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Compressed Training Based Massive MIMO
Baki Berkay Yilmaz, Student Member and, Alper T. Erdogan Senior Member

Abstract— Massive Multiple-Input-Multiple-Output (MIMO)
scheme promises high spectral efficiency through the employment
of large scale antenna arrays in base stations. In Time Division
Duplexed (TDD) implementations, co-channel mobile terminals
transmit training information such that base stations can estimate
and exploit channel state information (CSI) to spatially multiplex
these users. In the conventional approach, the optimal choice
for training length was shown to be equal to the number of
users, K. In this article, we propose a new semi-blind frame-
work, named as “MIMO Compressed Training”, which utilizes
information symbols in addition to training symbols for adaptive
spatial multiplexing. We show that this framework enables us to
reduce (compress) the training length down to a value close to
log2(K), i.e., the logarithm of the number of users, without any
sparsity assumptions on the channel matrix. We also derive a
prescription for the required packet length for proper training.
The framework is built upon some convex optimization settings
which enable efficient and reliable algorithm implementations.
The numerical experiments demonstrate the strong potential of
the proposed approach in terms of increasing the number of
users per cell and improving the link quality.

Index Terms— Massive MIMO, Compressed Training

I. INTRODUCTION

Steadily increasing demand and ever growing number of
applications with flexible connectivity requirements have been
the major driving forces for the evolution of wireless commu-
nication technologies. Massive MIMO is a recently introduced
approach targeting high spectral efficiency empowered by the
use of large scale antenna arrays at base stations [1]–[3]. The
deployment of hundreds, even thousands of antennas in base
stations is expected to yield near optimal multi-user data rates
through simple linear transceiver processing algorithms [4].

In Time Division Duplexed (TDD) Massive MIMO, which
is the focus of this article, uplink and downlink share the
same frequency band, and their transmissions occur in non-
overlapping time intervals. Fig. 1 outlines the generic protocol
proposed for the TDD-Massive MIMO scheme [5]. According
to this figure, uplink transmission and a short duration of
base station processing are immediately followed by downlink
transmission.

The basic benefit of the TDD scheme is the assumed
reciprocity of the downlink and uplink channels, which is
utilized by the base station to generate conjugate beamforming
based on the channel state information (CSI) estimated during
the uplink transmission phase. This eliminates the need for the
complex CSI estimation at the mobile terminals. However, it
is still a major task for the base station to estimate CSI for
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effective spatial multiplexing of mobile users. For this purpose,
as illustrated in Fig. 1, a block of training symbols is embedded
in the uplink transmission packet.
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Fig. 1: TDD-Massive MIMO Protocol.

The selection of training length has been a fundamental
problem in wireless communications research. In [6], a mutual
information maximization based approach is used to address
this question for point-to-point MIMO systems. As an im-
portant result, when training and data powers are allowed
to be independently adjusted, the optimal training length is
prescribed to be equal to the number of transmit antennas, NT .
For the multi-user massive MIMO protocol outlined in Fig. 1,
where the base station estimates the channel using the uplink
training data, the training length is required to be greater than
or equal to the number of users [2], [7]. In [8], it is shown
that this choice of training length is still optimal under pilot
contamination caused by the users in other cells.

We should note that for both prescriptions on the optimal
training length, namely the number of transmit antennas for
point-to-point MIMO systems and the number of user termi-
nals in Massive MIMO scheme, it is assumed that the channel
estimate is based on only the training region. In this article,
we show that by utilizing the uplink data section in addition
to the uplink training, we can reduce training length to a value
near the logarithm of the number of user terminals, log2(K)
(or equivalently the logarithm of the transmit antennas in the
point-to-point MIMO, log2(NT )). For this purpose, we expand
the recently introduced “Compressed Training” framework to
cover MIMO communication systems.

Compressed Training was initially introduced for frequency
selective Single-Input-Multiple-Output channels in [9], [10]
as the semi-blind extension of the convex optimization based
blind approaches in [11]–[14]. In this approach, to train
the equalizer, an adaptive scheme based on a convex cost
function measuring the least squares (LS) error in the training
region and the infinity norm of the equalizer outputs for the
whole packet was proposed. The former (LS) part of the
cost measures training reconstruction performance, whereas
the second part, i.e., the peak magnitude of equalizer output
is shown to be a reflector for the sparseness of the overall
channel (communication-equalizer channel combination) im-
pulse response. It was shown that this approach can reduce the
training length to a value close to the logarithm of equalizer
length per receiver branch (or the logarithm of the channel
spread).

In this article, we introduce the compressed training frame-
work for MIMO flat fading channels. Instead of estimating
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the channel matrix, we propose to obtain the linear equal-
izer/separator directly using both training and data regions.
The corresponding algorithm exploits the special rectangular
QAM constellation structure to utilize whole packet symbols
in training the equalizer matrix. This is established by factoring
the peak magnitude of the equalizer magnitude over the whole
packet as an additional cost besides the training reconstruction
cost used in conventional methods. The equalizer matrix
obtained through the compressed training based adaptation can
also be used as the conjugate beamformer for the downlink
transmission. Again, the proposed “MIMO Compressed Train-
ing” approach does not make any assumption on the sparsity
of the channel matrix. Therefore, it is applicable to both sparse
and dense channel matrix scenarios. The initial results about
this framework were presented in the conference article [15].

We should note that there exist other semi-blind MIMO
adaptive approaches that exploit data region along with the
training region mostly to estimate the channel matrix. As
an example, [16] proposes a semi-blind MIMO channel es-
timation algorithm, where the channel matrix is modeled as
the product of a whitening matrix and a unitary matrix. The
whitening part is estimated blindly based on the whole data
packet, whereas the unitary part is determined by the use of
training symbols. As a more recent reference, [17] proposes
another semi-blind channel estimation approach for Massive
MIMO systems based on Gaussian priors on the unknown
data symbols. As an example for the direct adaptation of the
equalizer coefficients, in [18], the authors propose a semi-blind
MIMO equalization approach based on the mixture of constant
modulus and soft decision directed algorithms.

We can list main distinguishing features of the proposed
approach, especially relative to the existing approaches, as
follows:

• The proposed compressed training MIMO scheme is based
on some convex optimization settings. This is an important
feature with significant implications such as

– Adaptive algorithms based on non-convex cost functions
suffer from ill-convergence or mis-convergence problems
caused by undesired local minima and slow convergence
issues due to the existence of saddle points. Fortunately,
having a convex cost function eliminates such concerns.

– Convex cost functions enable efficient adaptive implemen-
tations. As an important connection, recent results for
developing low complexity and parallel convex algorithms
for “big-data” (see [19] for a recent review) are potentially
applicable to develop real-time algorithms to be imple-
mented in the base stations.

– By employing random matrix theory in conjunction with
the convex optimization settings [20], [21], it is possible
to provide effective analysis of the proposed algorithms.
In fact, we are able to show the existence of ”phase tran-
sitions” for the choices of both training length and packet
length parameters, and therefore, provide prescriptions for
them. In particular, we can obtain the concrete result that
the training length can be reduced from being proportional
to “the number of user terminals” to its logarithm. This
is an explicit result highlighting the potential gain of

the proposed method especially in terms of significantly
increasing the number of mobile users.

• The proposed approach has direct links with the compressed
sensing concept due to the duality between `1 and `∞
norms. This link can be utilized to adapt rich algorithmic
and analysis contributions in sparsity driven research to
compressive training framework.
We note that the convex optimization based algorithms

proposed in the article act as initial eye openers. Once de-
cisions become reliable, these algorithms can be extended
to non-convex settings to incorporate decisions for further
performance improvement.

The article is organized as follows: Section II introduces
the data setting for the Massive MIMO uplink connection. We
introduce the proposed Compressed Training Massive MIMO
approach in Section III. Various algorithm extensions to ad-
dress different issues, such as the impact of noise/short packet
lengths, and the acceleration of algorithm convergence, are
introduced in Section IV. In Section V, numerical experiment
results illustrating the potential of the proposed approach are
provided. Finally, Section VI is the conclusion.

Notation: Following describes the notation of the article:
Let A ∈ Cm×n, x ∈ Cn and S is a set:

Notation Meaning

Am,n The element of A at the index (m,n)
AH Conjugate-Transpose of A
P(•) Probability of a given event
I Identity matrix with proper size

‖A‖F Frobenius norm of A
diag(A) A vector containing the diagonal entries of A
idiag(x) A diagonal matrix generated from vector x
<e{A} Real part of matrix A

Im{A} Imaginary part of matrix A

sign(A) Matrix obtained from A by replacing elements
with ejθmn where θmn is the phase of Am,n

A:,k (Ak,:) kth column (row) of A
ek Standard basis (column) vector with all zero elements

except kth element is equal to 1

CoS Convex Hull of the set S
NL(A) Left null space of A

II. MASSIVE MIMO DATA SETTING

We consider the uplink training scenario for the Massive
MIMO systems. We assume flat fading channel model (which
can be considered as one of the OFDM channels in the
frequency selective case). Fig. 2 illustrates the baseband equiv-
alent data model for the uplink transmission for a wireless
multi user MIMO system. In this model:
• There are K user terminals.
• The uplink transmission packet consists of τD data symbols

followed by τT training symbols. Therefore, the total pack-
age length is Γ = τD + τT . We define I = {1, 2, . . . ,Γ} as
the index set of the uplink transmission package.

• {sl(n) : n ∈ I} represents the uplink sequence transmit-
ted by the lth user’s terminal, where l ∈ {1, 2, . . . ,K}.
The uplink data sequence is the subset {sl(n) : n ∈
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{1, 2, . . . , τD}} and the uplink training sequence is the sub-
set {sl(n) : n ∈ {τD + 1, τD + 2, . . . ,Γ}}. We assume that
the uplink sequence samples are taken from a constellation
with unity average power.

• We define the source vector as s(n) =[
s1(n) . . . sK(n)

]T
for n ∈ I.

• We define the uplink transmission sequence matrix for all
user terminals as S =

[
s(1) s(2) . . . s(Γ)

]
. We

define the uplink training sequence matrix for all user ter-
minals as the submatrix ST =

[
s(τD + 1) . . . s(Γ)

]
.

• M represents the number of base station antennas.
• {yl(n) : n ∈ I} is the sequence received at the lth

base station antenna, where l = 1, . . . ,M . We define the
uplink signal vector received at the base station as y(n) =[
y1(n) . . . yM (n)

]T
, for n ∈ I.

• The base station vector y(n) is related to source vector
s(n) via y(n) = Hs(n) + v(n) where H is the M ×K
channel matrix, which is assumed to be full rank, and
v(n) =

[
v1(n) . . . vM (n)

]T
is the noise vector. The

noise components are assumed to be zero mean i.i.d. random
variables with variance σ2

v .
• The matrix containing all received sequences at the base

station is defined as Y =
[
y(1) y(2) . . . y(Γ)

]
.

Its submatrix corresponding to the uplink training region
is represented as Y T =

[
y(τD + 1) . . . y(Γ)

]
.
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Fig. 2: Uplink Data Model.

• The base station employs a K × M equalizer matrix
W to compensate the effects of the channel and sep-
arate individual user signals. The output of the equal-
izer is represented with o(n) = Wy(n) where o(n) =[
o1(n) . . . oK(n)

]T
.

• The matrix containing all output sequences at the base
station is defined as O =

[
o(1) o(2) . . . o(Γ)

]
.

• G is the cascade of the equalizer and the channel such that
G = WH.

III. COMPRESSED TRAINING BASED MASSIVE MIMO

The major task of the base station is to obtain the equalizer
matrix W using the observations at the antennas and the
known training sequences transmitted by the users. In this
section, we introduce Compressed Training based approach
for obtaining W . In Section III-A, we start by introducing
the conventional adaptive algorithm. Then, we will motivate
for the compressed training approach in Section III-B. The
compressed training approach is introduced in Section III-C.

A. Conventional Adaptive Approach

The conventional method for adaptive processing at the base
station receiver is to use the training region of the received
samples Y T and the training sequence samples ST . The
conventional least squares estimate for H can be written as

Ĥ = argmin
H

‖Y T −HST ‖F .

Here, given that ST is full rank and fat, which implies training
length (τT ) is greater than or equal to the number of users (K),
the least squares estimate can be more explicitly written as

Ĥ = Y TST
†,

where ST † = ST
H(STST

H)−1. If the rows of ST , i.e.,
the training sequences of individual users, are orthonormal,
i.e., STSTH = I , then the least squares channel estimate
simplifies to Ĥ = Y TST

H which amounts to taking inner
products of the sequences received at base station antennas
with the training sequences of the users. From the estimate Ĥ ,
it is possible to construct W through different approaches:

• Match Filtering: Choose W = Ĥ
H

, i.e., as the match
filter to maximize Signal to Noise Ratio,

• Zero Forcing (ZF): Choose W = (Ĥ
H
Ĥ)−1Ĥ

H
to

generate zero Inter User Interference (IUI) (in case of
perfect channel estimate),

• Minimum Mean Square Error (MMSE): Choose W =

(σ2
vI + Ĥ

H
Ĥ)−1Ĥ

H
to minimize the average energy

of residual IUI and noise.
The alternative to this two step approach is to obtain W
directly at one step, potentially through the least squares
formulation:

W = argmin
˜W
‖W̃Y T − ST ‖F . (1)

Note that the optimization in (1) may have infinitely many
solutions. If we look at the noiseless case, we can rewrite the
least squares cost as

‖W̃Y T − ST ‖F = ‖W̃HST − ST ‖F = ‖(W̃H − I)ST ‖F .

In such a case, if ST is a full rank “fat” matrix, i.e.,
• τT ≥ K, i.e., the training length is greater than or equal

to the number of users, and
• the rows of ST , are linearly independent,

then it is guaranteed that only the left inverses of H are the
optimal solutions, for any full rank H . In such a case, the
cascade of the equalizer and the channel would be

G = WH = I. (2)

B. Motivation for the Compressed Training Approach

In the compressed training approach, the goal is to reduce
the training length τT below the required value K as discussed
in the previous section. Of course, if we reduce τT below K,
then the set of solutions for the linear system of equations

WY T = ST (3)
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is strictly larger than the set of left inverses of H satisfying
(2). Therefore, in case τT < K, we need some intelligent
processing that would pick a W which is a left inverse of H .

Since each row of the G matrix corresponding to the perfect
equalization condition has all zeros except for one index
location, we can restate the condition for the desired W as
the one with the corresponding G has rows that are as sparse
as possible. It is therefore sensible to choose a W which
minimizes the `1-norm of each row of G. Therefore, we can
now cast the desired problem of obtaining a perfect equalizer
(for the kth user branch) as

Setting Ia : minimize
W k,:

‖Ω(Gk,:)‖1
s.t. W k,:Y T = ST k,:

Gk,: = W k,:H,

for k = 1, . . . ,K. Here, the Ω(·) over a complex vector w is
defined as the isomorphic mapping

Ω(wT ) =
[
<e{wT } −Im{wT }

]
if its argument is a row vector, and otherwise

Ω(w) =
[
<e{wT } Im{wT }

]T
.

For the rest of the discussion, if isomorphic mapping is applied
to a vector, the output will be denoted by its “˜” version, i.e.
w

Ω(•)→ w̃. Since the optimization variable is W k,:, we can
rewrite corresponding setting as

Setting Ib: minimize
W k,:

‖Ω(W k,:H)‖1
s.t. W k,:Y T = ST k,:.

The goal of this optimization process is to pick a W k,:

from the set of all possible W k,:’s that would satisfy the
training reconstruction requirement in the constraint such that
the resulting Gk,: is sparsest. However, it is clear that to solve
Setting Ia-b, we need to know H , which seems to be an
irrational assumption, because if we knew what H was, the
proposed adaptive approach would not be needed.

Now, we will describe a nice work around by replacing the
cost function in Setting Ia-b with a practically implementable
function that does not require the knowledge of H . We start
with the observation that real part of the kth equalizer output
can be written as

<e{ok(n)} = [<e{Gk,:} − Im{Gk,:}]
[
<e{s(n)}
Im{s(n)}

]
= Ω{Gk,:}s̃(n). (4)

For the time being, lets assume that all user terminals use
the complex β-QAM constellation

CβQAM = {a+ ib : a, b ∈ {−√β + 1,−√β + 3, . . . ,
√
β − 3,

√
β − 1}}. (5)

where β ∈ Z+. This choice implies that ‖s̃(n)‖∞ ≤ (
√
β−1)

The following theorem establishes the link between the
peak magnitude output component and the sparsity of the
corresponding row of G:

Theorem I: For a given Gk,:, if there exists an m ∈
{1, . . . , τ} such that

s̃(m) = (
√
β − 1)sign(Ω(Gk,:))

T , (6)

then

‖Õk,:‖∞ = (
√
β − 1)‖G̃k,:‖1. (7)

Proof: Applying the Hölder Inequality on the inner product
expression in (4) yields

|<e{ok(n)}| ≤ ‖Ω{Gk,:}‖1
∥∥∥∥ <e{s(n)}
Im{s(n)}

∥∥∥∥
∞

= ‖G̃k,:‖1‖s̃(n)‖∞. (8)

Therefore, the inequality in (8) takes the form |<e{ok(n)}| ≤
(
√
β−1)‖G̃k,:‖1. Applying the same procedure for the imag-

inary part of the equalizer output, we obtain |Im{ok(n)}| ≤
(
√
β − 1)‖G̃k,:‖1. This inequality further implies that

‖Õk,:‖∞ ≤ (
√
β − 1)‖G̃k,:‖1, (9)

i.e., the peak absolute value for the imaginary and real compo-
nents of kth user’s equalizer output sequence is bounded by
the scaled version of the `1-norm of the corresponding row
of G. Now, we’ll show that, through an assumption, we can
convert this inequality into an equality so that we can replace
the cost function ‖G̃k,:‖1 in Setting Ia-b with an expression
which is a function of the equalizer outputs. For a given G,
suppose that there exists an index m ∈ I, for which

s̃(m) = (
√
β − 1)

[
sign(<e{GH

k,:})
sign(Im{GH

k,:})

]
, (10)

then the corresponding equalizer output would be equal to

<e{ok(m)} =

2K∑
l=1

(
√
β − 1)sign(G̃k,l)G̃k,l

= (
√
β − 1)

2K∑
l=1

|G̃k,l| = (
√
β − 1)‖G̃k,:‖1.

This implies that upper bound in (9) is indeed achieved under
this assumption. The same conclusion would hold for the
negative of the vector given in (10). Moreover, with a proper
choice for s̃(m), we can achieve the upper bound in (9) with
equality for Im{ok(m)} as well. �

As a result, we reach the following conclusion: if the uplink
transmission sequence matrix S̃ contains all possible (scaled)
sign patterns in the form (10), then 1√

β−1
‖Õk,:‖∞ would be an

adaptively realizable replacement for the cost function ‖G̃k,:‖1
in Setting Ia. In other words, the peak absolute equalizer output
is an observable measure of the sparsity of the G̃k,: that
can be utilized in the adaptive applications. Based on these
observations, we can rewrite the Setting Ia as

Setting IIa: minimize
W k,:

1√
β − 1

‖Õk,:‖∞
s.t. W k,:Y T = ST k,:

Ok,: = W k,:Y ,
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for k = 1, . . . ,K. We can write it in terms of W k,: and
known/observed parameters as

Setting IIb: minimize
W k,:

1√
β − 1

‖Ω(W k,:Y )‖∞
s.t. W k,:Y T = ST k,:.

To conclude, if we analyze the Setting IIb carefully:

• The constraint part involves observations at the antennas
during training (Y T ) and the known uplink training se-
quence sent by user k (ST k,:). This constraint imposes the
reconstruction requirement for the training symbols at the
output of the equalizer. We remind that since the training
size is selected to be less than the number of users, i.e.,
τT < K, the constraint set involves not only the perfect
equalizers but also some other matrices.

• It is the task of the cost function minimization to eliminate
the undesired matrices in the constraint set which do not
lead to sparse G̃k,:. In fact, as it is shown above, the peak
equalizer output ‖Õk,:‖∞ is a reflector of the (non)sparsity
of G̃k,:.

In summary, the compressed training approach exploits
the special rectangular QAM structure of the digital com-
munication signals, to utilize the data symbols for learning,
and therefore, reducing the required training length. In other
words, the special constellation structure of sources is the side
information used as an unsupervised resource to supplement
training based adaptation.

C. Compressed Training Approach

In this section, we will extend the optimization setting
introduced in the previous section. Setting IIa is used to obtain
the kth row of the equalizer matrix W . We can actually
combine individual optimization settings for different rows of
W into a more compact single optimization setting:

Setting IIIa: minimize
W

1√
β − 1

K∑
k=1

‖Õk,:‖∞

s.t. WY T = ST
O = WY .

Setting IIIa can be solved using Linear Programming (LP).
1) Training Length Selection: Although the proposed ap-

proach allows the reduction in the training length below the
number of users K, we can not arbitrarily decrease it. It is
interesting to investigate what is the minimum training length
that we need to use. For this purpose, we first formalize the
assumption that we used in the previous section about the
packet of uplink transmit sequences:

Let Hβ = {q : ‖Ω(q)‖∞ ≤
√
β − 1} be the minimum

volume hyper-rectangle covering the source vector samples,
where each source takes its values from the β-QAM constel-
lation CβQAM defined in (5). To proceed further, for a complex
matrix C, let C̃ be the output of Υ(·) which is defined as

Υ(C) =

[
<e{C} −Im{C}
Im{C} <e{C}

]
. (11)

We also define

V (Hβ) = {(
√
β − 1)v | v ∈ {−1, 1}2K}, (12)

as the set of all vertex points of Hβ . The following is the main
assumption in establishing the link between peak magnitude
equalizer of the kth output and the sparsity of Gk,::

Assumption (A∗): The set of columns of the transmit
sequence matrix Υ(S) contains all vertex points (corners) of
Hβ , i.e., V (Hβ) is a subset of the set of columns of Υ(S).

The assumption (A∗) makes sure that 1√
β−1
‖Õk,:‖∞ =

‖G̃k,:‖1. Therefore, under the assumption (A∗), and based
on the full rank condition on H , Setting IIa is equivalent to
Setting Ia. Observing

W k,:Y T = W k,:HST = Gk,:ST ,

we can rewrite Setting Ia, completely in terms of Gk,: as

Setting Ic: minimize
Gk,:

‖G̃k,:‖1 s.t. Gk,:ST = ST k,:.

Similarly, Setting IIIa can be rewritten in terms of G as

Setting IIIc: minimize
G

K∑
k=1

‖G̃k,:‖1 s.t. GST = ST .

Setting IIIc above covers all the rows of G and it can be
decomposable into K optimizations in Setting Ic for individual
rows.

We note that Setting Ic is in the form of the
Sparse Reconstruction Problem in Compressed Sensing [22].
Therefore, we can adapt analysis approaches developed in the
compressed sensing literature to make an assessment about the
minimum training length. We first assume that the training
sequences use the constellation C = {cr + icI : cr, cI ∈
{−(
√
β − 1),

√
β − 1}}, i.e., the training source vectors,

which are rows of ST , are selected from the corners of Hβ .
This is a usual practice for the training and also simplifies
the notation in our analysis. Under these assumptions, the
following corollary provides a recipe for the training length
selection:

Corollary I:. Given ST ∈ CK×τT is a matrix with i.i.d.
elements chosen from the set C. If τT > log4(K(K−1))+0.5,
then the solution of the Setting IIIc is unique and equals to I
with probability at least

1− K(K − 1)

2 · 4τT−1
. (13)

Proof: See Appendix I.
Therefore, the corollary above suggests that the training

length should be chosen as

τT > log2(K) + 0.5 .

Furthermore, the probability lower bound for perfect equaliza-
tion in (13) has a phase transition around this lower bound for
the training length. We illustrate this phenomenon through an
example in the numerical examples section (Section V).
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IV. PRACTICAL CONSIDERATIONS AND EXTENSIONS

In this section, we address some practical aspects of the
compressed training approach introduced in the previous sec-
tion. The impact of packet length on the algorithm’s perfor-
mance is discussed in Section IV-A. Section IV-B addresses
the algorithm modifications to mitigate the effects of receiver
noise. The decision directed extension of the algorithm for per-
formance improvement is introduced in Section IV-C. Finally,
Section IV-D presents an enhancement targeting algorithm
acceleration.

A. Packet Length Considerations

One of the concerns about the compressed training approach
is the potential impact of the packet length on the perfor-
mance of the algorithm. The packet length plays a role in
establishing Assumption (A∗), and therefore, the equivalence
on the peak value of the equalizer output, i.e., ‖Õk,:‖∞, and
the non-sparseness measure of the corresponding row of the
overall equalized channel, i.e., ‖G̃k,:‖1. As we noted earlier
in Section III-B, the equivalence is achieved if the transmit
packets contain all vertex points of the form given by (10).
The probability of inclusion of these vertex points decreases
with decreasing packet length. Despite this valid concern, the
following theorem asserts a phase transition property for the
choice of packet lengths, which implies that perfect equalizers
can be obtained through Setting IIIa with overwhelming prob-
ability even for practical packet lengths significantly shorter
than that is required to satisfy Assumption (A∗).

Theorem II: Let the solution of Setting IIIc is unique
and Corollary I holds with probability almost one. Then, the
probability of the equivalence of Setting IIIa and Setting IIIc
is upper bounded by

4(1− Pχ(Γ, dNL
)) (14)

and lower bounded by

1−K2v
(

1− 1√
β

2X − 1

2X

)Γ

(15)

where dNL
= 2(K − τT ), χ = 1 − log2( mo−1

mo−dNL
) and υ =

−(dNL
− 1) log2(dNL

− 1)− log2(mo − 1) + dNL
log2(mo −

dNL
) + 1, mo ∈ (2dNL

,Γ) and,

Pχ(Γ, dNL
) =

1

2Γ−1

dNL
−1∑

j=0

(
Γ− 1

j

)
. (16)

Proof: Proof is in Appendix II.
These bounds explicitly show that there exists a phase

transition for packet length concerning the equivalence of
Setting IIIa and Setting IIIc. Defining q = mo/dNL

, we can
write (

1− 1√
β

2X − 1

2X

)
=

(
1− 1

2
√
β

q − 2

q − 1

)
υ ≈ dNL

log2(q − 1).

Therefore, based on (15), the phase transition value for the
packet length can be written approximately as

Γph ≈ −(υ + log2(K))

log2

(
1− 1√

β
2X−1

2X

)
≈ −(dNL

log2(q − 1) + log2(K))

log2(1− 1
2
√
β
q−2
q−1 )

≈ dNL
log2(q − 1) + log2(K)

1
2
√
β log(2)

q−2
q−1

(17)

= 2
√
β(dNL log(q − 1) + log(K))

q − 1

q − 2

where (17) is due to the approximation log2(1 − x) ≈ (1 −
x)/ log(2). For the specific choice of q = 2.6, we can write

Γph ≈ 5
√
β((K − τT ) + log(K)). (18)

As a result, the minimum packet length is linearly propor-
tional to the sum of the gap between the number of users and
the training length and the logarithm of the number of user
terminals, as well as the square root of the QAM-constellation
size. We should note that this prescription is based on the lower
bound, and therefore, it provides an overestimate as illustrated
by the examples in Section V.

We should note that Assumption A∗ requires that the
packet length is at least 22K . However, Theorem II provides
a significant relief on this requirement, and shows that the
compressed training framework can work with realistic packet
lengths. Main enabler of this practical result is the fact that
the probability of intersection of the random subspace with
the positive orthant decays exponentially with packet length,
as used in the proof of Theorem II.

B. Noise Considerations

So far, we assumed that there is no noise in the observations.
Of course, this assumption is too optimistic for real applica-
tions. In this subsection, we take noise into consideration and
develop corresponding compressed training algorithms.

We start with the following observations:

• In case Y T contains noise, the goal of reconstructing
training in the form WY T = ST as in the con-
straint part of the optimization Setting IIIa is very ambi-
tious/unrealistic.

• The presence of noise in Y implies that the equalizer
output O is also noisy. The noise effects should be
taken into consideration in determining the absolute peak
estimates corresponding to the noiseless version of the
equalizer outputs.

We first address the first issue, the noise effect on the con-
straint, and then extend our treatment to cover the second issue,
the noise effect on the cost function.

1) The Noise in the Constraint: In the presence of noise,
instead of trying to perfectly reconstruct the training symbols,
we can aim to keep the equalizer output at the close vicinity
of them. Assuming that the noise samples are Gaussian,
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natural distance metric would be the Frobenius norm. We can,
therefore, reflect this modification on Setting IIIa as follows:

Setting IVa:

minimize
W

1√
β − 1

K∑
k=1

‖Õk,:‖∞

subject to
‖WY T − ST ‖F ≤ δ

WY = O,

where δ is the algorithm parameter reflecting the strength of
the noise. As an alternative, this setting can be replaced with
the “Lagrangian” form where the constraint is appended to the
cost function:

Setting IVb:

minimize
W

∑K
k=1 ‖Õk,:‖∞ + λ‖WY T − ST ‖F

subject to WY = O

where we dropped 1√
β−1

factor for notational convenience,
as the regularization parameter λ can be used to adjust the
relative weights of the components.

Iterative Algorithm: We can obtain the solution of Setting
IVb through an iterative algorithm. We note that due to the
first term in the cost function, this is a non-smooth convex
optimization. There are various alternative approaches that can
be followed, especially if we take recent advances in the field
of low complexity and efficient algorithm development for
non-smooth convex optimization problems into consideration
[19]. However, we conceive subgradient iterations as a simple
solution.

We first start with partitioning the cost function in Setting
IVb into two components:

J1(W ) =

K∑
k=1

‖Õk,:‖∞, J2(W ) = λ‖WY H − ST ‖F .

Since J2(W ) is a differentiable function, we can write the
corresponding gradient as

∇W J2(W ) =
λY H(WY T − ST )

‖WY T − ST ‖F
.

We can decompose the non-smooth function J1(W ) as the
sum of K non-smooth functions, each corresponding to a
different user,

J1(W ) =

K∑
k=1

J1,k(W )

where J1,k(W ) = ‖Õk,:‖∞ for k = 1, . . . ,K. The subdiffer-
ential set corresponding to J1,k can be written as

∂J1,k(W ) = Co{ekΩ−1(sign(õk(lk))ỹ(lk)T ), lk ∈ Lk},
where Ω−1(•) is the inverse of the isomorphic mapping and

Lk = {l : |õk(l)| = ‖Õk,:‖∞}
is the set of indices at which the absolute peak is achieved for
the kth equalizer output. As a result, the subgradient based
iterative algorithm can be written as

W (t+1) = W (t) + µ(t)U (t),

where µ(t) is the step size at the tth iteration, and the update
matrix is given by

U (t) =

K∑
k=1

ekξ
(t)
k

T
diag(sign(Õ

(t)
k,:))

[
Y H

jY H

]
+
λY H(W (t)Y T − ST )

‖W (t)Y T − ST ‖F
. (19)

where we define ξ(t)
k =

ζ(t)

k

‖ζ(t)

k ‖1
and

ζ
(t)
k l,1

=

{
1 |Õ(t)

k,l| ≥ α‖Õ
(t)
k,:‖∞

0 otherwise.

Here, ξ
k,l

(t)
k

are the convex combination coefficients which are
non-negative and satisfy

∑
l
(t)
k ∈L

(t)
k

ξ
k,l

(t)
k

= 1.

2) Noise in the Cost Function: In the previous discussion,
we just paid attention to the noise in the constraint part,
and ignored the impact of noise in the objective part. In this
section, we will improve the algorithm to mitigate the impact
caused by the presence of noise at the equalizer output.

We start with writing the expression for the separator output
in a form to reflect the noise component

O = WY = W (HS + V ) = WHS︸ ︷︷ ︸
Q

+WV︸ ︷︷ ︸
∆

.

The goal of the cost function is to enforce sparsification of
G = WH , and the non-sparsity of G is reflected in the
absolute peak values for the rows of Q. Due to the impact of
noise term ∆, a non-absolute-peak of Q̃k,: can appear as a
peak location in Õk,: and vice versa where k corresponds any
column.

Our actual objective is to determine the absolute peak
locations in Q̃k,:, rather than the non-absolute-peak values,
as that is what matters in the algorithm iterations in (19).
Since the noise is random, we can only make a probabilistic
inference about whether a given location is actually an absolute
peak or not. Therefore, the following discussion introduces an
approach to estimate the true subgradient corresponding to the
cost function component based on the available packet data.

Let {qk(n)|n ∈ {1, · · · , 2Γ}} represent the noiseless equal-
izer output sequence for the kth user, which corresponds to
Q̃k,:. We can write

õk(n) = qk(n) + ∆k(n), (20)

where ∆k(n) = ∆̃k,n is the noise component. Our goal is to
find the probability mass function, {pk(n);n ∈ {1, · · · , 2Γ}}
where pk(n) represents the probability of index n is an
absolute peak location for the kth user’s noiseless output
sequence {qk}. More explicitly, we can write

pk(n) = P(|qk(n)| = ‖Q̃k,:‖∞).

If the index m is known to be the peak location for the
sequence |qk|, then the corresponding subgradient would be

ekΩ−1(sign(õk(m))ỹ(m)T ),

where we assumed that sign(qk(n)) = sign(õk(m)) for the
potential absolute peak locations. Since each index l has an
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assigned probability of pk(l), we can calculate the expected
subgradient as the probability weighted sum of the correspond-
ing subgradients:

2Γ∑
l=1

pk(l)ekΩ−1(sign(õk(l))ỹ(l)T ).

This very much resembles the form of the subgradient based
term in (19) for the noiseless case. However, in that case the
summation is over the set of indices Lk for which the same
peak value is achieved. In the noisy scenario, this summation
is extended to the whole index set {1, · · · , 2Γ}. The convex
combination coefficients for contributions of different index
sets are replaced by pk(n). So, each index point contributes
to the expected subgradient proportional to its probability of
containing the absolute peak. As a result, for the noisy case,
we can write the algorithm update term in iteration t as,

U (t) =

K∑
k=1

2Γ∑
lk=1

p
(t)
k (lk)ekΩ−1(sign(õ

(t)
k (lk))ỹ(lk)T )

+
λY H(W (t)Y T − ST )

‖W (t)Y T − ST ‖F
. (21)

The main question to ask at this point is how to obtain the
pmf p(t)

k (n) for each iteration and for all user sequences, using
the observations {õ(t)

k (n), n ∈ I} satisfying (20) and assumed
noise variance σ∆k

. Naturally, the ordering of the probabilities
p

(t)
k (n) should follow the ordering of the absolute noisy output

values {õ(t)
k (n)}. However, it turns out the exact calculation of

the pmf pk is really a cumbersome process. Especially for the
Gaussian noise assumption, it is almost impossible to obtain
a closed form formula for these probabilities. In order to ease
this task, we introduce the following low-complexity approach
to come up with a reasonable pk: at iteration t, we determine
the indices for which the absolute output values are at the
vicinity of the absolute output peak value, i.e.,

I(t)
k = {l : |õ(t)

k (l)| ≥ α‖Õ(t)

k,:‖∞, l ∈ {1, · · · , 2Γ}},
where α ≤ 1 is an algorithm parameter to be adjusted. Then
the proposed pmf can be written as

p
(t)
k (n) =

{
1

|I(t)k |
n ∈ I(t)

k ,

0 otherwise.

This pmf assigns uniform probability to all indices determined
by I(t)

k . The update rule based on this pmf can be written as

U (t) =

K∑
k=1

∑
lk∈I(t)k

1

|I(t)
k |
ekΩ−1(sign(õ

(t)
k (lk))ỹ(lk)T )

+
λY H(W (t)Y T − ST )

‖W (t)Y T − ST ‖F
. (22)

We’ll refer to the corresponding algorithm as the MIMO
Compressed Training Algorithm with acronym MIMO-CoTA.

Investigating the convergence properties of the proposed al-
gorithm is required to understand its weaknesses and strengths.
In order to illustrate the convergence behaviour of the algo-
rithm, we consider the following numerical experiment: For

a setting with M = 500 base station antennas and K = 20
users (with H is selected as zero mean i.i.d. Gaussian entries),
we compare the the ideal vertex point ν(t)

k ∈ V (Hβ) with
its estimate obtained by projecting kth row of subgradient of
Υ(U)(t) in (22) which is equal to

ψ̂
(t)

k

T

=
∑

lk∈I(t)k

1

|I(t)
k |

sign(õ
(t)
k (lk))ỹ(lk)T .

through

ν̂
(t)
k = H†ψ̂

(t)

k ,

where H† is the Moore-Penrose pseudo-inverse of the channel
matrix Υ(H).

The comparison is performed through computing the angle
between the vertex point and its estimate as

θ = acos

 〈ν(t)
k , ν̂

(t)
k 〉Π(t)

k

‖ν(t)
k ‖Π(t)

k

‖ν̂(t)
k ‖Π(t)

k

 ,

where 〈a, b〉Π(t)

k

, bTΠ
(t)
k a is a weighted inner product and

‖a‖Π(t)

k

,
√
〈a,a〉Π(t)

k

is the corresponding induced norm.

Here the weighting matrix Π(t) is selected as the diagonal
matrix whose ith diagonal entry is chosen to be equal to
|Υ(G)

(t)
k,i|2. The reason for this weighting can be explained

as follows: the impact of the source vector component in
determining peak value is proportional to the magnitude of
the corresponding element of Υ(G)

(t)
k,:. Therefore, in com-

paring the vertex ν(t)
k and its estimate ν̂(t)

k , we use an inner
product which weighs components proportional to its impact
on determining the output value. Fig. 3 shows the angle
between the source vertex and its sample based estimate as
a function of iterations, for different Signal-to-Noise-Power-
Ratio (SNR) values and packet lengths (Γ). These plots were
obtained for 8000 independent channel, transmit data and noise
realizations, and the solid line represents the mean behaviour
while the shaded area corresponds to 95 percent confidence
region. It can be confirmed by these results that the vertex
based true subgradient and its estimate forms an acute angle
whose value decreases significantly towards zero as iterations
increase. Furthermore, increasing SNR and/or packet size
significantly decreases the variance.

As illustrated by the numerical experiments in Section
V, the algorithm based on this update has very reasonable
performance.

3) A Complete Noise Consideration: The algorithms given
in the previous section assume a noise free output in the
optimization setting, and then cast the impact of noise by
modifying the algorithm updates based on the estimation of the
subgradient in the noise-free output case. In this subsection,
the optimization formulation is modified to address the impact
of noise in the equalizer outputs. For this purpose, we convert
the constraint on the equality of the noise free outputs O
and WY to an inequality. In this respect, assuming we have
a good estimate of noise variance σ2, we can propose the
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Fig. 3: The effective angle between the vertex v(t)
k and its estimate obtained by reflecting the corresponding subgradient

component into source domain, for different SNR’s and packet lengths (Γ). Mean behavior is the solid line, and 95 confidence
region is the shaded area.

following setting:

Setting V:

minimize
W ,O

K∑
k=1

‖Õk,:‖2∞
(
√
β − 1)2

+ σ2‖W k,:‖22

s.t. ‖W k,:Y T − STk,:
‖2 ≤ σ

√
LT ‖W k,:‖2

‖W k,:Y −Ok,:‖2 ≤ σ
√
LD‖W k,:‖2

for ∀k ∈ {1, · · · ,K},

and the Lagrangian of the Setting V can be written as

Setting VI:

minimize
W ,O

K∑
k=1

[
‖Õk,:‖2∞

(
√
β − 1)2

+ σ2‖W k,:‖22

+λ1

(
‖W k,:Y T − STk,:

‖2 − σ
√
LT ‖W k,:‖2

)
+λ2

(
‖W k,:Y −Ok,:‖2 − σ

√
LD‖W k,:‖2

)]
.

Following the same procedure as in Section IV-B, we can
also propose an iterative algorithm to solve this optimization
problem. However, this time we have two parameters to
update. Exploiting the convexity of the problem, we can force
the algorithm to iterate over one variable and updating the
other one with some period. Hence, the update based on W
can be written as

W (t+1)=(λ1Y TY
H
T +λ2Y Y H+ λ̃I)−1(λ1STY

H
T +λ2O

(t)Y H),
(23)

and O is iteratively updated as Ot+1 = Ot+µ(t)U (t) where

U (t) =‖Õk,:‖∞
K∑
k=1

∑
lk∈I(t)k

1

|I(t)
k |
ekΩ−1(sign(õk(lk))eTlk)

+

K∑
k=1

λ2ek(W
(t)
k,:Y − Sk,:)Y H

‖W (t)
k,:Y − Sk,:‖2

. (24)

Note here, λ̃ is the coefficient that includes both Lagrangian
coefficients of the constraints and the objective function related
to the parameter W k,:, which can be written as

λ̃ = 2σ2 − λ1σ
√
LT

2‖W (t)‖F
− λ2σ

√
LD

2‖W (t)‖F
. (25)

We refer to the corresponding algorithm as MIMO-CoTA-
2. We need to note that the objective of Setting V aims to
mimic the MMSE solution of the problem by considering
the noise both in the constraint and the cost function. For
that, it utilizes the knowledge of noise power. Moreover, the
number of unknown is also much higher than Setting IVa-b
which increases the number of iteration for the corresponding
iterative algorithm to converge. Therefore, we still exploit
Setting V as a sanity check algorithm to demonstrate that
even with no knowledge about the power of the noise, we
can still obtain satisfying results with the iterative algorithm
corresponding Setting IVa-b.
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Fig. 4: a) Probability of successful training for noiseless compressed training setting Setting IIIa is compared against: the
idealized case Setting IIIc, Adaptive Least Squares Approach and The Probability Bound in (13). b-c) The equivalence
probability of Setting IIIa and Setting IIIc for varying packet length.

C. Decision Directed Compressed Training Approach

The proposed approach makes use of the special bounded-
ness feature of PAM and QAM constellations. It is actually
desirable to exploit more detailed knowledge of these con-
stellations for better training. In fact, the decision directed
approaches try to exploit more detailed information about the
location of the constellation points. However, there are two
fundamental issues typically attributed to such approaches:
• The decision directed algorithms need reliable decisions

to start with so that they can converge to a useful
point. This is usually not a reasonable assumption in real
applications, therefore, another “acquisition” algorithm is
needed to open the initially closed eye.

• Another major difficulty is caused by the fact that deci-
sion directed approaches lead to non-convex objectives,
in general, that have the issues about slow or mis-
convergence.

In this section, we introduce an algorithm modification
to incorporate decision directed approach to the proposed
compressed training framework. The main idea is to extend
the training region used in the algorithms with the reliable
decisions. Therefore, we can consider this new approach as
an algorithm consisting of two main phases:

Ph.I: We employ the compressed training algorithm introduced
in the previous section for some initial period. After
the completion of this interval, we can perform reliable
decisions on some symbols,

Ph.II: We continue compressed training algorithm iterations
with continuously extending training region: at the be-
ginning of each iteration, the training region is appended
with the reliable decisions of the previous iteration.
Therefore, as the iterations progress, the training region
will expand to an extent to cover the whole packet.

D. Nesterov’s Acceleration Approach

The speed of convergence for the adaptive algorithms
presented in the previous sections are critical for real time
implementations. In order to increase the convergence speed
of the proposed algorithm, we can adapt Nesterov’s fast
acceleration approach [23]. This approach is actually proposed

for smooth and strongly convex functions and its interpreta-
tion/justification is still an area of research (see for example
[24]). Despite the fact that our setting is piecewise smooth,
adaptation of this scheme to our update term provides a
significant improvement over the standard subgradient search.

The basic modification in the algorithm can be described
as follows: let U (t) be the update term computed for the
standard form of the compressed training approach as outlined
in Section IV-C. We replace the algorithm iteration in the form

W (t+1) = W (t) + µ(t)U (t)

with a two step procedure by introducing an intermediate
variable X(t):

X(t+1) = W (t) − υ(t)U (t)

W (t+1) = X(t+1) + κ(t)(X(t+1) −X(t)),

where υ(t) and κ(t) are algorithm parameters. In our imple-
mentations, we fixed υ(t) = 0.0003√

log(t+1)
and κ(t) = t−1

t+2 .

V. NUMERICAL EXPERIMENTS

A. Noiseless Case Example

The purpose of the first numerical experiment is to illustrate
the phase transition phenomenon for the probability of perfect
equalization as a function of training length τT and packet
length Γ selections as predicted by the analytical results in
Section III-C.1 and Section IV-A. For this purpose, a multiuser
Massive MIMO setup with
• K = 40 users and M = 150 base station antennas,
• 4-QAM constellation,
• Channel matrix with i.i.d. Gaussian coefficients,

is assumed. In these experiments,
• We use Setting IIIc, which is in terms of overall mapping
G to evaluate the empirical probability of success as a
function of selected training length τT . Note that this
corresponds to the case that assumption (A∗) is perfectly
valid, and therefore, forms a benchmark to evaluate the
effect of finite packet length. We refer to the solution
of the optimization setting (G∗) as successful if ‖G∗ −
IK‖F ≤ 10−5(similar to [20]).
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• We also evaluate the empirical probability of success for
Setting IIIa, which is in terms of equalizer parametersW ,
where the packet length is selected as Γ = 800 symbols.

Fig. 4a shows the aforementioned empirical success prob-
abilities relative to the probability bound in (13) and success
probability of the conventional adaptive least squares (LS)
based equalization approach. The least squares based direct
adaptation approach clearly requires at least K = 40 samples.
For this experiment scenario, the compressed training length
lower bound log2(K)+0.5 is equal to 5.82. In fact, we can see
a phase transition for three of the curves related to compressed
sensing starting with this training length value. The probability
lower bound appears to be very accurate in the sense that it
closely follows the success probability for Setting IIIc. The
performance of Setting IIIa is slightly degraded relative to
Setting IIIc, which is caused by the fact that a finite-length
package of size Γ = 800 is being used in Setting IIIa, and it
is likely that assumption (A∗) is violated in some realizations.

Moreover, in Fig. 4b, we plot the probability bounds for
the equivalence of Setting IIIa and Setting IIIc along with the
empirical probability of success for varying packet lengths.
For the experiments, we use K = 40 and τT = 20, which
corresponds to 20 discrepancy between the number of user
terminals and the number of training symbols. Based on
these plots, we can claim that the derived bounds capture the
evidenced phase transitions with some reasonable accuracy.
The same experiments are repeated for K = 40 and τT = 30
in Fig. 4c, which corresponds to half the discrepancy compared
to the previous case, and therefore, the phase transition also
occurs earlier as predicted by the bound derivations.

1

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Training Length (τT )
(a)

Su
cc

es
s

Pr
ob

ab
ili

ty

Setting IIIc
Setting IIIa (Γ = 1800)
Prob. Lower Bound (13)
Adaptive Eq. (LS)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Training Length (τT )
(b)

Su
cc

es
s

Pr
ob

ab
ili

ty

Setting IIIc
Setting IIIa (Γ = 3000)
Prob. Lower Bound (13)
Adaptive Eq. (LS)

Fig. 5: Probability of successful training for noiseless com-
pressed training setting Setting IIIa is compared against: the
idealized case Setting IIIc, Adaptive Least Squares Approach
and The Probability Bound in (13) for a) 64-QAM constella-
tion, b) 256-QAM constellation.

In order to illustrate the success probability bounds for
higher order constellations, we performed multiple experi-
ments for 64-QAM and 256-QAM by varying the training
size. We choose M = 100, K = 20, and Γ = 1800 and
Γ = 3000 for 64-QAM and 256-QAM respectively. The results
provided in Fig. 5 illustrates that, similar to Fig. 4a, there exists
a phase transition in perfect equalization probability around
log 2(K) + 0.5 ≈ 5. This confirms the expectations for the
higher constellation case.

More critical issue is the impact of the constellation size on
the required packet length. For this purpose, we devised an

1

0 500 1,000 1,500 2,000 2,500
10−1

100

Packet Length (Γ)
(a)

Su
cc

es
s

Pr
ob

ab
ili

ty

K = 40, τT = 30 (Setting IIIa)
Prob. Lower Bound (37)
Prob. Upper Bound (14)

0 500 1,000 1,500 2,000 2,500
10−1

100

Packet Length (Γ)
(b)

Su
cc

es
s

Pr
ob

ab
ili

ty

K = 40, τT = 30 (Setting IIIa)
Prob. Lower Bound (37)
Prob. Upper Bound (14)

Fig. 6: The equivalence probability of Setting IIIa and Setting
IIIc for varying packet length while the constellation schemes
used in the simulations are a) 64-QAM, b) 256-QAM.

experiment for both 64-QAM and 256-QAM constellations,
with parameters M = 100, K = 40 and τT = 30. Fig. 6
provides empirical results as well as bounds for the perfect
equalization probability as a function of packet length Γ
for 64-QAM and 256-QAM constellations. As we expected,
as the higher constellation schemes are considered, the gap
between the lower and upper bounds also increases. Based on
the theoretical prediction in (18), the required packet length
is expected to be proportional to the square root of the
constellation size. In fact, when the constellation size changes
from 64 to 256, which is a 4 fold increase, the required packet
length only doubles confirming the theoretical predictions.
This is indeed a significant relief considering the exponential
increase requirement implied by the worst case condition of
including all corner points.

B. Noisy Case Example I

In this example, we consider a Massive MIMO setting with
K = 40 users. Number of antennas is increased to M = 1000.
The complex 4-QAM constellation is used (for both data and
training sequences). To see the effect of the packet length on
the performance of the proposed algorithm, we construct an
experiment with the uplink transmission packet lengths Γ =
100 and Γ = 300. The channel matrix H is generated through
the realizations of i.i.d. complex Gaussian random variables.
We also consider a receiver noise with power corresponding
to varying SNR levels.

In this experiment, we calculate the empirical (uncoded)
average Symbol Error Rate (SER) as a function of receiver
SNR (per receiver branch) for some selected training levels
and SNR is defined as

SNR = K · (σ2
S/σ

2
N )

where σ2
S is the average source power and σ2

N is the power
of additive noise. We compare the proposed algorithm’s per-
formance to the semi-blind equalization algorithm based on
the combination of Constant-Modulus-Algorithm and Decision
Directed scheme (CMA-LS) [18], semi-blind channel estima-
tion algorithm in [17] followed by the Maximum Likelihood
(ML) decoder, and adaptive least squares equalization. All
these algorithms use τT = 50 training symbols. For the
CMA-LS scheme, we considered packet lengths Γ = 100 and
Γ = 300. For the semi-blind channel estimation based ML
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Fig. 7: Symbol Error Rate vs. SNR results for the Noisy
Massive MIMO Experiment with 1000 antennas for the al-
gorithms MIMO CoTA ((a),(b)) and MIMO CoTA-2 ((c),(d)),
and for some selected training lengths indicated with different
curves. The packet lengths considered are Γ = 100 ((a),(c))
and Γ = 300 ((b),(d)).

approach, we only considered Γ = 300, as the Γ = 100
case lead to poor channel estimates causing long running
times for the sphere decoder. As benchmarks, we include
SER performances for both Minimum Mean Square Error
(MMSE) equalizer and ML sphere decoder assuming perfect
Channel State Information (CSI). The algorithm we implement
is the decision directed compressed training approach using
Nesterov’s accelerated iterations. As the algorithm parameters,
we used: the regularization constant λ = 0.15 if the number of
training symbols is less than number of users, and λ = 0.05
if training symbol length exceeds the number of users, the
vicinity threshold of a vector to a vertex point α is set to
0.85, the accelerated method parameters υ(t) = 3× 10−4 and
κ(t) = t−1

t+2 . These parameters are fixed for all experiments
given in this section. Here, we need to note that the parameter
selection for the measurements is done empirically. We first
select one SNR level, a packet length and a training length
randomly. The only constraint on the parameter selection is to
choose a training length corresponding to an underdetermined
case. Our goal is to tune hyper-parameters in such a way that
the performance gap between the proposed setup and genie
aided MMSE is as small as possible. We need to remind
that the hyper-parameters, we empirically obtain, might not
lead to the optimum performance results of the proposed
iterative algorithms. Despite the suboptimal choice of the
hyper-parameters, the proposed approach provides a significant
performance gain as illustrated by the examples in this section.
Furthermore, after obtaining these parameters, we use the same
hyper-parameter values for varying packet length, training
length and SNR values. We only update our parameters if the
considered modulation scheme or optimization setting change.

We follow such a direction to show the power of the proposed
algorithm in terms of parameter selection. Although our results
do not reflect the best performance of our algorithms for a
given setup, it outperforms the existing algorithms.

For the experiments of MIMO CoTA-2, we used: the
regularization constants λ1 = 2.5, λ2 = 15, the vicinity
threshold α is set to 0.95, the accelerated method parameter
υ(t) = 1 and κ(t) = t−1

t+2 .
The results of these experiments are shown in Fig. 7. We

first note that MMSE equalizer with perfect CSI has very close
performance to ML with perfect CSI, as expected for high
number of base station antennas. The proposed algorithms
obtain a relatively close performance to the benchmark linear
(MMSE) equalizer’s performance for as low as τT = 20
training symbols as the packet length increases. The adaptive
least squares approach’s performance is far from this even for
the training length of 50. Both CMA-LS [18] and semi-blind
channel estimate based ML [17] approaches provide improve-
ments over the adaptive least squares, however, even with
τT = 50 training samples, they underperform the proposed
algorithm with τT = 30 and τT = 20 training symbols for the
communication scenarios with packet lengths Γ = 100 (Fig.
7.a,c) and Γ = 300 (Fig. 7.b,d) respectively. We also provide
the performances when the number of embedded training
symbols into each transmission packet is 50. As it is expected,
increasing the number of training symbols enhances the per-
formance of the proposed algorithm. Moreover, although the
performance of MIMO CoTA-2 is better than MIMO CoTA
when LD = 100 and LT = 30 due to consideration of noise
on the magnitude of the equalizer, the performances of the
proposed algorithms are similar. Therefore, utilizing MIMO
CoTA can be advantageous in terms of complexity when the
packet length or training length is enough.
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Fig. 8: a) Equalizer output SINR as a function of Training
Length (τT ) for the Noisy Massive MIMO with 1000 antennas.
SNR per receiver branch is fixed as 5dB and the packet length
is Γ = 300 b) The impact of the packet length on the MIMO
CoTA algorithm’s performance for the Noisy Massive MIMO
with 1000 antennas. SNR per receiver branch is fixed as 2dB
for two different training lengths.

We also look at Signal-to-Interference plus Noise Ratios
(SINRs) at the outputs of the equalizer as a function of training
length τT where SINR is defined as

‖diag (W ∗H) ‖22
‖idiag (diag (W ∗H))−W ∗H‖2F + ‖W ∗‖2F · σ2

N

where W ∗ is the optimal equalizer coefficient matrix of any
algorithms. Fig. 8a displays the results for a fixed SNR level
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of 5dB (per antenna branch). For this experiment, we kept λ
fixed and equal to 0.1. According to this figure, the proposed
algorithm captures SINR performance very close to the MMSE
equalizer for a training length of τT = 15, whereas the
adaptive LS equalizer and CMA-LS algorithms still fall short
of this benchmark performance even for τT = 50.
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Fig. 9: a) The mean square error convergence of a user’s
equalizer output as a function of iterations (black solid line)
with 95% confidence region (shaded area) for the Noisy
Massive MIMO Experiment with 1000 antennas. SNR per
receiver branch is fixed as 5dB and τT = 20. Ph.II (Decision
Directed Phase) starts at iteration 30. b) Relative SNR to
achieve 10−4 SER level w.r.t. MMSE.

It is interesting to investigate the impact of the packet length
Γ on the performance of the algorithm. Fig. 8b displays the
SINR performance for an equalizer output as a function of
the packet length Γ for three different training lengths, namely
τT = 12, τT = 18, and τT = 50, and for the receiver branch
SNR=2dB. We fixed λ = 0.1 for all packet length scenarios.
Based on this figure, we can make the following observations:
as the training length decreases the algorithm demands larger
packet lengths to achieve the same performance level.

Finally, Fig. 9a illustrates the convergence behavior of the
MIMO CoTA. In this figure, we plot the mean square error
which is defined as

MSE[dB] = 10 log10

(
‖I −W ∗H‖2F + ‖W ∗‖2F · σ2

N

)
and its 95% confidence interval for equalizer outputs as a
function of algorithm iterations. The decision directed phase
(Ph.II) starts after iteration 30. The figure illustrates that the
algorithm iterations are typically smooth and the confidence
interval gets narrower as more iterations are progressed which
indicates the convergence reliability of the proposed algorithm.

In Fig. 9b, we exploit the same experimental parameters
as in Fig. 7. We plot the SNR gap between MIMO CoTA
and MMSE to obtain 10−4 SER level for different packet
lengths and numbers of training symbols. We observe that as
the number of training symbol and packet length increases,
the gap between MIMO CoTA and MMSE decreases. For
example, when τT = 200 and Γ = 2400, the gap decreases
up to 0.17dB which indicates the proposed algorithm takes
advantage of both training and information symbols.

C. Noisy Case Example II

In order to investigate how the proposed method works for
varying constellation sizes and varying number of base station
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Fig. 10: Symbol Error Rate vs. SNR results for the Noisy
Massive MIMO Experiment for the algorithms MIMO CoTA
when a) # of BS antennas is 200, K = 40, 4-QAM, b) # of
BS antennas is 1000, K = 40, 16-QAM, c) # of BS antennas
is 1000, K = 40, 64-QAM, d) # of BS antennas is 1000,
K = 40, 256-QAM for some selected training and packet
lengths indicated with different curves.

(BS) antennas in the noisy scenario, we performed several
experiments whose results are provided in Fig. 10. The SER
vs. SNR behaviour in Fig. 10a demonstrates the performance
of the algorithm when the number of BS antennas is set to
200. We observe that as the number of BS antennas decreases,
required SNR to achieve the same performance level increases
as expected due to the decrease in the array gain. The impact of
increasing constellation size is demonstrated by the simulation
results for 16-QAM, 64-QAM and 256-QAM which are given
in Fig. 10b, Fig. 10c and Fig. 10d, respectively. For these
experiments, the number of BS antennas is set to 1000. As
the constellation size increases, the required SNR to achieve
the same SER performance level also increases, which is as
expected due to the reduced minimum distance between the
constellation points. These simulations also demonstrate that
for reasonable packet lengths, the performance of the proposed
algorithm is very close to the MMSE benchmark.

VI. CONCLUSION

We introduce a new adaptive framework for training linear
transceivers in the base stations of TDD Massive MIMO sys-
tems. Through this new Compressed Training MIMO frame-
work, we can reduce the required training length from the
number of users K to a value around log2(K). This provides
an important gain in terms of increasing system capacity
and/or throughput. Furthermore, the proposed approach can
be utilized to counteract against the pilot contamination prob-
lem, or to enable larger capacity cell free Massive MIMO
systems [25] where the logarithmic gain would be even more
emphasized.
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We also show that the proposed semi-blind scheme works
for practically reasonable packet lengths, which is proportional
to number of users and square root of the constellation
size. Together with reduced training size, this would enable
communication in high mobility where the coherence times
and allowed packet lengths are relatively small.

The new framework is built upon some convex optimization
settings, where the main idea is to use infinity norm of the
equalizer outputs to enforce sparsity on the transfer function of
the overall link. The convexity is an attractive feature enabling
efficient and reliable algorithms, as well as their analysis.
In fact, we were able to provide analysis results for phase
transitions and the related prescriptions corresponding to both
training length and packet length choices, utilizing convexity
and random matrix theory. Furthermore, the link established
with the compressed sensing, or sparsity driven research is
also very valuable. Recently, there has been a great surge
of activity for developing very low complexity algorithms
for high dimensional data with the emphasis on non-smooth
optimization settings. These results can be utilized to address
the problem of designing low complexity adaptive transceivers
for large-scale MIMO receivers.

We conclude by noting that the proposed scheme can also be
used for the point-to-point MIMO equalizer adaptation, where
the training size can be reduced to a value close the logarithm
of the number of transmit antennas.

APPENDIX I
PROOF OF COROLLARY I

We will first decompose Setting IIIc as the collection of
K optimizations in Setting Ic for individual rows. We look at
the success probability of Setting Ic as a function of training
length, and then generalize it to the success probability of
Setting IIIc. Clearly, the standard basis vector ek is definitely
a solution of Setting Ic. However, we would like it to be the
unique solution. For this purpose, we will make use of the
following lemma:

Lemma I: If no row of ST other than ST k,: is chosen
from the set S = {ejθST k,:|θ ∈ A} where A is the set
{0, π2 , π, 3π

2 } for β-QAM, then ek is the unique solution of
Setting Ic. Furthermore, when τT > log4(K − 1) + 1, this
condition holds with probability at least

1− (K − 1)/(4τT−1).

Proof: We adapt the result of Corollary 4.2 in [10].
Therefore, Lemma I outlines the success probability of

Setting Ic for a given row of G. The success probability of
Setting IIIc is equal to the probability of the simultaneous
success of settings corresponding to all K rows of G. This is
equivalent to the condition that no row of ST should be equal
to any other row or its rotated versions with the angle θ ∈ A.
This implies that if we pick any distinct two rows of ST , their
inner products should satisfy

|ST k,:STHl,:| 6= ‖ST k,:‖2‖ST l,:‖2
for k 6= l, as they are not aligned in the same or its rotated
directions. We note that as the ST is constructed from the

corners of the constellation, we have ‖ST k,:‖2 =M√τT for
all k = 1, . . .K where M is (

√
β − 1)

√
2 for β-QAM. So,

the above condition can be rewritten as

|ST k,:STHl,:| 6=M2τT .

Therefore, for the probability of simultaneous success of K
Setting Ic optimizations, we can write

P

(
K−1⋂
k=1

K⋂
l=k+1

{|ST k,:STHl,:| 6=M2τT }
)

(26)

= 1− P

(
K−1⋃
k=1

K⋃
l=k+1

{|ST k,:STHl,:| =M2τT }
)

(a)

≥ 1−
K−1∑
k=1

K∑
l=k+1

P
(
{|ST k,:STHl,:| =M2τT }

)
= 1− K2 −K

2

1

4τT−1
(27)

= 1− K(K − 1)

2 · 4τT−1
, (28)

where,
• (a) is obtained by applying union bound,
• K2−K

2 in (27) is the number of distinct (k, l) pairs in the
double summation in the previous step,

• The probability term in the argument of double summa-
tion can be written as

P
(
{|ST k,:STHl,:| =M2τT }

)
=

∑
θ∈A

P
(
{ST k,:STHl,: = ejθM2τT }

)
=

∑
θ∈A

1

4τT
=

1

4τT−1
.

For the bound obtained in (28) to produce meaningful,
positive, result, we require that

τT > log4(K(K − 1)) + 0.5.� (29)

APPENDIX II
PROOF OF THEOREM II

In this appendix, we provide the proof for Theorem 1, which
is based on the geometric problem of the intersection of a
random subspace with the non-negative orthant. We first start
by rewriting Setting IIb as

Setting IIc: minimize
˜Gk,:

J(G̃k,:) =
1√
β − 1

‖G̃k,:S̃‖∞

s.t. G̃k,:S̃T = s̃TT .

where sTT = ST k,: and Gk,: = W k,:H . The affine constraint
corresponds to the feasible set Fk = {eTk +ηT |η ∈ NL(S̃T )}.
Regarding Setting IIc, we make the following observations:

i. eTk ∈ Fk and J(eTk ) = 1 is an upper bound on the
optimal value,

ii. The training signals sT constructed from the corner
points of the constellation, and the training symbols in
s̃ are the subset of elements of G̃k,:S̃.
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As a result, the optimal value for Setting IIc is equal to 1, and
eTk is an optimal solution. We are interested in bounding the
probability that the set of optimal solutions Ok is equal to the
singletone set {eTk }.

Observe that the entries in S̃ are not independent of each
other due to isomorphic operation in (11). Therefore, we
column-wise partition S̃ into two matrices, S(A) = S̃:,1:Γ

and S(B) = S̃:,Γ+1:2Γ, such that all the entries within each
partition are independent. Moreover, since the cost function
value is determined by the inner products of the constraint
set vectors with the columns of S̃, we further column-wise
partition S(i) according to whether its kth row contains the
peak magnitude source value ∓(

√
β − 1) where i ∈ {A,B}.

Therefore, we define the index sets

Ii1 = {j | S(i)
k,j = 1−

√
β},

Ii2 = {j | S(i)
k,j =

√
β − 1},

Ii3 = {j | |S(i)
k,j | 6=

√
β − 1},

which leads to the partitioning

S̃ = [S
(A)
:,IA1

S
(A)
:,IA2

S
(A)
:,IA3

S
(B)
:,IB1

S
(B)
:,IB2

S
(B)
:,IB3

]P

where P is a permutation matrix. It is clear that for an optimal
solution G̃

(o)

k,: ∈ Ok, ‖G̃(o)

k,: S̃‖∞ =
√
β − 1, and therefore,

‖G̃(o)

k,:S
(A)
:,IAj
‖∞√

β − 1
≤ 1, and

‖G̃(o)

k,:S
(B)
:,IBj
‖∞√

β − 1
≤ 1, (30)

for j ∈ {1, 2, 3}. Substituting G̃
(o)

k,: = eTk + η(o)T in (30), we
obtain

‖η(o)TS
(A)
:,IA1

− (
√
β − 1)1T ‖∞√

β − 1
≤ 1. (31)

Note that SA1 = {ηTS(A)
:,IA1
|η ∈ NL(S̃T )} defines a random

subspace with dimension dA1 = min(mA1, dNL
) where mA1

is the cardinality of IA1 and dNL
= 2(K − τT ), which is

the dimension of NL(S̃T ). If this subspace intersects the non-
negative orthant, RmA1

+ , only at the origin, only choice for
η(o) satisfying (31) is η(o) = 0, which corresponds to the
case of unique optimal solution Ok = {eTk }. Based on [26],
the probability of the complement condition is given by

P (SA1 ∩ RmA1
+ 6= {0}) =

1

2mA1−1

dA1−1∑
j=0

(
mA1 − 1

j

)
, Pχ(mA1, dA1).

Therefore, we can lower bound the probability of eTk being
the unique solution of Setting IIc as

P (Ok = {eTk }) ≥ 1−
Γ∑

mA1=1

P|IA1|(mA1)Pχ(mA1, dA1), (32)

where P|IA1|(mA1) is the probability that the cardinality of
IA1 is equal to mA1, and it is given by

P|IA1|(mA1) =

(
Γ

mA1

)
1√
β
mA1

(
1− 1√

β

)Γ−mA1

.

The lower bound in (32) can be replaced by a more closed-
form but less tight bound. For this purpose, we employ∑k
i=0

(
n
i

)
≤ 2nH( k

n ), where H( kn ) = − log2( kn ) kn −
log2(n−kn )n−kn is the Bernoulli entropy, to bound

Pχ(mA1, dA1) ≤ 2
−(mA1−1)(1−H(

dA1−1

mA1−1 ))
. (33)

Note that this bound is valid for mA1 − 1 ≥ 2(dA1 − 1)
which implies mA1 − 1 ≥ 2(dNL

− 1) and dA1 = dNL
.

This upper bound contains a nonlinear function of mA1 at the
exponent, whereas we would like to have a linear functional
so that the summation in (32) can be converted into the
form of binomial expansion. In order to achieve this goal, we
exploit the concavity of the exponent term. In fact, the second
derivative of the exponent function is equal to,

− 1

mA1 − dNL
+

1

mA1 − 1
, (34)

which is negative for mA1 > dNL
. Therefore, we can write

an affine upper bound for this function using a supporting
hyperplane at a point mo. This yields a new upper bound
with an affine exponent function of the form,

Pχ(mA1, dNL
) ≤ 2−χmA1+υ, (35)

where χ = 1−log2( mo−1
mo−dNL

) and υ = −(dNL
−1) log2(dNL

−
1) − log2(mo − 1) + dNL

log2(mo − dNL
) − 1, mo is the

support point, used in upper bounding the concave function
with the affine function, chosen in (2dNL

,Γ). This range for
mo guarantees that χ > 0, so that the lower bound in (35) is
strictly decreasing with mA1. For mA1 = 2dNL

−1, the bound
in (33) is equal to 1, therefore, the bound in (35) is greater
than or equal to 1 for this choice of mA1. As χ > 0, the
bound in (35) is a decreasing function, therefore, its value for
mA1 < 2dNL

− 1 is greater than 1. As a result, the bound in
(35) is a valid upper bound for P|IA1|(mA1) for all mA1 ≥ 0,
although it is useless in mA1 < 2dNL

− 1. However, its form
simplifies the lower bound in (32) to binomial sum form.

Plugging this new upper bound (35) in (32), we obtain

P (Ok = {eTk }) ≥ 1−
Γ∑

m=0

(
Γ

m

)2υ
(

1− 1√
β

)Γ−m

(
√
β2χ)m

= 1− 2υ
(

1− 1√
β

2χ − 1

2χ

)Γ

. (36)

The probability of unique solution simultaneously for all users
can be lower bounded by modifying this bound as

P (
K∩
k=1
Ok = {eTk })≥1−K

Γ∑
mA1=1

P|IA1|(mA1)Pχ(mA1, dA1)(37)

≥ 1−K2υ
(

1− 1√
β

2χ − 1

2χ

)Γ

. (38)

We can also obtain an upper bound for the probability of
unique optimal solution. We first note that we can define
the subspaces SA2, SB1 and SB2 similar to SA1 as the
image of NL(S̃T ) under the corresponding matrix partitions.
The relevant conditions for uniqueness is determined by the
intersection of Si1 with Rmi1

+ and Si2 with Rmi2
− only at the
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origin for i ∈ A,B, which all have the same probability bound
as (32). For the upper bound, we consider the 4 − QAM
constellation for which case, all transmit symbols come from
corner points of the constellation, and therefore, |IA3| =
|IB3| = 0. As a result, the desired upper-bound can be
obtained through the union bound

P (∩Kk=1Ok = {eTk }) ≤ P (O1 = {eT1 })
= P ((

⋃
i=A,B

Si1 ∩ Rmi1
+ = {0})∪ (

⋃
i=A,B

Si2 ∩ Rmi2
− = {0}))

≤
∑
i=A,B

P (Si1 ∩ Rmi1
+ = {0}) +

∑
i=A,B

P (Si2 ∩ Rmi2
− = {0})

≤ 4(1− Pχ(Γ, dNL
)), (39)

where the last inequality follows from the fact that
Pχ(mA1, dNL

) is minimized when the ambient dimension
mA1 is set to its maximum value Γ. �
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