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Estimation of the Evolutionary Spectra With
Application to Stationarity Test

Yu Xiang ¥, Member, IEEE, Jie Ding

Abstract—TIn this paper, we propose a new inference procedure
for understanding non-stationary processes, under the framework
of evolutionary spectra developed by Priestley. Among various
frameworks of modeling non-stationary processes, the distinguish-
ing feature of the evolutionary spectra is its focus on the physical
meaning of frequency. The classical estimate of the evolutionary
spectral density is based on a double-window technique consist-
ing of a short-time Fourier transform and a smoothing. How-
ever, smoothing is known to suffer from the so-called bias leak-
age problem. By incorporating Thomson’s multitaper method that
was originally designed for stationary processes, we propose an
improved estimate of the evolutionary spectral density, and ana-
lyze its bias/variance/resolution tradeoff. As an application of the
new estimate, we further propose a non-parametric rank-based
stationarity test, and provide various experimental studies.

Index Terms—Non-stationary processes, evolutionary spectra,
spectral analysis, multitaper method, stationarity test.

1. INTRODUCTION

ety of areas and serve as a natural generalization of the
classical wide-sense stationary processes. Because of their wide
range of applications, they have been an active research area
in many different areas including signal processing, statistics,
neuroscience, and economics.

However, the intrinsic complexity of the non-stationarity pre-
cludes a unique way of modeling the non-stationary processes.
Various frameworks have been developed over the past few
decades: instantaneous power spectra [1], evolutionary spec-
tra [2], Wigner-Ville spectral analysis [3], locally stationary
processes [4], and local cosine basis [5] among others. In this
work, we adopt the evolutionary spectra framework developed
by Priestley and his colleagues [2], [6]-[8], which is one of the
first attempts to model non-stationary processes from the spec-
tral point of view. The appealing aspect of this framework is its

N ONSTATIONARY processes are common across a vari-
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emphasis on the physical meaning of frequency, while general-
izing the spectral representation of the stationary processes to
that of the non-stationary processes [9].

Perhaps the most closely related framework is the locally sta-
tionary processes framework. Since Dahlhaus developed this
framework in a series of papers [4], [10], [11], it has been
extensively studied (see for example [12], [13] and references
therein). We attempt to summarize the main differences between
the two frameworks as follows. The evolutionary spectra frame-
work is motivated by the physical interpretation of frequency,
but does not guarantee the uniqueness of the spectral density.
On the other hand, the locally stationary processes framework
guarantees the uniqueness of the spectral density by providing
an asymptotic analysis of the non-stationary processes. How-
ever, the rescaling technique, which is central to that frame-
work, may sacrifice physical interpretations in some real appli-
cations. One related framework is developed based on SLEX
(smooth localized complex exponential basis) functions. Inter-
estingly, it is shown to be asymptotically mean square equivalent
to Dahlhaus’s framework [14]. These SLEX based methods are
quite useful for very long time series, as the dyadic segmentation
could help as a first approximation step. More comparisons be-
tween Priestley’s and Dahlhaus’s frameworks can also be found
in [15] and detailed discussions on the other frameworks can be
found in [9], [16] and the references therein.

The estimation procedure of the evolutionary spectra in [2]
is based on the so-called double-window technique, consist-
ing of a short-time Fourier transform and smoothing. However,
the smoothing step is known to suffer from the so-called bias
leakage problem [17]. To overcome this problem for station-
ary processes, various tapering methods have been developed
and Thomson’s multitaper method [18] is arguably the most
widely used one. In this work, we apply the multitaper method
to the estimation of evolutionary spectral density and analyze
the bias/variance/resolution tradeoff of the estimate. We show
that the non-stationarity calls for additional considerations of the
tradeoff, which provides insights into window design, choice of
frequency resolution and number of tapers. As an application of
the estimate, we propose a non-parametric rank-based station-
arity test and compare it with the stationarity test investigated
by Priestley and Subba Rao in [7]. Our test is more robust to
the underlying distribution of the data, and it can serve as a
complementary test to the existing stationarity tests from our
numerical experiments.

There are a few other related works in the literature. In [19],
the authors expressed Priestley’s two step approach in the form
of the multitaper formulation, where the number of tapers
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becomes the number of neighbors of the targeted time ¢ for
the smoothing step. However, in this work we have removed
the smoothing step and apply the multitaper method over the
same segment of process, i.e., with the same targeted time ¢
and frequency w. With additional smoothness assumptions on
the underlying spectra, the authors in [20] have investigated the
statistical properties of the spectra estimate.

The paper is organized as follows. In Section II, the evolu-
tionary spectra framework is briefly reviewed. In Section III,
the main results are summarized and the key steps of the proofs
are presented. In Section IV, the estimate based on the short-
time Fourier transform is evaluated through a new time-domain
approach, which facilitates the analysis of the estimate in later
sections and serves as a much simplified proof compared with
the original one. In Section V, the estimate based on the multi-
taper method is analyze in the evolutionary spectra framework.
In Section VI, a non-parametric stationarity test is proposed and
various experimental studies are presented.

A. Notation

Let Z and R denote the set of integers and real numbers,
respectively. For integers a and b such that a < b, let [a : b] =
{a,a+1,...,b}. Let {X(t)} 2 {X(t),t € Z} denotes a
sequence of random variables. {X(¢)} is called wide-sense
stationary if its mean is a constant E[X (¢)] = mx and its
auto-covariance depends only on the distance between the time
indices Cov(X (), X(s)) = ¢(t — s). Throughout this paper,
stationary processes are referred to as wide-sense stationary
processes. For two non-negative functions f(z) and g(x), we
write f(x) = O(g(x)) if there exists some constant 0 < C' < co
such that f(z) < Cg(x) for sufficiently large z. Let N'(u, 0?)
denote a normal distribution with mean y and variance 0. Let
log(+) denote the logarithm function with base 2. For p > 1, let
|| - ||, denote the [, norm. We closely follow the notation in [21].

II. EVOLUTIONARY SPECTRA FRAMEWORK

A. Brief Review of the framework

In [2], the main focus is the continuous time setting, and the
discrete time setting follows immediately. In this work, we will
focus on the discrete time setting. In the following, we first
briefly review the evolutionary spectra framework. Consider a
class of non-stationary processes { X (¢) }, with E[X (¢)] = O and
E[X?(t)] < oo fort € Z, such that

X(t) = / " pi(w)dZ(w).t € Z.,

for some family F of functions {¢;(w)} (defined on [—m, 7]
indexed by t) and a measure p(w), where Z(w) is an or-
thogonal increment process with E|dZ(w)|*> = du(w). If there
exists a family of functions {¢;(w) = €'’ A;(w)} such that
{X(t)} can be represented as in (1) and for any fixed w, the
Fourier transform of h,, (t) 2 A;(w) (viewed as a function of £),
denoted by H,, (v), has an absolute maximum at the origin, then
{X (t)} is called an oscillatory process with respect to oscilla-
tory functions {e'"* A;(w)}, and the evolutionary spectrum at
time ¢ with respect to F is

dF; (w) = | Ay (w)[* dp(w).

ey

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 5, MARCH 1, 2019

Remark I1: Note that h, (t) =1 corresponds to the case
when {X (¢)} is a stationary process, which leads to H,, (v) =
0(v), where §(-) is the Dirac delta function.

Throughout this paper, we assume that p(w) is absolutely
continuous with respect to Lebesgue measure. Thus the evolu-
tionary spectral density at time t is

dp(w)

fiw) = |4 (w) P22,

As mentioned above, for any fixed w, H,, (v) is the Fourier
transform of h,, (t), i.e.,
> .
H, ()= Z ho (t)e ™t
t=—00
Without loss of generality, A; (w) can be normalized so that for
all w,

Ag(w) =1, (@)

which implies that dj(w) represents the evolutionary spectrum
att = 0 and |A;(w)|* represents the change relative to ¢ = 0.
Let

Br(w) = [ IollH, (o),

and each family F of oscillatory functions is called semi-
stationary if Bx(w) is bounded for all w. Then

By = (S}{p Bf(w)> N

w

is call the characteristic width of F. A semi-stationary process
{X(t)} is defined as the one that can be represented as (1) with
respect to a semi-stationary family F. Let C denote the class of
semi-stationary families such that {X (¢)} can be represented
as (1). Then

By =sup Br (3)

Fec
is called the characteristic width of {X (t)}. If there exists a
family F* € C with characteristic width equals to By, F* is
called the natural representation of { X (¢)}. If there exists no
family in C with characteristic width equals to By, let 7* de-
note any family with characteristic width arbitrarily close to
By . From now on we will only focus on F* and the spectral
representation with respect to this family. In particular, A;(w),
dp(w), and dF; (w) are all defined with respect to F*. In this
work, we consider that { X (¢)} admits a natural representation
JF*, which implies that Bx- = Bx.

Remark 2: 1t is straightforward to see that semi-stationary
processes includes stationary processes as special cases with
F* ={e™'} and By = <.

The characteristic width of {X(¢)}, Bx, can be intuitively
viewed as the maximal length of the interval over which the
process may be treated as “approximately stationary” [2]. It
plays an important role in this framework, however, it is hard to
characterize (see Section V-B for a detailed discussion). Priest-
ley [2] proposed a double-window technique to estimate the
evolutionary spectral density. The first window is for the short-
time Fourier transform and the second window is for smoothing.
In this work, however, the second window will be replaced by
the multitaper method as smoothing is known to suffer from the
bias leakage problem (see Section V for details). The width of
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the first window {g(u),u € R} is defined as

£ > Jullgw)

uU=-—00
In this work, we focus on time-limited windows, i.e., there exists
some L > 0 such that g(u) = 0 for |u| > L. Let G(w) denote

the Fourier transform of g(u), i.e.,
o0

Z g(u)efiuw. 4)

U=—00
We assume that g(u) is square integrable and without loss of
generality it is normalized,

27rZ\g

U=-—00

Gw) =

fuwmﬁ. )

B. Uniformly Modulated Processes

It is hard to characterize Bx exactly for semi-stationary pro-
cesses [22]. However, there is one important class of processes
whose characteristic widths can be bounded from below. This
class, termed as the uniformly modulated processes [2], is of the
following form:

X(t) = c(t)Y (1), (6)
where Y (¢) is a stationary process with zero mean and spectral

density fy (w), and the Fourier transform of ¢(¢) has an absolute
maximum at the origin. Thus it follows straightforwardly that

X(t) = /:T c(t)e™ dZ (w),

where E|dZ(w)|> = dFy (w). The process introduced in (6) is
an oscillatory process since Fy = {c(t)e’*!} is a family of
oscillatory functions. The evolutionary spectrum with respect
to F is

frlw) = (1) fy (w).
The name, uniformly modulated processes, follows from the

fact that for two different frequencies wy and ws in [—m, 7], the
spectrum is modulated in the same way, i.e.,

fi, (wr) _ fr, (w2)
ftz(wl) fl‘z(w2).

From the definition of By, we have By > By, .

III. STATEMENTS OF THE MAIN RESULTS

For semi-stationary processes {X (¢),0 <¢ < T — 1}, it is
natural to apply the multitaper method [18], which identifies
K sequences of length N denoted by {g;(u),1 <k < K,1<
u < N} (assume N to be odd for simplicity of notation). Let
27 /N < W < m denote the frequency resolution of the mul-
titaper method. The details are postponed to Section V. The
estimate of the evolutionary spectral density f;(w) is given as
below

A 1
K w) =2 >0 w)P, )
k=0
where we have
T-1
U (w) =37 g (u— 1) X (w)e™"
u=0

1355

with g (u) being a set of sequences (shifted so that they are
centered around 0) each of length N < T for —(INV —1)/2 <

u<(N—-1)/2and1 < k < K. Let
(N-1)/2
Gr(\) = Z gk(u)e_’)‘“.
u=—(N-1)/2

The expectation of its evolutionary spectral density estimate
using the multitaper method is given below.
Theorem 1:

E[f* (w)]

(w = A) fi(\)dA+ O(B*) /By )

[
[ oo

= )fi(w — \)dA+ O(B*) /Bx),
where
| Kl _
£ 521G WP, B £ maxB,,
k=0
and BéK) is sufficiently smaller than Bx .

Assume that || f;(w)||~ is bounded for all ¢, the bias of the
estimate can be bounded as follows.
Theorem 2: Assume that || f; (w) ||« < o0,

|Bias(f/ (w))| =[5 (w) = £ (w)]
_(logN BYK)
= O( = + W2+ B )

When {X (¢)} is further assumed to be a normal process, the

variance of f/ (w) can be characterized as follows.
Theorem 3: Assume that || f; (w)|l~ < oo and {X(¢)} be a
normal process,

. 1 BE)
K _ L 9
Var(f;* (w)) = O(K + By )
_From Theorem 2 and 3, the mean squared error (MSE) of
f (w) is given by the following.
Corollary 1: Given the same assumptions as in Theorem 3,

MSE(f{* (w))
log N , 1 B{®
(M) e 50)

The proofs of the results are postponed to Section V and
appendices and we briefly overview the main ingredients here.
Firstly, we analyze |U (w)|? for general {g(u)}, which serves as
a preliminary estimate (Propostion 1 and Propostion 2) before
applying the multitaper method. We take a different approach
than Priestley did in [2], in particular, we apply the pseudo
d-function argument (see Definition 1) directly in the time do-
main (Lemma 1) instead of in the frequency domain. This al-
ternative approach allows us to carry out analysis without intro-
ducing the generalized transfer function (for details see equa-
tion (6.6) and Theorem 7.2 in [2]). The benefits of this new
approach are twofolds, it makes the variance analysis for the
multitaper method straightforward (Theorem 3) and provides
a much simplified alternative proof of Propostion 2, which is
a slightly different version of Theorem 8.1 in [2], which then
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leads to Theorem 1. Secondly, by leveraging on a recent approx-
imation result (Theorem 4) on multitaper method by Abreu and
Romero [23], we analyze the bias/variance/resolution tradeoffs
in the evolutionary spectra framework as in Corollary 1 based
on Theorem 2 and Theorem 3.

IV. APPROXIMATELY UNBIASED ESTIMATE OF THE
EVOLUTIONARY SPECTRA

In this section, we start with analyzing a preliminary estimate
of the f;(w). Recall that g(u) is assumed to be a time-limited
function. First introduce J; (w) as follows, for fixed ¢ € Z and
w € [—m, 7,

Jt (’LU)

= 3 glu— X (e

I
|

glu—1) ( / A, (A)erZ(A)> e

Y s oawe Az

M u=-o00

— / e*i(wf)\)t

where the summation and integral can exchange in (a) is because
g(u) is a time-limited function.

Remark 3: Note that J; (w) is equivalent to its counterpart
Y;(w) in [2] when g(u) is a symmetric function, i.e., g(u) =
g(—u) for all w.

In the following, we introduce the pseudo d-function argu-
ment but apply it to the time domain directly. The analysis of the
spectra estimate of f;(w) in [2] depends on an approximation
called pseudo 0-function and the discrete counterpart can be
defined as below. The continuous version can be defined simi-
larly and is used in [2].

Definition 1: Consider two functions a(-):Z — R and
b(+) : Z — R. Then a(u) is a pseudo o-function of order € with
respect to b(u) if, for any ¢ € Z, there exists € not depending on
t such that

Z g(U)A1,+t(>\)€7i(1l;7)\)7) dZ()\),

v=—00

o] o]

Z a(u)b(u +t) — b(t) Z a(u)

U=-—-00

< €.

U=-—-00

Now we show the following.

Lemma 1: For family F*, a(u) £ g(u)e is a pseudo 6-
function of b(u) £ A, (w) with order O(B,/By).

Proof: To clarify the role of w as the argument, we write
Ay (u) = A, (w) in this proof. For any ¢ € Z,

—twu

0]

Z g(u)Aw (u + t)e—iwu,

U=—00

= Y glw A, (e ™ + R(1)
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with
IR()
(2 i i g(u)efz‘wu /ﬂ- Huv(v)(eiv(tJru) 76ivt)dv
2m U=—00 - /
1 = " v
<5m > lgl [ 1HL @)l - 1lde
) 1 i
<or Y lullg(wl [ blHa w)ae
u=—00 -
(c)
S O(Bg/BX)v

where in (a), A, (u) is substituted by

1 B )
Ay ) = 5 / Hy (v)e™ dv,

(b) follows since |e!” — 1| < ||, and (c) follows the definition
of B, and

[ eliHu )0 = B (w) < 1/Bx.
|

Remark 4: Lemma 1 provides a delta approximation in the
time domain directly, unlike the Priestley’s frequency domain
approach. The new machinery proposed here allows us to carry
out the analysis without introducing the generalized transfer
function [2]. The generalized transfer function also plays a key
role in performing the mean and variance analysis (for details of
the variance analysis, see Section III in [6]), thus our approach
leads to a straightforward analysis of both mean (Proposition 2)
and variance (Theorem 3).

From Lemma 1, J; (w) can be further expressed in the fol-
lowing expression.

Proposition 1:

Jt (w)

:/ ez(uA)tAt(/\)<

+0(B,/Bx) / e~ =Ntdz ()

= / T A NG — N)em=Nigz(n)

™

+O(B_(,/BX)/ e iw=Ntaz( ),

-7

®)

where G(w) = > g(v)e ™.

As one shall see, the relationship between the window choice
g(u) and the estimate |.J;(w)|? of f;(w) is revealed directly
through this time domain approach. This leads to the following
proposition.
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Proposition 2:

E[|Ji (w)[*]
- [ |G(w = N)*f;(\)dX + O(B,/Bx) ©)
_ [ GOV fi(w — N)dA + O(B,/Bx).  (10)
Proof: From (8) we have

E[|J; (w) ]
- [ 160 - NPA0D
+ O(B,/Bx) [ Ay (NG (w — Ndup(N) (11
1+ 0(B,/Bx) [ "L Gw Ve (12)
+O<(Bg/BX)2> /_7r du(N). (13)

Recall that
/ IG(w)|2dw = 1.
Now (11) can be bounded as below.

/ " A NG — Ndu(N)

-7

< [ 1AMIG0 - Vit
(a) w

9 /Q|A,,(>\)|\G( Nldu(N)
+ [ A6 - )ldny)

< [ du+ [ 1AFIG - VP

—T

(b)

< 00,
where in (a) define Q= {w:|A;(\)||G(w —\)| <1} and
Q° 2 [—m,7]/Q, (b) follows because of (5) and

| ARIGE = P au(y

< [16w-nEawar s [ fi

Since (12) and (13) can be bounded similarly, this ends the
proof for (9). Observe that both |G (w)|*> and f;(w) for fixed
t are periodic functions with period 27, thus (10) follows
from (9). |

Given asample record { X (0), X (1), ..., X (T'— 1)} of length
T,for0<t<T —1,let

Us(w) = i glu— )X (u)e ",
u=0

If we have that B, is sufficiently smaller than By and Bx
sufficiently smaller than 7', then for ¢ large enough, U; (w) be-
comes almost identical to J;(w) and the end effects are negli-

(14)
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gible. This holds since we are dealing with g(u) that is time-
limited, i.e., g(u) = 0 for |u| > N for some N. Thus we have
for N2 <t<T —N/2—1,

EU )] = [ 160w - NF RO+ O(B,/By).
To understand the impact of |G (w)|* on the bias of the estimate
|U; (w)|?, consider the ideal case where |G(w)[* = §(w). Then
since |G(w)|? is normalized, we have

E[|U: (w)?] = fi(w) + O(B, /Bx).
Thus in this case |U; (w)|> becomes an unbiased estimate of
fi(w) up to O(B,/Bx). Intuitively speaking, the bias is con-
trolled by the sidelobe of |G(w)|*: less sidelobe would lead to
a less biased estimate. To quantify the relationship, definitions
similar to B, and By in the frequency domain are needed. Let

B2 [wicwpa, B0 [ Lo,

-7

| 2

where L;(A) 2 [T f,(v)e " dv. The minimum “width”
of fi(w) for any t is thus By 2 Suprec By with By £

(supt Bf(t)) o

Roughly speaking, Bg and By characterize the bandwidth of
g(u) and f;(w) in the frequency domain, respectively. Then in
order to estimate f; (w), it has to be changing more slowly than
|G (w)|? for each t. The following lemma is immediate and the
proof can be found in Appendix A.

Lemma 2: |G(w)|? is a pseudo d-function of f; (w) for each
t with order O(Bg/BX ).

Together with (5), Lemma 2 leads to

E[|Ui(w)"] = fi(w) + O(B,/Bx ) + O(B,/Bx).
Therefore |U; (w)|? is an unbiased estimate up to approxima-
tions in both time and frequency domain.

For stationary processes, it is well-known that simple peri-
odogram type of estimate (as in (14) but without {g(u)}) has
a mean involving Fejér’s kernel and is not a satisfactory esti-
mate [21], [17]. An excellent numerical example for an AR(4)
model is provided in [17, Chapter 7.1]. In the asymptotic regime,
either smoothing or tapering is needed to obtain a consistent
estimate; while in the non-asymptotic regime, there is signif-
icant bias leakage because of the sidelobes of the Fejér ker-
nel [17]. Different tapering techniques have been developed
over the years and the multitaper method by Thomson [18] is
the most widely used technique to reduce both the bias leakage
and variance of the estimate. In the evolutionary spectra frame-
work, however, additional constraint O (B, /By ) is crucial to
the performance of the estimate. Therefore the non-stationarity
plays an important role in the bias/variance/resolution tradeoff
as we shall see in the next section.

V. ESTIMATE BASED ON THE MULTITAPER METHOD

Thomson’s multitaper method [18] has been widely applied
to various fields including wireless communincation [24], neu-
roscience [25], climate science [26]. In a recent paper by Abreu
and Romero [23], the authors provide a rigorious proof of an
important heuristic discovered by Thomson. They show that
the averaged taper is close to an ideal band-pass filter over
[-W, W], ie., (1/2W)1_y w) in L, distance. First we briefly
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review Thomson’s multitaper method [18] and the discrete pro-
late spheroidal sequences (DPSS) or Slepian sequences [17],
[27]-[29].

A. Thomson’s Multitaper Method

Consider N sample records {X(0),...,X(N —1)}.! As-
sume that the sampling frequency is 1, then for a sequence of
length NV, the fundamental frequency is 27 /N and the Nyquist
frequency is . For 2r/N < W < 7, one wishes to find se-
quences with spectral densities concentrated over [—W, W]. We
will refer to W as the resolution of the estimate. This problem
was first investigated in a series of papers by Slepian, Laudau,
Pollak [27]-[29]. The solution turns out to be a set of sequences
v (N, Wiu), 0 <u < N-—1,0<k <N —1, which satisfy
the following eigenvalue equation

N-1 .

|17 —ay/
E 751? (u tf)vk(N,W;u’)
4= sin m(u—u')

= >\k (N, W)Uk (N, W; u)
These N eigenvectors vy, (IV, W3 -) are called the discrete pro-
late spheroidal and they are ordered by their eigenvalues
1> XN, W) > AN, W)>--->Ayv_1(N,W) >0. It is
well-known that the first K = [2NW/27 | = |[NW/r | eigen-
values are close to 1.

Remark 5: The choice of using IV as the length of the sam-
ple records instead of 7" is on purpose. 7' is the length of the
whole sample records, while /N will be used as the length of a
time-limited function g(u) discussed later in this section. If the
process is indeed stationary, one would choose 7' = N.

The discrete prolate spheroidal wave functions are denoted
by Vi.(N,W;A) for 1 < k < K, where

N-1
V(N W) = (—1)F e 37 op (N, Wi e A (N=D/2)
u=0
where €; =1 when k is even and ¢, =+/—1 when k is
odd. For simplicity of notation, we suppress /N and W and
write vg, (u) = v (N, W;u), Vi (A) = Vi (N,W; ), and A\, =
A (N, K). These K functions satisfy two types of orthogonality
over [—W, W] and [—m, 7], respectively

\p, fork = I;

w .
Vi, (MNV,(N)d\ =
K (AMVI(A) { 0, otherwise.

W

/ " V)TV = {

™

1, for k =1,

15
0, otherwise. (15

Observe that |V} (\)|? can be rewritten as follows,
N1 2
Z Uk (u)e—i)\u
u=0

Consider the average of the K tapered estimates,

K1
1

pr(X) £ ITe > IV

k=0

Vi(N)? = (16)

a7

'These N sample records are a consecutive subsequence from the
{X(0),..., X(T — 1)},
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It has been observed numerically that px (\) is close to
(1/2W)1_yw () by Thomson [18], which s justified recently
by Abreu and Romero [23] as given below.

Theorem 4 ([23]). Let N > 2 denote the length of the se-
quence, 2r/N < W < wand set K = | NW/x|. Then

P () — L1[41/,%’](')

B log N
Jor0= giptwn0] =o(*5)

In the following section, we apply this result to analyze
the performance of the multitaper method for semi-stationary
processes.

B. Estimate of the Evolutionary Spectra Based on the
Multitaper Method

For stationary processes, the bias and variance of the multita-
per spectral estimate (17) has been investigated [30], [31], [32].
In this section, we investigate its performance for semi-
stationary processes. Let g(u) be a time-limited function, i.e.,

l9(u)] = 0, for |u| > (N —1)/2,
where N is assumed to be odd. Apply the multitaper method on
{X(t),0 <t <T—1} with
gr(u) Zvp(u+ (N—=1)/2) for0< k<K —1,
then for ¢t > (N — 1)/2 we have

T-1
UM (w) =3 gr(u— 1) X (w)e "
u=0

t+(N-1)/2

>

u=t—(N-1)/2

gr(u — )X (u)e ™",

From Proposition 2 and (16),
k
E[JU}" (w)P]

- [ |G (w = N)? fi(N)dX + O(By, /Bx),

where
0o (N-1)/2

g r= Y

U=—00 u=—(N-1)/2

Gr(\) = g (w)e M.

The estimate of f;(w) is the average of |U,5(]C> (w)]?,

PK 1= k 2
Fw) = 2 SO w)]
k=0

and the mean of the estimate given in Theorem 1.

There is a bias/variance/resolution tradeoff for the esti-
mate fX (w). Assuming that || f; (w)]|~ is bounded for all ¢,
Theorem 2 can be proved by invoking Theorem 4 as given be-
low.

Proof: First, the bias can be bounded,

Bias(f (w))|
— [ELFE (w)] — fi(w)
< ' / " o ) o — N)dA — f, ()

+0(B{") /Bx).



XIANG et al.: ESTIMATION OF THE EVOLUTIONARY SPECTRA WITH APPLICATION TO STATIONARITY TEST

From Theorem 4,

| ok st 2ir- 5 <w>|

< ‘ / (o (3) ~ 3wy (W) flaw = 3 dA‘
+ ‘/’T %1{—%@@71()\)170410 — \)dA — ft(w)‘

(a)
< C(log(N)/K + W?),

where (a) follows from Theorem 4 and the assumption that
I ft (w)]|so < oo and C'is some positive constant. [ |

When X () is a normal process, the variance of fX (w) can
be characterized as in Theorem 3 and the proof can be found in
Appendix B. Now the MSE of f/ (w) can be bounded as shown
in Corollary 1,

logN\> ., 1 B{®
(0] W*+ — '
((B5) +wis a2,
where we have used the fact that the cross term W? (log N/K)
is dominated by either W2 or (log N/K) depending on whether
W? > (log N/K) or W? < (log N/K), and this argument ap-
plies to all the other cross terms as well.

For the uniformly modulated processes X (t) = c¢(t)Y (),
where Y (¢) is a stationary process as defined in Section II-B,
Bx can be lower bounded by Bz, . Thus, based on Corollary 1,
the MSE of the estimate in the case can be further bounded as

logN\*> _, 1 B
— W™+ — .
( K ) - * K * B}'y

Recall that K = | NW/x| and W can be as small as 27 /N.
Thus for stationary processes, the MSE of the spectral density
estimate decreases as [N grows. However, this is no longer the

(18)

case for the semi-stationary processes as B_((]K) /Bx may become
the dominant term for N large enough. We demonstrate this
point through the following example appeared in [2], [6], [7].

Example. Consider the following semi-stationary process

X(t)=ct)Y(t), for1<t<T
where a = 200, ¢(t) = e!"7/2)°/20* ‘and
Y; =0.8Y;1 —04Y, 5 + Z;,

with Z; ~ N(0,100%). It is shown in [6] that Bz, = a+/m/2.
We now use this fact to evaluate (18) and compare it with the
MSE without considering non-stationarity, i.e.,

log N'\? 41
— w —. 19
< % ) Wi 19)
In Fig. 1, we compare the MSE in these two cases and
the parameter K is optimized over {2,3,..., N — 1} since

27 /N < W < 7. In Fig. 1, for each N, the MSE are com-
puted with respect to the optimal K. We can see that the MSE
in (18) starts to increase for larger N, i.e., larger N will no
longer be beneficial for estimating the evolutionary spectra of
semi-stationary processes. This is because larger N does not
provide more information of the spectra since it is changing
over time. This is in contrast with the stationary case, where
larger N would improve the performance of the estimate. The
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Fig. 1. The blue circle line corresponds to the MSE in (18) with respect to the
optimal K for each N and the red dot line corresponds to the MSE in (19) with
respect to the optimal K for each V.
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Fig.2. The blue circle line is the relationship between N and the correspond-
ing optimal K evaluated according to (18) and the red dot line is the relationship
between /N and the corresponding optimal K evaluated according to (19).

relationship between the N and the corresponding optimal K is
shown in Fig. 2. Note that (19) is derived in [23] and the optimal
K scales roughly as N~*/%. For each N, the K that minimize
the MSE do not vary much in both cases.

For non-stationary processes, it is a natural idea to approxi-
mate it by stationary processes locally. Heuristic methods, such
as segmentation, have been developed [33] to deal with non-
stationarity. In the evolutionary spectra framework, Bx defined
in (3) can be roughly interpreted the longest “approximately
stationary” segment [2] of the semi-stationary process. It is thus
tempting to estimate Bx . However, it seems that Bx is more of
a theoretical technique rather than providing fundamental mean-
ings. Its definition is tailored to get the first order approximation
of the estimate, which can be partially seen from Section IV.
Furthermore, characterizing Bx is highly non-trivial as shown
by Mélard in [22]. As a comparison, in the locally stationary
processes framework [4], the authors characterized the optimal
choice of NV as Ny, the length of the stationary segment [34]
through minimizing the MSE of a local covariance estimate.
While the characterization is interesting from the theoretical
point of view, its application is limited due to its dependence on
the true unknown parameters.

As a natural application of the evolutionary spectral density
estimate, we propose a non-parametric stationarity test in the
next Section.
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VI. STATIONARITY TEST

The evolutionary spectral density estimate suggests a sta-
tistical test for the stationarity of a process, as first discussed
in Priestley’s paper [2] and later investigated by Priestley and
Subba Rao (PSR test) in [7]. The original version of the PSR
test uses the smoothing technique by introducing a second win-
dow, which suffers from bias leakage problems as discussed in
Section IV. In a recent package developed by Constantine and
Percival [35], smoothing is replaced by the multitaper method.
This modified PSR test has been served as a baseline to when
compared with other stationarity tests, e.g., in [36]. Based on
the results from Section V-B, we attempt to provide some in-
sights into the choice of the parameters in the test. Furthermore,
a non-parametric version of the stationarity test is proposed,
which is based on the Friedman test [37], [38] and is robust to
the underlying distribution. It serves as a complementary test
to the existing stationarity tests, in the sense that it is more
conservative than PSR, see Section VI-C for details.

A. PSR Stationarity Test With the Multitaper Method

Let f;(w) denote the evolutionary spectral density of a semi-
stationary process {X (¢) : 0 <t < T — 1}. Consider the esti-
mate ftK (w) based on the multitaper method as in Section V
and recall that

1 K-1
k
== > U ),
k=0

where

t+(N—1)/2

>

u=t—(N-1)/2

U (w) = gr(u— )X (w)e .

It is a common practice to take the logarithm of the estimate,
which stabilizes its variance [39]. Let

Y;; = log f (w;),

Moreover, to apply the two-way analysis of variance (ANOVA)
test [40], it has to be assumed that the distribution of log f/ (w)
is approximately normal [7]. More specifically, it can be shown
that W;; =Y;; — ¢ (K) + log(K) is approximately distributed
according to the normal distribution with mean 0 and vari-
ance o? =1/(K) for K > 5, where 9(-) and v/(-) denote
the digamma function and the trigamma function, respectively
(see [41, Section II] and [42] for details).

The approximate independence in time is obtained by choos-
ing non-overlapping short windows of length NV and the approx-
imate independence in frequency is by choosing frequencies that
are 27(K + 1)/(N + 1) apart.> Now the problem reduces to a
two-way ANOVA test for W;; for ¢ € [1: I] and j € [1: J],

2Buffers are needed at the beginning and at the end when sample in frequency
to overcome the edge effect. The size of the buffer could be chosen from
[B/2, B], where B £ 27 (K + 1)/(N + 1).
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where I = |T'/N| and J is the number of frequencies chosen
2n(K +1)/(N + 1) apart. Let

~

J

= (1/1J) ZZ i

Wi

M‘

Wi = (1))

E
Jj=1

I
- (/DY W

Between times variance with degrees of freedom I — 1 concerns
how uniform are {V;; } over the time indices 1 <7 < I,
1
Sp=JY (Wi —W.)
i=1
Similarly, between frequencies variance with degrees of free-
dom J — 1is

J
=1 (W

Interaction and residual variance with degrees of freedom

(I-1)(J—1)is

I
Srvr = ZZ(W“

i=1 j=1

W, =W, + W)2

The null hypothesis is that the process is stationary and the
alternative hypothesis is that the process is non-stationary. The
test steps are described in the following.

1) First, test the interaction and residual sum of squares using

SIJrR/U2 = X%I_l)(J_l)'

2) If the interaction and residual is not significant, one
conclude that the process is a uniformly modulated
process.> Then proceed to test Sy /0% = X%I—l)' If the
between-times is not significant, conclude that the pro-
cess is stationary. Otherwise, conclude that the process is
non-stationary.

3) If the interaction and residual is significant, conclude that
the process is non-stationary.

B. A Non-Parametric Stationarity Test

There are two main assumptions of the two-way ANOVA
test: (1) the samples are uncorrelated and (2) the residuals are
normally distributed. There has been extensive research on the
robustness of the assumptions for ANOVA test. It is known that
the test statistics depend heavily on the first assumption and
is less sensitive to the second assumption. The latter is shown
empirically first in [43] and later in [44].

More specifically, the degree of violation of the normal dis-
tribution is usually characterized by the skewness (3; and flat-
ness (3, of the distribution, where 3; = E[(X — u)3]/0® and
(B2 = E[(X — p)*]/6*, where v and 6% denote the mean and
variance of X, respectively. The test statistics are less sensitive

3The test of the sum of interaction and residual being not significant implies
that the time and frequency can be decoupled and thus the process can be
expressed in the form of uniformly modulated process. See [7] for details.
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to the skewness and flatness of X, essentially due to the central
limit theorem as the the test statistics are based on summation
of many terms. In the PSR test, the test results are more re-
liable when the degrees of freedom of time and frequency are
large. On the other hand, nonparametric test, e.g., the rank-based
Friedman test [37], [38], has an edge when the number of test
samples is relatively small.

We now propose the non-parametric test, which will be re-
ferred to as rank-based stationarity test or RS test in short. Take
{W;;} introduced in the previous section. In the time-frequency
table filled by {W;; }, rank the elements in each column in an
increasing order (i.e., 1 corresponds to the smallest element) to
form a table of ranks: {R;;}. Whenever there is a tie among
k elements in the same column, assign the mean rank of the k
elements. Similar to the two-way ANOVA test, let R.. denote the
mean rank of all ranks, denote R;. the mean rank of row i. The
sum of square of ranks SSg is SSg = J Y, (R;. — R.)*. The
test statistics tg =SSk /const, where const = I(I +1)/12. It
is known that ¢ty is (approximately) distributed according to
X7 [371, [38].

Remark 6: Conventionally, the rows are ranked and then the
ranks in each column are summed up to form the test statistic.
To be consistent with the two-way ANOVA test, the role of row
and column are switched in this work.

C. Simulations

In this section, the performance of the proposed non-
parametric stationarity test is evaluated and compared with the
PSR test for a variety of synthetic data and real data. In our
simulation, we use the multitaper function pmtm in MATLAB
(R2016a) with default values as in [35]: number of tapers is
5, number of non-overlapping blocks is max{2,log(7)}, and
buffer size 0.7B where B = 27(K + 1)/(N + 1). The number
of tapers is much smaller than the one we used for estimating
the evolutionary spectra in Section V-B.

Before the simulations, we first try to justify the choice of
number of tapers. One key factor is that testing stationarity is a
task of different nature compared with estimating the underlying
evolutionary spectra. In particular, testing stationarity requires
a good amount of “independent” samples in both time and fre-
quency domain. Recall that this rough independence between
the samples is achieved by sampling in non-overlapping blocks
as well as sampling frequencies that are 27(K + 1)/(N + 1)
apart. Thus there is a hidden penalty for choosing large K (but
less than 2NW), because large K will reduce the number of
samples for performing the hypothesis test. Therefore, instead
of solely focusing on MSE, it is reasonable to add to it a penalty
¢(K) that is an increasing function of K. For simplicity of
demonstration, we choose ¢(K) = K and evaluate the exam-
ple in Section V based on the summation of MSE in (18) and
K in Fig. 3. Here N is chosen to be T/ max{2,log(T")} with
T = 512. Thus number of chosen tapers should be 4 or 5. A
thorough study of this penalized approach is out of the scope
of this paper and will be pursued in our future works. Note that
window design (choosing weights and length of the window) is
hard even for stationary processes and “in practice it is advis-
able to experiment with a range of windows” (see Section 10.4
in [21] for details).
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Fig. 3. The blue square line corresponds to the MSE in (18) plus a penalty
term K and the black circle line corresponds to the MSE in (18).

TABLE I
EMPIRICAL SIZE COMPARISON (%)

models | PSR | RS
(a) 11.1 | 1.9
(b) 17.7 | 2.9
(¢) 11.2 | 2.7
(d) 127 1 2.5
(e) 14.8 | 2.9
(f) 153 ] 2.6
(2) 78.7 | 6.1

1) Synthetic Data: The performance of a test is evaluated
based on its empirical size and power values. Generate M =
1000 sample paths/realizations each with length 7' = 512 and
let the nominal size of the test be 0.05. The null hypothesis H
is that the process is stationary and the alternative hypothesis
H, is that the process is not stationarity.

For the size comparison, we generate sample paths from var-
ious stationary processes and count the number of rejections of
the null hypothesis. Consider the following set of stationary
autoregressive and moving-average (ARMA) models used
in [45] The noise term Z(t) is distributed according to A(0, 1).

a) 1i.i.d. standard normal

b) AR(1): X(¢t) =0.9X(t — 1)+ Z(¢t).

c) AR(1): X(t) =—-0.9X(t— 1)+ Z(t).

d) MA(l): X(t) = Z(t) +0.8Z(t — 1).

e) MA(l): X(t) = Z(t) — 0.8Z(t —1).

f) ARMA(1,2): X(t) = —0.4X(t) + Z(t) — 0.8Z(t — 1).

g) AR(2): X(t) = a1 X(t — 1)+ aa X (t — 2) + Z(t) with

a1 = 1.385929 and ay = —0.9604 (from [46]).

The empirical sizes for PSR is smaller in [45] than that in
Table I, but still at least twice as large as the empirical sizes of RS
for all the models in Table I. The differences in PSR from [45]
could be due to differences in parameters such as number of
tapers, number of non-overlapping blocks, buffer size, etc.

For the power comparison, we generate sample paths from
semi-stationary processes and count the number of acceptances
of the null hypothesis. We focus on the uniformly modulated
processes as in [2], [7]. As in Section V-B, we focus on the
following model,

X(t) = =T/ 207y (p), (20)

where a = 200 and Y; = 0.8Y,_; — 0.4Y;_» + Z;, with Z; ~
N(0,100%). For all the models from Table I, generate
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uniformly modulated processes by multiplying each of them
with e(t=7/2)*/20* Ty make the numbering consistent with
Table I, these models are also numbered from (a) to (g) and
model (20) will be numbered as (h) in the table below.

TABLE II
EMPIRICAL POWER COMPARISON (%)

models | PSR | RS
(a) 96.7 | 88.4
(b) 96.8 | 82.5
(©) 97.3 | 88.9
(d) 96.4 | 88.1
(e) 97.3 | 87.1
) 97.1 | 86.2
(2) 98.3 | 76.7
(h) 96.4 | 88.4

Since the empirical size of RS is smaller than that of PSR but
the empirical power is also smaller, RS is a more conservative
test compared with PSR.

2) Real Data: We consider a real data example called ecgrr
used in [35] and comes from ‘RR interval time series model-
ing: A challenge from PhysioNet and Computers in Cardiology
2002’ site of PhysioNet. The data are the RR intervals (beat-to-
beat intervals measured between successive peaks of the QRS
complex) for patients in normal sinus rhythm (record 16265 of
the MIT-BIH database). The length of the sample 7" = 512 and
the nominal size of the test be 0.05 as in the previous section.
Recall that the test statistics for PSR are St /o2 and S7, r /o?
and that for RS is . Both PSR and RS suggest that the the pro-
cess is non-stationary and their test statistics are summarized in
the following tables.

TABLE III
TEST RESULT OF PSR
Sr/o? | Siir/o?
Chi-square quantile | 16.919 | 72.1532
PSR 40.4927 | 67.7689
TABLE IV
TEST RESULT OF RS
tr
Chi-square quantile | 16.919
RS 22.8

3) Real Data: Purchasing Power Parity: In economics, a
common practice to test the purchasing power parity (PPP) hy-
pothesis via testing the stationarity of real exchange rates (RER).
Some earlier studies using unit root tests yielded results that
were not favorable to PPP (see for example [47]-[49]). In this
real data study, we test the stationarity of RER of four countries
(Canada, China, Japan, UK) with respect to US over the period
of January 1970 to December 2017. The monthly data of RER
were calculated by E - P*/P, where E, P* and P respectively
denote the nominal exchange rates, the foreign price level (eval-
uated using consumer price index) and the domestic price level,
using data sources from International Financial Statistics of the
International Monetary Fund, Financial Statistics of the Fed-
eral Reserve Board, Haver Analytics, and the Pacific Exchange
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Rate Service. In the experiments, we take the widely used trans-
form: the log first-order difference, i.e., log(X;) — log(X;_1)
for2 <t < N with {X; : 1 < N} denote the RER.

TABLE V
TEST RESULTS OF PSR

Sr/o* | Si+r/0?

Chi-square quantile (5%) | 15.5073 36.415
Chi-square quantile (1%) | 20.0902 | 42.9798
PSR (Canada) 69.4236 | 42.6526

PSR (China) 637.9477 | 29.5066

PSR (Japan) 18.4479 | 13.6801

PSR (UK) 24.1467 | 329519

Based on RS test and Sp/ o2 of the PSR test, one could order
the stationarity of the four countries (in terms of RER) from
the most stationary to least stationary as: Japan, UK, Canada,
China. When choosing 1% as the nominal size of the test, RS
test suggests that RER of both Japan and UK are stationary with
Canada close to stationary; while PSR test suggests that RER
of Japan is stationary and RER of UK is close to stationary.

TABLE VI
TESTS RESULT OF RS
lr

Chi-square quantile (5%) | 15.5073
Chi-square quantile (1%) | 20.0902

RS (Canada) 22.0

RS (China) 30.8

RS (Japan) 16.3

RS (UK) 19.7

Both tests (under both 5% and 1%) suggest that RER of China
is non-stationary.

VII. CONCLUDING REMARKS

In this work, we investigate the spectrum estimation for
an important class of non-stationary processes developed by
Priestley. We propose and analyze an improved estimate within
the evolutionary spectra framework. The analysis is based on
a novel alternative delta approximation in the time domain,
as well as leveraging on a recent concentration result on the
multitaper method. The estimate is then applied to develop a
non-parametric stationarity test, which is complementary to the
existing stationarity tests. There are several interesting future
directions. For parameter design, the penalized approach to
understand the parameter design for stationarity tests will be
pursued. Regarding the computational constraints for spectra
estimation, which is crucial for very long time series, it will
be interesting to incorporate the SLEX based methods into the
framework to handle the computational issues.
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APPENDIX A 1 K .
PROOF OF LEMMA 1 = Var( - > |o! )(w)|2>
Proof: The statement can be proved by observing h=0
K—-1
1 k l
. . — 73 X Cor(I0 @) 0 ).
G(w)|" fr(wtv)dw = fi(v) [ |G(w)]"dwt+R(v), Py
where First, Cov(|Ut(k)(w)\2, |Ut(l)(w)|2) can be rewritten as (21),
B T 9 which is shown at the bottom of this page. Similar to Propo-
[R(v)] = |/_7r w|G(w) " fi (v + n(w)w)duwl sition 2, we can further express S; and S, as (22) and (23),
. respectively. Now, since || fi (w)]|oo < 00,
< sw [fw)] [ |wlGw)Pd,
—r<w<m - K-1
> cor (10 @) 0w )|
where 0 < n(w) < 1 for all w. | b0
APPENDIX B = -
< S S
PROOF OF THEOREM 3 - k;) e k;() ?
Proof: The variance of ftK (w) can be expressed as, (@ K_1
a
< 2K+ ) O(B,, /Bx),
Var(f (w)) e

Cov (107 (w) P, 101" (w) )

= Cov ( Z g (w1 =) gr (us =) X (u1) X (ug)e "1 ™2, Z gi(us —t)gi(us — t)X(ug)X(u4)e“”“f“eiw“l)

Ul ,U2 Uz ,Uq
Y S+ S, 1)
where (a) follows from the Isserlis’ theorem [50] and u; € [t — (N —1)/2:t + (N —1)/2] fori € [1 : 4] with,
Si=" > gilw —t)gi(us — t)gi(us — t)gi(us — E[X ()X (ug)|E[X (uz) X (ug)Je™ "1 /M2 7100 0
U1,U2,U3 Uy
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V1,V2,V3,Vq
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A AL AN a0 [ A (A7 (@ e )

-7

_ / Z ar (Ul )gl(vii)efiw(’ul +t)efiw(v3 Jrz‘,)AU1 +t()‘)Az3+t ()\)ei)\(vl +t)ef’£)\(v3 +1‘)du(>\)
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V1,03
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V2,Vq
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where (a) follows from Lemma 1. Similarly we have,

_ —iw (vy +t)

S

>

U1,V2,V3,Vq

/.

gk (v1)gr (v2)gi(vs)gi(va)e e
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iw (ve +t) efiw(vg +t)

61,w(v4+t)

A1t (VAS, (VAT ALEHD gy, () / Auy 11 () A 4, (et D e et D gy ¢)

— /j /j Gr(w = AN)Gi(—w + NGy (—w — ) Gi(w + &) fi (N)dA [, (§)dE + O(B,, /Bx) + O(B,, /Bx).  (23)
S N = K-1
Z =[] G = NG =) Y G+ NGi(—w + R NIN(E + Y OBy, /Bx)
. o = k=0
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where (a) follows from (24) and a similar argument for S,,
as well as the orthogonality condition (15). This finishes the

proof.
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