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Learning to Detect
Neev Samuel, Member, IEEE, and Tzvi Diskin, Member, IEEE and Ami Wiesel, Member, IEEE

Abstract—In this paper we consider Multiple-Input-Multiple-
Output (MIMO) detection using deep neural networks. We
introduce two different deep architectures: a standard fully
connected multi-layer network, and a Detection Network (DetNet)
which is specifically designed for the task. The structure of
DetNet is obtained by unfolding the iterations of a projected
gradient descent algorithm into a network. We compare the
accuracy and runtime complexity of the purposed approaches
and achieve state-of-the-art performance while maintaining low
computational requirements. Furthermore, we manage to train a
single network to detect over an entire distribution of channels.
Finally, we consider detection with soft outputs and show that
the networks can easily be modified to produce soft decisions.

Index Terms—MIMO Detection, Deep Learning, Neural Net-
works.

I. INTRODUCTION

MULTIPLE input multiple output (MIMO) systems en-
able enhanced performance in communication systems,

by using many dimensions that account for time and frequency
resources, multiple users, multiple antennas and other re-
sources. While improving performance, these systems present
difficult computational challenges when it comes to detection
since the detection problem is NP-Complete, and there is
a growing need for sub-optimal solutions with polynomial
complexity.

Recent advances in the field of machine learning, specif-
ically the success of deep neural networks in solving many
problems in almost any field of engineering, suggest that a
data driven approach for detection using machine learning may
present a computationally efficient way to achieve near optimal
detection accuracy.

A. MIMO detection

MIMO detection is a classical problem in simple hypothesis
testing [1]. The maximum likelihood (ML) detector involves
an exhaustive search and is the optimal detector in the sense
of minimum joint probability of error for detecting all the
symbols simultaneously. Unfortunately, it has an exponential
runtime complexity which makes it impractical in large real
time systems.

In order and overcome the computational cost of the maxi-
mum likelihood decoder there is considerable interest in imple-
mentation of suboptimal detection algorithms which provide
a better and more flexible accuracy vs complexity tradeoff.
In the high accuracy regime, sphere decoding algorithms [2],
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[3], [4] were purposed, based on lattice search, and offering
better computational complexity with a rather low accuracy
performance degradation relatively to the full search. In the
other regime, the most common suboptimal detectors are the
linear receivers, i.e., the matched filter (MF), the decorrelator
or zero forcing (ZF) detector and the minimum mean squared
error (MMSE) detector. More advanced detectors are based on
decision feedback equalization (DFE), approximate message
passing (AMP) [5] and semidefinite relaxation (SDR) [6],
[7]. Currently, both AMP and SDR provide near optimal
accuracy under many practical scenarios. AMP is simple and
cheap to implement in practice, but is an iterative method that
may diverge in challenging settings. SDR is more robust and
has polynomial complexity, but is limited in the settings it
addresses and is much slower in practice.

B. Background on Machine Learning

Machine learning is the ability to solve statistical problems
using examples of inputs and their desired outputs. Unlike
classical hypothesis testing, it is typically used when the
underlying distributions are unknown and are characterized
via sample examples. It has a long history but was previously
limited to simple and small problems. Fast forwarding to
recent years, the field witnessed the deep revolution. The
“deep” adjective is associated with the use of complicated and
expressive classes of algorithms, also known as architectures.
These are typically neural networks with many non-linear
operations and layers. Deep architectures are more expressive
than shallow ones and can theoretically solve much harder and
larger problems [8], but were previously considered impossible
to optimize. With the advances in big data, optimization
algorithms and stronger computing resources, such networks
are currently state of the art in different problems from
speech processing [9], [10] and computer vision [11], [12]
to online gaming [13]. Typical solutions involve dozens and
even hundreds of layers which are slowly optimized off-line
over clusters of computers, to provide accurate and cheap
decision rules which can be applied in real-time. In particular,
one promising approach to designing deep architectures is by
unfolding an existing iterative algorithm [14]. Each iteration is
considered a layer and the algorithm is called a network. The
learning begins with the existing algorithm as an initial starting
point and uses optimization methods to improve the algorithm.
For example, this strategy has been shown successful in the
context of sparse reconstruction [15], [16]. Leading algorithms
as Iterative Shrinkage and Thresholding and a sparse version
of AMP have both been improved by unfolding their iterations
into a network and learning their optimal parameters.

Following this revolution, there is a growing body of
works on deep learning methods for communication systems.
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Exciting contributions in the context of error correcting codes
include [17]–[21]. In [22] a machine learning approach is
considered in order to decode over molecular communica-
tion systems where chemical signals are used for transfer
of information. In these systems an accurate model of the
channel is impossible to find. This approach of decoding
without CSI (channel state information) is further developed
in [23]. Machine learning for channel estimation is considered
in [24], [25]. End-to-end detection over continuous signals is
addressed in [26]. And in [27] deep neural networks are used
for the task of MIMO detection using an end-to-end approach
where learning is deployed both in the transmitter in order
to encode the transmitted signal and in the receiver where
unsupervised deep learning is deployed using an autoencoder.
Parts of our work on MIMO detection using deep learning
have already appeared in [28], see also [29]. Similar ideas
were discussed in [30] in the context of robust regression.

C. Main contributions

The main contribution of this paper is the introduction of
two deep learning networks for MIMO detection. We show
that, under a wide range of scenarios including different
channels models and various digital constellations, our net-
works achieve near optimal detection performance with low
computational complexity.

Another important result we show is their ability to easily
provide soft outputs as required by modern communication
systems. We show that for different constellations the soft out-
put of our networks achieve accuracy comparable to that of the
M-Best sphere decoder with low computational complexity.

In a more general learning perspective, an important con-
tribution is DetNet’s ability to perform on multiple models
with a single training. Recently, there were works on learning
to invert linear channels and reconstruct signals [15], [16],
[31]. To the best of our knowledge, these were developed and
trained to address a single fixed channel. In contrast, DetNet is
designed for handling multiple channels simultaneously with
a single training phase.

The paper is organized in the following order:
In section II we present the MIMO detection problem and

how it is formulated as a learning problem including the
use of one-hot representations. In section III we present two
types of neural network based detectors, FullyCon and DetNet.
In section IV we consider soft decisions. In section V we
compare the accuracy and the runtime of the purposed learning
based detectors against traditional detection methods both in
the hard decision and the soft decision cases. Finally, section
VI provides concluding remarks.

D. Notation

In this paper, we define the normal distribution where µ is
the mean and σ2 is the variance as N

(
µ, σ2

)
. The uniform

distribution with the minimum value a and the maximum value
b will be U (a, b) . Boldface uppercase letters denote matrices.
Boldface lowercase letters denote vectors. The superscript (·)T
denotes the transpose. The i’th element of the vector x will be
denoted as xi. Unless stated otherwise, the term independent

and identically distributed (i.i.d.) Gaussian matrix, refers to a
matrix where each of its elements is i.i.d. sampled from the
normal distribution N (0, 1). The rectified linear unit defined
as ρ(x) = max{0, x}. When considering a complex matrix or
vector the real and imaginary parts of it are defined as <(·) and
=(·) respectively. An α-Toeplitz M matrix will be defined as
a matrix such that MTM is a square matrix where the value
of each element on the i’th diagonal is αi−1.

II. PROBLEM FORMULATION

A. MIMO detection

We consider the standard linear MIMO model:

ȳ = H̄x̄ + w̄, (1)

where ȳ ∈ CN is the received vector, H̄ ∈ CN×K is the
channel matrix, x̄ ∈ S̄K is an unknown vector of independent
and equal probability symbols from some finite constellation
S̄ (e.g. PSK or QAM), w̄ is a noise vector of size N with
independent, zero mean Gaussian variables of variance σ2.

Our detectors do not assume knowledge of the noise
variance σ2. Hypothesis testing theory guarantees that it is
unnecessary for optimal detection. Indeed, the ML rule does
not depend on it. This is contrast to the MMSE and AMP
decoders that exploit this parameter and are therefore less
robust in cases where the noise variance is not known exactly.

B. Reparameterization

A main challenge in MIMO detection is the use of complex
valued signals and various digital constellations S̄ which are
less common in machine learning. In order to use standard
tools and provide a unified framework, we re-parameterize the
problem using real valued vectors and one-hot mappings as
described below.

First, throughout this work, we avoid handling complex
valued variables, and use the following convention:

y = Hx + w, (2)

where

y =

[
<(ȳ)
=(ȳ)

]
,w =

[
<(w̄)
=(w̄)

]
,x =

[
<(x̄)
=(x̄)

]
,

H =

[
<(H̄) −=(H̄)
=(H̄) <(H̄)

]
(3)

where y ∈ R2N is the received vector, H ∈ R2N×2K is the
channel matrix and x ∈ S2K where S = <{S̄} (which is also
equal to ={S̄} in the complex valued constellations we tested)

A second convention concerns the re-parameterization of
the discrete constellations S = {s1, · · · , s|S|} using one-hot
mapping. With each possible si we associate a unit vector
ui ∈ R|S|. For example, the 4 dimensional one-hot mapping
of the real part of 16-QAM constellations is defined as

s1 = −3 ↔ u1 = [1, 0, 0, 0]

s2 = −1 ↔ u2 = [0, 1, 0, 0]

s3 = 1 ↔ u3 = [0, 0, 1, 0]

s4 = 3 ↔ u4 = [0, 0, 0, 1] (4)
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We denote this mapping via the function s = foh(u) so
that si = foh(ui) for i = 1, · · · , |S|. More generally, for
approximate inputs which are not unit vectors, the function is
defined as

x = foh(xoh) =

|S|∑
i=1

si[xoh]i (5)

The description above holds for a scalar symbol. The MIMO
model involves a vector of 2K symbols which is handled
by stacking the one-hot mapping of each of its elements.
Altogether, a vector xoh ∈ {0, 1}|S|·2K is mapped to x ∈ S2K .

C. Learning to detect

We end this section by formulating the MIMO detec-
tion problem as a machine learning task. The first step in
machine learning is choosing a class of possible detectors,
also known as an architecture. A network architecture is a
function x̂oh(H,y;θ) parameterized by θ that detects the
unknown xoh given y and H. Learning is the problem of
finding the θ within some feasible set that will lead to strong
detectors x̂oh(H,y;θ). For this purpose, we fix a loss function
l (xoh; x̂oh (H,y;θ)) that measures the distance between the
true vectors and their estimates. Then, we find the network’s
parameter θ by minimizing the loss function over the MIMO
model distribution:

min
θ

E {l (xoh; x̂oh(H,y;θ))} , (6)

where the expectation is with respect to all the random
variables in (2), i.e., x, w, and H. Learning to detect is defined
as finding the best parameters θ of the networks’ architecture
that minimize the expected loss l (·; ·) over the distribution in
(2).

We always assume perfect channel state information (CSI)
which means that the channel H is exactly known during de-
tection time. However, we differentiate between two possible
cases:
• Fixed Channel (FC): In the FC scenario, H is deter-

ministic and constant (or a realization of a degenerate
distribution which only takes a single value). This means
that during the training phase we know over which
channel the detector will detect.

• Varying Channel (VC): In the VC scenario, we assume H
random with a known continuous distribution. It is still
completely known but changes in each realization, and
a single detection algorithm must be designed for all its
possible realizations. When detecting, the channel is ran-
domly chosen, and the network must be able to generalize
over the entire distribution of possible channels.

Altogether, our goal is to detect x, using a neural network
that receives y and H as inputs and provides an estimate x̂. In
the next section, we will introduce two competing architectures
that tradeoff accuracy and complexity.

III. DEEP MIMO DETECTORS

A. FullyCon

The fully connected multi-layer network is a well known
architecture which is considered to be the basic deep neural

Wk bk 

qk X + ρ qk+1 

input/output 
variables 

Learned Variables 

+ ρ -  Multiplication -  Addition -  Relu Activation 

Fig. 1. A flowchart representing a single layer of the fully connected network.

network architecture, and from now on will be named simply
as ’FullyCon’. It is composed of L layers, where the output
of each layer is the input of the next layer. Each layer can be
described by the following equations:

q1 = y

qk+1 = ρ (Wkqk + bk)

x̂oh = WLqL + bL

x̂ = foh(x̂oh) (7)

An illustration of a single layer of FullyCon can be seen in
Fig 1. The parameters of the network that are optimized during
the learning phase are:

θ = {Wk,bk}Lk=1 . (8)

The loss function used is a simple l2 distance between the
estimated signal and the true signal:

l (xoh; x̂oh (H,y;θ)) = ‖xoh − x̂oh‖2 (9)

FullyCon is simple and general purpose. It has a relatively
small number of parameters to optimize. It only uses the
input y, and does not exploit the channel H within (7). The
dependence on the channel is indirect via the expectation in
(6) which depends on H and leads to parameters that depend
on its moments. The result is a simple and straight forward
structure which is ideal for detection over the FC model.
As will be detailed in the simulations section, it manages to
achieve almost optimal accuracy with low complexity. On the
other hand, our experiences with FullyCon for the VC model
led to disappointing results. It was not expressive enough to
capture the dependencies of changing channels. We also tried
to add the channel matrix H as an input, and this attempt failed
too. In the next subsection, we propose a more expressive
architecture specifically designed for addressing this challenge.

B. DetNet

In this section we present an architecture designed specif-
ically for MIMO detection that will be named from now on
’DetNet’ (abbreviation of ’detection network’). The derivation
begins by noting that an efficient MIMO detector should
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not work with y directly, but use the compressed sufficient
statistic:

HTy = HTHx + HTw. (10)

This hints that two main ingredients in the architecture should
be HTy and HTHx. Second, our construction is based on
mimicking a projected gradient descent like solution for the
maximum likelihood optimization. Such an algorithm would
lead to iterations of the form

x̂k+1 = Π

[
x̂k − δk

∂‖y −Hx‖2

∂x

∣∣∣∣
x=x̂k

]
= Π

[
x̂k − δkHTy + δkHTHxk

]
, (11)

where x̂k is the estimate in the k’th iteration, Π[·] is a nonlin-
ear projection operator, and δk is a step size. Intuitively, each
iteration is a linear combination of the xk, HTy, and HTHxk

followed by a non-linear projection. We enrich these iterations
by lifting the input to a higher dimension in each iteration and
applying standard non-linearities which are common in deep
neural networks. In order to further improve the performance
we treat the gradient step sizes δK at each step as a learned
parameter and optimize them during the training phase. This
yields the following architecture:

qk = x̂k−1 − δ1kHTy + δ2kHTHxk−1

zk = ρ

(
W1k

[
qk

vk−1

]
+ b1k

)
x̂oh,k = W2kzk + b2k

x̂k = foh(x̂oh,k)

v̂k = W3kzk + b3k

x̂0 = 0

v̂0 = 0, (12)

with the trainable parameters

θ = {W1k,b1k,W2k,b2k,W3k,b1k, δ1k, δ2k}Lk=1 . (13)

To enjoy the lifting and non-linearities, the parameters W1k

are defined as tall and skinny matrices. The final estimate is
defined as x̂L. For convenience, the structure of each DetNet
layer is illustrated in Fig. 2.

Training deep networks is a difficult task due to vanishing
gradients, saturation of the activation functions, sensitivity
to initialization and more [32]. To address these challenges
and following the notion of auxiliary classifiers feature in
GoogLeNet [12], we adopted a loss function that takes into
account the outputs of all of the layers:

l (xoh; x̂oh (H,y;θ)) =

L∑
l=1

log(l)‖xoh − x̂oh,l‖2. (14)

In our final implementation, in order to further enhance
the performance of DetNet, we added a residual feature from
ResNet [11] where the output of each layer is a weighted
average with the output of the previous layer.

IV. SOFT DECISION OUTPUT

In this section, we consider a more general setting in
which the MIMO detector needs to provide soft outputs.
High end communication systems typically resort to iterative
decoding where the MIMO detector and the error correcting
decoder iteratively exchange information on the unknowns
until convergence. For this purpose, the MIMO detector must
replace its hard estimates with soft posterior distributions
Prob(xj = si|y) for each unknown j = 1, · · · , 2K and each
possible symbol i = 1, · · · , |S|. More precisely, it also needs
to allow additional soft inputs but we leave this for future
work.

Computation of the posteriors is straight forward based on
Bayes law, but its complexity is exponential in the size of the
signal and constellation. Similarly to the maximum likelihood
algorithm in the hard decision case, this computation yields
optimal accuracy yet is intractable. Thus, the goal in this
section is to design networks that output approximate the
posteriors. On first glance, this seems difficult to learn as
we have no training set of posteriors and cannot define a
loss function. Remarkably, this is not a problem and the
probabilities of arbitrary constellations can be easily recovered
using the standard l2 loss function with respect to the one-hot
representation xoh. Indeed, consider a scalar x and a single
s ∈ S associated with its one-hot bit xoh then it is well known
that

arg min
x̂oh

E[||xoh − x̂oh||2|y] = E[xoh|y] (15)

= Prob
s∈S

(xoh,s = 1|y)

= Prob
s∈S

(x = s|y)

Thus, assuming that our network is sufficiently expressive and
globally optimized, the one-hot output x̂oh will provide the
exact posterior probabilities.

V. NUMERICAL RESULTS

In this section, we provide numerical results on the accuracy
and complexity of the proposed networks in comparison to
competing methods.

In the FC case, the results are over the 0.55-Toeplitz
channel.

In the VC case and when testing the soft output perfor-
mance, the results presented are over random channels, where
each element is sampled i.i.d. from the normal distribution
N (0, 1).

A. Implementation details

We train both networks using a variant of the stochastic gra-
dient descent method [33], [34] for optimizing deep networks,
named Adam Optimizer [35]. All networks were implemented
using the Python based TensorFlow library [36].

To give a rough idea of the computation needed during
the learning phase, optimizing the detectors in our numerical
results in both architectures took around 3 days on a standard
Intel i7-6700 processor. Each sample was independently gen-
erated from (2) according to the statistics of x, H (either in the
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Fig. 2. A flowchart representing a single layer of DetNet. The network is composed out of L layers as such where each layers’ output is the ext layers’ input

FC or VC model) and w. During training, the noise variance
was randomly generated so that the SNR will be uniformly
distributed on U (SNRmin,SNRmax).

B. Competing algorithms

When presenting our network performance we shall use the
following naming conventions:
FullyCon: The basic fully-connected deep architecture.
DetNet: The DetNet deep architecture.

In the hard decision scenarios, we tested our deep networks
against the following detection algorithms:
ZF: This is the classical decorrelator, also known as least

squares or zero forcing (ZF) detector [1].
AMP: Approximate message passing algorithm from [5].
SDR: A decoder based on semidefinite relaxation imple-

mented using an efficient interior point solver [6], [7].
For the 8-PSK constellation we implemented the SDR
variation suggested in [37].

SD: An implementation of the sphere decoding algorithm as
presented in [38].

In the soft output case, we tested our networks against
the M-Best sphere decoding algorithm as presented in [3]
(originally named K-Best, but changed here to avoid confusion
with K the transmitted signal size):
M-Best SD M=5: The M-Best sphere decoding algorithm,

where the number of candidates we keep is 5.
M-Best SD M=7: Same as M-Best SD M=5 with 7 candi-

dates.

C. Accuracy results

1) Fixed Channel (FC): In the case of the FC scenario,
where we know during the learning phase over what realization
of the channel we need to detect, the performance of both our
network was comparable to most of the competitors except
SD. Both DetNet and FullyCon managed to achieve accuracy
results comparable to SDR and AMP. This result emphasizes
the notion that when learning to detect over simple scenarios as
FC, a simple network is expressive enough. And since a simple
network is easier to optimize and has lower complexity, it is
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Fig. 3. Comparison of the detection algorithms BER performance in the fixed
channel channel case over a BPSK modulated signal.

preferable. Fig. 3 we present the accuracy rates over a range of
SNR values in the FC model. This is a rather difficult setting
and algorithms such as AMP did not succeed to converge.

2) Varying channel: In the VC case, the accuracy results of
FullyCon were poor and the network did not manage to learn
how to detect properly. DetNet managed to achieve accuracy
rates comparable to those of SDR and AMP, and almost
comparable to those of SD, while being computationally
cheaper (see next section regarding computational resources).
In Fig. 4 we compare the accuracy results over a 30 × 60
real valued channel with BPSK signals and in Fig. 5 we
compare the accuracy of a 20 × 30 complex channel with
QPSK symbols. In both cases DetNet achieves accuracy rates
comparable to SDR and AMP and near SD, and accuracy much
better than ZF and DF. Results over larger constellations are
presented in Fig. 6 and 7 where we compare the accuracy rates
over complex channels of size 15×25 for the 16-QAM and 8-
PSK constellations respectively.We can see that in those larger
constellations DetNet performs better then AMP and SDR.
For both constellations we can observe that DetNet reaches
accuracy levels topped only by SD.
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Fig. 4. Comparison of the detection algorithms BER performance in the
varying channel case over a BPSK modulated signal. All algorithms were
tested channels of size 30x60.
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Fig. 5. Comparison of the detection algorithms BER performance in the
varying channel case over a QPSK modulated signal. All algorithms were
tested on channels of size 20x30.

3) Soft Outputs: We also experimented with soft decoding.
Implementing a full iterative decoding scheme is outside the
scope of this paper, and we only provide initial results on
the accuracy of our posterior estimates. For this purpose, we
examined smaller models where the exact posteriors can be
computed exactly and measured their statistical distance to
our estimates.

We shall define the following statistical distance function:
Given two probability distributions P and Q over the

symbol set S (that is, the probability of each symbol to be
the true symbol), the distance δ(P,Q) shall be:

δ(P,Q) =
∑
s∈S
|P (s)−Q(s)| (16)

As reference, we compare our results to the M-Best detectors
[3]. In Fig. 8 we present accuracy in the case of a BPSK signal
over a 10x20 real channel. In this setting we reach accuracy
levels better than those achieved by the M-Best algorithm. As
seen in Fig. 8 adding additional layers improves the accuracy
of the soft output. In Fig. 9 we present the results over a 4x8
complex channel with 16-QAM constellation. We can see the
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Fig. 6. Comparison of the detection algorithms SER performance in the
varying channel case over a 16-QAM modulated signal. All algorithms were
tested on channels of size 15X25.
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Fig. 7. Comparison of the detection algorithms SER performance in the
varying channel case over a 8-PSK modulated signal. All algorithms were
tested on channels of size 15X25.

performance of DetNet is comparable to the M-Best Sphere
decoding algorithm. For completeness, in Fig. 10 we added the
8-PSK constellation soft output where DetNet is comparable
to the M-Best algorithms only in the high SNR region.

D. Computational Resources

1) FullyCon and DetNet run time: In order and estimate
the computational complexity of the different detectors we
compared their run time. Comparing complexity is non-trivial
due to many complicating factors as implementation details
and platforms. To ensure fairness, all the algorithms were
tested on the same machine via python 2.7 environment
using the Numpy package. The networks were converted from
TensorFlow objects to Numpy objects. We note that the run-
time of SD depends on the SNR, and we therefore report a
range of times.

An important factor when considering the run time of the
neural networks is the effect the batch size. Unlike classical
detectors as SDR and SD, neural networks can detect over
entire batches of data which speeds up the detection process.
This is true also for the AMP algorithm, where computation
can be made on an entire batch of signals at once. However, the
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Fig. 8. Comparison of the accuracy of the soft output relative to the posterior
probability in the case of a BPSK signal over a 10× 20 real valued channel.
We present the results for 2 types of DetNet, one with 30 layers and the
second one with 50 layers
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Fig. 9. Comparison of the accuracy of the soft output relative to the posterior
probability for a 16-QAM signal over an 4× 8 complex valued channel.

improvement introduced by using batches is highly dependent
on the platform used (CPU/GPU/FPGA etc). Therefore, for
completeness, we present the run time for several batch sizes
including batch size equal to one.

In table I the run times are presented for hard decision
detection in a FC case. We can see that FullyCon is faster
than all other detection algorithms, even without using batches.
DetNet is slightly faster than traditional detection algorithms
without using batches, yet when using batches, the run time
improves significantly compared to other detection methods.

Channel Batch FullyCon DetNet SDR AMP SD
size size

Top055 1 0.0004 0.0045 0.009 0.005 0.001
30x60 -0.01

Top055 10 6.6E-05 0.0007 0.009 0.001 0.001
30x60 -0.01

Top055 100 2.4E-05 1.6E-04 0.009 0.0003 0.001
30x60 -0.01

Top055 1000 1.6E-05 1.1E-04 0.009 0.0003 0.001
30x60 -0.01

TABLE I
FIXED CHANNEL RUNTIME COMPARISON

In table II we present the results for the VC setting. In the
BPSK case the relative time difference between the different
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Fig. 10. Comparison of the accuracy of the soft output relative to the posterior
probability for a 8-PSK signal over an 4× 8 complex valued channel.

detection algorithms is similar to the FC case, with the excep-
tion of SD being relatively slower. In larger constellations (8-
PSK/16-QAM) DetNet’s relative advantage when comparing
against AMP/SDR is smaller than in the BPSK case (and in the
16-QAM constellation AMP was slightly faster without using
batches). The reason is that these accurate detection with these
constellations requires larger networks. On the other hand, the
relative performance vs SD improved.

Constellation Batch DetNet SDR AMP SD
channel size size

BPSK 1 0.0066 0.024 0.0093 0.008
30X60 -0.1
BPSK 10 0.0011 0.024 0.0016 0.008
30X60 -0.1
BPSK 100 0.0005 0.024 0.00086 0.008
30X60 -0.1

16-QAM 1 0.006 - 0.01 0.01
15X25 -0.4

16-QAM 10 0.0014 - 0.002 0.01
15X25 -0.4

16-QAM 100 0.0003 - 0.001 0.01
15X25 -0.4
8-PSK 1 0.019 0.021 - 0.004
15X25 -0.06
8-PSK 10 0.0029 0.021 - 0.004
15X25 -0.06
8-PSK 100 0.0005 0.021 - 0.004
15X25 -0.06

TABLE II
RUN TIME COMPARISON IN VC. DETNET IS COMPARED WITH THE

SDR,AMP AND SPHERE DECODING ALGORITHMS

In table III we compare the run time of the detection
algorithms in the soft-output case.As we can see, in the BPSK
case without using batches the performance of DetNet is
comparable to the performance of the M-Best sphere decoders,
and using batches improves the performance significantly. In
the 16-QAM/8-PSK cases DetNet is slightly faster than the
M-Best decoders even without using batches.

2) Accuracy-Complexity Trade-Off: An interesting feature
of DetNet is that the complexity-accuracy trade-off can be
decided during run-time. Each of the network’s layers outputs
an estimated signal, and our loss optimizes all of them. We
usually use the output of the last layer as the result since it
is the most accurate, but it is possible to take the estimated
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Constellation Batch DetNet M-Best M-Best
channel size size (M=5) (M=7)

BPSK 10X20 1 0.0075 0.006 0.008
BPSK 10X20 10 0.00092 0.006 0.008
BPSK 10X20 100 0.00029 0.006 0.008
16-QAM 4X8 1 0.006 0.008 0.01
16-QAM 4X8 10 0.0008 0.008 0.01
16-QAM 4X8 100 0.0001 0.008 0.01
8-PSK 4X8 1 0.02 0.05 0.07
8-PSK 4X8 10 0.003 0.05 0.07
8-PSK 4X8 100 0.0012 0.05 0.07

TABLE III
RUN TIME COMPARISON OF SOFT OUTPUT IN VC. THE DETNET IS

COMPARED WITH THE M-BEST SPHERE DECODING ALGORITHM
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Fig. 11. Comparison of the average BER as a function of the layer chosen
to be the output layer.

output xi of previous layers to allow faster detection. In Fig.
11 we present the accuracy as a function of the number of
layers.

VI. CONCLUSION

In this paper we investigated into the ability of deep neural
networks to serve as MIMO detectors. We introduced two deep
learning architectures that provide promising accuracy with
low and flexible computational complexity. We demonstrated
their application to various digital constellations, and their
ability to provide accurate soft posterior outputs. An important
feature of one of our network is its ability to detect over
multiple channel realizations with a single training.

Using neural networks as a general scheme in MIMO
detection still a long way to go and there are many open ques-
tions. These include their hardware complexity, robustness,
and integration into full communication systems. Nonetheless,
we believe this approach is promising and has the potential
to impact future communication systems. Neural networks
can be trained on realistic channel models and tune their
performance for specific environments. Their architectures and
batch operation are more natural to hardware implementation
than algorithms as SDR and SD. Finally, their multi-layer
structure allows a flexible accuracy vs complexity nature as
required by many modern applications.
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