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Power Systems Topology and State Estimation by

Graph Blind Source Separation
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Abstract—In this paper, we consider the problem of blind
estimation of states and topology (BEST) in power systems. We
use the linearized DC model of real power measurements with
unknown voltage phases (i.e. states) and an unknown admittance
matrix (i.e. topology) and show that the BEST problem can be
formulated as a blind source separation (BSS) problem with a
weighted Laplacian mixing matrix. We develop the constrained
maximum likelihood (ML) estimator of the Laplacian matrix
for this graph BSS (GBSS) problem with Gaussian-distributed
states. The ML-BEST is shown to be only a function of the states’
second-order statistics. Since the topology recovery stage of the
ML-BEST approach results in a high-complexity optimization
problem, we propose two low-complexity methods to implement
it: (1) Two-phase topology recovery, which is based on solving
the relaxed convex optimization and then finding the closest
Laplacian matrix, and (2) Augmented Lagrangian topology
recovery. We derive a closed-form expression for the associated
Cramér-Rao bound (CRB) on the topology matrix estimation.
The performance of the proposed methods is evaluated for the
IEEE-14 bus test-case system and for a random network. It
is shown that, asymptotically, the state estimation performance
of the proposed ML-BEST methods coincides with the oracles
minimum mean-squared-error (MSE) state estimator, and the
MSE of the topology estimation achieves the proposed CRB.

Index Terms—Graph blind source separation (GBSS), Con-
strained maximum likelihood, Laplacian mixing matrix, Topology
identification, Power system state estimation

I. INTRODUCTION

State estimation is a critical component of modern energy

management systems (EMSs) for multiple monitoring pur-

poses, including analysis, security, control, situational aware-

ness, stability assessment, power market design, and optimiza-

tion of electricity dispatchment [1, 2]. In the DC model, the

states are the bus voltage angles, while the grid topology

includes the arrangement of loads or generators, transmission

lines, transformers, and the statuses of system devices. It

should be noted that this definition generalizes the computer

science graph theory definition, which refers to the connec-

tivity of the graph, since here the topology also includes

the weights. In currently applied systems, it is assumed that

the EMS has precise knowledge of the grid topology [1],

which is used for obtaining accurate state estimation. However,

knowledge of grid topology may not be available and it
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may change over time due to failure, opening and closing of

switches on power lines, and the presence of new loads and

generators. For example, large-scale penetration of distributed

generation results in regular topology changes due to ad-

hoc connection of many plug-and-play components. Even

worse, a distribution system operator usually lacks topology

information, as many of the distributed energy resources do

not belong to the utility [3, 4]. The topology data may also

be incorrect due to malicious attacks [5-7]. Thus, methods

for state estimation that are not based on a known topology

are crucial for obtaining a reliable system model and high

power quality. An additional use for topology identification

is event detection, such as identifying faults, line outages,

and system imbalances [8, 9]. Moreover, it can be used to

secure the system from potential cyberattacks on the topology

information and to identify the potential vulnerabilities of a

power system.

Several approaches to topology identification have been

proposed in the literature. Detecting topological changes has

been studied in [10, 11] and the conditions for the detectability

of topology errors are studied in [12]. Recently, a few papers

have addressed blind estimation of the grid topology by

observing multiple power injection supervisory control and

data acquisition (SCADA) measurements [13, 14], voltage and

power data obtained by phasor measurement units (PMUs)

[15, 16], voltage measurements and their associated correla-

tions [17], and electricity price based market data [18]. In

[19], an unobservable attack is designed based on incomplete

knowledge of the system matrix, which is learned via a blind

identification approach. The methods proposed in [13, 14, 18,

19] can reveal part of the grid topology, such as the grid

connectivity and the eigenvectors of the topology matrix, but

they cannot reconstruct the full topology matrix with exact

scaling and true eigenvalues. Thus, incorporating blind source

separation (BSS) techniques with the specific characteristics

of a graph seems promising.

BSS methods aim at restoring a set of unknown source

signals from a set of observed linear mixtures of these source

signals (see, e.g. [20-29]), without prior knowledge of the

sources and the mixing system. The problem of BSS has

been extensively investigated in the literature in the recent

two decades. Prior works on maximum likelihood (ML) sep-

aration in BSS deal with general stationary sources [21, 30],

autoregressive (AR) sources, and AR Gaussian mixture model

distributed sources [28, 29]. The ML BSS for nonstationary

structures with varying variance-profiles was considered in

[31]. However, classical BSS solutions are ambiguous in the

sense that the order, signs and scales of the original signals
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cannot be retrieved. These ambiguities cannot be tolerated in

the considered power system problem. In addition, usually the

distributions of the states are assumed to be Gaussian due to

the central limit theorem, while most BSS methods cannot

handle Gaussian sources. Therefore, new methods for BSS

are required for the semiblind scenario of a Laplacian mixing

matrix with Gaussian sources, without permutation and scaling

problems.

In addition to state estimation in power systems, the recent

field of graph signal processing (GSP) [32] has many appli-

cations, [33-35]. A major challenge in GSP is learning the

graph structure from data under Laplacian matrix constraints

(see, e.g. [36-38]) and blind deconvolution of signals on graphs

[39], aim to jointly identify the filter coefficients and the input

signal. In future work the recent approach has the potential to

be extended to general GSP applications.

In this paper, we consider the problem of state estima-

tion and topology identification in power systems based on

active power measurements. First, we show that this prob-

lem is equivalent to the problem of BSS with a weighted

Laplacian mixing matrix, where the weights are determined

by the branch susceptances. Then, we derive the ML blind

estimation of states and topology (ML-BEST) method for

Gaussian-distributed states, that incorporates the constraints

of a Laplacian mixing matrix and is shown to be a second-

order statistics (SOS) method. Since the topology recovery

stage of the ML-BEST estimator is shown to be a NP-

hard optimization problem, we suggest two practical low-

complexity methods to implement this stage: (1) Two-Stage

topology recovery, which is based on solving the relaxed

convex optimization and then finding the closest Laplacian

matrix, and (2) Augmented Lagrangian topology recovery.

Preliminary results can be found in [40]. We also derive a

closed-form expression for the Cramér-Rao bound (CRB).

Finally, simulations demonstrate that the proposed ML-BEST

methods are applicable for different network topologies, and

asymptotically achieve the CRB.

The remainder of the paper is organized as follows. In

Section II we introduce the system model and the graph

BSS (GBSS) problem for state and topology estimation in

power systems. The ML-BEST solution is defined and two

different practical methods for its topology recovery stage

are suggested in Sections III and IV, respectively. Section

V offers some remarks, including a parameter identifiability

analysis, complexity discussion, and possible extensions of the

proposed model and methods. A closed-form expression for

the CRB of the topology matrix is derived in Section VI. The

proposed methods are evaluated via simulations in Section VII.

Conclusions appear in Section VIII.

II. PROBLEM FORMULATION

In this section, we formulate the problem of estimating the

state and topology/admittance matrix in power systems under

the linear DC power model. We show that this problem is

equivalent to BSS with a Laplacian mixing matrix.

A. Notation

In the rest of this paper vectors are denoted by boldface

lowercase letters and matrices by boldface uppercase letters.

The K×K identity matrix is denoted by IK , and 1K denotes

the constant K-length one vector. The vectors 0 and em are

zero vectors (with appropriate dimension), except for the mth

element of em, which is 1. Additionally, δm,k denotes Kro-

neckers delta, which equals 1 if m = k and 0 otherwise. The

notations | · |, Tr{·}, and ⊗ denote the determinant operator,

the trace operator, and the Kronecker product, respectively.

For a full-rank matrix A, A† △
=
(
ATA

)−1
AT is the Moore-

Penrose pseudo-inverse. The mth element of the vector a, the

(m, q)th element of the matrix A, and the (m1 : m2×q1 : q2)
submatrix of A are denoted by am, Am,q, and Am1:m2,q1:q2 ,

respectively. If A is a positive semidefinite matrix we denote

it by A � 0 and its square root, A
1
2 , satisfies A

1
2A

1
2 = A,

where A− 1
2 denotes the inverse of this square root. For

any matrix A, ||A||F and ||A||0 denote its Frobenius and

ℓ0-(pseudo)norm (counting its non-zero entries), respectively,

{A}+ = max{A, 0} is the nonnegative part of A, and vec(A)
is a vector obtained by stacking its columns. Similarly, for any

symmetric matrix S, vech(S) is a vector obtained by stacking

the columns of the lower triangular part of S, including the

diagonal, into a single column. Finally, we denote the cone of

real symmetric matrices of size M ×M by S
M .

B. Graph representation of power systems

A power system can be represented as an undirected con-

nected weighted graph, G(V , ξ), where the set of vertices,

V = {1, . . . ,M}, is the set of buses (that represent intercon-

nections, generators or loads) and the edge set, ξ, is the set of

connected transmission lines between the buses. An arbitrary

orientation is assigned to each edge ei = (m, k) ∈ ξ, m, k =

1, . . . ,M , k < m, i = 1, . . . , M(M−1)
2 , that are ordered in a

lexicographical order, which connects the vertices m and k.

The cardinality of the edge set, |ξ| = M(M−1)
2 , represents all

possible connections in the graph. According to the π-model

of transmission lines [1], each line is characterized by the line

admittance Ym,k, ∀(m, k) ∈ ξ.

The incidence matrix of a graph is B ∈ R
M×

M(M−1)
2 [35],

where the (m, i) element of B is given by

Bm,i =







1 ei = (m, k) is connected, m is the source

−1 ei = (k,m) is connected, k is the source

0 otherwise

, (1)

∀m = 1, . . . ,M and i = 1, . . . , M(M−1)
2 . In addition, let Γ ∈

M(M−1)
2 × M(M−1)

2 be a diagonal matrix where Γi,i = Ym,k

if ei = (m, k), i = 1, . . . , M(M−1)
2 . For connections that do

not exist we use Γi,i = 0. Then, we can define the graph

Laplacian matrix, L, as

L
△
= BΓBT . (2)

The matrix L ∈ R
M×M is a real, symmetric, and positive

semidefinite matrix1, which satisfies the null space property,

L1M = 0, and with nonpositive off-diagonal elements.

1It should be noted that L is a positive semidefinite matrix, assuming we
only have positive susceptances [41].
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C. DC model and problem formulation

We consider the DC power flow model [1], which is based

on the following assumptions on the network:

A.1 Branches are considered lossless, which results in Ym,k =
bm,k, where bm,k is the susceptance of the (m, k) branch.

A.2 The bus voltage magnitudes, Vm, m = 1, . . . ,M , are

approximated by 1 per unit (p.u.).

A.3 Voltage angle differences across branches are small, such

that sin(θm − θk) ≈ θm − θk, where θm, m = 1, . . . ,M ,

are the bus voltage angles.

Under Assumptions A.1-A.3, the active power injected at bus

m satisfies

pm = −
∑M

k=1
bm,kVmVk sin(θm − θk)

≈ −
∑M

k=1
Ym,k(θm − θk), ∀m = 1, . . . ,M. (3)

Now, let p[n]
△
= [p1[n], . . . , pM [n]]

T
be the vector of active

power injected and θ[n]
△
= [θ1[n], . . . , θM [n]]

T
the vector of

voltage phase angles at time n, ∀n = 0, . . . , N − 1. Then,

based on the model from (3), the noisy linearized DC model

of the network can be written as

p[n] = Lθ[n] +w[n], n = 0, . . . , N − 1, (4)

where the topology matrix L, defined in (2), is a deterministic

unknown Laplacian matrix, which is considered static for a

short-period of time and under normal operating conditions.

The noise is a stationary Gaussian sequence with zero mean

and a covariance matrix σ2IM , i.e. w[n] ∼ N (0, σ2IM ), and

it is assumed that the additive noises are independent of the

state vectors. The vectors {θ[n]}, n = 0, . . . , N − 1, are

assumed to be unknown random states with a joint probability

density function (pdf) fθ(·) and marginal pdfs of θm, fθm(·),
m = 1, . . . ,M . By subtracting the mean from the data, we

can assume, without loss of generality, that θ has zero mean.

The resulting centralized measurements are given by p[n]− p̄,

where p̄
△
= 1

N

∑N−1
n=0 p[n] is the sample mean. For the rest of

this paper, p[n] will denote the mean-centered active power

data.

Now, in order to reformulate the model with a full-rank

mixing matrix, we use the relation

L = UL̃UT , (5)

where

U
△
=

[
−1T

M−1

IM−1

]

∈ R
M×(M−1) (6)

and L̃
△
= L2:M,2:M is a 1st-order reduced-Laplacian matrix,

which is obtained by removing the first row and first column

of L. By substituting (5) in (4), one obtains

p[n] = UL̃θ̃[n] +w[n], n = 0, . . . , N − 1, (7)

where

θ̃[n]
△
= UTθ[n] = [θ2[n]− θ1[n], . . . , θM [n]− θ1[n]],

n = 0, . . . , N − 1. By multiplying both sides of (7) with U†,

it can be verified that the model in (7) is equivalent to

p̃[n] = L̃θ̃[n] + w̃[n], n = 0, . . . , N − 1, (8)

where p̃[n]
△
= U†p[n] and w̃[n]

△
= U†w[n], n = 0, . . . , N −

1. In addition, it can be shown (see, e.g. pp. 134-144

[42]) that the modified noise sequence satisfies w̃[n] ∼
N (0, σ2U†(U†)T ), n = 0, . . . , N − 1.

We assume here that all sources are time-independent

Gaussian distributed, i.e. θ[n] ∼ N (0,Σθ), n = 0, . . . , N −
1. Thus, θ̃[n] ∼ N (0,Σ

θ̃
), n = 0, . . . , N − 1, where

Σ
θ̃

△
= UTΣθU. Under the assumption that Σθ is known,

the observations vectors are also independent Gaussian-

distributed vectors, i.e. p[n] ∼ N
(
0,Σp(L, σ

2)
)

and p̃[n] ∼
N
(

0,Σp̃(L̃, σ
2)
)

, n = 0, . . . , N − 1, where

Σp(L, σ
2)

△
= LTΣθL+ σ2IM (9)

and, assuming nonsingular matrices,

Σp̃(L̃, σ
2)

△
= L̃TΣ

θ̃
L̃+ σ2U†(U†)T . (10)

The reduced topology matrix, L̃, has the following proper-

ties [35, 37]:

P.1 Full rank - Under the assumption of a connected graph,

L̃ is a nonsingular matrix of rank M − 1 and, thus, can

be identified in general. In power system terminology, we

assume that there are no unobservable islands in the grid.

P.2 Positive semidefinite - Since L is a symmetric, posi-

tive semidefinte matrix, L̃ is also a symmetric, positive

semidefinte matrix.

P.3 Nonpositive off-diagonal elements - L̃k,m ≤ 0, ∀k,m =
1, . . . ,M − 1, k 6= m.

P.4 Diagonally dominant - Since L is a Laplacian matrix, L̃ is

a diagonally dominant matrix, i.e.
∑M−1

m=1,m 6=k |L̃k,m| ≤
|L̃k,k|, ∀k = 1, . . . ,M − 1.

P.5 Sparsity (optional) - It is shown in previous works that the

power system is sparse [43], i.e. the zero pseudonorm of

the off-diagonal entries of L̃, ||L̃||0−off, is much smaller

than (M − 1)(M − 2).

III. ML-BEST

In this section, we develop the basic ML-BEST approach

that jointly reconstructs the matrix L and the states θ[n],
n = 0, . . . , N − 1, for the model from Section II. This

problem can be interpreted as a BSS problem with a Laplacian

mixing matrix, or graph BSS (GBSS). First, in Subsection

III-A the minimum mean-squared-error (MMSE) estimator of

the random states, θ[n], n = 0, . . . , N − 1, is developed.

Then, in Subsection III-C, we develop the ML estimator of

the noise variance, σ2, and formulate the optimization problem

describing the ML estimator of the mixing system.

A. MMSE state estimation

For given L and σ2, the sequences p[n], n = 0, . . . , N − 1,

θ[n], n = 0, . . . , N−1, are jointly Gaussian. Thus, in this case

the MMSE estimator of the state vector is a linear estimator

given by (see, e.g. Chapter 20 in [44], [45])

θ̂[n] = ΣθL
(
LTΣθL+ σ2IM

)†
p[n], (11)
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n = 0, . . . , N − 1. We refer to the estimator in (11) as the

oracle MMSE state estimator, i.e. an ideal estimator which

has perfect knowledge of the noise variance and the system

topology.

The practical state estimator for the considered GBSS

problem is obtained by plugging in the ML estimators of the

noise variance and the reduced-Laplacian matrix, σ̂2 and
ˆ̃
LML,

respectively, that are developed in the following in Subsections

III-B and III-C, into (11), which results in

θ̂[n] = ΣθL̂
ML

((

L̂ML
)T

ΣθL̂
ML + σ̂2IM

)†

p[n], (12)

n = 0, . . . , N − 1.

For high signal-to-noise ratio (SNR) values, i.e. when

σ2 → 0, the matrix LTΣθL is a singular matrix and, thus, the

covariance matrix of the data from (9) is also a singular matrix.

In this case, instead of using pseudo inverse as in (11) and (12),

the unknown parameters can also be treated by removing the

linearly dependent random variable (see, e.g. Chapters 3 and

10 in [46]). In power system state estimation this is usually

done by setting one bus as a reference bus and setting its angle

to zero (see, e.g. [1]), and then only estimating θ̃[n]. Here we

prefer to use instead the state estimation method in (11) and

(12) for estimation of θ[n].

B. ML estimation of the noise variance

It is shown in [47-49] that for Gaussian measurements with

the aforementioned structure, the ML estimator of the noise

variance σ2 is given by

σ̂2 = λM , (13)

where λ1 ≥ λ2 ≥ . . . ≥ λM are the eigenvalues of the sample

covariance matrix,

Σ̂p
△
=

1

N

N−1∑

n=0

p[n]pT [n]. (14)

C. System identification: ML estimation of the mixing matrix

By using the invariance property of the ML estimator [50]

and the relation in (5), the ML estimator of the full Laplacian

matrix can be obtained from the ML estimator of the reduced-

Laplacian matrix,
ˆ̃
L(ML), as follows:

L̂(ML) = U
ˆ̃
L(ML)UT . (15)

In the following, the ML estimation of the reduced topology

matrix, L̃, is formulated and is shown to be NP-hard. Practical

methods to approximate the ML estimator of L̃,
ˆ̃
L(ML), are

developed in the next section. Under the model from (8) and

the Gaussian-distributed sources assumptions, the normalized

log likelihood of p̃[n], n = 0, . . . , N − 1, after removing

constant terms and substituting the ML estimator of the noise

variance from (13), satisfies

ψ(L̃) = −Tr
{

Σ̂p̃Σ
−1
p̃ (L̃, σ̂2)

}

− log
∣
∣
∣Σp̃(L̃, σ̂

2)
∣
∣
∣ , (16)

where

Σ̂p̃
△
=

1

N

N−1∑

n=0

p̃[n]p̃T [n] = U†Σ̂p(U
†)T (17)

is the modified sample covariance matrix and the last equality

is obtained by substituting (14). That is, the log-likelihood

from (16) depends on the data only through the sample

covariance matrix, Σ̂p̃, which is the sufficient statistic for

estimating L̃.

Since the reduced-Laplacian matrix satisfies Properties P.1-

P.4, we are interested in minimizing −ψ(L̃) over the domain

of symmetric matrices and under the associated constraints as

follows:

min
L̃∈SM−1

−ψ(L̃)
such that

1) L̃ ≻ 0

2) L̃m,k ≤ 0, ∀m, k = 1, . . . ,M − 1, k < m

3)
∑M−1

k=1 L̃m,k ≥ 0, ∀m = 1, . . . ,M − 1

. (18)

The Gaussian log-likelihood function, ψ(L̃), is a concave func-

tion of the inverse covariance matrix, Σ−1
p̃ (L̃, σ̂2). However,

even without the sparsity constraint, the constraints in (18)

cannot be rewritten as convex constraints on Σ−1
p̃ (L̃, σ̂2).

Therefore, the resulting optimization is not a convex opti-

mization and, in addition, a direct Karush-Kuhn-Tucker (KKT)

conditions [51] solution of this constrained minimization is

intractable. Two low-complexity implementation methods are

described in the next section.

Imposing directly the sparsity constraint in P.5 usually

results in complex combinatorial searches, and following ad-

vances in compressive sensing [52, 53], the sparsity constraint

can be approximated by restricting the off-diagonal ℓ1-norm.

We perform simulations that suggest that simple elementwise

thresholding of the estimated Laplacian matrix is competitive

with ℓ1 methods. Thus, at the end of the ML-BEST approach,

we thresholded the off-diagonal elements of the estimator of

the topology matrix, L̂(ML), from (15), with a threshold, τ ,

such that the (k,m)th element of the final estimation is given

by

L̂
(ML)
k,m =

{

L̂
(ML)
k,m if |L̂(ML)

k,m | > τ

0 otherwise
, (19)

k,m = 1, . . . ,M−1, k 6= m. The threshold τ should be tuned

until the desired level of sparsity is achieved, while keeping

connectivity. The diagonal elements of L are known to be

positive for the Laplacian matrix, which thus, has partially

known support. Thus, τ set to be smaller than the magnitude

of the smallest estimated element of the diagonal:

τ = α min
m=1,...,M

L̂(ML)
m,m, (20)

where 0 < α < 1. The value of α can be set to the inverse of

the number of buses, 1
M

, or of the average nodal degree [35].

The basic ML-BEST algorithm is summarized in Algorithm

1, for any method of estimation of the reduced-Laplacian

matrix, L̃. Two such methods are described in Section IV.
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Algorithm 1: Basic ML-BEST Algorithm

Input:

• Observations p[n], n = 0, . . . , N − 1.

• State covariance matrix, Σθ̃ .

Output: Estimators L̂ and θ̂[n], n = 0, . . . , N − 1.

Algorithm Steps:

1) (Optional) Remove the sample mean,

p̄
△
= 1

N

∑N−1
n=0 p[n], from the observations p[n],

n = 0, . . . , N − 1.

2) Obtain the sample covariance matrix, Σ̂p, by (14).

3) Perform eigendecomposition operation for the sample

covariance matrix Σ̂p to find its eigenvalues

λ1 ≥ λ2 ≥ . . . ≥ λM .

4) Estimate the noise variance by the smallest eigenvalue,

σ̂2 = λM .

5) Estimate the reduced-Laplacian matrix and obtain

approximation to
ˆ̃
L(ML), for example, by the

two-phase/augmented ML-BEST from Section IV.

6) Reconstruct the full topology matrix according to (15):

L̂(ML) = U
ˆ̃
L(ML)UT .

7) Impose sparsity by setting the threshold according to

(20):

τ = α min
m=1,...,M

L̂(ML)
m,m

and thresholding such that the (k,m)th element of the

final estimation is given by (19):

ˆ̃
L
(ML)
k,m =

{
ˆ̃
L
(ML)
k,m if | ˆ̃L(ML)

k,m | > τ

0 otherwise
,

k,m = 1, . . . ,M − 1, k 6= m.

8) Evaluate the sources according to (12):

θ̂[n] = ΣθL̂
ML

((

L̂ML
)T

ΣθL̂
ML + σ̂2IM

)†

p[n],

n = 0, . . . , N − 1.

IV. PRACTICAL IMPLEMENTATIONS OF THE ML-BEST

In this section, two low-complexity estimation methods

of the reduced topology are derived: 1) Two-Stage topology

recovery in Subsection IV-A; and 2) Augmented Lagrangian

topology recovery in Subsection IV-B.

A. Two-phase topology recovery

In this subsection, we propose a low-complexity method

for solving (18) in two phases. First, we relax the original

optimization problem from (18), by removing constraints 2)
and 3) into

min
L̃∈SM−1

−ψ(L̃) such that 1) L̃ � 0 . (21)

It is well known that the relaxed optimization problem from

(21) is a convex optimization w.r.t. Σ−1
p̃ (L̃, σ̂2) and the

optimal solution is the sample covariance matrix inverse, Σ̂
−1

p̃ ,

under the assumption of nonsingular matrices (see, e.g. p. 466

in [54], [55]). Then, by using the invariance property of the

ML estimator [50], the one-to-one mapping in (10), and the

symmetry L̃T = L̃, one obtains that the unique minimum

of (21) w.r.t. L̃ , which is the ML estimator of a symmetric

positive definite mixing matrix,
ˆ̃
LPD, satisfies

Σ̂p̃ = ˆ̃
LPDΣ

θ̃

ˆ̃
LPD + σ̂2U†(U†)T , (22)

which implies that

ˆ̃
LPD = Σ

− 1
2

θ̃

(

Σ
1
2

θ̃

(

Σ̂p̃ − σ̂2U†(U†)T
)

Σ
1
2

θ̃

) 1
2

Σ
− 1

2

θ̃
. (23)

In the second phase, we find the closest graph Laplacian

matrix to the matrix U
ˆ̃
LPDUT in the sense of Frobenius norm.

Thus, we solve the following optimization problem:

min
L∈SM

||U ˆ̃
LPDUT − L||F

such that

1) L � 0

2) Lm,k ≤ 0, ∀m, k = 1, . . . ,M, k < m

3)
∑M

k=1 Lm,k = 0, ∀m = 1, . . . ,M

. (24)

The problem in (24) is a convex optimization problem and

can be efficiently computed by standard semidefinite program

solvers, such as CVX [56]. This two-phase topology recovery

algorithm is summarized in Algorithm 2. The ML-BEST

approach with two-phase topology recovery is implemented

by Algorithm 1, where Step 5 is implemented by Algorithm

2.

Algorithm 2: Two-phase Topology Recovery Algorithm

Input: Σ
θ̃

, Σ̂p, σ̂2.

Output: Estimator
ˆ̃
LML.

Algorithm Steps:

1) Evaluate the reduced sample covariance matrix from

(17) by Σ̂p̃ = U†Σ̂p(U
†)T .

2) Evaluate the optimal solution of the optimization in (21)

by (23):

ˆ̃
LPD = Σ

− 1
2

θ̃

(

Σ
1
2

θ̃

(

Σ̂p̃ − σ̂2U†(U†)T
)

Σ
1
2

θ̃

) 1
2

Σ
− 1

2

θ̃
.

3) Find the closest Laplacian matrix, L̂(ML), to U
ˆ̃
LPDUT ,

by solving the convex optimization problem in (24) (by

solvers such as CVX [56]).

B. Augmented Lagrangian topology recovery

In this subsection we develop a constrained independent

component analysis (cICA) method [57] to solve (18). This

approach is based on sequentially estimating the demixing

matrix, W
△
= L̃−1, under constraints, where the inequality

constraints (Constraints 2) and 3) from (18)) are transformed

into equality constraints in the augmented Lagrangian [58, 59].

Constraint 1) implies the symmetry of W, i.e. the equality

constraint W = WT . Thus, in this case the objective function
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for the cICA, which is based on Equation (3) in [57] is given

by

Qa(W,µ,Λ,D) = −ψ
(
W−1

)

+
1

2γ

M−1∑

m=1

({−γ
M−1∑

l=1

W−1
m,l + µm}+)2 − µ2

m

+
1

2γ

M−1∑

m=1

m−1∑

k=1

({γW−1
m,k +Λk,m}+)2 −Λ2

k,m

−
M−1∑

m=1

m−1∑

k=1

Dm,k(Wm,k −Wk,m)

+
γ

2

M−1∑

m=1

m−1∑

k=1

(Wm,k −Wk,m)2, (25)

where µ, Λ � 0, and D are the nonnegative vector, positive

semidefinite matrix, and symmetric matrix, respectively, of

Lagrange multipliers, and γ > 0 is the penalty parameter. The

minimization of (25) w.r.t. W results in the following natural

gradient descent learning rule [60] for W:

W(t+1) = W(t) − ην
(

W(t),µ(t+1),Λ(t+1),D(t+1)
)

, (26)

where t = 0, 1, . . . is the iteration index,

ν (W,µ,Λ,D)
△
= WT ∂Qa(W,µ,Λ,D)

∂W
WT , (27)

and 0 < η ≤ 1 is the learning rate that determines the step

size. By substituting (10) and W = L̃−1 in (16) and then

taking the derivative of the result w.r.t. W, we obtain

∂ψ(W−1)

∂W
=

−W−T
(

Σ̂p̃ − σ̂2U†(U†)T
)

W−1Σ−1

θ̃
W−T +W−T . (28)

By substituting (28) in (27), we obtain

ν (W,µ,Λ,D) =
(

Σ̂p̃ − σ̂2U†(U†)T
)

W−1Σ−1

θ̃

−WT + 1M−1µ
T −Λ−WT (DT −D)WT . (29)

Finally, the Lagrange multipliers, µ, Λ, and D, according to

the gradient ascent method are updated as follows:

µ(t+1) =
{

µ(t) − γ(W(t))−11M−1

}+

, (30)

Λ(t+1) =
{

Λ(t) + γoff(W(t))−1
}+

, (31)

D(t+1) = D(t) − γ
(

W(t) − (W(t))T
)

, (32)

m, k = 1, . . . ,M − 1. Λ(t+1) is a symmetric matrix with

nonnegative elements and zero diagonal. Then, it is updated

according to (26)-(32) until convergence.

The augmented Lagrangian topology recovery is summa-

rized in Algorithm 3. The ML-BEST approach with augmented

Lagrangian topology recovery is implemented by Algorithm 1,

where Step 5 is implemented by Algorithm 3.

V. REMARKS

In this section, we discus the identifiability conditions and

complexity in Subsection V-A and V-B, respectively, and

describe a few extensions for the proposed model and methods

in Subsection V-C.

Algorithm 3: Augmented Lagrangian Topology Recovery

Algorithm

Input: Σ
θ̃

, Σ̂p, σ̂2.

Output: Estimator
ˆ̃
LML.

Algorithm Steps:

1) Evaluate the reduced sample covariance matrix from

(17) by Σ̂p̃ = U†Σ̂p(U
†)T .

2) Initialize
ˆ̃
L(0), for example, by the estimator from (23):

ˆ̃
L(0) = ˆ̃

LPD.

3) Set t = 0, u(0) = 0, Λ(0) = 0, W(0) =
(
ˆ̃
L(0)

)−1

, and

γ, η > 0 to small positive scalar values.

4) Repeat

a) Update

W(t+1) = W(t)−ην
(

W(t), µ(t+1),Λ(t+1),D(t+1)
)

,

where ν(·) is given in (29).

b) Update the Lagrange multipliers, u(t+1), Λ(t+1), and

D(t+1), according to (30), (31), and (32), respectively.

c) t→ t+ 1

Until criterion ||W(t+1) −W(t)||F ≤ ǫ.

5) Evaluate the reduced topology matrix
ˆ̃
L =

(
W(t+1)

)−1
.

A. Identifiability conditions

In this subsection, we discuss the GBSS identifiability

conditions, under which the topology matrix and the state

vectors can be recovered [48] for the model from Section II

with zero-mean measurements. It is well known that Gaussian

sources with i.i.d. time-structures cannot be separated [20, 21,

23]. Nevertheless, the following theorem states that when the

mixing matrix is a symmetric matrix, consistent separation can

rely exclusively on the SOS of the source covariance, even for

Gaussian sources.

Theorem 1: Given the model in (4) and the relation in (5),

and assuming the following conditions:

• L̃ is a symmetric positive definite matrix

• The covariance of the states, Σ
θ̃

, is known and is a

positive definite matrix

• The matrix Σ̂p̃ − σ̂2U†(U†)T , where Σ̂p̃ and σ̂2 are

defined in (17) and (13), respectively, is a positive

semidefinite matrix.

Then, the Laplacian mixing matrix, L, can be uniquely iden-

tified, without scaling and permutation ambiguities, from the

sample covariance matrix of the observations, Σ̂p, defined in

(14).

Proof: First we will show that L̃ is identifiable. Then,

L can be uniquely recovered by using the relationship in (5).

Similar to the derivation of (10), it can be shown that for

any state distribution and independent noise with known noise

covariance, σ2IM , the covariance of the observations, p̃[n],
n = 0, . . . , N − 1, satisfies

Σp̃(L̃, σ
2) = L̃TΣ

θ̃
L̃+ σ2U†(U†)T

= L̃Σ
θ̃
L̃+ σ2U†(U†)T , (33)
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where the last equality is obtained by substituting the symme-

try property, L̃T = L̃. It is known that for any positive definite

matrix A ∈ R
(M−1)×(M−1) there exists a unique positive

definite square root, B ∈ R
(M−1)×(M−1), such that A = B2

(see, e.g. p. 448 in [54]). Thus, under the assumption that Σ
θ̃

and Σp̃(L̃, σ
2) − σ2U†(U†)T are positive definite matrices,

the solution of (33) is unique and is given by

L̃ = Σ
− 1

2

θ̃

(

Σ
1
2

θ̃

(

Σp̃(L̃, σ
2)− σ2U†(U†)T

)

Σ
1
2

θ̃

) 1
2

Σ
− 1

2

θ̃
.

(34)

Now, if we use the estimators Σ̂p̃ and σ̂2 in (34) instead of

the true unknown values of Σp̃(L̃, σ
2), σ2, then the existence

of a positive definite solution is not guaranteed. Under the

Theorem’s assumption that Σ̂p̃ − σ̂2U†(U†)T is a positive

definite matrix, the uniqueness holds for the solution in (23).

A necessary condition for the existence of the inverse of Σ̂p̃,

as required in Theorem 1, is that the sample covariance matrix

has a full rank, i.e. rank(Σ̂p̃) =M − 1. To ensure numerical

stability, we require stricter conditions than the condition

N ≥ M − 1. However, by using the sparsity assumption,

this condition can be relaxed even further. When the mixing

matrix, L̃, is invertible, identifiability of the mixing matrix

implies the ability to separate the sources, for example, by the

MMSE estimator, as shown in Subsection III-A.

B. Complexity

In this section we analyze the computational complexity

of the proposed ML-BEST methods, based on the number of

multiplications of the matrix operations. The multiplications

and pseudo-inverse calculations of U from (6) are not taken

into account, since they are not an inherent part of the

algorithms.

1) Basic ML-BEST approach

Algorithm 1 shows the basic ML-BEST approach. The

computational complexity of the multiplication for cal-

culating the sample covariance matrix in Step 2 is

O(NM2). Then, finding the smallest eigenvalue of this

matrix at Steps 3-4 calls for eigendecomposition or matrix

inversion of the M × M sample covariance matrix,

each typically requiring computational complexity on the

order of O(M3). Thresholding the resultant Laplacian

matrix estimator at Step 7 costs O(M2). Then, the state

estimation at Step 8 costs O(3M3+3M3+NM2), since

it requires the pseudo-inverse of an M ×M matrix and

3 multiplications of M ×M matrices, in addition to N
times the multiplication of an M -length vector with a

square matrix. Thus, the total complexity of the ML-

BEST algorithm (without the topology recovery step) is

O((2N + 1)M2 + 7M3).
2) Two-phase topology recovery

Algorithm 2 shows the two-phase topology recovery

algorithm. The complexity of calculating
ˆ̃
LPD at Step 2

consists of calculating the singular value decomposition

(SVD) of an M ×M matrix in order to obtain its square

root, and 4 multiplications of M ×M matrices and, thus,

it costs O(5M3). The nonnegative quadratic program in

Step 3 has polynomial time solutions, where its exact

computational complexity depends on the solver, method,

and exact problem parameters. Here, we approximate

this polynomial complexity by O(P 2K), where P is the

number of real decision variables and K is the number

of constraints. In our case, we have P = M(M−1)
2 scalar

real decision variables and

K = M
︸︷︷︸

pos. diag

+
(M − 1)(M − 2)

2
︸ ︷︷ ︸

neg. off-diag

+M − 1
︸ ︷︷ ︸

diag dom.

=
M(M + 1)

2

linear constraints on these variables that stem from Con-

straints 1)−3) in (24). Thus, the computational complex-

ity of Step 3 is around O(M3(M3−M2−M +1)), and

the total complexity of the two-phase topology recovery

algorithm is O(M3(M3 −M2 −M + 1)).
3) Augmented Lagrangian topology recovery

Algorithm 3 shows the augmented Lagrangian topology

recovery algorithm. The complexity of the initialization

step depends on the selected initial estimator. If, for

example, we initialize with
ˆ̃
LPD, then it costs O(5M3),

as explained in the previous algorithm. For each iteration

the computational complexity of Step 4.a is based on

M×M matrix multiplications and inversion, which costs

O(5M3). The complexity of Step 4.b of calculating the

Lagrange multipliers by the thresholding operator (versus

zero) is of order O(5M3). Typically, it takes 100− 1000
iterations to converge.

Based on the above exposition, the computational complex-

ities of Algorithms 2 and 3 for topology recovery are of the

order O(M3(M3 −M2 −M +1)) and O(M3), respectively.

Thus, if we were to let M grow while keeping N fixed,

the augmented Lagrangian topology recovery method would

exhibit significant computational savings when compared to

the two-phase topology recovery.

C. Possible extensions

1) Extension for general states distribution: In the case

where the states are non-Gaussian, we can develop the con-

strained ML-BEST similarly to the derivations in Section III.

That is, we assume the model from (7) and compute the

reduced source pdf, fθ̃(·), by using a transformation of pdf

rules (see, e.g. pp. 134-144 [42]). Under these assumptions,

the normalized log likelihood of p̃[n], n = 0, . . . , N − 1, is

given by [23]

ψ(L̃) =
1

N

N−1∑

n=0

log fθ̃

(

L̃−1p̃[n]
)

− log |L̃|. (35)

Then, the ML is obtained by minimizing (35) under the

reduced-Laplacian matrix Properties P.1-P.5, similarly to in the

problem formulated in (18). If direct KKT solution of this con-

strained minimization is intractable, we can develop associated

low-complexity methods, similarly to in Subsections IV-A and

IV-B.

Alternatively the proposed Gaussian ML-BEST methods

can also be applied for non-Gaussian distributions with the

same covariance, since the structure of the covariance matrices
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in (9) and (10) holds for any distribution. Although this

ML-BEST approach may not be optimal for non-Gaussian

distributions, it has the advantage of only requiring the SOS.

In addition, SOS methods are expected to be more robust in

adverse SNRs [22].

2) Shunt in admittance matrix: In many cases, the bus

admittance matrix contains a shunt, representing the bus

admittance-to-ground connection. Shunt elements are not con-

sidered here; nevertheless, the proposed model and methods

can be easily extended to the case of some shunt elements by

adding the shunt elements to the diagonal terms of the matrix

L. In this case, the symmetry of the matrix L is preserved,

but L becomes a nonsingular matrix and the assumption of a

reference bus is redundant.

VI. CRB

The CRB is a commonly-used lower bound on the mean-

squared error (MSE) matrix of any unbiased estimator of a

deterministic parameters vector. In this section, we derive a

closed-form expression for the CRB of the mixing Laplacian

matrix and the noise variance, by modeling the sources as

nuisance random parameters.

By using the symmetry of the matrix L̃, we define the vector

of unknown parameters for the CRB as

α
△
= [vech(L̃)T , σ2]T ∈ R

M(M−1)
2 +1,

which consists of the lower triangular elements of L, including

the diagonal, and the noise variance, σ2. Then, under some

mild regularity condition, the CRB on the MSE of any

unbiased estimator of α is given by

E
[

(α̂−α) (α̂−α)T
]

� BCRB(α) = J−1(α), (36)

where J(α) is the associated Fisher information matrix (FIM).

To compute the CRB, we stack the measurements p̃[n] from

(8) into a single (M − 1)N length vector, such that

p̃ = (IN ⊗ L̃)θ̃ + w̃, (37)

where p̃
△
= [p̃T [0], . . . , p̃T [N−1]]T , θ̃

△
= [θ̃

T
[0], . . . , θ̃

T
[N−

1]]T , and w̃
△
= [w̃T [0], . . . , w̃T [N − 1]]T . According to the

model assumptions, θ̃ and, therefore, also p̃ are zero-mean

random vectors. Under the assumption of time-independent

states, the (M − 1)N × (M − 1)N covariance matrix of θ̃ is

a block-diagonal matrix with the structure

Cθ̃

△
= E[θ̃θ̃

T
] = (IN ⊗Σ

θ̃
). (38)

Thus, the (M − 1)N × (M − 1)N covariance matrix of p̃,

Cp̃
△
= E[p̃p̃T ], is given by

Cp̃ = (IN ⊗ L̃T )Cθ̃(IN ⊗ L̃) + (IN ⊗ σ2U†(U†)T )

=
(

IN ⊗
(

L̃Σ
θ̃
L̃+ σ2U†(U†)T

))

, (39)

where the last equality is obtained by substituting (38) with

L̃T = L̃, and using Kronecker product associativity and the

rule, (A1 ⊗A2)(A3 ⊗A4) = (A1A3 ⊗A2A4) for any set

of matrices Ai, i = 1, 2, 3, 4 with appropriate dimensions.

Due to the zero-mean Gaussian distribution of p̃, the (m, r)

entry of the associated
(

M(M−1)
2 + 1

)

×
(

M(M−1)
2 + 1

)

FIM

is given by (see, e.g. p. 48 in [50])

Jm,r(α) =
1

2
Tr

{

C−1
p̃

∂Cp̃

∂αm

C−1
p̃

∂Cp̃

∂αr

}

, (40)

for any m, r = 1, . . . , M(M−1)
2 + 1. The derivatives of (39)

w.r.t. the elements of L̃ and σ2 are given by

∂Cp̃

∂αr

=
∂Cp̃

∂L̃k,l

=

(

IN ⊗ ∂L̃TΣ
θ̃
L̃

∂L̃k,l

)

=

(

1− 1

2
δk,l

)

×
(

IN ⊗
(

(Ek,l +El,k)Σθ̃
L̃+ L̃Σ

θ̃
(Ek,l +El,k)

))

, (41)

where Ek,l = ele
T
l , and for r = 1, . . . , M(M−1)

2 , and where

r is such that αr = L̃k,l, and

∂Cp̃

∂αr

=
∂Cp̃

∂σ2
=
(
IN ⊗U†(U†)T

)
, (42)

for r = M(M−1)
2 + 1.

By substituting (39) and (41) in (40), using Kronecker

product rules, the symmetry of the matrices, and the trace

operator rule, Tr{(A⊗B)} = Tr{A}Tr{B}, one obtains

Jm,r(α) =
N

2

(

1− 1

2
δk,l

)(

1− 1

2
δq,p

)

×Tr

{(

L̃Σ
θ̃
L̃+ σ2U†(U†)T

)−1

×
(

(Ek,l +El,k)Σθ̃
L̃+ L̃Σ

θ̃
(Ek,l +El,k)

)

×
(

L̃Σ
θ̃
L̃+ σ2U†(U†)T

)−1

×
(

(Ep,q +Eq,p)Σθ̃
L̃+ L̃Σ

θ̃
(Ep,q +Eq,p)

)}

, (43)

∀m, r = 1, . . . , M(M−1)
2 , where m and r are such that

αm = L̃k,l and αr = L̃p,q . Thus, Jm,r(α) from (43)

includes the mutual FIM between the elements of the lower

triangular of the mixing matrix, L̃k,l and L̃p,q , such that

k, l, p, q = 1, . . . ,M −1, l ≤ k, p ≤ q. By using the trace and

vectorization operators rule, it can be verified that

Tr{(A1A2)
TA2A3} = (vec(A1))

T (A2 ⊗A2)vec(A3), (44)

for any set of matrices Ai, i = 1, 2, 3 of compatible dimen-

sions. By applying (44) on (43) with the matrices

A1 = (Ek,l +El,k)Σθ̃
L̃+ L̃Σ

θ̃
(Ek,l +El,k),

A2 =
(

L̃Σ
θ̃
L̃+ σ2U†(U†)T

)−1

,

and

A3 = (Ep,q +Eq,p)Σθ̃
L̃+ L̃Σ

θ̃
(Ep,q +Eq,p),

and using the symmetry of these matrices, the (m, r) entry of

the FIM from (43) can be rewritten as

Jm,r(α) =
N

2
ψT (l, k)Qψ(p, q), (45)
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∀m, r = 1, . . . , M(M−1)
2 , where m and r are such that αm =

L̃k,l and αr = L̃p,q , and where

Q
△
=

(

L̃Σ
θ̃
L̃+ σ2U†(U†)T

)−1

⊗
(

L̃Σ
θ̃
L̃+ σ2U†(U†)T

)−1

(46)

and

ψ(l, k)
△
=

(

1− 1

2
δk,l

)

×vec
(

(Ek,l +El,k)Σθ̃
L̃+ L̃Σ

θ̃
(Ek,l +El,k)

)

. (47)

Similarly, by substituting (39), (41), and (42) in (40), and

using the symmetry of the matrices, we obtain that the (m, r)
entry of the FIM is

Jm,s(α) =
N

2
ψT (l, k)Qvec(U†(U†)T ), (48)

Js,m(α) =
N

2
(vec(U†(U†)T ))TQψ(l, k), (49)

Js,s(α) =
N

2
(vec(U†(U†)T ))TQvec(U†(U†)T ), (50)

for s = M(M−1)
2 + 1, m = 1, . . . , M(M−1)

2 , and m is such

that αm = L̃k,l.

Equations (45) and (48)-(50) imply that the FIM can be

formulated in a matrix form as follows:

J(α) =
N

2
ΨTQΨ, (51)

where the matrix Ψ is an (M − 1)2 ×
(

M(M−1)
2 + 1

)

matrix

in which the first
M(M−1)

2 columns are the vectors ψ(l, k)

ordered with the same order as vech(L̃) and the last column

is vec(U†(U†)T ).
By substituting (51) in (36) we obtain the CRB:

E
[

(α̂−α) (α̂−α)T
]

� BCRB(α) =
2

N

(

ΨTQΨ

)†

. (52)

The bound from (52) implies, in particular, the lower bound

on the MSE matrix of the lower triangular of the reduced-

Laplacian matrix:

E

[(

vech(ˆ̃L)− vech(L̃)
)(

vech(ˆ̃L) − vech(L̃)
)T
]

� [BCRB(α)]1:M(M−1)
2 ,1:M(M−1)

2

. (53)

Similarly, the CRB on the noise variance is given by

E
[
(σ̂2 − σ2)2

]
≥ [BCRB(α)]M(M−1)

2 +1,M(M−1)
2 +1

. (54)

To get more insight into (51), we investigate the trivial case

of σ2 = 0 and L̃ = cI, for c > 0. By substituting these values

in (43) and using the trace properties and the symmetry of the

involved matrices, it can be verified that the (m, r) entry of

the FIM in this case is

Jm,r(α) =
N

2c2
Tr

(

1− 1

2
δk,l

)(

1− 1

2
δq,p

)

×{(Ek,l +El,k)(Ep,q +Eq,p)

+ Σ−1

θ̃
(Ek,l + El,k)Σθ̃

(Ep,q +Eq,p)
}

, (55)

where m and r are such that αm = L̃k,l and αr = L̃p,q . Thus,

(55) implies that the elements of the FIM are nonzero in this

case only if k = p and/or k = q and/or l = p and/or l = q.

That is, only if L̃k,l and L̃p,q share a joint row or column in

the Laplacian matrix. In terms of graphs, that means that only

the connected nodes influence the information for estimation.

In general BSS problems, the CRB cannot be calculated

and the induced CRB has been proposed as an alternative

[24-26, 61]. Here, due to the symmetry of the mixing matrix,

we can obtain the associated CRB from (52). Alternatively,

this bound could be derived via the constrained CRB (CCRB)

approach (see, e.g. [62-64]). It should be emphasized that

in the evaluation of the CRB, which is a local bound, the

inequality constraints do not contribute any side information

[62-64] and the sparsity constraint also does not affect the

CRB if the exact sparsity level is unknown [65]. Since the

only equality parametric constraint on the estimated Laplacian

matrix in optimization in (18) is the symmetric constraint, it

is the only constraint that is taken into consideration in the

proposed graph CRB.

VII. SIMULATIONS

In this section, we present simulation examples conducted

in order to evaluate the performance of the proposed ML-

BEST methods from Algorithm 1, combined with two-phase

topology recovery and with augmented Lagrangian topology

recovery from Algorithms 2 and 3, respectively. The optimiza-

tion problems are solved using the CVX toolbox [56], the

sparsity threshold is set according to (20) with α = 4/M , and

the step sizes, η and γ in Algorithm 3 are tuned experimentally.

The simulations include two scenarios: IEEE 14-bus system

[66] and a random topology graph, with 250 Monte-Carlo

simulations for each scenario. The MSE performance of the

state estimators is compared with that of the oracle MMSE

estimator from (11). In addition to the MSE of the vectorized

topology estimators, vech(L̂), the topology estimation perfor-

mance is measured also by the F-score metric [67]:

FS(L̂,L)
△
=

2tp

2tp+ fn+ fp
,

where tp, fp, and fn are the true-positive, false-positive, and

false-negative detection of graph edges in L̂ with respect to

the ground truth edges in L. The F-score takes values between

0 and 1, where the value 1 means perfect classification. The F-

score is a measure for the error probability in the connectivity

matrix. In addition, we use the CRB from (52) as a benchmark

in the experiments.

A. IEEE 14-bus power system

In this subsection, we implement the proposed methods for

the IEEE 14-bus system, representing a portion of a power

system in the Midwestern U.S. The system parameters, such

as branch susceptances, are taken from [66] and M = 14. The

power flow measurements are generated using (4). The state

covariance matrix is set to Σθ = c2IM . The SNR is defined

as SNR = 1
σ2 Tr

{

L̃Σθ̃L̃
}

.
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Fig. 1. Illustration of the ML-BEST topology recovery methods to estimate
the Laplacian matrix of the IEEE-14 bus system with N = 200 samples
and SNR= 15dB: (a) the original Laplacian matrix; (b) and (c) the estimated
Laplacian by two-phase ML-BEST and Augmented Lagrangian ML-BEST
methods, respectively. The black circles indicate false connections.

We first show in Fig. 1 visual comparisons between the

Laplacian matrix of the IEEE 14-bus system and the associated

estimators of the Laplacian matrix, L̂, obtained by the two-

phase ML-BEST and augmented Laplacian ML-BEST for

N = 200 and SNR= 15dB. The black circles in this figure

indicate wrong connection estimation. This comparison shows

that the positions of the entries in the estimated Laplacian

matrices generally correspond to the positions of the edges in

the original graph and, thus, the network could be constructed

by the proposed procedures. Comparison between the two-

phase ML-BEST in (b) and the augmented Lagrangian ML-

BEST in (c) shows that the two-phase ML-BEST is better in

terms of support recovery. For example, while both methods

identifies a false connection between bus 6 and bus 8, only the

augmented Lagrangian ML-BEST identifies a false connection

between bus 3 and bus 7.

The performance of the different methods is presented in

Fig. 2 versus SNR for N = 200 andN = 1, 500. It can be seen

that the performance improves in any sense as N increases,

as expected. In Fig 2.a the MSE of the proposed ML-BEST

methods for topology estimation and the associated CRB are

presented, and in Fig. 2.b the F-score metric of the two ML-

BEST methods is presented. It can be seen that while the two-

phase topology recovery performs better in terms of F-score,

the two ML-BEST methods have similar performance in terms

of MSE. That is, the two-phase topology recovery is better in

terms of estimating the connectivity matrix, i.e. it distinguishes

between existing and absent links, while the performance of

both topology recovery methods are close to the CRB for high

SNR. However, since the CRB does not take into account the

information on inequality constrains [62-65], and especially

the sparsity constraint, it could be slightly higher than the

true performance. The MSE of the state estimators presented

in Fig. 2.c is similar for the two methods in this case. It can

be seen that for high SNRs, the state estimation performance

of the ML-BEST methods with estimated topology converges

to that of the oracle method, which uses the true topology.

Therefore, we can conclude that for high SNRs the topology

estimation convergences to the true topology.

B. Random topology

In this subsection we simulate graphs from the Watts-

Strogatz ’small world’ graph model [68] with varying numbers

of buses, M , and an average nodal degree of 4, which is shown

to be appropriate for the simulation of synthetic power grid
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Fig. 2. The performance of the ML-BEST methods, with two-phase and
augmented Lagrangian topology recovery, for IEEE-14 bus system versus
SNR with N = 200, 1, 500.

data [43]. It should be noted that the average nodal degree of

a power network is almost invariant to the size of the network

and, thus, the sparsity level is usually a constant around 4M
M2 .

The state covariance matrix set to Σθ = c2IM , with c =
√
10.

In order to achieve uniform SNR simulations, we set the norm

of the Laplacian matrix to ||L||F = 5.

Fig. 3 presents a random graph and its recovery by the ML-

BEST methods for N = 200 and σ2 = 1. The red lines in

this figure indicate missing connected edges between buses

3 and 5, and buses 5 and 7. This comparison shows that the

estimated graphs are generally correspond to the original graph
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Fig. 3. Illustration of the ML-BEST topology recovery methods to estimate
the Laplacian matrix of random topology with N = 200 and σ2 = 1: the
original graph (left) and the estimated graph topology by two-phase ML-BEST
(middle) and Augmented Lagrangian ML-BEST (right). The red lines indicate
missing recovered edges.

and, thus, the network could be reconstructed by the proposed

procedures. The missing recovered edges can be reconstructed

by acquiring more data or by setting the sparse threshold more

carefully.

The performance of the different methods for this random

topology is presented in Fig. 4 versus the number of buses

in the system for σ2 = 1, N = 200, 1, 500, and c =
√
10.

In Fig 4.a the MSE of the ML-BEST methods for topology

estimation and the associated CRB are presented. It can be

seen that the topology MSE degraded as M increases since

there are more parameters to estimate. The CRB does not

take into account the sparsity and, thus, is higher than the

true performance. However, it is still a good predictor for the

performance, and, thus, can be used for future system design.

In Fig. 4.b the F-score metric of the two ML-BEST methods

is presented. It can be seen that it is almost independent of

the number of buses, M , and that the two methods achieve

similar results. The MSE of the state estimators presented in

Fig. 4.c is lower for the two-phase ML-BEST method with

N = 200, but for N = 1, 500 the Augmented Lagrangian ML-

BEST has lower MSE. Thus, different method should be used,

depends of the number of samples. The performance of the two

methods become closer to those of the oracle performance as

N increases. Since the mixing matrix has the same norm for

any number of buses, M , the SNR is a constant. The structure

of the Laplacian matrix leads to a lower MSE of the state

estimation as M increases.

In order to demonstrate the empirical complexity of the pro-

posed methods for different problem dimensions, the average

computation time, “runtime”, was evaluated by running the

algorithm using Matlab on an Intel Core(TM) i7-7600U CPU

computer, 2.80 GHz. Figure 5 shows the runtime of the ML-

BEST methods as a function of the number of buses, M , for

a random topology and N = 200, 1, 500 samples. It can be

seen that the runtime increases polynomially with the number

of buses, M , and it is higher for the two-phase topology

recovery than for the augmented Lagrangian topology recovery

with 100 iterations, as expected from the theoretical discussion

on computational complexity in Subsection V-B. The reason

for this is that the two-phase topology recovery stage from

Algorithm 2 requires solving an SDP problem in (24) and,

therefore, has a much higher computational complexity as

compared to the augmented ML-BEST estimator. The number
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Fig. 4. The performance of the ML-BEST methods, with two-phase and
augmented Lagrangian topology recovery, for random topology versus the
number of buses with N = 200, 1, 500 and for σ2

= 1.

of measurements, N , has a less significant effect since it

is only associated with the cost of computing the sample

covariance matrix and the state estimation at the beginning

and the end of the basic ML-BEST approach.

VIII. CONCLUSION

In this paper, we introduce the novel ML-BEST method for

blind estimation of states and topology in power systems, by

formulating the problem as a GBSS with a Laplacian mixing

matrix. Since the topology recovery stage of the ML-BEST

is shown to be a NP-hard optimization problem, we propose

two low-complexity algorithms for the implementation of the

topology recovery stage of the ML-BEST estimator: 1) a two-

phase topology recovery algorithm, which finds the relaxed

positive semidefinite mixing matrix solution and then finds

the closest Laplacian matrix to this solution by using convex

optimization; 2) an augmented Lagrangian topology recovery
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Fig. 5. Runtime of the ML-BEST methods versus number of buses, M , in
random topology with N = 200, 1, 500 samples.

algorithm, which is based on classical cICA approaches. These

methods rely only on the SOS of the state signals and, in

contrast to classical BSS techniques, enable the separation of

Gaussian sources. We present some identifiability conditions

for this GBSS problem, complexity analysis of the proposed

ML-BEST methods, and the associated CRB of the demixing

parameters. Numerical simulations show that the proposed

ML-BEST methods succeed in reconstructing the topology

and estimating the states, and that the topology estimators

achieve the CRB asymptotically. The augmented Lagrangian

ML-BEST may be preferable for large networks, since the

two-phase ML-BEST is a computationally heavy algorithm, as

described in Subsection V-B. Additionally, the state estimators

converge to the oracle state estimator, which assumes perfect

knowledge of the topology.

State estimation is the backbone of power system monitor-

ing and processing. The presented results indicate that even if

the topology recovery is not perfect, the MSE of the state es-

timation is close to the MSE of the oracle performance. Thus,

the proposed ML-BEST methods can be applied for practical

power system operations without assuming knowledge of

the topology. In future work, the proposed methods will be

extended to address complex random states, by incorporating

concepts from complex BSS [69] and the proposed GBSS

approach. For the sparsity pattern, more general thresholding

functions should be investigated, as well as theoretical recov-

ery guarantees.
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