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Online Forecasting Matrix Factorization
San Gultekin and John Paisley

Abstract—In this paper the problem of forecasting high di-
mensional time series is considered. Such time series can be
modeled as matrices where each column denotes a measurement.
In addition, when missing values are present, low rank matrix
factorization approaches are suitable for predicting future values.
This paper formally defines and analyzes the forecasting problem
in the online setting, i.e. where the data arrives as a stream
and only a single pass is allowed. We present and analyze
novel matrix factorization techniques which can learn low-
dimensional embeddings effectively in an online manner. Based
on these embeddings a recursive minimum mean square error
estimator is derived, which learns an autoregressive model on
them. Experiments with two real datasets with tens of millions
of measurements show the benefits of the proposed approach.

Index Terms—Online learning, time series, forecasting, matrix
factorization, embeddings, estimation theory.

I. INTRODUCTION

A brief look into the history of signal processing reveals an
ever-increasing need for acquiring, storing, and analyzing data
which constantly changes in form and presents new challenges.
In the big data era, the challenge has been growing in different
dimensions. On one hand, many techniques become obsolete
as the scale of the data is witnessing unprecedented growth. On
the other hand, the complexity of data is increasing. Indeed,
modern datasets are composed of many different features
that can include, for example, text, audio, image as well
as various numerical and categorical features. Another very
important issue is the case of missing data, which can have
multiple causes; e.g. corruption during acquisition, or the data-
specific sparsity. For instance, an online retailer will have
many customers and products, but each customer will be
interacting with a very small subset of all products, giving
rise to a very sparse interaction history.

Collaborative filtering is one particular field in which one is
typically required to deal with missing values. Here, the aim
is to recommend a user a set of items, based on other users
with “similar” interests. While there are a number of ways
to address this problem, matrix factorization has been one of
the most successful approaches to solve this problem, being
the winner of one million dollar Netflix challenge [1]. The
approach taken here is to treat the entire data as a matrix
with many missing entries, and factor it as a product of
two low rank matrices. These factors can then be used to
predict missing entries. Various matrix factorization algorithms
has been successfully applied, in many different settings in
addition to the collaborative filtering [2], [3]. Some examples
include natural language processing [4], [5], image processing
[6], and power systems analysis [7]. In addition to these, the
special case of nonlinear matrix factorization has also received
significant attention [8].

While matrix factorization has been a popular choice for
many different problems, interestingly, its applications to time

series analysis has been less developed. Modern time series
are typically high dimensional, with many missing values;
consequently, the entire time series can be treated as a sparse
matrix, and low-rank matrix factorization can be quite useful.
The recent work of [9] proposed a temporal regularized matrix
factorization, based on this observation. A key property of their
solution is that, the columns of one of the factor matrices
is regularized by an AR process. The coefficients of this
process are learned from the data, and can be used to forecast
future values. This shows that matrix factorization is also a
powerful tool for time series forecasting. With that said, the
emphasis in [9] was on the batch learning case. For many
practical applications, it might be impractical to load and
process the entire batch, or the data itself may be arriving
as a stream. This brings one to the challenging setting of
online learning, where the data is processed as a stream, and
no storage or multiple passes are allowed. Online learning
for time series prediction is an active area of research [10],
[11], [12]. In particular, the recent work [13] considers online
predictions with missing values. However, to the best of
our knowledge, online forecasting of time series with matrix
factorization has not been considered before. In this paper we
formally introduce the problem and propose novel techniques,
which forecast future values of high dimensional time series,
based on matrix factorization. A key observation in previous
works [10], [13] is that, the textbook methods to time series
analysis which typically assume stationarity of series and/or
Gaussianity of noise terms are oftern unrealistic: This is also
our preferred approach here and throughout the paper we make
minimal assumptions about the data generating process.

The problem we consider in this paper falls into the general
framework of dynamic matrix factorization, in which one finds
time-varying factors for a time-varying observation matrix. A
particularly appealing approach to dynamic matrix factoriza-
tion utilizes state-space models; here, the columns of latent
factor matrices follow a generative state-space model, and their
values are inferred from the observations. This is equivalent to
a non-convex version of the Kalman filter [14]. Several recent
works consider dynamic, state-space models in batch setting
[15], [16]. On the other hand, [17] proposed an online, dy-
namic state-space model, named Collaborative Kalman Filter
(CKF), which can estimate the states in an online manner. It is
also worthwhile to note that many well established algorithms
such as probabilistic matrix factorization [2] can also be
extended to the online and dynamic setting. Another recent
work [18] is concerned with providing theoretical guarantees
in the dynamic setting. With that said, our problem setting is
different from the previous literature in two senses: First, in
the online setting we no longer observe a dynamic matrix at
each time, but instead we observe a single column, i.e. cross
section of a high dimensional time-series. This is a degenerate
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setting, as a naive matrix factorization approach will always
give rank-1 approximations. Secondly, while the previous work
focuses on predicting missing entries of the current observation
matrix, the forecasting problem is concerned with predicting
future values, for which an additional extrapolation step is
necessary.

Finally we note that, there is a significant body of work
which consider the missing value and forecasting problems
with other approaches: [19] proposes a convex optimization
framework for transition matrix estimation in vector-valued
time series. While [20] employs a time-series model to rep-
resent missing observations, [21] handles them with an EM
algorithm. The work [22] utilizes an AR process to impute
missing values, and [23] considers Kalman filtering problem
with intermittent observations. The main benefit of of using
matrix factorization is that, the low rank representation is a
natural choice for high dimensional and sparse time series,
and as shown in this paper, non-trivial low rank factorizations
can be learned efficiently in the online setting.

We organize this paper as follows: Section II establishes
the background for AR processes and matrix factorization
approach to time series analysis. Section III is concerned
with introducing matrix factorization methods, which find low-
rank factorizations suitable for forecasting. Building on such
factorization, Section IV shows how the coefficients of the AR
process can be estimated in an optimum manner. Section V
contains extensive experimentation with two real datasets with
tens on millions of measurements; our experiments show that
the proposed techniques are effective in practical situations.
We conclude in Section 6.

II. BACKGROUND

This section provides background on time series and ma-
trix factorization, and introduces a generative model which
provides a framework for subsequent development. In this
paper, we are interested in forecasting the future values of
a high dimensional time series {xt}Tt=1, where each xt is an
M × 1 vector. In particular, the analysis will take place in
the online setting where, at each time step t, the value of xt
must be predicted - denoted by x̂t - before it is observed,
and upon observation the predictor suffers a loss and updates
its model. For this paper, the time indices are discrete and
homogeneous; the current time and total number of samples
are denoted by t and T , and also [T ] = {1, 2, . . . , T}. In the
well-known Box-Jenkins approach [24], given the samples,
one constructs a signal model by finding (i) a trend, (ii)
a seasonal component, and (iii) a noise component, where
the latter is typically modeled by an autoregressive moving
average (ARMA) model, which is a combination of the AR
and MA models. The learned model can then be assessed with
appropriate statistical tests. One drawback of this approach is
that, finding a trend and seasonal component requires storage
and processing of the entire data, which might be unsuitable
due to storage or computation time requirements. In addition,
this methodology is also unsuitable for streaming data.

For these reasons, we start from a generic vector AR process

(VAR(P)) model of form

xt = θ1xt−1 + . . .+ θPxt−P + ηx,t , (1)

where ηx,t is zero mean white noise and P denotes the model
order. The choice of P has a major impact on the accuracy of
the model, as it captures the maximal lag for correlation. Let
the parameters of this model be denoted by θ = [θ1, . . . , θP ]>

for shorthand. It is clear that, with scalar coefficients the
VAR(P) corresponds to M copies of an AR(P) model. In
addition, when the polynomial ψP − θ1ψP−1 − . . .− θP has
roots inside the unit circle, the model is stationary [25]. For
a given finite number of measurements, the parameters of the
AR(P) model can be estimated by minimizing the mean square
error

θ̂ = arg min
θ′

Eθ ‖θ − θ′‖22 , (2)

where expectation is taken with respect to the prior p(θ).
A particular advantage of this formulation is, the optimum
linear minimum mean squared error estimator (LMMSE) does
not make any distribution assumptions on p(θ) or p(η), and
can be calculated in closed form, given the first and second
order statistics. More importantly, unlike the least square or
best linear unbiased (BLU) estimator, LMMSE estimator is
guaranteed to exist. We will give a derivation of this estimator
in Section 4, where we discuss optimum sequence prediction.

We now turn to matrix factorization, first note that the time
series at hand can be represented by an M ×T matrix X . Let
d denote the rank of this matrix; as a direct consequence of
the full rank partitioning property [26], it is possible to find a
d×M matrix U and a d× T V such that X = U>V . Note
that such a factorization is non-unique and there are multiple
ways to find one. For example singular value decomposition
(SVD) is widely used for this purpose. Furthermore, when X
represents a time series, such a factorization can be interpreted
as follows: Since the matrix V is d × T , it corresponds to a
compression of the original M × T matrix X; therefore the
matrix V is itself a time series; whereas the matrix U provides
the combination coefficients to reconstruct X from V . Based
on this key observation, [9] proposed a temporal regularized
matrix factorization, where the regularizer on the columns of
V is in the form of an AR process; it is showed that such
regularization has notable impact on performance.

Motivated by this, our goal in this paper is to learn the
factorizations U and V , along with the AR model of Eq.
(2) within the online setting, where, at each time instant, we
observe a single column of the data matrix, namely xt. While
this has similarity to the previous work on online/dynamic
matrix factorization algorithms [17], [15], one fundamental
issue sets it apart: In the aforementioned papers, at each time
an M ×N matrix is observed, with N � 1; whereas in our
case the observation is simply M × 1. This is illustrated in
Figure 1, in panel (a) we show the batch factorization of an
M × T matrix X . Panel (b) is the case where, at each time,
a subset of the matrix entries are observed. However, when
X is a time series matrix, at each time we observe a single
column, as shown in panel (c).

The problem with observing a vector is, the latent rank is
at most 1 in this case; whereas the batch problem in Figure
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Fig. 1: Comparison of online matrix factorization schemes. In panel (a), a matrix X is factorized in batch setting, whereas
in panel (b), at each time, a subset of the matrix is observed. For illustrative purposes, note that the observed rank is always
greater than one, so the problem is feasible. Panel (c) shows online matrix factorization, where at each time a vector is observed
and factorization rank never exceeds one. This is the setting of the paper.

1(a) will have a solution of rank d. Since the end goal here is
to factor the entire data, it is desirable to start from a rank-d
representation and gradually update it. However, finding such
factors naively gives poor performance (Figure 4), therefore
our task is to devise an effective way achieving this. This can
be done using specific penalties on the matrix U , which yields
feasible optimization problems, as shown in the next section.
One way to motivate our approach is to consider a probabilistic
generative model for the data, as frequently used in Bayesian
methods [27]. Here we employ a state-space representation

U t = U t−1 + ηU ,t

vt = θ1vt−1 + . . .+ θPvt−P + ηv,t

xt = U>t vt + ηx,t , (3)

where [ηU ,T ], [ηv,T ], and [ηx,T ] are white noise sequences,
independent of each other. This model reveals, an EM-like
algorithm is necessary: In the E-step U t and vt are estimated;
in the M-step, treating the E-step estimates as observations,
θ1, . . . , θP are updated. These two steps are covered in Sec-
tions III and IV respectively.

III. ONLINE MATRIX FACTORIZATION

The algorithms presented in the paper fit an AR model to the
sequence [vT ] = {v1, . . . ,vT }, which itself is generated in an
online fashion. To get a good fit, it is necessary to generate the
vectors vt is a proper manner. To illustrate this, for a given
measurement vector if we find a factorization xt = U>t vt,
for any orthogonal matrix Q and positive scaling constant a
we get xt = (aQU t)

>(a−1Qvt). This scaling and rotation
could have a significant effect on forecasting accuracy (Figure
4). On the other hand, the matrix U t is a slowly time-varying
quantity which means we can constrain its variation. Accurate
selection of the penalty on U t has a dramatic effect on the
generated [vT ], which then dictates the forecasting accuracy.

Another mild assumption we use is that, the absolute value
of observations are upper bounded by a finite number. Further,
without loss of generality we impose supx∈[xT ] ‖x‖∞ = 1,
i.e. the upper bound is simply unity. This is not a restrictive as-
sumption, as an upper limit on the measurements are typically
known and normalization can be applied accordingly. For the

datasets used in this paper, for the power data, this is dictated
by the physical constraints of the network, i.e. capacity of
the elements; for the traffic data, the measurements are in
percentages, which automatically satisfy the bound.

A. Fixed Penalty Constraint

The first algorithm we present is based on a simple fixed
penalty function on the norms of the factors. The batch version
for this algorithm was previously considered in [2]. For that
case the cost function is

f(U ,v) =
∑
m,n

(xm,n − u>mvn)2 + ρu‖U‖2F + ρv‖V ‖2F (4)

This is equivalent to adding Gaussian priors to each column
of U and v and in [2] is referred to as probabilistic matrix
factorization (PMF). This non-convex, unconstrained problem
is solved by an alternating coordinate descent scheme

u(i)
m ←

(
ρuI +

∑
n

v(i)n v
(i)>
n

)−1(∑
n

xm,nv
(i)
n

)

v(i+1)
n ←

(
ρvI +

∑
m

u(i)
m u

(i)>
m

)−1(∑
m

xm,nu
(i)
m

)
(5)

These updates are easily found by matrix differentiation. Now
turning to the online case, at each time, a single column of X
is revealed. Imposing the generative model of Eq. (3), at time
t we would like to minimize the following cost function

f(U t,vt) = ‖xt −U>t vt‖22 + ρu‖U t − ū‖2F + ρv‖vt − v̄‖22
(6)

As a subtlety, note that U t will be the submatrix of U
which contains the columns with a corresponding observation
in xt; so when there are missing observations, only a subset
of columns get updated. At this point it is important to make
a distinction between the update for U t and vt. At any
given time, the number of observations is Mt, and vt has
d parameters. Typically Mt > d and the update for vt can
be feasible even if ρv = 0; therefore ρv is a small set-and-
forget constant that we include for numerical stability 1. On

1Indeed, ρv = 10−4 for all experiments in this paper.
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the other hand, U t contains Mtd > Mt unknowns and the
Gram matrix U tU

>
t is not invertible. Therefore, ρu > 0 is

necessary to make the problem feasible. Since both ρu and ρv
are fixed at the beginning, we refer to Eq. (6) as fixed penalty
(FP) matrix factorization. This naming choice will be evident
in the next section.

Comparing the generative model of Eq. (3) and the cost
function of Eq. (6), FP finds the maximum a posteriori (MAP)
solution. Here, the priors follow state equations: Ū = U t−1
and v̄ =

∑P
l=1 θlvt−l. Moreover, the `2-norm terms in Eq. (6)

suggests that η·,t has a density inversely proportional to the
distance from the mean. Indeed, this is the only assumption we
make about the noise p.d.f. While the most common choice
satisfying this requirement would be the Gaussian density;
note that its support is the entire Rn which conflicts with the
bounded data assumption. Secondly, from the perspective of
Eq. (3), the regularization coefficients can be regarded as the
inverse noise variance; higher values mean higher trust to the
prior and stronger regularization. Finally, we note that whereas
ρv is usually a small constant, ρu � ρv . This suggests, at time
t, FP finds a solution for which U t remains close to U t−1, i.e.
U t is slowly time-varying. This agrees with the interpretation
that, in the batch case U is a fixed set of coefficients and V
contains the compressed time series. Another caution here is
that, setting ρv high would over-constrain the problem as both
U t and vt would be forced to stay close to Ū and v̄ while
trying to minimize the approximation error to xt.

The update equations for FP are

U
(i)
t ← (ρuI + v

(i)
t v

(i)>
t )−1(ρuŪ + v

(i)
t x

>
t )

v
(i)
t ← (ρvI +U

(i)
t U

(i)>
t )−1(ρvv̄ +U

(i)
t xt) . (7)

A key argument in Eq. (6) is that, the state equations of Eq.
(3) addresses scaling and rotation issues through Ū and v̄. A
naive approach, which does not impose any temporal structure
on the latent variables, constructs the alternative objective

f(U t,vt) = ‖xt −U>t vt‖22 + ρu‖U t‖2F + ρv‖vt‖22 . (8)

We also consider this alternative “naive” model in the experi-
ments, to show that, in the absence of temporal regularization
in Eq. (3), scaling and rotation cannot be prevented 2, hin-
dering the prediction quality. The FP matrix factorization is
summarized in Algorithm 1.

B. Fixed Tolerance Constraint

The fixed penalty approach to matrix factorization suffers
from several potential issues: While ρv is a small set-and-
forget constant, picking ρu correctly is very important for
performance. This penalty term typically varies within large
range; for example for our experiments it can be set within
[10−4 , 102]. Setting this value correctly is a counter-intuitive
process as it is not clear which value would yield good results,
and often times may require a large number of cross valida-
tions. Another drawback is, ρu is fixed from the beginning

2One alternative way to address this problem would utilize post-processing.
In particular, the optimum rotation between two sets of points can be found
by solving the Procrustes problem [28] however this would incur additional
computation.

Algorithm 1 Fixed Penalty Matrix Factorization (FP)

1: Require: xt, It, ρu, ρv , Ū , v̄, max ite

2: Return: U t, vt
3: Re-assign Ū ← Ū(:, It)
4: for i = 1, . . . , max ite do
5: v(i) ← (ρvI +U (i−1)U (i−1)>)−1(ρvv̄ +U (i−1)xt)
6: U (i) ← (ρuI + v(i)v(i)>)−1(ρuŪ + v(i)x>t )
7: end for
8: Update U t(:, It)← U and U t(:, Ict )← U t−1(:, Ict ).
9: Update vt ← v.

10: Note 1: We use Matlab-like slicing to denote columns. In
particular U t(:, It) are those columns for which there is
a corresponding observation at time t. U t(:, Ict ) is simply
the remaining columns.

11: Note 2: Based on this, at a given time t, only the observed
entries get updated, and their value at t − 1 is added as
Frobenius norm constraint.

and remains the same for the entire stream. This may not be
desirable as changing the regularization amount at different
time steps might improve performance. For these reasons it
is beneficial to (i) replace ρu with another parameter that is
easier to set, and (ii) have time-varying regularization.

To address both issues we consider the following problem

min
Ut,vt

‖U t − Ū‖2F + ‖vt − v̄‖22 (9)

s.t. ‖xt −U>t vt‖22 ≤ ε (10)

Therefore, instead of ρu and ρv , we introduced ε. This
new parameter enforces the matrix factorization to keep the
approximation error below ε. Since this error bound is fixed
at the beginning, we call this fixed tolerance (FT) matrix
factorization. Here Ū and v̄ are defined the same way in FP.
Based on the generative model in Eq. (3), we can interpret the
optimization problem of Eq. (9) as follows: FT aims finding
the point estimates that are closest to the priors, while keeping
the likelihood of the observation above a threshold determined
by ε.

1) Update for U t: The objective function of FT is opti-
mized in an alternative fashion; for a fixed vt the Lagrangian
is given by

Ł(U t, λ) = ‖U t − Ū‖2F + λ‖xt −U>t vt‖22 − λε , (11)

which yields the following update for U t.

U t ← (λ−1I + vtv
>
t )−1(λ−1Ū + vtx

>
t ) . (12)

Comparing to the update in (7), the equivalency is seen by
setting λ = ρ−1u . Since the Lagrange multiplier changes value
with every update of vt we now have a varying regularizer,
as opposed to the fixed regularizer of FP.

Clearly the main issue with the FT approach is the struc-
ture of the constraint set: As the Lagrangian reveals, it is
straightforward to compute the gradients, but projection onto
the constraint set is not. In fact, this problem is an instance
of a quadratically constrained quadratic program (QCQP), for
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which, there is no closed-form solution in general [29]. When
the problem is convex, off-the-shelf solvers can be employed
to find the global optimum. To check convexity, let It denote
the index of observed xt entries; dropping the time indices
and re-writing the optimization problem gives

min
{ui}i∈It

∑
i∈It

‖ui − ūi‖22 s.t.
∑
i∈It

(xi − u>i v)2 ≤ ε

≡ min
{ui}i∈It

∑
i∈It

u>i Iui − 2u>i ūi + ū>i ūi

s.t.
∑
i∈It

u>i vv
>ui − 2xiu

>
i v + x2i . (13)

Since both I and vv> are positive semidefinite, the problem
is indeed convex. Furthermore, the problem is feasible, as
the feasible set always contains infinitely many elements (see
Appendix A more about this). On the other hand, using a
convex solver for every time step is a very inefficient task,
and defeats the purpose of having a scalable online algorithm.
The best case would be to have a closed form solution to
this problem, which does not require any iterative schemes or
user-specified learning rates, similar to the FP problem.

It turns out, this goal is indeed achievable for the FT
constraint. Define the following constants: 3

c1 = v>t Ūxt , c2 = ‖vt‖22 , c3 = ‖xt‖22 , c4 = ‖Ū>vt‖22 ,
(14)

and set the Lagrange multiplier as

λ? = − 1

c2
+

√
c3 + c4 − 2c1√

εc2
. (15)

Then the update for U t is given by

U t ← (I + λ?vtv
>
t )−1(Ū + λ?vtx

>
t ) . (16)

The derivation for this result turns out to be quite tedious; but
we present a condensed version in Appendix A with all key
steps.

2) Update for vt: Proceeding in a similar manner, for fixed
U t the Lagrangian is

Ł(vt, λ) = ‖vt − v̄‖22 + λ‖xt −U>t vt‖22 − λε , (17)

and the update for vt becomes

vt ← (λ−1I +U tU
>
t )−1(λ−1v̄ +U txt) . (18)

Once again it is straightforward to verify that this problem
is convex. However, a more fundamental issue arises when
we take a close look at the constraint. In particular, for a
given threshold ε it is not clear if we can find a vt such
that the constraint is satisfied. As an example, when the
system of equations is over-determined, the smallest error
we can achieve is the least squares error. As Mt � d,
such systems arise frequently during the optimization. When
the system is underdetermined and the least squares error is
greater than ε, the optimization will terminate as the value of
vt at previous iteration will still be the best possible (more

3While vt is a variable of the overall problem (9), it is indeed fixed while
updating for U t.

Algorithm 2 Fixed Tolerance Matrix Factorization (FT)

1: Require: xt, It, ε, ρv , Ū , v̄, max ite

2: Return: U t, vt
3: Re-assign Ū ← Ū(:, It)
4: for i = 1, . . . , max ite do
5: v(i) ← (ρvI +U (i−1)U (i−1)>)−1(ρvv̄ +U (i−1)xt)
6: Compute c1, c2, c3, c4 as in (14).

7: λ? ← − 1
c2

+
√
c3+c4−2c1√

εc2

8: U (i) ← (I + λ?v(i)v(i)>)−1(Ū + λ?v(i)x>t )
9: end for

10: Update U t(:, It)← U and U t(:, Ict )← U t−1(:, Ict ).
11: Update vt ← v.

details are given in Appendix B). Unfortunately, the feasible
set contains many such isolated points. Therefore if we seek
the minimum norm solution for vt in Eq. (9) it is highly likely
that the optimization will terminate early on, resulting in poor
performance.

To circumvent this we propose the following modification:
Instead of finding the minimum-norm solution, we consider
updating vt using the Lagrangian in Eq. (17), for a fixed λ.
In particular, this gives the same update equation with FP,
which is given in Eq. (7). From the optimization perspective,
what we are doing is replacing the least norm update with
the ridge regression update (FT vs. FP). The two problems
have the same solution when the Lagrange multiplier is the
same. Therefore, while the two updates are not equivalent,
structurally they are similar to each other. The case when the
two updates are the same is established next.

Remark: The FT update for vt and the ridge regression
update in Eq. (18) are the same when λ is selected as the root
of the following polynomial yielding smallest ‖vt‖22

p(λ) =

d∑
i=1

(−2ρ− ψi)c21,i
∏
j 6=i

(ρ+ ψj)
2 +

d∑
i=1

ρ2ψic
2
2,i

∏
j 6=i

(ρ+ ψj)
2

− 2ρ2
d∑
i=1

c1,ic2,i
∏
j 6=i

(ρ+ ψj)
2 − (ε− x>x)

d∏
j=1

(ρ+ ψj)
2

(19)

This result is derived in Appendix B. The final version of
FT is summarized in Algorithm 2; we can see that both FP
and FT are structurally similar, and the key difference is the
computation of λ and the update of U t.

C. Zero Tolerance Constraint

So far, two different approaches to online matrix factor-
ization have been developed; the key difference between FP
and FT is that, while FP fixes a penalty parameter ρu, FT
fixes the error tolerance ε. While fixing one parameter makes
the other vary across iterations, from the user perspective,
what we have done is equivalent to replacing one tunable
parameter with another. A key question is then, if we can
make this factorization parameter free. This motivates the
special case ε = 0 which we refer to as zero tolerance (ZT)
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matrix factorization. Interpreting from the perspective of the
generative model in Eq. (3), ZT estimates the latent factors U t

and vt that are as close to the prior as possible, while making
zero approximation error on xt. This corresponds to setting
the noise term ηx,t = 0

¯
, i.e. the measurements are the ground

truth and the latent factors should perfectly reconstruct them.
The optimization problem reduces from Eq. (9) as

min
Ut,vt

‖U t − Ū‖2F + ‖vt − v̄‖22 (20)

s.t. U>t vt = xt . (21)

From this, it is immediately seen that the formulation is
equivalent to that of nuclear norm minimization problems [30],
[31]. The two changes made are, we consider the factored form
of the nuclear norm [32] and we do online optimization, as
opposed to batch.

Now consider optimizing U t while vt is fixed. As discussed
before, the linear system U tvt = xt is underdetermined for
a variable U t. Eq. (20) suggests finding the solution with the
least Frobenius norm. This generalizes the least norm problem
that is considered for linear underdetermined systems to the
matrix case. As the system is underdetermined, the feasible
set will contain infinitely many points; this follows the same
argument we use in Appendix A. Then U t can be found with
Lagrange multipliers. After an inconsequential rescaling, the
Lagrangian is given by

Ł(U t,λ) =
1

2
‖U t −U t−1‖2F + λ>(xt −U tvt) . (22)

Here note the boldface notation for λ, since in this case there
are Mt equality constraints. The stationarity conditions are

∇Ut
Ł(U t,λ) = 0 = U t −U t−1 + vtλ

> ,

∇λŁ(U t,λ) = 0 = U>t−1vt − xt . (23)

The solution is then given by

λ =
U>t−1vt − xt

v>t vt
, U t = U t−1 − vtλ> . (24)

Note that while λ is changing over time, it can no longer be
seen as the inverse regularizer of the FP term; because ε is
no longer a tunable parameter, but hard-coded to zero. This is
advantageous in that, the user does not have to cross-validate
to find a good value for it. On the other hand, as we will
show in the experiments, ε = 0 requirement can become too
restrictive in some cases, in which case it will require a higher
value of d - the factorization rank.

On the other hand, the update for vt suffers from the same
problem we discussed in the previous section. For the ZT con-
straint, consider the case when U>t vt = xt is overdetermined
for variable vt. Then the smallest error achievable will be
given by the least squares solution, which satisfies εls > 0, so
the feasible set is empty. However, since the the optimization
is done in an alternating manner, this worst case does not
occur in practice. In particular, at iteration i − 1 we have
already found (U

(i−1)
t−1 ,v

(i−1)
t−1 ) such thatU (i−1)>

t−1 v
(i−1)
t−1 = xt.

This means, when we update for v(i)t for a fixed U (i−1)
t , the

feasible set will contain at least v(i−1)t . The problem, however,
is that, if this is the only point contained in the feasible set,

Algorithm 3 Zero Tolerance Matrix Factorization (ZT)

1: Require: xt, It, ρv , Ū , v̄, max ite

2: Return: U t, vt
3: Re-assign Ū ← Ū(:, It)
4: for i = 1, . . . , max ite do
5: v(i) ← (ρvI +U (i−1)U (i−1)>)−1(U (i−1)xt)
6: λ← (Ūv(i) − xt)/(v(i)>v(i))
7: U (i) ← Ū − v(i)λ>
8: end for
9: Update U t(:, It)← U and U t(:, Ict )← U t−1(:, Ict ).

10: Update vt ← v.

Algorithm 4 Online Forecasting Matrix Factorization

1: Require: X , I, d, r0, ρu (FP), ε (FT), ρv , max ite

2: Return: ∀t: x̂t, U t, vt, θt
3: Initialize U (0) ← rand(M,d), v(0) ← rand(d, 1).
4: Initialize rl,0 ← r0I , rr,0 ← 0.
5: for t = 1, . . . , T do
6: // Forecast Step
7: Ū ← U t−1, v̄ ←

∑P
l=1 θlvt−l

†

8: Forecast: x̂t = Ū
>
v̄

9: // E-Step
10: Use one of the following:
11: • FP(Xt, It, ρu, ρv, Ū , v̄, max ite)

• FT(Xt, It, ε, ρv, Ū , v̄, max ite)
• ZT(Xt, It, ρu, Ū , v̄, max ite)

12: // M-Step
13: if t > P then
14: P t ← [vt−1, . . . ,vt−P ]

15: rl,t ← rl,t−1 + P>t P t

16: rr,t ← rr,t−1 + P>t vt
17: θt ← r−1l,t rr,t
18: end if
19: end for

20: † Corner case: If t = 1 set Ū = 0
¯

and v̄ = 0
¯
. If 1 < t < P

set v̄ = vt−1. Otherwise use the update in Line 7.

the optimization will terminate, and once again there is a risk
of getting stuck early in the process. Once again this can be
circumvented by replacing the least norm solution with the
`2 regularized one, for which we re-introduce ρv as a small
set-and-forget parameter and update

vt ← (ρvI +U tU
>
t )−1(ρvv̄ +U txt) . (25)

In summary, ZT is simply the special case of FT where we
set ε = 0. As ρv is a small constant, ZT can be treated
as a parameter-free matrix factorization method; which is
advantageous for large and/or streaming data as tuning/cross-
validation would be difficult. ZT is summarized in Algorithm
3.
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IV. OPTIMUM SEQUENCE PREDICTION

Section III detailed three matix factorization approaches
with smoothness penalty on the matrix U , which contains the
coefficients required to construct the M × T matrix X from
the d×T matrix V , or equivalently the set [vT ]. As discussed
in Section II, each column vt corresponds to an observation
of d compressed time series. The algorithms presented in
the previous section generate the [vT ] sequence in an online
manner.

When the columns of the original time series matrixX have
correlation, it is natural to expect a similar structure in V . For
this reason, similar Equation 1 we define an AR model for the
columns of V as:

vt = θ1vt−1 + . . .+ θPvt−P + ηv,t . (26)

The task is, then, to find the coefficient vector θ given the
vector observations [vT ]. Similar to the matrix factorization
problem, there is no single answer here; yet it is desirable
to have an estimation scheme with flexibility and minimal
assumptions. For these purposes, the LMMSE estimator turns
out to be a good choice, as (i) it only needs assumptions
about the first and second order statistics of the random
variables involved, and (ii) optimizing the mean square error
is numerically stable, as opposed to implementing the BLUE
estimator.

Before going any further, we introduce some additional
terminology. First note that, (26) corresponds to vt = P tθ
where P t = [vt−1 · · · vt−P ] is a d × P patch matrix
of the previous P columns. The entire collection of such
matrices are obtained by vertically stacking the patch matrices
as P = [P>1 · · · P

>
T ]> which is a Td×P matrix. On the other

hand, stacking the observation vectors vertically, we obtain
p = [v>1 · · · v>T ]>, a vector with Td elements. The vector η
is defined similarly. Here we note an important detail: At the
beginning of Section II we assumed that the observations start
at T = 1. This means, to obtain a patch matrix which does not
contain any zero-column, we should start constructing matrices
P and p from the index t = P + 1. Throughout this section,
however, we omit this detail to avoid clutter in the equations.
The final algorithm we present, however, covers this corner
case.

Now for the entire set of [vT ], we have the relation

Pθ + η = p , (27)

which means each vector observation contains information
about a latent vector θ. Note that this setting is different from
Kalman Filter [14], where the vector θ itself is a time-varying
latent variable. A good estimator should provide accurate
values for θ, with minimal assumptions about the distributions
of the random variables involved. To that aim, let the noise
distribution have the following first- and second-order statistics

E[ηt] = 0
¯
, E[ηt1η

>
t2 ] = Ση δ(t1, t2) , (28)

where δ(t1, t2) is the Kronecker delta function. This is a white
noise process with stationary covariance; but no assumptions
about its p.d.f. has been made. For the parameter θ there are
two options: (i) it can be treated as an unknown deterministic

parameter (classical inference) or (ii) it can be modeled as a
random variable (Bayesian inference). For reasons that will be
clear shortly, we choose the second route, and assume that θ
satisfies the following

E[θ] = 0
¯
, E[θθ>] = Σθ . (29)

We also note that θ and η are assumed independent. Given all
the ingredients, we restrict ourselves to the linear estimators
of form θ̂ = Wp; to conform the equality, the weight matrix
W must be dT × P . We now want to minimize the mean
square error as

MSE = min
θ̂
‖θ − θ̂‖22 ≡ min

W
‖θ −Wp‖22 . (30)

We can write

MSE(W ) = E [(θ −Wp)>(θ −Wp)]

= E tr [(θ −Wp)(θ −Wp)>]

= tr E [(θ −Wp)(θ −Wp)>]

= tr {Σθ +WPΣθP
>W> +WΣηW

>

−ΣθP>W> −WPΣθ} , (31)

which reveals that the optimum estimator can be found by
the stationarity condition ∇WMSE(W ) = 0. Taking the
matrix derivatives with respect to trace, the optimum solution
becomes

W = ΣθP
>[Ση + PΣθP

>]−1. (32)

Matrix inversion lemma asserts, for conformable matricesM1,
M2, M3, M4

[M1 +M2M3M4]−1 = M−1
1 −M

−1
1 M2×

[M−1
3 +M4M

−1
1 M2]−1M4M

−1
1 (33)

given the inverses exist.
Then (32) can be re-written as

W = ΣθP
>
[
Σ−1η −Σ

−1
η P [Σ−1θ + P>ΣηP ]−1P>Σ−1η

]
= [P>Σ−1η P +Σ−1θ ]−1P>Σ−1η . (34)

Here the second line can be obtained by a straightforward
algebraic manipulation. The LMMSE estimator is then given
by

θ̂ = [P>Σ−1η P +Σ−1θ ]−1P>Σ−1η p . (35)

It immediately follows from this functional form, that LMMSE
estimator reduces to BLUE when a non-informative prior is
chosen. This can be written -with a slight abuse of notation- as
Σθ =∞I . In addition, when Ση = I , BLUE coincides with
the ordinary least squares estimator, yielding Gauss-Markov
theorem [33]. For this paper we consider the case Ση = I;
however Σθ = r0I for a tunable parameter r0.

Moving from (32) to (34) reveals an important structure.
Set Ση = I . Using matrix partitioning properties [26], (35)
can be written as

θ̂ =

[
T∑
t=1

P>t P t +Σ−1θ

]−1 [ T∑
t=1

P>t vt

]
. (36)
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This suggests we can compute the two terms on the left- and
right- hand side recursively. In particular, define rl,0 = Σ−1θ
and rr,0 = 0 and the recursions

rl,t = rl,t−1 + P>t P t , rr,t = rr,t−1 + P>t vt . (37)

Then, at any given time t, we can obtain a most up-to-date
weight estimate simply by θ̂t = r−1l,t rr,t. We now have a
fully online algorithm for both factorizing the incoming data
matrix, and estimating the AR coefficients for the compressed
time series.

We summarize the entire algorithm in Algorithm 4.

V. EXPERIMENTS

In this section we test our proposed methodology using two
time-series datasets downloaded from UCI machine learning
repository. These datasets are:
• Electricity:4 Hourly power consumptions (Mega Watts)

of 370 customers, recorded between Jan 1, 2012 to Jan
1, 2015, in Portugal. This gives a matrix of 370 rows and
26,304 columns, with 9,732,480 entries.

• Traffic:5 Hourly occupancy rates of 963 roads in Bay
Area, California, recorded between Jan 1, 2008 and Mar
30, 2009. This time the matrix has 963 rows and 10,560
columns, yielding 10,169,280 entries.

For both datasets there are no missing values; this is useful
as we can obtain sparse versions at various levels by simply
removing elements. For both datasets we experiment with
two types of sparsity: (i) Unstructured sparsity where at
each time step the corresponding column of X is uniformly
subsampled. (ii) Structured sparsity where the sparsity follows
a geometric process with certain arrival/departure rates. The
task of prediction is to predict the observed entries at given
time step.

We implement and compare the following:
• Base: This is a base estimator, which estimates the current

value as the last observation. If the observation at previ-
ous time is missing, then it predicts the average of the
last observed vector. The base algorithm is important in
that, any acceptable forecasting algorithm should perform
better than it, as the comparisons would not make sense
otherwise. Therefore, it acts as an elementary solution to
the forecasting problem as well as a sanity check.

• AR(P ): This is simply the AR model of (1), implemented
on the vector observations. We learn the model in an
online manner using the LMMSE estimator derived in
Section IV. This makes the comparisons with our algo-
rithms fair, as both of them use the same machinery, but
on different vector sequences.

• PMF: Probabilistic matrix factorization algorithm [2]. To
extend PMF to the online setting, the FP cost function in
Eq. (6) is used, but of course no AR structure is imposed.

• CKF: Collaborative Kalman Filter [17]. This is an online
approach to matrix factorization problem, where the latent
states follow a brownian motion. Unlike PMF, here a full
posterior on latent variables can be calculated.

4https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
5 https://archive.ics.uci.edu/ml/datasets/PEMS- SF

• Naive MF: This is not a competitive algorithm; it corre-
sponds to the model in (8). Here we use this algorithm to
show that, it is important to generate the sequence [vT ]
in a careful manner, and a constraint that does not impose
any temporal structure is not suitable for this task.

• FP-MF: Fixed penalty matrix factorization from Section
III-A.

• FT-MF: Fixed tolerance matrix factorization from Section
III-B.

• ZT-MF: Zero tolerance matrix factorization from Section
III-C.

A. Results on Electricity Data

For this set of experiments, the tunable parameters of all
algorithms considered are set as follows:
• AR: P = 24, r0 = 1
• PMF: d = 5, ρu = 1, ρv = 10−4

• CKF:6 d = 5, νd = 10−4, νx = 10−4

• Naive MF: d = 5, ρu = 1, ρv = 10−4

• FP-MF: d = 5, ρu = 1, ρv = 10−4, P = 24, r0 = 1
• FT-MF: d = 5, ε = 5 × 10−2, ρv = 10−4, P = 24,
r0 = 1

• LN-MF: d = 5, ρv = 10−4, P = 24, r0 = 1
• max ite = 15 for all algorithms.

These values are found by cross-validation; note that the
parameters shared across different algorithms have the same
value, which is intuitively satisfying.

The first result we show is the one-step ahead predictive
accuracy of seven methods, based on unstructured sparsity
pattern. This simply means, the entries for each column of
X are selected/dropped uniformly at random. Unstructured
sparsity is important in that, it makes the learning environment
adversarial, and the algorithms which are unfit for missing
values are strongly affected. For our experiments we use
10 different sparsity levels; in particular, the percentage of
observed entries vary from 10% to 100% in 10% increments.
This percentage is abbreviated as number of non-zeros (NNZ),
based on a boolean observation matrix with 1/0 corresponding
to observation/missing value. For each NNZ level we assess
the performance using mean absolute error(MAE) which has
measure of mega Watts. We do this for all competing predic-
tors, averaging over 20 patterns to ensure statistical signifi-
cance. In Figure 2a we show the one-step ahead prediction
performance of all competing algorithms. When there are
no missing observations (NNZ = 100%) the AR model has
the best performance. This is an expected result, as in this
case, compressing the dimension of time series from 370 to
5 results in loss of information. As NNZ decreases, however,
the optimality of AR quickly disappears, as the three proposed
algorithms give the best prediction. In fact, even when NNZ
= 90%, AR still has worse performance. As the sparsity
increases, the base predictor and AR suffer the most. On the
other hand, PMF and CKF are performing better, as they
utilize low-rank representations; in addition, the predictions
given by CKF are better overall. Finally, FP/FT/ZT utilize both

6νd and νx are the drift and measurement noise variance respectively. See
[17] for more details.
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Fig. 2: Performance comparison of seven predictors listed in the beginning of this section, for the electricity dataset. (a) The
sparsity pattern is unstructured, and 20 sets of experiments are performed for 10 different levels. (b) The sparsity pattern is
structured, and 20 sets of experiments are performed for 5 different departure rates.

low rank and temporal regularization, yielding best results.
Compared to the others, their prediction suffers significantly
less as a function of increasing sparsity. Also, FT and ZT
are performing better compared to FP, showing that adaptive
regularization is indeed useful.

We now turn to structured sparsity, which is not as adver-
sarial as the previous one. In this case, the missing values cor-
responds to the arrivals of a random process. For these experi-
ments we use a geometric distribution to find arrival/departure
points. This sparsity pattern represents sensor failures or down
times; in particular, which is the time between an arrival and
departure. A higher arrival indicates increased susceptibility to
failure. Note that the rate is simply the success chance of the
geometric distribution, and it is inversely proportional to the
expected time until arrival/departure. For the electricity data
we set the arrival rate to 5× 10−2 and departure takes values
in {5 × 10−3, 1 × 10−2, 5 × 10−2, 1 × 10−1, 5 × 10−1}. A
higher departure rate means lower sparsity. In Figure 2b the
prediction MAE is shown as a function of departure rates.
The immediate observation is that, even if the sparsity is high
(92% when departure rate is 5×10−3) none of the algorithms
deteriorate as much as they do in Figure 2a. Overall, once
again, FT has the best performance, and the margin between
FT, ZT and FP is more pronounced. On the other hand, the
impute-predict scheme of the baseline predictor as well as the
AR predictor also produce acceptable results, while CKF is
still better.

In the beginning of Section III we have mentioned that
rotation and scaling of factor matrices have an important
impact on performance. The main argument is, using the
projected value of Ū in regularization, a dependency between
the current U t and previous U t−1 is established, which
encourages smooth variation. The alternative regularization
in Eq. (8) does not have this feature, as the penalty term
on U t is centered around zero matrix. Since this constraint
does not encourage smoothness, it is expected to do worse
compared to the proposed factorizations. We provide evidence
for this in Figure 4; here the naive approach is compared to
FP/FT/ZT as well as PMF. It can be seen that, while the AR

model still lets the naive factorization to forecast better than
PMF, it is clearly inferior to our methods. This plot also gives
more information about the electricity data itself. In particular,
observe that all algorithms have higher forecast error during
summer times, which indicates that the electric usage during
this season is harder to predict in advance. This might be due
to increased usage of AC units, which unlike heaters, do not
have a regular on/off schedule as well as customers spending
more time outside 7.

Dimensionality and AR order are the two most important
parameters which determine how the matrix factorization
forecasting scheme operates. We next examine performance
as a function of these two in Figure 5. In panel (a) we plot
the performance as a function of latent dimensionality for
unstructured noise with 80% observed entries. Here we show
results for PMF as well as FP, FT, and ZT. First note that
a dimension of one is giving worst results for all. This is an
important sanity check, as it shows the optimum rank is indeed
greater than one, and matrix factorization is a suitable choice.
The choice d = 10 produces best results, although we have
used d = 5 for our other experiments, which still produce
reliable results with the added benefit of higher compression.
Interestingly, when the dimensionality is set low, both FT and
ZT perform worse, even worse than PMF. This is because,
as dimension decreases the fixed or zero tolerance constraint
becomes more restrictive and compromises performance. The
compromise for ZT, in turn, is greater than FT as expected,
as it is a zero training error constraint. Therefore, when
d needs to be low, we can use FT instead of ZT with
ε > 0, which provides slackness for better factorization. In
panel (b) we show results as a function of AR order where
P ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 24, 36, 48}. Note that there is
a jump in performance as P moves from 12 to 24. This is
satisfying, as P = 24 indicates a daily periodicity for power
consumption. Another observation is, in case of missing data,
the AR model gives unreliable estimates for lower orders,
which suggests, a correct choice of model order is crucial

7This data is collected in Portugal.
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Fig. 3: Performance comparison of seven predictors listed in the beginning of this section, for the traffic dataset. (a) The
sparsity pattern is unstructured, and 20 sets of experiments are performed for 10 different levels. (b) The sparsity pattern is
structured, and 20 sets of experiments are performed for 5 different departure rates.
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Fig. 5: Plot of prediction performances as a function of (a) rank
and (b) AR order. Both plots obtained for electricity dataset
with unstructured sparsity and NNZ = 80%.

to compensate for the inaccuracies introduced by filling-in
missing observations.

B. Results on Traffic Data

For the traffic dataset, the following configuration is used:
• AR: P = 24, r0 = 1
• PMF: d = 20, ρu = 10−1, ρv = 10−4

• CKF: d = 20, νd = 10−6, νx = 10−6

• Naive MF: d = 20, ρu = 10−1, ρv = 10−4

• FP-MF: d = 20, ρu = 10−1, ρv = 10−4, P = 24, r0 = 1
• FT-MF: d = 20, ε = 5 × 10−2, ρv = 10−4, P = 24,
r0 = 1

• LN-MF: d = 20, ρv = 10−4, P = 24, r0 = 1
• max ite = 15 for all algorithms.

In particular, d has now increased from 5 to 20, accommodat-
ing for the dimensionality increase in the input data.

Once again, we consider structured and unstructured spar-
sity, as we did for the electricity data. The sparsity levels,
arrival/departure rates, and the number of test sets are identical
to what we used previously. In Figure 3a the results for
unstructured sparsity is shown. In this case, once again the
best results are given by the proposed methods, in particular,
FT/ZT has the best predictions. On the other hand, Base and
AR do not get much worse, compared to the analogous plot of
Figure 2a. This shows that, performance of filling-based AR
model does not only depend on the sparsity, but also the data
itself. Interestingly, PMF and CKF are no longer competitive
in this case. In Figure 3b we consider structured sparsity. This
case set itself apart from all the others we considered so far.
First, even for highly sparse inputs, the performance of the
base estimator does not get worse at all. Figure 3a already
shows that the sparsity does not have a very strong effect,
even in adversarial case, so the results for structured noise are
not surprising. Since this is true for the base predictor, the
AR predictor remains competitive as well. In fact, here the
fill step is good enough to alleviate missing data problem, so
even if the data is sparse, the AR predictor can still provide
accurate forecasts. If we instead fill missing entries with zeros,
this apparent advantage of AR disappears. Nevertheless, when
sparsity is less than a threshold the difference between AR
and FP/FT/ZT is small.

Similar to electricity data, we now analyze the prediction
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Fig. 6: Plot of prediction performances as a function of (a)
rank and (b) AR order. Both plots obtained for traffic dataset
with unstructured sparsity and NNZ = 50%.

performance as a function of rank and AR order in Figure 6. In
panel (a) we investigate the effect of latent dimensionality. Un-
like the electricity data, choosing d = 1, 2 results in unstable
performance for FT and ZT; because for this dataset choosing
such a low rank gives infeasible optimization problems. For
this reason we sweep d ∈ {5, 10, 15, 20, 30, 40} and observe
once d ≥ 10 all factorizations produce reliable results. Once
again we note that ZT is more susceptible to error, compared
to FT, when dimension is low, as the zero tolerance constraint
is more restrictive. In panel (b) we show the effect of AR
order. Here the results are similar to the electricity data, setting
P = 24 yields good results for FP, FT, and ZT. Once again,
a one day periodicity is expected, as the traffic intensity has
a daily pattern, e.g. rush hours in the morning and evening.

VI. CONCLUSION

We have considered the problem of forecasting future values
of high dimensional time series. A high dimensional time
series can be treated as a matrix, where each column denotes
a cross-section, and when missing values are present, a low
rank matrix factorization can be used as a building block for a
forecaster. Based on this key idea, we proposed three methods
which can perform matrix factorization in the online/streaming
setting. These approaches differ by the type of regularization,
and an important conclusion is, time varying regularization
can be achieved through a constrained optimization problem,
which is shown to have closed form solution. The matrix
factorization component provides embeddings, which are then
used to learn an AR model, which in turn forms the basis of
forecasting. We have derived the optimum LMMSE estimator
to find the AR coefficients, this estimator does not make
any stationarity/Gaussianity assumptions, and only requires the
first and second order statistics of the noise terms. Finally, we
considered two real datasets on power demand and traffic,
and showed that when missing values are present in the
data, our methods will provide more reliable forecasts. As for
future work, we plan to investigate the problem where entire
columns of data are missing, which correspond system-wide
blackouts, and also alternative factorization approaches that do
not require any explicit regularization.

APPENDIX A
FIXED TOLERANCE UPDATE: U t

At any given iteration-i of the E-step in Algorithm 2, for a
fixed v(i)t , we want to find

U
(i)
t = arg min

U
‖U −U t−1‖2F s.t. ‖xt −U>v(i)t ‖22 ≤ ε .

(38)

Note the indexing, as U (i)
t is computed after v(i)t , as the latter

appears before the former in the loop in Algorithm 2. To avoid
clutter we will drop the time and iteration indices. We will
also use Ū = U t−1 to distinguish the time indexing. From
Eq. (38) it is seen that the problem is strongly convex, and the
feasible set is always nonempty. In fact, for any given v(i)t ,
the feasible set will have infinitely many elements. To see this,
let ε = 0 and note that this gives MT linear equations in dMt

unknowns. Since all of these solutions lie within the feasible
set, the result follows. As a consequence, strong duality holds
for this problem and we can characterize the solution via
Karush Kuhn Tucker (KKT) conditions [29]. For this problem
these conditions read as

1) ∇U?Ł = 0
2) ‖x−U?>v‖22 ≤ ε
3) λ? ≥ 0

4) λ?
[
‖x−U?>v‖22 − ε

]
= 0

Using the first condition, which needs to hold for primal
feasibility, it is easily shown that the solution satisfies

U = [λ−1I + vv>]−1(λ−1Ū + vx>) ,

which can be re-written, using rank-1 version of matrix
inversion lemma in Eq. (33), as

U = Ū + λvx> − λ

1 + λv>v
(vv>)Ū − λ2

1 + λv>v
(vv>)(vx>)

(39)

This alternative expression is useful, as the inverse term
containing λ disappears. Now, the third and fourth KKT
conditions imply

‖x−U>v‖22 = ε . (40)

This also satisfy condition number two. This means, the
solution of the optimization problem has an approximation
error that is equal to the maximum tolerance ε. As U is always
updated after v this means the training error of our algorithm
at each time step will be

√
ε. This also suggests, we can find

the value of Lagrange multiplier by plugging Eq. (39) into Eq.
(40). Now let the constants c1-c4 be as in Eq. (14). We need
to calculate the equation

v>UU>v − 2x>U>v − (ε− c3) = 0 .
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The first two terms evaluate as

v>UU>v = c4 + λc1c2 −
λ

1 + λc2
c2c4 −

λ2

1 + λc2
c1c

2
2

+ λc1c2 + λ2c22c3 −
λ2

1 + λc2
c1c

2
2 −

λ3

1 + λc2
c32c3

− λ

1 + λc2
c2c4 −

λ2

1 + λc2
c1c

2
2 +

λ2

(1 + λc2)2
c22c4

+
λ3

(1 + λc2)2
c1c

3
2 −

λ2

1 + λc2
c1c

2
2 −

λ3

1 + λc2
c32c3

+
λ3

(1 + λc2)2
c1c

3
2 +

λ4

(1 + λc2)2
c42c3 (41)

− 2x>U>v = − 2c1
1 + λc2

− 2λc2c3
1 + λc2

(42)

Multiplying with the denominator term (1+λc2)2 and expand-
ing the terms, the final expression is simply a second order
polynomial

−εc22λ2 − 2εc2λ+ (c3 + c4 − 2c1 − ε) . (43)

The roots are then given by the formula

− 1

c2
± 1√

εc2

√
c3 + c4 − 2c1 (44)

Since c2 = ‖v‖22 > 0 the first term is negative. Then the third
KKT condition implies, the second term above must be greater
than the first term, and thus the polynomial always has one
positive and one negative root. The update for the Lagrange
multiplier in Eq. (15) now follows.

APPENDIX B
FIXED TOLERANCE UPDATE: vt

Similar to Appendix A we study iteration-i of the E-step in
Algorithm 2; but this time for a fixed U (i)

t , we want to find

v
(i+1)
t = arg min

v
‖v − vt−1‖22 s.t. ‖xt −U (i)

t vt‖22 ≤ ε .
(45)

Unlike the case for U t, it is not clear if the solution set is
nonempty. In particular, note that in Appendix A, we showed
that no matter how vt is chosen, the solution set always has
infinitely many elements. For vt this is not true in general.
To see this, consider the case where U>t v = x is an over
constrained system of linear equations. The minimum error
achievable in this case is given by the least squares solution
as εls = x>[I −U>t (U>t U t)

−1U t]x. When εls > ε there are
no solutions. However, if U t is updated before vt, then it is
guaranteed that the there is at least a single solution; because
for the alternating optimization in Eq. (45), we are given that
‖U (i)

t − v
(i−1)
t ‖22 < ε. As a result, v(i−1)t is guaranteed to

be in the feasible set. Therefore the solution set is nonempty
and since the problem is strongly convex, strong duality holds.
The KKT conditions mirror the previous one:

1) ∇v?Ł = 0
2) ‖x−U>v?‖22 ≤ ε
3) λ? ≥ 0

4) λ?
[
‖x−U>v?‖22 − ε

]
= 0

Letting v̄ = vt−1 the first condition yields

v = [λ−1I +UU>]−1[λ−1v̄ +Ux] . (46)

This time, we cannot apply Sherman-Morrison identity, as
U is typically not rank-1. Instead, note that UU> is in
the positive semidefinite cone of symmetric matrices, and
admits an eigendecomposition with nonnegative eigenvalues.
Let’s denote this by UU> = QΨQ> , and define the
constant vectors c1 = Q>Ux and c2 = Q>v̄. Then it is
straightforward to verify that

v = Q[ρI + Ψ ]−1c1 +Qρ[ρI + Ψ ]−1c2 (47)

where we defined ρ = 1/λ; note the choice of notation here
as ρ is the regularizer, analogous to the one in FP matrix
factorization. Once again, from the fourth KKT condition we
want to solve the equation

v>UU>v − 2x>U>v − (ε− c3) = 0 ,

where the first two terms are evaluated as

v>UU>v =

d∑
i=1

ψi
(ρ+ ψi)2

c21,i +

d∑
i=1

ρ2ψi
(ρ+ ψi)2

c22,i

+ 2
ρψi

(ρ+ ψi)2
c1,ic2,i

−2x>U>v = −2

d∑
i=1

1

ρ+ ψi
c21,i − 2

d∑
i=1

ρ

ρ+ ψi
c1,ic2,i

(48)

Substituting these into the equation and multiplying with the
denominator term

∏d
j=1(ρ + ψi)

2 we get the polynomial in
Eq. (19).
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