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Covariance Matrix Estimation from

Linearly-Correlated Gaussian Samples
Wei Cui, Xu Zhang, and Yulong Liu

Abstract—Covariance matrix estimation concerns the problem
of estimating the covariance matrix from a collection of samples,
which is of extreme importance in many applications. Classical
results have shown that O(n) samples are sufficient to accurately
estimate the covariance matrix from n-dimensional independent
Gaussian samples. However, in many practical applications,
the received signal samples might be correlated, which makes
the classical analysis inapplicable. In this paper, we develop a
non-asymptotic analysis for the covariance matrix estimation
from linearly-correlated Gaussian samples. Our theoretical
results show that the error bounds are determined by the signal
dimension n, the sample size m, and the shape parameter of
the distribution of the correlated sample covariance matrix.
Particularly, when the shape parameter is a class of Toeplitz
matrices (which is of great practical interest), O(n) samples
are also sufficient to faithfully estimate the covariance matrix
from correlated samples. Simulations are provided to verify the
correctness of the theoretical results.

Index Terms—Covariance matrix estimation, correlated sam-
ples.

I. INTRODUCTION

ESTIMATING covariance matrices becomes fundamental

problems in modern multivariate analysis, which finds

applications in many fields, ranging from signal processing

[1] and machine learning [2] to statistics [3] and finance

[4]. In particular, important examples in signal processing

include Capon’s estimator [5], MUltiple SIgnal Classification

(MUSIC) [6], Estimation of Signal Parameter via Rotation

Invariance Techniques (ESPRIT) [7], and their variants [1].

During the past few decades, there have been numerous

works devoted to studying the optimal sample size m that

suffices to estimate the covariance matrix from n-dimensional

independent samples [8]–[15]. For instance, Vershynin [10]

has shown that m = O(n) samples are sufficient for indepen-

dent sub-Gaussian samples, where O(n) denotes that the order

of growth of the samples is a linear function of the dimension

n; Vershynin [13] also illustrates that O(n log n) samples are

required for independent heavy tailed samples; and Srivastava

et al. [14] have established that O(n) is the optimal bound for

independent samples which obey log-concave distributions.

However, in many practical applications of interest, it is very

hard to ensure that the received signal samples are independent
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of each other. For example, in signal processing, the signal

sources might be in multipath channel [16], [17] or interfere

with each other [18], [19], which causes the received samples

correlated. In portfolio management and risk assessment, the

returns between different assets are correlated on short time

scales, i.e., the Epps effect [20], [21]. Then a natural question

to ask is:

Is it possible to use correlated samples to estimate the

covariance matrix? If possible, how many correlated samples

do we need to obtain a good estimation of the covariance

matrix?

This paper focuses on the above question and provides

some related theoretical results. More precisely, we establish

non-asymptotic error bounds for covariance matrix estimation

from linearly-correlated Gaussian samples in both expectation

and tail forms. These results show that the error bounds are

determined by the signal dimension n, the sample size m,

and the shape parameter B of the distribution of the correlated

sample covariance matrix. In particular, if the shape parameter

is a class of Toeplitz matrices (see Section III.C Example 2 for

details), where the shape parameter B satisfies tr(B) = m,

||B||F = O(m1/2), and ||B|| = O(1), our results reveal that

the correlated case has the same order of error rate as the

independent case albeit with a larger multiplicative coefficient.

The remainder of this paper is organized as follows. The

problem is formulated in Section II. The performance analysis

of the covariance matrix estimation from linearly-correlated

Gaussian samples is presented in Section III. Simulations are

provided in Section IV, and conclusion is drawn in Section V.

II. PROBLEM FORMULATION

Let x ∈ R
n be a centered Gaussian vector with the

covariance matrix Σ = E[xxT ], where Σ ∈ R
n×n is a

positive definite matrix. Let x1, . . . ,xm ∈ R
n be indepen-

dent copies of x. Suppose we observe m linearly-correlated

samples {yk}mk=1

Y = XΛ,

where Y = [y1, . . . ,ym], X = [x1, . . . ,xm], and Λ ∈
R

m×m is a fixed matrix. The objective is to estimate the

covariance matrix Σ from correlated samples {yk}mk=1
. Here

http://arxiv.org/abs/1808.01123v2
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we assume that m ≥ n 1.

The standard approach under correlated samples utilizes the

correlated sample covariance matrix to approximate the actual

one (see, e.g., [33]–[35])

Σ̂ =
1

m

m∑

k=1

yky
T
k =

1

m
XΛΛ

TXT :=
1

m
XBXT . (1)

Our problem then becomes to investigate how many correlated

samples are enough to estimate Σ accurately from Σ̂. It is not

hard to find that the correlated sample covariance matrix Σ̂ is

a compound Wishart matrix2 with shape parameter B = ΛΛ
T

and scale parameter Σ [36].

For the convenience of comparison, we restate a typical

result for covariance matrix estimation from independent

Gaussian samples as follows. This result indicates that O(n)
samples are sufficient to estimate the covariance matrix ac-

curately from independent Gaussian samples. It is natural to

expect that we require at least O(n) samples to estimate the

covariance matrix from correlated samples.

Proposition 1 (Theorem 4, [15]). Let x be a centered n-

dimensional Gaussian vector with the covariance matrix Σ =
E[xxT ], and let x1, . . . ,xm ∈ R

n be independent copies of

x. Then the sample covariance matrix Σ̃ = 1

m

∑m
k=1

xkx
T
k

satisfies

E ||Σ̃−Σ|| ≤ C

(√
n

m
+

n

m

)
‖Σ‖ ,

where ‖·‖ denotes the spectral norm and C is an absolute

constant.

III. COVARIANCE MATRIX ESTIMATION FROM

LINEARLY-CORRELATED GAUSSIAN SAMPLES

In this section, we present our main results for the co-

variance matrix estimation from linearly-correlated Gaussian

samples. Our proof strategy is divided into two steps. First, we

establish a key theorem which illustrates that the correlated

sample covariance matrix

Σ̂ =
1

m
Y Y T =

1

m
XBXT

1When m < n, in order to estimate covariance matrices, we require
some kinds of prior information about covariance matrices. During the past
few decades, a large number of estimators have been proposed to solve the
problems in this setting. For example, one group is structured estimators,
which impose additional structures on covariance matrices (see [3] and
references therein). Typical examples of structured covariance matrices include
bandable covariance matrices [22], Toeplitz covariance matrices [23], sparse
covariance matrices [24], [25] and so on. Another group is to shrinkage
the sample covariance matrix to a “target” matrix by incorporating some
regularization [26]–[29]. The general form of shrinkage estimators is

Σ̂
SH = αΣ0 + (1− α)Σ̂,

where Σ0 ∈ Rn×n is the shrinkage “target” matrix with positive definite

structure, Σ̂ denotes the sample covariance matrix, and α ∈ [0, 1] is
an absolute constant. The third group of estimators is based on spectrum
correction. In this group, spectrum correction approaches are utilized to infer
a mapping from the sample eigenvalues to corrected eigenvalue estimates
which yield a superior covariance matrix, see e.g., [30]–[32].

2Let x1, . . . ,xm ∼ N (0,Σ) be independent Gaussian vectors, and let B
be an arbitrary real m×m matrix. We say that a random n× n matrix W

is a compound Wishart matrix with shape parameter B and scale parameter
Σ if W = 1

m
XBX

T , where X = [x1, . . . ,xm].

concentrates around its mean E Σ̂ with high probability. We

then establish the non-asymptotic error bounds for the esti-

mated covariance matrix in both expectation and tail forms.

A. Concentration of Linearly-Correlated Sample Covariance

Matrix

Theorem 1. Let x1, . . . ,xm ∼ N (0,Σ) be independent

Gaussian vectors, where Σ is an n× n real positive definite

matrix. Let B be a fixed symmetric real m × m matrix.

Consider the compound Wishart matrix W = XBXT /m
with X = [x1, . . . ,xm]. Then for any δ ≥ 0, the following

event

‖W − EW ‖ ≤ 32 ‖B‖F δ + 64 ‖B‖ δ2
m

‖Σ‖

holds with probability at least 1 − 2 exp(−2δ2 + 2n log 3),
where ‖·‖F denotes the Frobenius norm. Furthermore,

E ‖W − EW ‖ ≤ 72 ‖B‖F
√
n+ 282 ‖B‖n
m

‖Σ‖ . (2)

Proof. See Appendix A.

Remark 1. It follows from Theorem 1 that the error bounds

depend on the signal dimension n, the sample size m, and the

shape parameter B. In particular, if ||B||F = O(m1/2) and

||B|| = O(1), then this result reveals that m = O(n) samples

are sufficient to estimate the compound Wishart matrix W

accurately.

Remark 2 (Symmetric B). The fact that the shape matrix B of

the correlated sample covariance matrix is symmetric plays a

key role in the proof of Theorem 1. This property enables the

compound Wishart matrix W to be expressed as a weighted

sum of independent rank-one matrices. Thus we can employ

standard techniques in [10] (e.g., ε-net method and Bernstein’s

inequality) to establish the error bounds in both expectation

and tail forms.

Remark 3 (General B). For general B, however, the com-

pound Wishart matrix W cannot be expressed as an indepen-

dent weighted sum, which makes the theoretical analysis much

harder.

In [37], Soloveychik closely follows a sophisticated strategy

developed by Levina and Vershynin [38] and establishes the

following expectation bound

E ‖W − EW ‖

≤ 24⌈log 2n⌉2√n(4‖B‖+√
π‖B‖F /‖B‖)

m
‖Σ‖ .

It is not hard to see that if ||B||F = O(m1/2) and ||B|| =
O(1), then this bound shows that m = O(n log4 n) samples

are sufficient to estimate the compound Wishart matrix W

accurately.

In [39], Paulin et al. employ the method of exchangeable

pairs [40], [41] and establish the concentration of W in both

expectation and tail forms for the bounded sample matrix X

(i.e., each entry of X is bounded by an absolute positive

constant L). The expectation bound in [39] is given by

E ||W − EW || ≤ 2
√
v(B) logn+ 32

√
3Ln logn||B||

m
,
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where v(B) = 44(nσ2 +L2)‖B‖2F and σ is the standard de-

viation of each entry of X . Clearly, if ||B||F = O(m1/2) and

||B|| = O(1), then this bound establishes that m = O(n log n)
samples suffice to estimate the compound Wishart matrix W .

In contrast to the above two works, our proof strategy is

totally different from theirs. This is because we have exploited

the symmetric structure of B. More importantly, our results

improve theirs in the symmetric case. This improvement is

critical to obtain the optimal error rate for the covariance

matrix estimation from correlated samples.

Remark 4. It is worth pointing out that there is a different

line of research which studies the asymptotic behavior of the

compound Wishart matrix (e.g., m → ∞ or m,n → ∞).

Please refer to [42] and references therein for a survey.

B. Covariance Matrix Estimation from Linearly-Correlated

Gaussian Samples

We then derive the error bounds for the covariance matrix

estimation from linearly-correlated Gaussian samples.

Theorem 2. Let x1, . . . ,xm ∼ N (0,Σ) be independent

random vectors, where Σ is an n × n real positive def-

inite matrix. Let X = [x1, . . . ,xm] ∈ R
n×m. Consider

the correlated samples Y = [y1, . . . ,ym] = XΛ, where

Λ ∈ R
m×m is a fixed matrix. Let the sample covariance

matrix Σ̂ = 1

m

∑m
k=1

yky
T
k . Then for any δ ≥ 0, the event

∥∥∥Σ̂−Σ

∥∥∥ ≤
∣∣∣∣
tr(ΛΛ

T )

m
− 1

∣∣∣∣ ||Σ||

+
32
∥∥ΛΛ

T
∥∥
F
δ + 64

∥∥ΛΛ
T
∥∥ δ2

m
‖Σ‖

holds with probability at least 1 − 2 exp(−2δ2 + 2n log 3).
Furthermore,

E

∥∥∥Σ̂−Σ

∥∥∥ ≤
∣∣∣∣
tr(ΛΛ

T )

m
− 1

∣∣∣∣ ||Σ||

+
72
∥∥ΛΛ

T
∥∥
F

√
n+ 282

∥∥ΛΛ
T
∥∥n

m
‖Σ‖ .

Proof: By the triangle inequality, we have

E

∥∥∥Σ̂−Σ

∥∥∥ = E

∥∥∥∥
1

m
Y Y T −Σ

∥∥∥∥

≤ E

∥∥∥∥
1

m
Y Y T − 1

m
E[Y Y T ]

∥∥∥∥

+

∥∥∥∥
1

m
E[Y Y T ]−Σ

∥∥∥∥ . (3)

The first term in (3) can be easily bounded by Theorem 1, i.e.,

E

∥∥∥∥
1

m
Y Y T − 1

m
E[Y Y T ]

∥∥∥∥

≤
72
∥∥ΛΛ

T
∥∥
F

√
n+ 282

∥∥ΛΛ
T
∥∥n

m
‖Σ‖ . (4)

It suffices to bound the second term in (3). Since the columns

of X are centered independent Gaussian vectors, direct cal-

culation leads to

E[
(
Y Y T

)
ij
] =

m∑

l,k=1

(ΛΛ
T )lk E (XilXjk)

=

m∑

l=1

(ΛΛ
T )ll E (XilXjl)

= tr(ΛΛ
T )Σij ,

where Xij denotes the (i, j)-th entry of the matrix X , i =
1, . . . , n, j = 1, . . . ,m. Thus we have

E

[
1

m
Y Y T

]
=

tr(ΛΛ
T )

m
Σ. (5)

Substituting (4) and (5) into (3) yields the expectation bound.

To establish the tail bound, observe that

P

(∥∥∥Σ̂−Σ

∥∥∥ ≥ t
)
≤ P

(∥∥∥Σ̂− E Σ̂

∥∥∥+
∥∥∥E Σ̂−Σ

∥∥∥ ≥ t
)

= P

(∥∥∥Σ̂− E Σ̂

∥∥∥ ≥ t−
∥∥∥E Σ̂−Σ

∥∥∥
)
.

Assign

t0 =
∥∥∥E Σ̂−Σ

∥∥∥+
32
∥∥ΛΛ

T
∥∥
F
δ + 64

∥∥ΛΛ
T
∥∥ δ2

m
‖Σ‖

=

∣∣∣∣
tr(ΛΛ

T )

m
− 1

∣∣∣∣ ||Σ||

+
32
∥∥ΛΛ

T
∥∥
F
δ + 64

∥∥ΛΛ
T
∥∥ δ2

m
‖Σ‖ .

It then follows from Theorem 1 that for any δ ≥ 0

P

(∥∥∥Σ̂−Σ

∥∥∥ ≥ t0

)
≤ 2 exp(−2δ2 + 2n log 3).

This completes the proof.

In particular, if the shape matrix satisfy tr(ΛΛ
T ) = m (see

examples in Section III-C), then we have following corollary.

Corollary 1. Let x1, . . . ,xm ∼ N (0,Σ) be independent

random vectors, where Σ is an n × n real positive definite

matrix. Let X = [x1, . . . ,xm] ∈ R
n×m. Consider the corre-

lated samples Y = [y1, . . . ,ym] = XΛ, where Λ ∈ R
m×m

is a fixed matrix such that tr(ΛΛ
T ) = m. Let the sample

covariance matrix Σ̂ = 1

m

∑m
k=1

yky
T
k . Then for any δ ≥ 0,

the event

∥∥∥Σ̂−Σ

∥∥∥ ≤
32
∥∥ΛΛ

T
∥∥
F
δ + 64

∥∥ΛΛ
T
∥∥ δ2

m
‖Σ‖

holds with probability at least 1 − 2 exp(−2δ2 + 2n log 3).
Furthermore,

E

∥∥∥Σ̂−Σ

∥∥∥ ≤
72
∥∥ΛΛ

T
∥∥
F

√
n+ 282

∥∥ΛΛ
T
∥∥n

m
‖Σ‖ .
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C. Examples

In this subsection, we present some examples to illustrate

our theoretical results.

Example 1 (Independent samples). In this case, ΛΛ
T = Im,

where Im is the m-dimensional identity matrix. It is easy to

verify that tr(Im) = m, ‖Im‖F =
√
m, and ‖Im‖ = 1. It

then follows from Corollary 1 that

E

∥∥∥Σ̂−Σ

∥∥∥ ≤
(
72

√
n

m
+

282n

m

)
‖Σ‖ . (6)

It is clear that m = O(n) samples are sufficient to estimate the

covariance matrix in this case. This result is consistent with

Proposition 1.

Example 2 (Partially correlated samples). In this case, a typical

model for the shape parameter is that ΛΛ
T is a symmetric

Toeplitz matrix

ΛΛ
T =




1 θ · · · θm−1

θ 1
. . .

...
...

. . .
. . . θ

θm−1 · · · θ 1



:= T (θ)

with 0 < θ < 1. This model is very common in many

applications. For instance, the lagged correlation between the

returns in portfolio optimization [34] satisfies this model by

setting θ = exp(−1/τ), where τ is the characteristic time.

Obviously, tr(T (θ)) = m. By Gershgorin circle theorem [43,

Theorem 7.2.1], we have

‖T (θ)‖ ≤ 1 + 2 ·
∞∑

k=1

θk = 1+
2θ

1− θ
=

1 + θ

1− θ
, 0 < θ < 1.

In addition,

||T (θ)||2F = m+ 2 ·
m−1∑

k=1

(m− k)θ2k

=
m(1 + θ2)

1− θ2
+

2θ2(θ2m − 1)

(1 − θ2)2
≤ m(1 + θ2)

1− θ2
,

where that last inequality holds because 0 < θ < 1. It also

follows from Corollary 1 that

E

∥∥∥Σ̂−Σ

∥∥∥ ≤
(
72

√
1 + θ2

1− θ2
· n

m
+ 282 · 1 + θ

1− θ
· n

m

)
‖Σ‖ .

(7)

Therefore, we conclude that in this case, m = O(n) correlated

samples are also sufficient to accurately estimate the covari-

ance matrix. The difference between the correlated case and

the independent case is that for a given estimation accuracy

of Σ, the former requires more samples than that of the latter.

This is because the multiplicative coefficient in the error bound

(7) is larger than that in (6). Furthermore, the larger the θ, the

greater the multiplicative coefficient.

Example 3 (Totally correlated samples). When the observed

signal samples are totally correlated, for example, yk =

1√
m

∑m
i=1

xi for k = 1, . . . ,m, which means that ΛΛ
T is

an all-one matrix

ΛΛ
T =




1 · · · 1
...

. . .
...

1 · · · 1


 := Θ.

Standard calculation shows that tr(Θ) = m, ‖Θ‖F = m, and

‖Θ‖ = m. By Corollary 1, we have

E

∥∥∥Σ̂−Σ

∥∥∥ ≤
(
72

√
n+ 282n

)
‖Σ‖ .

This result indicates that when the samples are totally corre-

lated, the error bounds are independent of the sample size m,

which means that increasing m will not reduce the estimation

error.

IV. SIMULATION RESULTS

In this section, we carry out some simulations to demon-

strate our theoretical results.

Consider an n × m matrix X whose entries are indepen-

dently drawn from the standard Gaussian distribution. Let

Y ∈ R
n×m satisfy Y = XΛ.

In the first experiment, we consider the case where the

samples are independent but with time-variant scale factors,

i.e., Λ is a diagonal matrix with different diagonal entries.

Let Λ = P (µ, σ) = diag{ρ1, . . . , ρm}, where {ρi}mi=1

have independent Gaussian distribution with mean µ and

standard deviation σ. We make simulations for four models: 1)

Λ = I; 2) Λ = P (
√
3/2, 1/2); 3) Λ = P (

√
2/2,

√
2/2); 4)

Λ = P (0, 1). It is not hard to verify the four models satisfy

EΛΛ
T = I and E tr(ΛΛ

T ) = m. We set η = 0.2 and

increase n from 1 to 30. For a fixed n, we make 500 trials and

calculate the average of the minimum sample size m which

satisfies
||Σ̂−Σ||F

||Σ||F
≤ η.

Fig. 1 shows the simulation results. It is not hard to find that

the sample size is proportional to the signal dimension n for

the four models. With the increase of the standard deviation,

the slope of the line also increases. This phenomenon can

be explained by Theorem 2: when the standard deviation

increases, the average of both
∥∥ΛΛ

T
∥∥
F

and
∥∥ΛΛ

T
∥∥ will also

increase, which leads to the increase of the slope.

In the second experiment, we consider the following four

correlated models: 1) ΛΛ
T = I; 2) ΛΛ

T = T (1/4); 3)

ΛΛ
T = T (1/2); 4) ΛΛ

T = T (3/4). Let n increase from

1 to 30 and η = 0.2. We also make 500 Monte Carlo trials

and calculate the average sample size for each fixed n like the

first experiment.

Fig. 2 reports the simulation results. We can easily see that

the number of samples in the four cases is a linear function of

the signal dimension n, which agrees with theoretical results

(6) and (7). In addition, the larger the parameter θ, the bigger

the slope, which demonstrates that for a given estimation

accuracy of Σ, the correlated case requires more samples than

that of the less correlated one.

In the third experiment, we compare the divergence rate of

theoretical results (Theorem 2) and Monte Carlo simulation
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Fig. 2: Sample size v.s. signal dimension for different corre-

lated models.

results for four correlated models: 1) ΛΛ
T = I; 2) ΛΛ

T =
T (1/4); 3) ΛΛ

T = T (1/2); 4) ΛΛ
T = T (3/4). We set

n = 15 and increase m from 50 to 1000 with step 50. For

a fixed sample size m, we make 500 Monte Carlo trials and

calculate the logarithm (base 10) of the average of estimation

error ||Σ̂−Σ||.
The results are presented in Fig. 3. From these results, we

can know that for both theoretical and simulation results, the

curves of four models are nearly parallel, which means that

the four models have very similar error divergence rate. The

results agree with Theorem 2. However, we also observe a

big gap between theoretical estimation errors and simulation

estimation errors. This is because we have made a number

of loose estimates in order to obtain a clear statement of the

proofs, which leads to the fact that our theoretical bounds are

not optimal in terms of multiplicative coefficients.

V. CONCLUSION

In this paper, we have presented a non-asymptotic analysis

for the covariance matrix estimation from linearly-correlated

Gaussian samples. Our theoretical results have shown that the

error bounds depend on the signal dimension n, the sample
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Simulation results for T(1/2)
Simulation results for T(1/4)
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Fig. 3: Logarithmic estimation error v.s. sample size for

theoretical and simulation results under different models.

size m, and the shape parameter B of the distribution of the

correlated sample covariance matrix. In particular, when the

shape parameter is a class of Toeplitz matrix (which is of

great practical interest), O(n) samples are sufficient to faith-

fully estimate the covariance matrix from correlated samples.

This result has demonstrated that it is possible to estimate

covariance matrices from moderate correlated samples.

For future work, it would be of great practical interest to ex-

tend the theoretical analysis for correlated samples from Gaus-

sian distribution to other distributions such as sub-Gaussian,

heavy tailed, and log-concave distributions. In addition, it

is of great importance to investigate the performance of

other estimators under correlated samples. Examples include

structured estimators, regularized estimators, and so on.

APPENDIX A

PROOF OF THEOREM 1

To prove Theorem 1, we require some useful definitions and

facts. Without loss of generality, we assume Σ = I, otherwise

we can use Σ
−1/2X instead of X to verify the general case.

Definition 1 (ε-net). Let K ⊂ R
n and ε > 0. A subset N ⊂ K

is called an ε-net of K if

∀ x ∈ K, ∃ x0 ∈ N such that ‖x− x0‖2 ≤ ε.

Definition 2 (sub-Gaussian). A random variable x is said to

be sub-Gaussian with variance proxy σ2 (denoted as x ∼
subG(σ2)) if Ex = 0 and

E exp(sx) ≤ exp

(
σ2s2

2

)
, ∀ s ∈ R.
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Equivalent definitions of sub-Gaussian random variables can

be found in [44, Proposition 2.5.2]. Typical sub-Gaussian ran-

dom variables include Gaussian variables, Bernoulli variables

and any bounded random variables.

Definition 3 (sub-exponential). A random variable x is said

to be sub-exponential with parameter K (denoted as x ∼
subE(K)) if Ex = 0 and

E exp(sx) ≤ exp

(
K2s2

2

)
, ∀ |s| ≤ 1

K
.

Equivalent definitions of sub-exponential random variables

can be found in [44, Proposition 2.7.1]. All sub-Gaussian

random variables and their squares are sub-exponential. In

addition, exponential and Poisson random variables belong to

sub-exponential variables.

Fact 1 (Exercise 4.4.3 and Corollary 4.2.13, [44]). Let A ∈
R

m×n and ε ∈ [0, 1/2). Then for any ε-net N of the unit

sphere S
n−1 and ε-net M of the unit sphere S

m−1, we have

‖A‖ ≤ 1

1− 2ε
sup

x∈N ,y∈M
〈Ax,y〉 ,

where 〈·, ·〉 denotes the inner product between two vectors, i.e.

〈a, b〉 = aTb. If m = n and A is symmetric, then

‖A‖ ≤ 1

1− 2ε
sup
x∈N

| 〈Ax,x〉 |.

Furthermore, there exist ε-nets N and M with cardinalities

|N | ≤
(
1 +

2

ε

)n

and |M| ≤
(
1 +

2

ε

)m

.

Fact 2 (Lemma 1.4, [45]). Let x ∼ subG(σ2), then for any

k ≥ 1,

E |x|k ≤ (2σ2)
k

2 kΓ

(
k

2

)
,

where Γ(z) =
∫∞
0

xz−1e−xdx.

Fact 3 (Lemma 1.12, [45]). Let x ∼ subG(σ2), then the

random variable z = x2 − E[x2] is sub-exponential with

z ∼ subE(8σ2).

Fact 4 (Bernstein’s inequality, Theorem 2.8.2, [44]). Let

x1, . . . , xm be independent random variables with Exi = 0
and xi ∼ subE(K), and a = (a1, . . . , am) ∈ R

m. Define

Sm = 1

m

∑m
i=1

aixi. Then for any t > 0, we have

P (|Sm| ≥ t) ≤ 2 exp

(
−1

2
min

{
m2t2

K2 ‖a‖2
2

,
mt

K ‖a‖∞

})
,

where ‖a‖2
2
=
∑m

i=1
a2i and ‖a‖∞ = maxi |ai|.

Here facts 3 and 4 are derived by slightly modifying

the original results in [45] and [44] respectively. For the

convenience of the reader, we include the detailed proofs in

Appendix B.

We are now in position to prove Theorem 1. For clarity, the

proof is divided into several steps.

1) Problem reduction. Let B = UDBU
T be the spectral

decomposition of the symmetric matrix B, where DB =

diag{λ1, λ2, . . . , λm} is a diagonal matrix whose entries

are the eigenvalues of B, and U is an orthonormal matrix.

Then we have

P(‖W − EW ‖ ≥ t)

= P

(
1

m

∥∥XUDBU
TXT − E[XUDBU

TXT ]
∥∥ ≥ t

)

= P

(
1

m

∥∥XDBX
T − E[XDBX

T ]
∥∥ ≥ t

)

= P

(∥∥∥∥∥
1

m

m∑

i=1

λi

(
xix

T
i − In

)
∥∥∥∥∥ ≥ t

)
, (8)

where the second equality holds because the Gaussian

matrix X is orthogonally invariant.

2) Approximation. Choose ε = 1/4. By Fact 1, we get
∥∥∥∥∥
1

m

m∑

i=1

λi

(
xix

T
i − In

)
∥∥∥∥∥

≤ 2 sup
u∈N

∣∣∣∣∣
1

m

m∑

i=1

λi

〈(
xix

T
i − In

)
u,u

〉
∣∣∣∣∣

= 2 sup
u∈N

∣∣∣∣∣
1

m

m∑

i=1

λi(〈xi,u〉2 − 1)

∣∣∣∣∣ ,

where N is a 1/4-net of Sn−1 with |N | ≤ 9n. Thus we

have

P

(∥∥∥∥∥
1

m

m∑

i=1

λi

(
xix

T
i − In

)
∥∥∥∥∥ ≥ t

)

≤ P

(
sup
u∈N

∣∣∣∣∣
1

m

m∑

i=1

λi(〈xi,u〉2 − 1)

∣∣∣∣∣ ≥
t

2

)
.

3) Concentration. Fix u ∈ N , we are going to bound

P

(∣∣∣∣∣
1

m

m∑

i=1

λi(〈xi,u〉2 − 1)

∣∣∣∣∣ ≥
t

2

)
.

By assumption, 〈xi,u〉 are independent Gaussian random

variables with mean zero and variance E 〈xi,u〉2 = 1.

Thus we have 〈xi,u〉 ∼ subG(1). From Fact 3, we know

(〈xi,u〉2 − 1) are independent sub-exponential variables

with mean zero and (〈xi,u〉2 − 1) ∼ subE(8). By using

Bernstein’s inequality (Fact 4), we have

P

(∣∣∣∣∣
1

m

m∑

i=1

λi(〈xi,u〉2 − 1)

∣∣∣∣∣ ≥
t

2

)

≤ 2 exp

(
− 1

32
min

{
m2t2

16
∑m

i=1
λ2

i

,
mt

maxi |λi|

})
.

Since ‖B‖2F =
∑m

i=1
λ2

i and ‖B‖ = maxi |λi|, we

obtain

P

(∣∣∣∣∣
1

m

m∑

i=1

λi(〈xi,u〉2 − 1)

∣∣∣∣∣ ≥
t

2

)

≤ 2 exp

(
− 1

32
min

{
m2t2

16 ‖B‖2F
,
mt

‖B‖

})
.
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4) Tail bound. Taking union bound for all u ∈ N yields

P

(
sup
u∈N

∣∣∣∣∣
1

m

m∑

i=1

λi(〈xi,u〉2 − 1)

∣∣∣∣∣ ≥ t/2

)

≤ 9n · 2 exp
(
− 1

32
min

{
m2t2

16 ‖B‖2F
,
mt

‖B‖

})
.

Assigning

t =
32 ‖B‖F δ + 64 ‖B‖ δ2

m
:= t1,

we obtain

P

(
sup
u∈N

∣∣∣∣∣
1

m

m∑

i=1

λi(〈xi,u〉2 − 1)

∣∣∣∣∣ ≥
t1
2

)

≤ 9n · 2 exp
(
−2δ2

)
= 2 exp

(
−2δ2 + 2n log 3

)
.

Therefore, we show that, for any δ ≥ 0,

P

(
‖W − EW ‖ ≥ 32 ‖B‖F δ + 64 ‖B‖ δ2

m

)

≤ 2 exp
(
−2δ2 + 2n log 3

)
.

In particular, if δ ≥ √
2 log 3

√
n, we have

P

(
‖W − EW ‖ ≥ 32 ‖B‖F δ + 64 ‖B‖ δ2

m

)

≤ 2 exp
(
−δ2

)
,

which is useful to establish the expectation bound.

5) Expectation bound. For any λ ≥ √
2 log 3

√
n, we have

E ‖W − EW ‖

=

∫ ∞

0

P(‖W − EW ‖ ≥ t)dt

=
32

m

∫ ∞

0

P(‖W − EW ‖ ≥ t) (‖B‖F + 4δ ‖B‖) dδ

≤ 32

m

∫ λ

0

1 · (‖B‖F + 4δ ‖B‖)dδ

+
64

m

∫ ∞

λ

exp
(
−δ2

)
(‖B‖F + 4δ ‖B‖)dδ,

where the first equality follows from the integral identity,

in the second inequality we have let t = (32 ‖B‖F δ +

64 ‖B‖ δ2)/m. We continue by scaling and variable

replacement as follows

E ‖W − EW ‖

≤ 32

m
(‖B‖F λ+ 2 ‖B‖λ2)

+
64

m

∫ ∞

λ

exp
(
−δ2

)(δ ‖B‖F
λ

+ 4δ ‖B‖
)
dδ

≤ 32

m
(‖B‖F λ+ 2 ‖B‖λ2)

+
32

m

∫ ∞

0

exp (−x)

(‖B‖F
λ

+ 4 ‖B‖
)
dx

=
32

m

(
‖B‖F λ+ 2 ‖B‖λ2 +

‖B‖F
λ

+ 4 ‖B‖
)

≤ 32

m

[
‖B‖F λ+ 2 ‖B‖λ2 +

(‖B‖F
λ

+ 4 ‖B‖
)
· λ

2

2

]

≤ 48 ‖B‖F λ+ 128 ‖B‖λ2

m
.

The last inequality follows from λ2 ≥ 2(log 3)n ≥ 2.

Choosing λ =
√
2 log 3

√
n, we obtain

E ‖W − EW ‖ (9)

≤ 48
√
2 log 3 ‖B‖F

√
n+ 256 log 3 ‖B‖n
m

(10)

≤ 72 ‖B‖F
√
n+ 282 ‖B‖n
m

, (11)

which completes the proof.

APPENDIX B

PROOF OF FACTS

A. Proof of Fact 3

In this proof, we slightly improve the result of [45, Lemma

1.12]. By the Taylor expansion, we have

E[exp(s(x2 − E[x2]))] = 1 +

∞∑

k=2

sk E[x2 − E[x2]]k

k!
.

Due to the convexity of xk for x > 0 and k ≥ 1, it follows

from Jensen’s inequality that

(
x2 − E[x2]

2

)k

≤
(
x2 + E[x2]

2

)k

≤ x2k + (E[x2])k

2
.

By using the above inequality and Jensen’s inequality again,

we obtain

E exp(s(x2 − E[x2])) ≤ 1 +

∞∑

k=2

sk2k−1

(
E[x2k] +

(
E[x2]

)k)

k!

≤ 1 +
∞∑

k=2

sk2k E[x2k]

k!
.
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By using Fact 2, if |s| ≤ 1

8σ2 , we have

E exp(s(x2 − E[x2])) ≤ 1 +

∞∑

k=2

sk2k(2σ2)kk!

k!

≤ 1 +

∞∑

k=2

(4sσ2)k

≤ 1 + 32s2σ4

≤ exp

(
(8σ2)2s2

2

)
.

According to the definition of sub-exponential random vari-

able, we have (x2 − E[x2]) ∼ subE(8σ2).

B. Proof of Fact 4

The proof is developed from [44, Theorem 2.8.2] and

[45, Theorem 1.13] with explicit constant. Without loss of

generality, we assume that K = 1, otherwise we can replace

xi by xi/K and t by t/K to verify the general result. By

using the Chernoff bound, for all s > 0, we have

P(Sm ≥ t) ≤ exp(−smt)E exp

(
s

m∑

i=1

aixi

)

= exp(−smt)
m∏

i=1

E exp (saixi) .

According to the definition of sub-exponential, if |s| ≤ 1/|ai|,
we have

E exp(saixi) ≤ exp

(
s2a2i
2

)
.

In order to make the above inequality hold for all i, we have

|s| ≤ 1/ ‖a‖∞. So we have

P(Sm ≥ t) = exp(−smt)

m∏

i=1

exp

(
s2a2i
2

)

= exp

(
‖a‖2

2

2
s2 − smt

)
.

Choosing

s = min

{
mt

‖a‖2
2

,
1

‖a‖∞

}

yields

P (Sm ≥ t) ≤ exp

(
−1

2
min

{
m2t2

K2 ‖a‖2
2

,
mt

K ‖a‖∞

})
.

We can obtain the same bound for P (Sm ≤ −t) by replacing

xi by −xi, which completes the proof.
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