, and vy, are the mean
and variance of non-zero entries of h;; respectively. Then, we
can give the EM update for 1 by the estimated the parameters
£(7) £ [A(7), @n, (), 0, (7)]. In the sequel, we use the F\,,
to denote the vector T with the element 7 removed. Similar to
the equation (29) in paper [33]], the EM update for 7 can be
written as

Ar+1)= arg max ZZE{lnp (hijsn, B\, (T)|y; #(7)) )

=1 i=1

. . . 3D
To maximize the value of 7 in the above equation, it is
necessary to zero the derivative of the sum; i.e., that satisfies

>y [ ptnstgre) EEERAD —o.

j=1:i=1
Finally, we get the solutlon of (32) that is
1
n(r+1)= N =
it (DN (s iy ()0, (7))
e 1+< =N G 0.7)
(33)
1 N -1 s T
where o= N Zkzl Skt’ij(ykt = Chtij (7)), u" =

N S s 1jVht—i;(7), and 7 can be interpreted as a p'-
variance-AWGN corrupted observation of the true h;;. Their
detailed derivations are similar with the equation (9) and (15)
of the paper [33].

D. Decision and Output of LSE-SMP

When the MSE of the LSE-SMP meets the requirement or
the number of iterations reaches the limit, we output the final
estimation of channel vector h, as

- A S H_

h, = Q'(r) (SUs(n) " 3, (34)

h) = Uy b, (35)
where b = [b;;]n, n, x1. It should be pointed out that the final
output is based on the SMP and LSE Fine Estimation.

Remark 3: The LSE fine estimation makes full use of
the sparse information that is estimated by the SMP at each

iteration, which not only can significantly improve estimation
performance of LSE, but also accelerate the whole algorithm
to converge. In turn, the estimated result of LSE is used to
improve the estimation accuracy of SMP in the next iteration.
In other words, the LSE and SMP will help each other at each
iteration for improving the performance of estimation until the
MSE approaches the minimum or meets the system require-
ment. When the channel h, is more sparse, the advantage of
the proposed algorithm becomes significant. Therefore, this is
the another reason that the proposed algorithm is suitable for
mmWave communication systems.

E. LLRs of LSE-SMP

From (24) and (23), we notice that the messages update
for the variable nodes are easy to overflow in the simulations
due to the multiplications of a large number of probabilities.
Therefore, we use Log-Likelihood Ratios (LLRs) scheme [54],
[63] to replace the computation of the non-zero probabilities
during the message update process. This not only can prevent
the overflow, but also can reduce the complexity of computa-
tion. The LLRs scheme can be wrltten as follows

pk ij\T
Bisiy (1) = logy— ;:t] "ol (36)

—1ij

v Pkt (T)
j—ke(T) =1lo #tm(ﬂ’ (37)

ij—
PO(sz =1)

lo=1o 38
O BT Ryby = 1) (38)
forany i € {1,...,N,}, € {l,.., N}, ke {1,..,Ns} and

7 (7 denotes the number of iterations ). I3, ,;(7) denotes the
LLRs of the probability message of b;; = 1 passing from the
kt sum node to ij variable node. Similarly, I7; ,;,(7) denotes
the LLRs of the probability message of b;; = 1 passing from
the 75 variable node to kt sum node. Then, the LSE-SMP
algorithm is updated by LLRs as follows.

1) Message Update at Sum Nodes : Based on (20), 1)
and (23)), the LLRs of Bernoulli-Gaussian messages updating
at sum nodes are rewritten as

vi L (T) + s2op, (T)
ls y T) _ —10g kt—ij 7 hij
wvi <\/ Vit (T)

(ke — ek (T) - Skijhii () (ke — €45;(7))?
Q(WZt—n'j(T) + Stijhij (1)) PL (1)
(39)

2) Message Update at Variable Nodes : Based on (24)
and (23], the LLRs of messages updating at variable nodes
are rewritten as

N
BT+ 1) =lo+ Y I3 (7) (40)
r#k
W(r+ 1) =lo+ Y Iy ylr 41)
bij(r+1) = 1/(1 4 e M+, 42)

where the message [{;(7 + 1) is updated based on the full
information coming from all the sum nodes. It is used for
calculating the b;;(7 + 1).



From (39)-@2), it should be noticed that the LSE-SMP
algorithm in the LLRs form will be more concise, which
can reduce the complexity of computation and prevent the
overflow of multiplications of a large number of probabilities,
since LLRs transform the multiplication operations into the
addition operations. In addition, we also can see that this will
be convenient to analyze and predict the performance of the
system in the following section IV.

F. LSE-SMP in the Matrix Form

In order to reduce the complexity of matrix inversions
and multiplications, we can split the high dimension
diagonal matrix and block diagonal matrix into some
low dimension matrixs, since the transmit and receive
antennas are independent each other as we mentioned
before. As we defined before, we denote ¢ € {1,2,...,N,},
j e {1,2,...N:},k € {1,2,..,Ns}tand t € {1,2,....,T},
and k denotes the 7th iteration in the following definitions.
Then, we give some definitions as follows: U%(7) =

eZtaij(T)]NsTerNt’ Vi(r) = |vhn(T) -
P*(7) = [pztaij(T)} NTXN.N. L*(7) =
[lktqij(T)}NSTerNt» PU(r) = |:pij—>kt(7—):|
L) = )]

Ug(7)

NNy xN,T
UA =

NN XN T hv(T)T
e
iag (b;;(T) .
[ykt]NSTxl’

diag[hi; (7)] N, N, x1s

vh(T) = diag [Uhij (T)]NTNtxl’ y
Q(7) = Uy (1)SSH UL (7).

In addition, we let ANT><N,;~ * BNTXNt = [aijbij]erNt,
AR v, = 38, xv, 1, xn, = [N, x,. and Cn, i, =
AN,.xN, - Bn,xn, is the matrix product of A and B.

Then, the algorithm 1 shows the detailed process of the
LSE-SMP in the LLRs matrix form.

IV. PERFORMANCE ANALYSIS
A. Cramér-Rao Low Bound Of LSE-SMP

In this section, we give the analysis of CRLB and show that
our proposed LSE-SMP algorithm is unbiased under under
the assumption that we have the partial priori knowledge of
the channel. Firstly, we consider the case that the channel
vector h,, is a deterministic and non-sparse. From [64], [65]
and the signal model in (I3), we can yield the CRLB of the
conventional LSE as

CRLBsg]> Crsg = 02(578)~* (43)
where Crsg is the covariance matrix of h, for the LSE
estimation. Note that LSE is the MVUE, and the detailed proof
can be found in [64], [65]]. Compared with the non-sparse case,
the sparse case is slightly more complex. In particular, we
are interested in the lower bound for the estimation accuracy,

2 Two different CRLBs for MSE depends on the amount of knowledge
of the estimators about the sparsity structure of the targeted deterministic
signal [27]. Specifically, compared with the LSE, our proposed algorithm can
estimate the sparse information (positions of non-zero entries) by employing
the SMP and EM. Therefore, CRLBs are different for the LSE and LSE-
SMP algorithm, which are denoted as CRLBy,sg and CRLBLsg_svp
respectively.

Algorithm 1 LSE-SMP Algorithm

1: Input S T N§7Nr,Nt7Nk:tea Un, €e>0
n = 0.5, and calculate S and (S#§) f
2: Initialized Coarse LSE Estimation: Vj,
P*(0) =0, Uy(0) and L"(0) = 0.
Do _
Vi(r) = (UZ(r) - P (7). + —P"(r))
5. +Va(r)-P" (1) 48O, T (r) = Uy ()-8 4P¥(7),
and P 7_) _ (1NTNt><N o+ e_L’U(‘r))*l

(
B 21 e A

By
v

, 7 = 0, initial value

s

(0) = on[SS"]7

aw

(AN, Tx N, Ny

a

8: LS(T) = 11 VS(7)+§§<<2)>~\7}1,(T) + (9‘11X1;;12t<:>U5(T))2
(y11><N N U ()-8 U (0)°
2V )
9: LY(+1) 1N Tx1-[Lixn,r - L(7)]=L%(7)
7'+1 In.7x1 - [lixn,T - L7(7)]
T+1 11\1 Nf><N T/(]-NTNth T+e L(T-H))
+ LS 0
10: a <
{ﬁU(T)}_ Q(r )(S B(r ) y
Vh(T) ( T ) ’
11: A +1)= NtN'r Z Z (TN (1 by (7) Dy (BT
j=li=1 4, J
( A=n(T))N(r; OHT) )

12: T=7+4+1,
13: While ( (U, (7 + 1) = Uy (Dllz2 < e& | L(T + 1) —
L(n)|2 <€) orT < the )

g[S

15: Output: h, and h?.

however, the proposed LSE-SMP algorithm involves a big loop
that contains the LSE estimation, solving Gaussian functions,
SMP estimation and EM learning, hence it is extremely
difficult to establish an analytical model. Recalling the in
(T4), we know that h,, can be decomposed into the two parts
(Up, and b). Therefore, we can take the way like alternating
minimization method [66]]-[68] to analyze these two parts
independently. In other words, when we analyze the estimated
performance of Uy, , we assume that the b is given, and vice
versa. Therefore, we have the following assumption 1.

Assumption 1: The channel h,, is deterministic and we have
the priori knowledge of non-zero positions b.

The paper [50], [69] had already shown that the massage
passing-based algorithm can converge to the LMMSE under
the Gaussian distribution from the theoretical perspective. In
addition, we also perform a few simulations under the typical
settings, and simulations show that the estimation for non-
zero positions is accurate, especially with small number of
non-zero entries. These simulation results was attached as the
supplemental materials. Under the Assumption 1, we have

Theorem 1: The proposed LSE-SMP is the MVUE, and



can achieve the CRLB that is given by

_ — T
CRLBLSE,SMP >02 ((SUp)"SUL) . @
Proof: The first step is to verify that the our proposed
estimator is unbiased under the Assumption 1. Recalling
the signal model in (26) and the definition of the unbiased
estimator, we get

B(hy,)=F { (5U)" 5U)' (5U)" y}

E { (5U.)"50,) (§UL)" (SUh, + ﬁ)}

=Uph, =h,. (45)

So, it is a unbiased estimator. The next step is to compute its

CRLB and verify that our proposed LSE-SMP algorithm can

achieve the CRLB under the Assumption 1. As previously

mentioned, the additive white Gaussian noise is modeled

as N(0,021) and the channel h, is a deterministic vector.
Recalling the signal model in (I2)), we can get

¥ ~ p(¥lh,) = N (Shy, o71), (46)

where p(¥|h,) is the probability density function of § un-

der the condition of known h,. Then, we can compute the
dlnp (3_' ‘hv)

oh, °
s _1 (5,15 (50,)" s
SR [(5UL) "y - (SUL) T SULh, | @7
oh, J%(b)Y(b) b 47)
Then, we obtain the following expression for the Fisher
Information Matrix (FIM):

0%In p(¥|h, 1 - H =
I(h,) = —E{a}g%H} = U—%(SUb) SU,. (48)

We note that SUY, has the rank no larger than L due to the
multiplication of S by Uy,. The matrices SUy, and (SUb)H
have some all zero columns (and rows), so it is singular. For
this type singular matrix, it need to meet a constraint [[71]],
otherwise our proposed estimator (35)) has infinite variance that
renders the CRLB useless. Before we analyze this constraint,
we firstly compute the following key identity

G = ((Su,)"suy)' (SUy)" S,

49)
= dzag(b) 7é INTNt'
Then, the constraint is given [71] by
G = GI(h,)I(h,)". (50)

Plugging the @8) and @9) into (50), we obtain G =
GI(h,)I(h,)" = Uy, that holds. This means that the variance
of our proposed estimator is finite. Since the FIM I(h,) in
(48) is singular, the expression for the CRLB can be computed
following [27], [71]], which yields,

CRLBLsg-smp > CLse-smp = GI(h,)'G"

_ _ T
— o2 ((SUb)"SUy)
where Cr,sg_smp i$ the covariance matrix of fl:; for the LSE-

SMP estimation [70f]. From the CRLB theorem [65]], we know
that the unbiased estimator attain the CRLB if and only if

8lnp(y|hv> _ i
o = 1) (B, —hy ) (52)

(51

always holds.

Plugging (34), and into (52), this verifies that our
proposed LSE-SMP estimators is the MVUE, and can achieve
the CRLB under the Assumption 1. [ |

Corollary 1: For the deterministic and sparse channel, we
have that the MSE of LSE estimator is the upper bound of that
of the proposed LSE-SMP estimator. This also be denoted by
MSEyse-smp < MSEgsE.

Proof: Firstly, we compute the MSE of the LSE estimator.
It can be denoted by
MSEysg = E{||h, — h,[*}
NNy
=trace{CrLsg}= Z [CLsE]11s
1=1
where [ € {1,2,.., N, N;}. Similarly, we can obtain the MSE
of the LSE-SMP estimator as folloyvs,
MSErse-smp = E{|h) — h,[*}
NNy
=trace{CLsg_smp } = Z [CLsE-smP]i1-

=1
Since the channel vector is L sparse, Crsg_smp has

no more than L eigenvalues. Furthermore, we notice that
CrLsE—smp 1s obtained from the full rank matrix Crsg
by replacing N,.N; — L rows and corresponding columns
with all zero entries at each index [ for which b, = 0.
Since the S is a non-singular matrix, it is easy to prove
that both Crgg and Crgsg_smp are the symmetric positive
definite matrices, thus their all eigenvalues are greater than
zero. We denote 0 < An,n, < An,v—1 < ... < Ap and
0 <A} < Ap_; < ... < AT as the eigenvalues of Cysg and
Crse-_smp respectively. By applying the theorem 4.3.17 in
[[72] obtains

AMZAT 2 X2 A > 2 AL > A,
and therefore

(53)

(54)

(55)

N, N, L

trace{Crsg } :Z A > Z Aj =trace{Crsg_smp }. (56)

1=1 1=1
Combining (56), and recalling (53) and (54), we know that
MSELse-smp < MSELsE. =

B. Analysis of Iterative Evolution of LSE-SMP

In this section, we will analyze the iterative evolution
performance of the LSE-SMP. As we mentioned before, it
is not easy to analyze the proposed algorithm directly by
using the existing methods, i.e., density evolution algorithm
[54], [73]]. Actually, the core of the proposed algorithm is
SMP algorithm, and the convergence behavior of the proposed
algorithm is determined by the convergence behavior of the
SMP algorithm. Therefore, following the last subsection, we
also expect to leverage the alternating minimization method for
ruling out the influence of LSE and EM algorithm, and focus
on the SMP only. Then, we have the following assumption.

Assumption 2: We have the priori knowledge of non-zero
entries of h,, and its the mean and variance are denoted as
up, and o respectively.

We design the training signal S that is the Gaussian dis-
tribution with the zero mean and variance o2. Many previous
research results show that (40) can be well approximated by
Gaussian densities (see [54]). we denote the mean and variance
of message [;; ., at the variable node as u, and o2. There
is an important condition, called the symmetry condition. For
a Gaussian signal with the mean w, and variance o2, this

v



condition reduces to 02 = 2u, for the message updating at
variable nodes [54], [S5]], [[74], which means that we only need
to keep the mean w,, of the message [};_,;,. Then, we have

Theorem 2: Under the assumption 2, we can obtain a
closed-form update rule for variable nodes after any a few
iterations. It denotes by

Uy (T4+1) = l0+\/%/RC(ZU(T))€

_ %) —uy ()
4uqy (T)

di* (),
(57)

with )
¢(1()) ! —f —arsnr! B2 () 1 aysnr—t
7)) ==
as + ay(snr—1+1) as + ajsnr—1

2

ai
—logy 1+ ————,
as + aisnr
o2oh,

where k denotes the number of iterations, snr = =5, 3 =

U;%O’;Q, a; = (1—'—6[1’(7—))2, as = (]\/vt—:[)elv("—)(1_|_elv(7')_|_B)7

and [f;_,;,(7) is denoted by ”(7).

Proof: Proof of the Theorem 2: see the Appendix. ]

Although it is difficult to obtain the exact solution of the
mean u, and variance o2 of [?(7), we can study and analyze
the performance of SMP algorithm by simulating its Extrinsic
Information Transfer (EXIT) chart [63], [69] based on the
Theorem 2. This allows us to take full advantage of properties
of the EXIT chart to predict the performance of our proposed
algorithm. It is noted that the EXIT chart in this paper is a
little difference with the EXIT chart in the paper [63]] and [69].
The main difference is that we take the variances of variable
nodes as the extrinsic information, while the paper [63] uses
the mutual information as the extrinsic information, and the
paper [69] uses the MSE as the extrinsic information. In fact,
the LLRs of variances message can be transformed into mutual
information and MSE directly. Furthermore, we can obtain the
Corollary 2 that provides a significant criterion to judge the
performance of the estimator.

Corollary 2: Assuming that the LSE-SMP has converged,
if the variable nodes have the larger convergence variance
o2, then the LSE-SMP algorithm has the better estimation
performance.

Proof: Based on the EXIT chart analysis technique, [[63]]
has proved that there is a connection between the variance
012) of the variable node and the bit error rate (BER) after
an arbitrary number of iterations. According to the equation
(26) in the [63]], the estimation of bit error probability can be
approximated by the following

u1)> K

P, ~ 1erfc (JU) = 1erfc (1

2 2v/2 2 2

where erfc(z) = 1 — erf(z) = %T = e~tdt is the com-
plementary error function, and is a monotonically decreasing
and continuous on (—o0, +00). This means that the BER will
decrease with the increase of the convergence variance o2.
Therefore, the Corollary 2 is proved. ]
Remark 4: The Theorem 2 shows the basic relationship
between u, (7 + 1), u,(7) and some parameters, i.e., training
sequence length T, snr, coefficient of variation of the channel
B, etc. Moreover, the Corollary 2 provides a remarkable

connection between the variance o2 of the variable node and
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Fig. 5. This figure shows the SNR versus the average NMSE performance of
various estimate algorithms. In the figure, Ny = 32, N, = 64,n = 0.007,
B = 10 with the O’Z = 10, and the training sequence length T' = 64.
The result shows the proposed LSE-SMP estimator exhibits the best NMSE
performance among the tested algorithms.

the performance of the algorithm, which provides a significant
criterion for our proposed algorithm. Based on the Theorem
2 and Corollary 2, we take the advantage of the EXIT chart
analysis to obtain a few insights on the proposed algorithm in
the numerical results section.

V. NUMERICAL RESULTS

In this section, we report the results of a detailed numerical
study on the performance of our proposed LSE-SMP algorithm
using the Monte-Carlo simulations. For all numerical study,
we considered the channel estimation problem in a 32 x 64
mmWave MIMO system. The channel vector h,, was randomly
generated based on (3) and (8), and the non-zero entries
follow a Gaussian distribution. Throughout, we considered
SNR £ E{||S||%/||fa||%} in the interval [-10, 40]d B; defined
the coefficients of variation of h, as 3 = u?/o? with the
O’%L = 10; and the performance metric was the Normalized

Mean Square Error (NMSE), given by E {W} There
are 500 different channel realizations and the aveFrage results

are reported.

A. Performance Comparison

Fig. 5] shows the average channel estimation NMSE perfor-
mance of the proposed LSE-SMP algorithm, LSE, Genie aided
ITD-SE [27]], genie-tuned LASSO (via SPGLI1 [[75]), SBL [30]
(via the T-MSBL [31]]), genie-tuned OMP [29], EM-BG-AMP
[33]] (in sparse mode) and BP-MF SBL [34]. All algorithms
were run under the suggested defaults to obtain their best
performance by the varied maximum number of iterations.
Additionally, we also compute the CRLB for the classical LSE
and the proposed LSE-SMP estimator. The result shows that
our proposed LSE-SMP estimator exhibits the best NMSE
performance among the tested algorithms, and reduces the
NMSE by 3.5dB relative to EM-BG-AMP and 1.5dB relative
to BP-MF SBL. As expected, the CRLB for the proposed
LSE-SMP is the lowest, and this result is consistent with
that of classical LSE estimator with the perfect knowledge of
the non-zero positions. It is also seen from the Fig. [5 that
the gap between LSE-SMP and LSE-SMP CRLB is much
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Fig. 6. This figure shows the average NMSE performance of the LSE-SMP
estimator and its CRLB versus SNR under different turbo iterations. In the
figure, Ny = 32, N, = 64,7 = 0.031, 8 = 10 with the O'}QL = 10, and
the training sequence length 7' = 64. This result shows that the LSE-SMP
algorithm reaches the convergence just need five iterations.
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Fig. 7. This figure shows SNR versus the average NMSE perfor-
mance comparison of LSE-SMP, LSE channel estimates and their CRLBs
for different sparsity ratios. In the figure, Ny = 32,N, = 64,n €
{0.007,0.125,0.50,0.80}, T' = 64, 8 = 10 with the Ui = 10, and the
iterations = 6. It can be seen that the LSE-SMP CRLB is the lower bound
of the proposed LSE-SMP and the LSE CRLB is the upper bound.

smaller, about 1.8dB. This gap is partly due to the errors in the
detection of the non-zero positions in sparse message passing
phase and partly to the fact that all our detection strategies
rely on a coarse initial estimate of the channel.

B. Effect of Iterations

Fig. [6] shows the average channel estimation NMSE per-
formance for the LSE-SMP algorithm under several turbo
iterations. The result shows that the NMSE performance of
the LSE-SMP algorithm will be lower with the increasing
of iterations, and we also find that the gap of the NMSE
performance between the adjacent iterations for the LSE-SMP
algorithm will be smaller with more iterations. The main
reason is that the parameters of sparsity ratio 1 and non-
zeroes position vector b are estimated more and more accurate.
On the other hand, after the fifth turbo iteration, the NMSE
performance have no significant improvement and it is very
close to our analyzed LSE-SMP CRLB. This demonstrates that
the convergence speed of the LSE-SMP algorithm is fast (just
need five iterations).

C. Effect of Sparsity Ratios

For further investigating the effect of sparsity ratio to our
proposed algorithm, we ran the algorithm to obtain its best
performance and changed the sparsity ratio n from 0.007 to
0.80. Simulation results in Fig. [7] show that CRLB of the
LSE-SMP is the lower bound and CRLB of the LSE is the
upper bound. When the channel become more sparse, the
performance of the proposed LSE-SMP will be better and
approaches the lower bound. These results verified the analysis
of Theorem 1 and Corollary 1. In addition, these results also
show that the LSE-SMP is able to exploit the sparsity of
the channel. To be specific, The NMSE performance of the
LSE keeps unchanged under different sparsity ratios, while
the NMSE of the LSE-SMP will decrease with the decrease of
sparsity ratios. This indicates that the LSE-SMP scheme will
be very suitable for channel estimation for mmwave systems
since the channel of mmwave systems is sparse.

D. Effect of Training Sequence Length

In Fig. Eka) and (b), we investigate the effect of different
training sequence lengths by tracking the input and output
LLRs of variance messages (02, and 02,,) of the variable
nodes of the LSE-SMP algorithm. From the results of Theorem
2 and Corollary 2, we know that the performance of the
LSE-SMP algorithm can be measured by the convergence
variances of the variable nodes. Therefore, we can leverage the
EXIT chart based technique to analyse the system performance
and design optimal parameters for some specific application
scenarios. More specifically. Fig. [8[a) shows that the variance
messages always converges to only one fixed point, and the
longer the training sequence length, the better the estimation
performance (BER). On the other hand, Fig. Ekb) shows
that the increase in training sequence length will reduce the
number of iteration needed, but at the cost of the overall
computational time as the computational complexity of each
iteration is exponential to the demission of matrix [19], [48]-
[SO]. Therefore, through the EXIT chart analysis, we can
optimize the training sequence length to achieve a balance
between the estimation performance and computational time.
In addition, we also find that the shorter training sequence
will result in the narrower space between the input and output
variance traces. With the decrease of training sequence length,
two traces of o2, and o2, will approach to intersect. If
two traces have more one intersections, this means that the
proposed algorithm fails to converge. To be specific, 7' = 16
is the shortest training sequence that can make the proposed
LSE-SMP work and converge under the setting of figures.
Similarly, another an important function of the EXIT chart
analysis is to predict the training sequence length under given
the BER according to the Theorem 2 and Corollary 2.

E. Effect of the Coefficient of Variation of the Channel

Fig. 0] presents the effect of the coefficient of variation
£ of the channel vector h, for the proposed LSE-SMP
algorithm. Then, we plotted the EXIT chart for the coefficient
of variation. We can see that there is only one convergent
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0% =10, and n = 0.125. afn and a?mt are the input and output variance messages of the variable nodes in the LLRs form. (a), 7' € {16, 32, 64, 128,256}

(b), T € {32,256}.
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Fig. 9. This figure shows the EXIT chart analysis of the LSE-SMP algorithm
with T = 64, Ny = 32, N, = 64 and SNR = 10dB, where we set the
coefficients of variation 3 € {0.8,3.2,12.8,51.2} under the o2 = 10. The
result shows that the more dispersion channel condition will leads to the lower
system performance, while needs the less time to achieve the convergence.

variance point for the different coefficients of variation, and
the convergent variance point will be higher with the increase
of the coefficient of variation, while the bottleneck region
that denotes the narrower region between the o2, and o2,
traces keeps unchanged. Therefore, this also means that the
higher variance point needs more iterations to achieve. In
other words, these results indicate that the more dispersion
channel condition will leads to the lower system performance,

but needs the less time to achieve the convergence.

FE. Complexity of the Algorithms

Fig. [TI0] shows the NMSE versus the runtime of various
algorithms. We evaluate the runtime of each algorithm on a
typical personal computer. By varying the maximum number
of iterations in ITD-SE, SBL, OMP, EM-BG-AMP, BP-MF
SBL and LSE-SMP algorithms, we obtained their NMSE-
runtime frontier. The other two algorithms are represented
by two points. We notice that the ITD-SE obtains the best
performance-complexity trade-off when the NMSE is larger
than —66d B, LASSO gives the best trade-off when the NMSE
is between —66dB and —73dB, EM-BG-AMP gives the best

¢ LSE
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Genic LASSO (SPGLI)
—&—SBL
—&— Genie OMP
—+—EM-BG-AMP
—+— BP-MF SBL
—+— LSE-SMP (Proposed)
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Fig. 10.  This figure shows the NMSE versus the runtime of various
algorithms. In the figure, Ny = 32, N, = 64,SNR = 40dB,5 = 10
with 0}21 = 10, n = 0.007, and T' = 64. This result indicates that the
proposed LSE-SMP obtains the best performance-complexity trade-off than
the tested algorithms when the NMSE is less than —80d B.

trade-off when the NMSE is between —73dB and —76d B, BP-
MF SBL gives the best trade-off when the NMSE is between
—76dB and —80dB, and LSE-SMP is the best when the
NMSE is less than —80dB. In other words, the proposed LSE-
SMP algorithm obtains the best performance than other tested
algorithms, although it may need to spend more time.

VI. CONCLUSION

We have presented a sparse channel estimation algorithm
(LSE-SMP) for mmWave MIMO systems, which leverages
both virtues of the SMP and LSE algorithms. We have
analyzed the CRLB of the proposed LSE-SMP algorithm, and
showed that the algorithm is MVUE under the assumption that
we have the partial priori knowledge of the channel. Next,
we have also shown an EXIT chart-based analysis technique
for the convergence analysis of the key part of the proposed
algorithm, and for the selection of optimal design parameters.
Simulation experiments have verified that the proposed algo-
rithm reduces the NMSE by about 2dB relative to the best
of existing algorithms. In addition, it has been shown that the
proposed algorithm typically needed only five turbo iterations



to approximately achieve CRLB. Since the correlation among
the adjacent entries in the beam domain channel was ignored
in this paper, a possible research direction is to take it into
consideration in the future work.

APPENDIX

Then, @0) simply becomes Plugging (22) into (60), and we
obtain the update as following, .
— St hi (7))

N,
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s 2
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In order to be convenient for analysis, we define equation

(62) as follow,

Since transmit and receive antennas are independent and
symmetric, we omit the subscript of [f; ,;,(7), and use
[”(7) to denote the [f;_,;,(7) in the following paper. Due to
Ske,ij ~ N(0, v 2), we can obtain E(s?, z]) = Var(spij) +
E(skt, ”)2 = 0 Snmlarly, we can get E( ) =Var(ng)+

E(ni)? = o2. Plugging (20) and (39) into the above
expression, we obtain

(N¢—1)o2 u? 2 9 2
¢(1°(7)) = —log e (08 + Trettey) +od0) + ok
B (Ne—1)o? (o
W(% + W) +o3
_O-suh _ 2
+ (Fe™)? — n
2 (Nt_l)o'g 2+ u%;, )+ 2 -2 2
e (O + matey) 030, +on
2
[
+ (1+6 lv(7>)2 +O’
(N¢—1)o02 u? 2
2(? R (03 + trohey) + 02

L . . . (63)

To simplify ;21:2 expression, we yield equation (64).
where snr = =5k,

The above expression looks like complex, however, we find
that it is symmetric and has a few common terms. Then, we
can define 8 = u?0;, %, a; = (1 +¢€"(M)2 and ay = (N, —

Det" (1 + € () + B). The (1* (7)) can be denoted by
(7)) = 1 —B—aisnr—1 B2 () 4+ aqsnr
- 2 \ag +ay(snrl 4+ 1)

a1
_1 140"
og\/ + as + apsnr—t’
(65)

Since [V is Gaussian with the mean w, and variance 2u,,,
we obtain the following update expression by the definition of
the expectatlon

Uy(74+1) =

1

as + ajsnr—!

_ () —uy ()
duqy (T)

dl¥ (7).
(66)

W/ (Er

Therefore, we have the Theorem 2.
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