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Localization from Incomplete Euclidean Distance
Matrix: Performance Analysis for the

SVD-MDS Approach
Huan Zhang, Yulong Liu, and Hong Lei

Abstract—Localizing a cloud of points from noisy measure-
ments of a subset of pairwise distances has applications in various
areas, such as sensor network localization and reconstruction of
protein conformations from NMR measurements. In [1], Drineas
et al. proposed a natural two-stage approach, named SVD-MDS,
for this purpose. This approach consists of a low-rank matrix
completion algorithm, named SVD-Reconstruct, to estimate ran-
dom missing distances, and the classic multidimensional scaling
(MDS) method to estimate the positions of nodes. In this paper,
we present a detailed analysis for this method. More specifically,
we first establish error bounds for Euclidean distance matrix
(EDM) completion in both expectation and tail forms. Utilizing
these results, we then derive the error bound for the recovered
positions of nodes. In order to assess the performance of SVD-
Reconstruct, we present the minimax lower bound of the zero-
diagonal, symmetric, low-rank matrix completion problem by
Fano’s method. This result reveals that when the noise level
is low, the SVD-Reconstruct approach for Euclidean distance
matrix completion is suboptimal in the minimax sense; when the
noise level is high, SVD-Reconstruct can achieve the optimal rate
up to a constant factor.

Index Terms—Localization, Euclidean distance matrix, matrix
completion, SVD-Reconstruct, multidimensional scaling, mini-
max rate.

I. INTRODUCTION

IN many signal processing applications we work with
distances because they are easy to measure. In sensor

network localization, for example, each sensor simultaneously
acts as a transmitter and receiver. It receives the signal sent
by other sensors while emitting a signal to its surroundings.
The useful information we can extract is the time-of-arrival
(TOA) or received-signal-strength (RSS) between pairs of
sensors, either of which can be seen as a metric of Euclidean
distance [2]. Another example is the protein conformation
problem. It has been shown by the crystallography commu-
nity that after sequence-specific nuclear magnetic resonance
(NMR) assignments, we can extract the information about
the intramolecular distances from two-dimensional nuclear
Overhauser enhancement spectroscopy (NOESY) [3]. Other
examples include geometry reconstruction of a room from
echoes [4], manifold learning utilizing distances [5], and so
on.

If all the distances between pairs of nodes are available,
then we can use the classic MDS algorithm [6] to recover the
coordinates of nodes. It has been proved that if all distances
are measured without any error, MDS finds the configuration
of nodes exactly. Moreover, MDS tolerates errors gracefully
in practice, as a complete EDM overdetermines the true

solution. Here, it is worth noting that we cannot recover
the absolute coordinates, since rigid transformation (including
rotations, translations, reflections, and their combination) does
not change the EDM.

However, in many practical applications, it seems impossi-
ble to know all the entries of the EDM. In sensor network lo-
calization, for instance, due to the limit of transmission power,
a sensor can only receive the signal emitted by sensors that
are not too far from it. In addition, in most cases, the sensor
has limited precision, which results in measurement error in
distances. Thus, the measured EDM may be incomplete and
noisy. In protein conformation problem, the matter is worse,
because NMR spectroscopy only gives the inaccurate distances
between nearby atoms. This leads to a highly incomplete EDM
with noise. Therefore, it is desirable to develop methods which
can localize a cloud of points from an incomplete and noisy
EDM.

Generally speaking, it is a difficult task to infer missing
entries of an arbitrary matrix. However, some fundamental
properties of the EDM make the search for solutions feasible.
It was shown in [7] that the rank of an EDM is at most d+ 2,
where d denotes the dimension of the space in which nodes
live. In other words, in most applications including sensor
network localization and protein conformation problem, the
rank of the EDM is at most five, as both sensors and atoms are
in a three-dimensional space, although we may have thousands
of sensors or atoms. By this remarkable rank property, we
can solve the EDM completion problem via low-rank matrix
completion approaches. Another important property of the
EDM given in [8] states that a necessary condition for a matrix
D is an EDM is that − 1

2JDJ is positive semidefinite (PSD),
where

J := I − 1

n
11T (1)

is the geometric centering matrix, n denotes the number of
sensors, 1 stands for the column vector with all ones, and I is
the identity matrix. The PSD property opens another way to
solve the EDM completion problem. Most approaches in the
literature utilize at least one of these two properties to localize
the positions of nodes.

There have been a number of approaches proposed to
determine the coordinates of nodes from incomplete EDMs in
the past several decades. These methods can be roughly put
into three groups based on their core ideas. The first group
mainly exploits the rank property of the EDM. This group
consists of algorithms that try first to estimate the missing
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distances by utilizing the rank property of the EDM and then
use the classic MDS to find the positions from the recon-
structed distance matrix. SVD-MDS [1] and OptSpace-MDS
[9] are two examples of this class where SVD-Reconstruct
[1] and OptSpace [10] are employed for EDM completion,
respectively. The algorithms in the second group formulate
the localization problem as a non-convex optimization problem
and then employ different relaxation schemes to solve it. An
example of this type is relaxation to a semidefinite program-
ming [11]–[14]. The last group is known as metric MDS [15]–
[17]. The algorithms in this group do not try to complete the
observed EDM, but directly estimate the coordinates of nodes
from the incomplete EDM. Thus most efforts are paid to search
for suitable cost functions and fast optimization algorithms.

Among the above mentioned methods, SVD-MDS is shown
to be simple and (to some extent) effective [1]. However,
theoretical understanding of this method is far from satisfac-
tory. In this paper, we lay a solid theoretical foundation for
this approach. More precisely, we establish error bounds for
the recovered EDM by SVD-Reconstruct in both expectation
and tail forms. Based on these results, the error bound for
recovered coordinates is derived. To show the optimality of the
SVD-Reconstruct approach for EDM completion, we deduce
the minimax lower bound of the zero-diagonal symmetric
low-rank matrix completion problem using Fano’s method
[18], and it reveals that when the noise level is low, SVD-
Reconstruct is minimax suboptimal; when the noise level is
high, SVD-Reconstruct can achieve the optimal rate up to a
constant factor.

The remainder of the paper is organized as follows. In
Section II, we formulate the problem and introduce the SVD-
MDS approach. Section III is devoted to giving a performance
analysis for the SVD-MDS method. Section IV presents the
minimax lower bound of the zero-diagonal symmetric low-
rank matrix completion problem. In Section V, we conclude
the paper.

II. LOCALIZATION VIA SVD-MDS

In this section, we formulate the localization problem and
introduce the SVD-MDS approach.

A. Problem Formulation

Given a set of n nodes x1,x2, . . . ,xn ∈ Rd, the EDM of
xi’s, denoted by D, is defined as

Dij = ‖xi − xj‖22, i, j = 1, . . . , n.

To formalize the process of sampling the entries of D, we
suppose that there is a non-zero probability pij that the
distance between nodes i and j is measured. For simplicity,
we let all pij’s equal to a constant p. The observations are
given as the n× n matrix Y whose entries are

Yij =

{
Dij + Eij with probability p,

? with probability 1− p,

where the ? means that the element is unknown and Eij’s
capture the effect of measurement errors, which are commonly

Algorithm 1 SVD-MDS
Input: incomplete EDM Y , observation probability p
Output: coordinates X of nodes
1: Let S = 1

pY

2: Do SVD to S: UΣV T = svd(S)
3: Calculate D̃ by keeping the largest r sigular values of S

and the corresponding sigular vectors: D̃ = UrΣrV
T
r

4: Symmetrization: D̂ = 1
2 (D̃ + D̃T )

5: Do SVD to − 1
2JD̂J : QΛQT = − 1

2JD̂J

6: return X = Λ
1/2
d Qd

assumed to be independent Gaussian random variables with
mean zero and variance ν2. Putting this in matrix form yields

Y = Ω� (D + E), (2)

where � denotes the Hadamard product (i.e., point-wise
matrix multiplication), Ω is a symmetric mask matrix whose
entries on or above the diagonal are independent Bernoulli
random variables with parameter p, i.e.,

Ωij =

{
1, with probability p
0, with probability 1− p when i ≤ j,

and E is a symmetric noise matrix whose entries on or above
the diagonal are independent Gaussian random variables, i.e.,
Eij ∼ N(0, ν2) when i ≤ j. The goal is to localize the cloud
of points from Y .

B. SVD-MDS Approach

The SVD-MDS approach is a two-stage method for local-
ization. In the first stage, it uses SVD-Reconstruct to complete
the EDM. This is done as follows. SVD-Reconstruct first
constructs an unbiased estimator S of D with entries

Sij =

{
Dij+Eij−γij(1−p)

p with probability p,
γij with probability 1− p,

where γij stands for the “best guess” for the unknown square
distances Dij . Here, we always assume that γij = 0.

The next step of SVD-Reconstruct is to obtain the best
rank-r approximation D̃ to S (r is the rank of D and is
at most d + 2). This can be done by taking the singular
value decomposition (SVD) and keeping the largest r singular
values and corresponding singular vectors. The original SVD-
Reconstruct approach simply returns D̃ as an approximation
of the true D. In order to use the classic MDS for localization,
we take a symmetrized version of D̃ as an estimate of D, i.e.,

D̂ =
1

2

(
D̃ + D̃T

)
.

In the second stage, the classic MDS is employed to
localize the nodes. The process is as follows. We first com-
pute − 1

2JD̂J , where J is defined in (1), and then take
SVD to − 1

2JD̂J . Note that both J and D̂ are symmet-
ric, thus − 1

2JD̂J = QΛQT . The classic MDS simply
returns Λ

1/2
d Qd as the estimated coordinate matrix, where

Qd ∈ Rn×d contains d singular vectors corresponding to the
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d largest singular values and Λd is the d× d diagonal matrix
with the d largest singular values in the diagonal.

The SVD-MDS approach is summarized in Algorithm 1.

III. PERFORMANCE ANALYSIS

In this section, we present a detailed analysis for the SVD-
MDS approach. We first establish the error bounds for EDM
completion by SVD-Reconstruct in both expectation and tail
forms, and then derive the error bound for coordinate recovery
by MDS.

A. Expectation Error Bound for EDM Completion

In this subsection, we state the expectation version of EDM
completion error via SVD-Reconstruct. Before introducing our
main result, we require the following incoherence condition
[19]:

Dij ≤ ζ for any i, j ≤ n, (3)

which means that each entry of D is bounded by ζ. Our result
shows that if the expected number of observed entries m is
large enough and the incoherence condition (3) is satisfied,
then the average error per entry by SVD-Reconstruct can be
made arbitrarily smaller than ζ + ν.

Theorem 1 (Expectation form). Consider the model described
in (2). Let m denote the expected number of observed entries,
i.e., m := pn2. If m ≥ n log n and the incoherence condition
(3) is satisfied, then

1

n
E‖D̂ −D‖F ≤ C

√
rn

m
(ζ + ν), (4)

where C is an absolute constant1 and ‖X‖F :=√
trace(XTX) denotes the Frobenius norm of X .

Remark 1. Note that the left side of (4) measures the average
error per entry of D:

1

n
‖D̂ −D‖F =

 1

n2

n∑
i=1

n∑
j=1

|D̂ij −Dij |2
1/2

.

Thus, if m is large enough, then the average error per entry
can be made arbitrarily smaller than ζ + ν.

Remark 2. When the noise level is high, i.e., ν ≥ ζ, the error
bound becomes

1

n
E‖D̂ −D‖F ≤ C

√
rn

m
ν.

This bound, as we will see later (Theorem 4), is minimax
optimal up to a constant factor. However, when the noise level
is low, i.e., ν < ζ, we have

1

n
E‖D̂ −D‖F ≤ C

√
rn

m
ζ,

which implies that the bound is minimax suboptimal in this
case.

1We use C,C′, c, c′, and c′′ to denote generic absolute constants, whose
value may change from line to line.

Remark 3. Our proof of Theorem 1 is motivated by [19],
where the authors presented a performance analysis for (2)
under the assumption that both Ω and E have independent
and identical distributed (i.i.d.) entries. However, in the lo-
calization problem (2), both Ω and E are symmetric random
matrices, which makes the analysis more difficult. Although
our result (Theorem 1) has the similar form as that in [19],
the constant C may be different.

The proof of Theorem 1 makes use of some results from
random matrix theory. For convenience, we include them in
Appendix A.

Proof of Theorem 1. Note first that the error of D̂ can be
bounded by the error of D̃. Indeed,

E
∥∥D̂ −D

∥∥
F

= E
∥∥∥1

2
(D̃ + D̃T )−D

∥∥∥
F

=
1

2
E
∥∥(D̃ −D) + (D̃T −DT )

∥∥
F

≤ 1

2

(
E
∥∥D̃ −D

∥∥
F

+ E
∥∥D̃T −DT

∥∥
F

)
≤ E

∥∥D̃ −D
∥∥
F
.

The first equality comes from the definition of D̂. The second
equality is based on the fact that D is a symmetric matrix.
The next inequality follows from the triangle inequality. The
last inequality uses the fact that the Frobenius norm of any
matrix equals to the Frobenius norm of its transpose. Since
both D̃ and D have rank r, D̃ − D has rank at most 2r.
Then we have

‖D̃ −D‖F ≤
√

2r‖D̃ −D‖,

where ‖X‖ denotes the spectral norm of X , i.e., the largest
singular value of X . It follows from the triangle inequality
that

‖D̃ −D‖ ≤ ‖D̃ − p−1Ω� (D + E)‖+ ‖p−1Ω� (D + E)−D‖
≤ 2p−1‖Ω� (D + E)− pD‖
≤ 2p−1‖Ω�D − pD‖+ 2p−1‖Ω� E‖.

The second inequality holds because D̃ is the best rank-r
approximation to p−1Ω � (D + E). Therefore, it suffices to
bound E‖Ω�D − pD‖ and E‖Ω� E‖.

To bound E‖Ω � D − pD‖, let Ω = Ωu + Ωl, where
Ωu is the upper-triangle matrix containing the entries of Ω
on or above the diagonal and Ωl is the lower-triangle matrix
containing the entries of Ω below the diagonal. Let Ω′ be a
random matrix (independent of Ω and E) with i.i.d. entries
satisfying the following distribution: P{Ω′ij = 1} = p and
P{Ω′ij = 0} = 1 − p. Similar to Ωu and Ωl, we also define
Ω′u, Ω′l,Du, and Dl. Then, E

∥∥Ω�D−pD
∥∥ can be bounded
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as follows:

E
∥∥Ω�D − pD

∥∥
= E

∥∥(Ωu �D − pDu) + (Ωl �D − pDl)
∥∥

≤ E
∥∥Ωu �D − pDu

∥∥+ E
∥∥Ωl �D − pDl

∥∥
= E

∥∥Ω′u �D − pDu

∥∥+ E
∥∥Ω′l �D − pDl

∥∥
= E

∥∥(Ω′u �D − pDu) + E(Ω′l �D − pDl)
∥∥+

E
∥∥(Ω′l �D − pDl) + E(Ω′u �D − pDu)

∥∥
≤ E

∥∥(Ω′u �D − pDu) + (Ω′l �D − pDl)
∥∥+

E
∥∥(Ω′l �D − pDl) + (Ω′u �D − pDu)

∥∥
= 2E

∥∥Ω′ �D − pD
∥∥.

The first inequality is a consequence of the triangle inequality.
The second equality holds because Ωu and Ωl share the same
distribution with Ω′u and Ω′l, respectively, so the expectations
are equal. The second inequality results from Jensen’s inequal-
ity. Since now the mask matrix Ω′ has i.i.d. random entries, we
can bound E

∥∥Ω′�D−pD∥∥ using standard tools from random
matrix theory. We proceed by using symmetrization technique
(Lemma 1) first and then contraction principle (Lemma 2):

E
∥∥Ω′ �D − pD

∥∥ ≤ 2E‖R�Ω′ �D
∥∥ ≤ 2ζE

∥∥R�Ω′
∥∥,

where R is the matrix whose entries are independent symmet-
ric Bernoulli random variables (i.e., Rij = 1 or Rij = −1
with probability 1/2). It is clear that the random matrix R�Ω′

has i.i.d. entries. Therefore, E
∥∥R � Ω′

∥∥ can be bounded by
Seginer’s theorem (Lemma 3):

E
∥∥R�Ω′

∥∥ ≤ C1

(
Emax

i
‖(R�Ω′)i·‖2+Emax

j
‖(R�Ω′)·j‖2

)
,

where (R � Ω′)i· and (R � Ω′)·j denote the i-th row and
the j-th column of R�Ω′ respectively and C1 is an absolute
constant.

It is not hard to see that ‖(R�Ω′)i·‖22 follows the binomial
distribution with parameter (n, p). By Jensen’s inequality and
Lemma 4, we have

E max
1≤i≤n

‖(R�Ω)′i·‖2 ≤
(
E max

1≤i≤n
‖(R�Ω)′i·‖22

)1/2 ≤ c√np.
Similarly,

E max
1≤j≤n

‖(R�Ω)′·j‖2 ≤ c
√
np.

Therefore,
E
∥∥R�Ω′

∥∥ ≤ C√np,
where C is an absolute constant. Thus, the first term can be
bounded by

E‖Ω�D − pD‖ ≤ Cζ√np,

where C is a constant number.
The second term E‖Ω�E‖ can be bounded similarly. Define

E ′, E ′u, E ′l, Eu, and E l in the same way as Ω′, Ω′u, Ω′l, Ωu,
and Ωl. Then we have

E‖Ω� E‖ ≤ E‖Ω′u � E ′u‖+ E‖Ω′l � E ′l‖ ≤ 2E‖Ω′ � E ′‖.

The first inequality comes from the triangle inequality, and
the second from Jensen’s inequality. Since Ω′ � E ′ has i.i.d.
entries, Seginer’s theorem gives

E
∥∥Ω′�E ′∥∥ ≤ C1

(
Emax

i
‖(Ω′�E ′)i·‖2+Emax

j
‖(Ω′�E ′)·j‖2

)
.

Here, Emaxi ‖(Ω′ � E ′)i·‖2 can be bounded by the second
part of Lemma 4:

Emax
i
‖(Ω′ � E ′)i·‖2 ≤ C ′

√
np.

The same argument holds for Emaxj ‖(Ω′ � E ′)·j‖2. Thus,
we conclude that

E‖Ω� E‖ ≤ C ′√np.

Putting all these together, we obtain the desired result:

1

n
E‖D̂ −D‖F ≤ C

√
rn

m
(ζ + ν).

B. Tail Bound for EDM Completion
In this subsection, we derive the tail bound for the EDM

completion error, which shows that the error probability de-
creases fast as the error increases.

Theorem 2 (Tail Form). Consider the model described in (2).
If the incoherence condition (3) is satisfied, then for any t ≥ 0,

P
{
‖D̂ −D‖F ≥ t

}
≤

n exp
[
− c ·min

( mt2

n3r(ζ + ν)2
,

mt

n2
√
r(ζ + ν)

)]
, (5)

where c is an absolute constant.

Proof. We first proceed similarly as in the proof of Theorem
1: ∥∥D̂ −D

∥∥
F
≤
∥∥D̃ −D

∥∥
F
≤
√

2r
∥∥D̃ −D

∥∥
≤ 2
√

2rp−1
∥∥Ω� (D + E)− pD

∥∥.
So it suffices to bound the tail of

∥∥Ω� (D + E)− pD
∥∥. Let

A := Ω � (D + E) − pD, and let Aij denote the entry of
A on the i-th row and j-th column. We define the following
1
2n(n+ 1) matrices using Aij : When i < j,

Zij = Aij(eie
T
j + eje

T
i ),

and when i = j,
Zii = Aijeie

T
i ,

where ei is the standard basis vector with a one in position i
and zeros elsewhere. Clearly, {Zij} is a sequence of centered,
independent, self-adjoint random matrices. Moreover, for k =
2, 3 . . . , when i < j, we have

EZk
ij = EAk

ij(eie
T
j + eje

T
i )k

� |EAk
ij | · (2eieTi + 2eje

T
j + eie

T
j + eje

T
i )

� E
[
p ·
∣∣(1− p)Dij + Eij

∣∣k + (1− p) ·
∣∣− pDij

∣∣k]
· (2eieTi + 2eje

T
j + eie

T
j + eje

T
i )

� p · E
[∣∣(1− p)Dij + Eij

∣∣k +
∣∣Dij

∣∣k]
· (2eieTi + 2eje

T
j + eie

T
j + eje

T
i ),
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where A � B means that B−A is positive semidefinite. The
first inequality holds because (eie

T
j + eje

T
i )k has periodicity

for k ≥ 2, and we can verify the inequality by a direct calcu-
lation. The second inequality results from Jensen’s inequality
and the fact that the matrix 2eie

T
i + 2eje

T
j + eie

T
j + eje

T
i

is positive semidefinite. The third inequality again uses the
fact that the matrix 2eie

T
i + 2eje

T
j + eie

T
j + eje

T
i is

positive semidefinite. Note that Eij is a normal variable
Eij ∼ N(0, ν2), and hence it is sub-exponential, with its
ψ1 norm bounded by ‖Eij‖ψ1

≤ c1ν. Then the ψ1 norm of
(1− p)Dij + Eij can be bounded by the triangle inequality:

‖(1−p)Dij+Eij‖ψ1 ≤ ‖(1−p)Dij‖ψ1+‖Eij‖ψ1 ≤ c2(ζ+ν).

Now, we can calculate the moment of (1− p)Dij +Eij using
the Integral identity (Lemma 5) and the tail property of sub-
exponential random variables:

E|(1− p)Dij + Eij |k

=

∫ ∞
0

P
{
|(1− p)Dij + Eij |k ≥ u

}
du

=

∫ ∞
0

P
{
|(1− p)Dij + Eij | ≥ t

}
ktk−1dt

≤
∫ ∞

0

exp(1− t/K1)ktk−1dt

≤
∫ ∞

0

exp(1− s)kKk
1 s
k−1ds

= ekKk
1 Γ(k)

= eKk
1 k!,

where K1 = c3(ζ + ν) and c3 > 0 is an absolute constant. It
follows that when i < j we have

EZk
ij � p(eKk

1 k! + ζk)(2eie
T
i + 2eje

T
j + eie

T
j + eje

T
i )

� ep
[
c4(ζ + ν)

]k
k!(2eie

T
i + 2eje

T
j + eie

T
j + eje

T
i ).

where c4 > 0 is an absolute constant. Similarly, when i = j,
we have

EZk
ij � ep

[
c4(ζ + ν)

]k
k!(eie

T
i )k

� ep
[
c4(ζ + ν)

]k
k!(2eie

T
i + 2eje

T
j + eie

T
j + eje

T
i ).

Putting them together, we obtain that when i ≤ j,

EZk
ij � ep

[
c4(ζ + ν)

]k
k!(2eie

T
i + 2eje

T
j + eie

T
j + eje

T
i ).

The above inequality implies that the sequence {Zij} satisfies
the condition of Matrix Bernstein inequality (Lemma 15).
Moreover, we have

R = c4(ζ + ν),

and

σ2 =
∥∥∥∑
i≤j

2ep
[
c4(ζ + ν)

]2
(2eie

T
i + 2eje

T
j + eie

T
j + eje

T
i )
∥∥∥

= 2ep
[
c4(ζ + ν)

]2∥∥∥∑
i≤j

(2eie
T
i + 2eje

T
j + eie

T
j + eje

T
i )
∥∥∥

≤ 2ep
[
c4(ζ + ν)

]2∥∥∥ ∑
1≤i,j≤n

(2eie
T
i + 2eje

T
j + eie

T
j + eje

T
i )
∥∥∥

≤ 2ep
[
c4(ζ + ν)

]2 · 6n
= c5np(ζ + ν)2.

Thus, applying the matrix Bernstein’s inequality (Lemma 15)
to
∑
i≤j Zij , we obtain that for any u ≥ 0,

P
{∥∥∥∑

i≤j

Zij

∥∥∥ ≥ u} ≤
2n exp

[
− c ·min

( u2

np(ζ + ν)2
,

u

ζ + ν

)]
.

Letting u = pt

2
√

2r
, we have

P
{

2
√

2rp−1
∥∥∥∑
i≤j

Zij

∥∥∥ ≤ t}
≥ 1− 2n exp

[
− c ·min

( pt2

rn(ζ + ν)2
,

pt√
r(ζ + ν)

)]
.

Recalling that ‖D̂−D‖F ≤ 2
√

2rp−1
∥∥∥∑i≤j Zij

∥∥∥, we have

P
{
‖D̂ −D‖F ≥ t

}
≤ P

{
2
√

2rp−1
∥∥∥∑

ij

Zij

∥∥∥ ≥ t}
≤ 2n exp

[
− c ·min

( pt2

rn(ζ + ν)2
,

pt√
r(ζ + ν)

)]
= 2n exp

[
− c ·min

( mt2

rn3(ζ + ν)2
,

mt

n2
√
r(ζ + ν)

)]
.

The last equality comes from the definition of m = pn2. This
completes the proof.

C. Error Bound for Gram Matrices after MDS

Once we have established the error bounds for EDM com-
pletion, it is convenient to utilize them to derive a bound for
the coordinate recovery error. We adopt the following metric
to measure the reconstruction error [20]:

dist(X, X̂) =
1

n
‖JXTXJ − JX̂T X̂J‖F , (6)

where X is the true coordinate matrix having each sensor
coordinate as a column, X̂ is the estimated coordinate matrix
having each estimated sensor coordinate as a column, and J is
the geometric centering matrix defined in (1). Notice that the
distances have lost some information such as orientation, since
rigid transformation (rotation, reflection and translation) does
not change the pairwise distances. We choose (6) as the metric
of recovery error because it has the following property: (a) It
is invariant under rigid transformation; (b) dist(X, X̂) = 0
implies that X and X̂ is equivalent up to an unknown rigid
transformation. Then we have following result.

Theorem 3 (Coordinate recovery error). Let X̂ be the esti-
mated location matrix by SVD-MDS. Then the reconstruction
error has the following upper bound:

E dist(X, X̂) ≤ C
√
dn

m
(ζ + ν), (7)

where d denotes the dimension of the space in which nodes
live and C is a constant number same as Theorem 1.

Remark 4. We mention that our Theorems 1–3 also hold when
we the noise is sub-Gaussian, i.e., the entries on or above



DRAFT 6

the diagonal of E are independent, identical distributed sub-
Gaussian random variables with sub-Gaussian norm ν. The
proof techniques are essentially the same.

Proof. The proof of Theorem 3 is motivated by [20]. By
definition of dist(X, X̂), we have

dist(X, X̂) =
∥∥J(XTX − X̂T X̂)J

∥∥
F

≤
√

2d
∥∥J(XTX − X̂T X̂)J

∥∥,
where we have used the fact that the matrix JXTXJ −
JX̂T X̂J has rank at most 2d. Let M = − 1

2JD̂J . The
spectral norm can be bounded by the triangle inequality as
follows:∥∥J(XTX−X̂T X̂)J

∥∥ ≤ ∥∥JXTXJ−M
∥∥+
∥∥M−JX̂T X̂J

∥∥.
Recall that the EDM has the following property [20]:

−1

2
JDJ = JXTXJ .

Thus, the first term can be written as∥∥JXTXJ−M
∥∥ =

∥∥∥−1

2
JDJ+

1

2
JD̂J

∥∥∥ =
1

2

∥∥J(D̂−D)J
∥∥.

By submultiplicity of spectral norm and the fact that ‖J‖ = 1,
the right-hand side is bounded by

1

2

∥∥J(D̂ −D)J
∥∥ ≤ 1

2
‖J‖‖D̂ −D‖‖J‖ =

1

2
‖D̂ −D‖.

To bound the second term, note that X̂T X̂ is the best rank-d
approximation to M . Thus, for any rank-d matrix A, we have

‖M − X̂T X̂‖ ≤ ‖M −A‖.
Now the second term can be bounded as follows:∥∥M − JX̂T X̂J

∥∥ =
∥∥M − X̂T X̂

∥∥ ≤ ∥∥M +
1

2
JDJ

∥∥
=

1

2

∥∥J(D̂ −D)J
∥∥ ≤ 1

2
‖D − D̂‖,

where the first equality uses the fact that JX̂T = X̂T (see
[20, pp. 3]), the first inequality comes from letting A =
− 1

2JDJ , and the last inequality uses again the submultiplicity
of spectral norm and ‖J‖ = 1. Combining these two terms
together, we have∥∥JXTXJ − JX̂T X̂J

∥∥ ≤ ‖D − D̂‖.
The conclusions follows by a simple application of Theorem
1:

Edist(X, X̂) ≤
√

2dE‖D − D̂‖ ≤ C
√
dn

m
(ζ + ν).

D. Comparison and Discussion
In this section, we make some comparisons between our

results and related works in the literature. First, we compare
our results (Theorem 1) with that established in [1] for the
SVD-Reconstruct approach, and show that our error bound
has faster descent rate than that in [1]. Next, we compare
our Theorem 2 with the results in [14], where the authors
established a high probability error bound for a semidefinite
programming approach, and conclude that the two results have
the same order of error rate.

1) Comparison with [1]: We begin by comparing our
results (Theorem 2) with that in [1]. For convenience, we
restate the results in [1] as the following proposition:

Proposition 1 (Theorem 2, [1]). Let D̃ be the estimated dis-
tance matrix by SVD-Reconstruct without the symmetrization
step. Then, with probability at least 1− 1/(2n),

‖D − D̃‖F ≤ 12σS
√

2n+ 8

√
σS
√

2n‖D‖F , (8)

where σ2
S denotes an upper bound for the variance of the

entries of D, and is bounded by

σ2
S ≤

2

p
max
i,j

(
D2
ij + ν2

)
. (9)

Note that in (8) there is no r appearing because the authors
fixed that r = 4, and in (9) there is no γij as it is assumed
that γij = 0 in this paper.

To compare with our bound, substituting (9) into (8) and
noting that ‖D‖F ≤ nζ, we see that (8) means that

1

n
‖D − D̃‖F ≤ C1

ζ + ν
√
np

+ C2
ζ + ν
4
√
np
≤ C3

ζ + ν
4
√
np

.

The last inequality holds because we have assumed that np ≥
log n > 1 when n is large enough (e.g., n ≥ 3). As a result,
Proposition 1 implies

P
{ 1

n
‖D̂ −D‖F ≤ C3

ζ + ν
4
√
np

}
≥ 1− 1

2n
. (10)

In our Theorem 2, when t ≤ (ζ + ν)n
√
r, the tail bound

becomes

P
{
‖D̂ −D‖F ≥ t

}
≤ n exp

[
− cmt2

n3r(ζ + ν)2

]
,

Assume that m ≥ Cn log n. Then, choosing

t = (ζ + ν)n
√
r ·
√
Cn log n

m
≤ (ζ + ν)n

√
r,

we obtain

P
{ 1

n
‖D̂ −D‖F ≥ (ζ + ν)

√
Crn log n

m

}
≤ n exp

(
− cC log n

2

)
.

If C is sufficiently large such that cC ≥ 4, the last term is
bounded by 1/n. Therefore,

P
{ 1

n
‖D̂ −D‖F ≤ (ζ + ν)

√
Cr log n

np

}
≥ 1− 1

n
. (11)

Now comparing (10) with (11), we conclude that our bound
has faster descent rate (with respect to n) than that in [1],
provided np ≥ (log n)2.
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2) Comparison with [14]: In the paper [14], Ding and
Qi proposed a semidefinite programming approach to recover
EDMs. They also presented a performance analysis for their
method. Their theoretical results (Theorem 1) state that the
following event

‖D̂ −D‖2F
∆

≤ C(C4ζ
2 + C5ν

2ω2)
r∆ log(2n)

nm′

holds with probability at least 1− 2
n , where ∆ = n(n− 1)/2,

ω2 is the maximum of Ω�D, and m′ denotes the number of
observed entries. Substituting the definitions of ∆ and ω into
the above relation, we obtain

P
{ 1

n
‖D̂ −D‖F ≤ C6

√
ζ2 + ν2ω2

√
rn log n

m′

}
≥ 1− 1

n
.

(12)
Considering the observation model in this paper, we may have
m′ ≈ m = pn2. Comparing (11) and (12), if we ignore the
effect of ω2, the two results are of the same order of error rate.
It is worth pointing out that the recovery procedure in [14] is
totally different from the SVD-MDS approach, and the former
is much more computationally expensive than the latter.

IV. MINIMAX LOWER BOUND

Given a statistical estimation problem, one may want to
find the “best” estimator. For this purpose, the following
question is worth discussing: what is the best performance
for a certain estimation problem achievable by any procedure?
The minimax risk answers this question. By definition, it refers
to the smallest worst case error among all estimators. Thus,
it describes the intrinsic property of the estimation problem
under consideration, and gives us insights into fundamental
limitations of performance. In this section, we derive the
minimax lower bound of the zero-diagonal symmetric matrix
completion problem, and provide a way to evaluate the per-
formance of a certain matrix completion procedure.

In the zero-diagonal symmetric matrix completion scheme,
we observe an incomplete and noisy matrix Y and aim to find
an estimator which maps our observation Y to an estimate D̂
of the true D. The performance (or estimate error) is measured
via the mean Frobenius norm E‖D̂ −D‖F . Note that given
an estimator, the estimate error relies on the true matrix D,
which is fixed but unknown. Let D(r) denote the set of all
zero-diagonal symmetric matrices with rank at most r. Thus,
a reasonable performance measure for a certain estimator D̂
is the worst case error:

sup
D∈D(r)

E‖D̂ −D‖F .

Then an optimal estimator under this metric gives the minimax
risk, which is defined as

R := inf
D̂

sup
D∈D(r)

E‖D̂ −D‖F , (13)

where we take the supremum over all zero-diagonal symmetric
matrices with rank at most r and the infimum is taken over
all estimators D̂.

The minimax problem (13) cannot be solved in general. We
instead try to derive a lower bound on the minimax risk R

using Fano’s method [21]. The lower bound on the minimax
risk R allows us to evaluate the performance of a certain
estimator. In other words, if the worst case error of a given
estimator is on the same order of the minimax risk R, we can
say that the estimator is optimal under this metric. Therefore,
efforts paid to search estimators with better performance will
become meaningless.

Theorem 4. The minimax lower bound for the zero-diagonal
symmetric low-rank matrix completion problem is

R ≥ nν

64

√
rn

m
. (14)

Remark 5. Note that the zero-diagonal symmetric low-rank
matrix completion problem is not equivalent to the EDM
completion problem. Since a zero-diagonal symmetric low-
rank matrix may not be an EDM. Nevertheless, our result
(Theorem 4) sheds considerable light on the EDM completion
problem, since any EDM must be a zero-diagonal symmetric
low-rank matrix.

As noted in Remark 2, the SVD-Reconstruct approach only
achieve the minimax rate up to a constant factor under high
noise level (ν ≥ ζ). When the noise level is low (ν < ζ),
this approach is minimax suboptimal. Therefore, in practical
applications, when the noise level is low, it is sensible to
develop better approaches to complete the EDM.

To verify this observation, we compare SVD-Reconstruct
with another matrix completion algorithm: OptSpace [10]. In
our simulation, the points are in d = 3 dimensional space
and the number of points is set to be 50. Each coordinate
of points uniformly distributes in (−1, 1). To generate the
incomplete EDM, we set the observation probability p = 0.5.
After that, we add zero-mean Gaussian noise. We compare
the performance of SVD-Reconstruct and OptSpace under
different noise levels. For each noise level, we run 20 trials and
take the average completion error as a metric for comparison.
The completion error is calculated via the Frobenius norm of
the error matrix.

Figure 1 illustrates our results. We can see that when the
standard deviation of noise is low (i.e., below ν = 2.3 approx-
imately), the average completion error of SVD-Reconstruct is
larger than that of OptSpace. The simulation result agrees with
our theoretical analysis that SVD-Reconstruct is suboptimal
under low noise levels.

Proof of Theorem 4. The proof is divided into two steps. First,
we reduce the estimation problem to a hypothesis testing
problem. The point lies in that the minimax risk can be lower
bounded by the probability of error in a hypothesis testing
problem. Once this is done, we will use some well-established
tools (e.g., Fano’s inequality) in information theory to establish
a lower bound on the error probability of the testing problem,
and obtain the lower bound for the minimax rate. Let us now
give a detailed proof.
Step 1: From estimation to testing. In this step, we consider
a finite subset D0 ⊂ D(r) which is a δ-packing of D(r).
Here, δ-packing means that for any two distinct matrix Du,
Dv ∈ D0,

‖Du −Dv‖F ≥ δ.
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Fig. 1. Performance comparison of SVD-Reconstruct and OptSpace under
low noise levels.
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Fig. 2. Example of a δ-packing of a set. Here, D0 = {D1, D2, D3, D4, D5}

See Fig. 2 for an example. Given the δ-packing set, we assume
that the complete true matrix D in (2) is taken uniformly at
random (u.a.r.) from D0.

Now with these setup, we obtain the following hypothesis
testing problem: Given the observed matrix Y , we need to
determine which Du ∈ D0 is the groundtruth D. Note that
here we do not specify a test function Φ : Y → Du ∈ D0.
Lemma 16 gives us the relationship between minimax risk R
and the error probability P{Φ(Y ) 6= D}:

R ≥ δ

2
inf
Φ

P{Φ(Y ) 6= D},

where the infimum is taken over all testing functions. It
remains to bound the error probability P{Φ(Y ) 6= D}. We
will use Fano’s inequality to do this.
Step 2: Bound error probability. Fano’s inequality (Lemma
17 and 18) gives a lower bound for the error probability. But if
we want to apply Lemma 18 in our zero-diagonal symmetric
low-rank matrix completion model (2), we must consider the
effect of Ω. Different from other estimation problems, here

Ω is random and unfixed. As a result, Lemma 18 cannot be
applied directly unless we condition on Ω:

P(D̂ 6= D|Ω) ≥ 1− I(D;Y |Ω) + log 2

log |D0|
.

By the law of total probability and taking expectation with
respect to Ω on both sides of the above inequality, we get

P(D̂ 6= D) = EΩP(D̂ 6= D|Ω) ≥ 1−EΩI(D;Y |Ω) + log 2

log |D0|
.

Substituting this into Lemma 16, the minimax rate R has the
following lower bound:

R ≥ δ

2

(
1− EΩI(D;Y |Ω) + log 2

log |D0|

)
. (15)

Let us now discuss how to choose a suitable δ. Intuitively,
if we let δ → 0, the right-hand side of (15) becomes trivial, as
it tends to be zero as well. Therefore, δ should be sufficiently
large. In practice, a common approach is to choose the largest
δ > 0 which makes the mutual information small enough, e.g.,

EΩI(D;Y |Ω) + log 2

log |V|
≤ 1

2
. (16)

In this case, the minimax risk is lower bounded by R ≥ δ
4 .

In order to bound the left-hand side of (16), we need a
lower bound for the cardinality of the δ-packing set D0 and
an upper bound for the mutual information I(D;Y |Ω). For
the cardinality of D0, Lemma 20 establishes the desired result:

|D0| ≥ exp
( rn

128

)
.

To establish an upper bound for the mutual information,
a typical method involves the Kullback-Leibler divergence
(KL-divergence). Before doing this, let us introduce some
necessary notations first. Let PY denote the distribution of Y
conditioned on Ω, Pu denote the distribution of Y conditioned
on Ω and D = Du ∈ D0, and DKL(f‖g) denote the
KL-divergence of distribution f and g. Then the mutual
information can be bounded as follows:

I(D;Y |Ω) =
1

|D0|
∑

u:Du∈D0

DKL(Pu‖PY )

≤ 1

|D0|2
∑

u,v:Du∈D0,Dv∈D0

DKL(Pu‖Pv),

where the equality can be derived by a standard calculation,
and the inequality is due to the convexity of the − log function.
It remains to calculate the K-L divergence between Pu and Pv .
Conditioning on Ω, either Pu or Pv is a shifted version of the
distribution of E . Here, we need to be careful, since the noise
matrix E is a symmetric matrix, which results in that some
of the entries Eij’s are dependent. An iterative application of
Lemma 21 shows that the K-L divergence between Pu and Pv
is totally determined by the independent part:

DKL(Pu‖Pv) = DKL(P ′u‖P ′v),

where P ′u denotes the distribution of {Yij : i ≤ j} condition-
ing on Ω and D = Du and P ′v denotes the distribution of
{Yij : i ≤ j} conditioning on Ω and D = Dv .



DRAFT 9

Since now both P ′u and P ′v are multivariate normal dis-
tributions with independent entries of different mean and
same variance, the KL-divergence between them can be easily
computed:

DKL(P ′u‖P ′v) =
1

2ν2

∥∥Ω�Du �U −Ω�Dv �U
∥∥2

F

≤ 1

2ν2

∥∥Ω� (Du −Dv)
∥∥2

F
,

where U is a matrix which takes value 1 on or above the
diagonal, and 0 otherwise. Taking expectation to Ω both sides,
we get

EΩDKL(Pu‖Pv) ≤
1

2ν2
EΩ

∥∥Ω� (Du −Dv)
∥∥2

F

=
p

2ν2

∥∥Du −Dv

∥∥2

F
.

Thus the minimax risk R can be bounded by:

R ≥ δ

2
P{Φ(Y ) 6= D} ≥ δ

2

(
1− EΩI(D;Y |Ω) + log 2

log |D0|

)
≥ δ

2

[
1−

EΩ

(
1
|D0|2

∑
u,vD(Pu‖Pv)

)
+ log 2

log |D0|

]

=
δ

2

[
1−

1
|D0|2

∑
u,v EΩD(Pu‖Pv) + log 2

log |D0|

]

=
δ

2

[
1−

p
2ν2|D0|2

∑
u,v ‖Du −Dv‖2F + log 2

log |D0|

]
. (17)

Substituting Lemma 20 into (17), we get

R ≥ δ

2

[
1−

p
2ν2|D0|2 |D0|2δ2 + log 2

rn
128

]

≥ δ

2

[
1−

64pδ2

ν2 + 128 log 2

rn

]
.

Let 64pδ2

ν2 = rn
4 , namely δ =

√
rnν2

256p , and assume that rn ≥
512 log 2, then

R ≥ δ

2

[
1−

64pδ2

ν2 + 128 log 2

rn

]

≥ 1

2

√
rnν2

256p

(
1− 1

4
− 1

4

)
=

ν

64

√
rn

p
=
nν

64

√
rn

m
.

This completes the proof.

V. CONCLUSION

In this paper, we have presented a detailed analysis for the
SVD-MDS approach. We established error bounds for EDM
completion by SVD-Reconstruct and for coordinate recovery
by MDS using tools from random matrix theory. To investigate
the optimality of SVD-Reconstruct, we derived the minimax
lower bound for the zero-diagonal symmetric low-rank matrix
completion problem. The result reveals that when the noise
level is high, the SVD-Reconstruct approach can achieve the
optimal minimax rate up to a constant factor; when the noise
level is low, SVD-Reconstruct is minimax suboptimal, so it
is sensible to develop (or employ) more effective methods to
complete the EDM and hence localize the positions of nodes.

APPENDIX A
LEMMAS USED FOR PROOF OF THEOREM 1

Lemma 1 (Symmetrization, [22], Lemma 6.3). Let F : R+ →
R be an increasing convex function. Assume that X1, . . . ,XN

are independent, mean zero random vectors in a normed space,
and ε1, . . . , εN are independent symmetric Bernoulli random
variables. Then

EF
(1

2

∥∥∥ N∑
i=1

εiXi

∥∥∥) ≤ EF
(∥∥∥ N∑

i=1

Xi

∥∥∥) ≤ EF
(

2
∥∥∥ N∑
i=1

εiXi

∥∥∥).
Lemma 2 (Contraction principle, [22], Theorem 4.4). Let
x1, . . . ,xN be (deterministic) vectors in a normed space,
ε1, . . . , εN be independent symmetric Bernoulli random vari-
ables, and let a = (a1, . . . , an) ∈ Rn be a coefficient vector.
Then

E
∥∥∥ N∑
i=1

aiεixi

∥∥∥ ≤ ‖a‖∞ · E∥∥∥ N∑
i=1

εixi

∥∥∥.
Lemma 3 (Seginer’s theorem, [23], Theorem 1.1). There
exists a constant K such that, for any m,n any h ≤
2 log max{m,n} and any m × n random matrix A = (aij),
where aij are i.i.d. zero mean random variables, the following
inequality holds:

max
{
E max

1≤i≤m
‖ai·‖h,E max

1≤j≤n
‖a·j‖h

}
≤ E‖A‖h

≤ (2K)h
(
E max

1≤i≤m
‖ai·‖h + E max

1≤j≤n
‖a·j‖h

)
,

where ai· and a·j denote the i-th row and the j-th column of
the matrix A, respectively.

Lemma 4. (1) Let X ∼ Bin(n, p) and X1, . . . , Xn be i.i.d.
copies of X . Let Z = maxi≤nXi. If p ≥ lnn/n, then

EZ ≤ Cnp,

where C is an absolute constant.
(2) Let W be an n × n random matrix with i.i.d Bernoulli
entries, i.e., P{Wij = 1} = p and P{Wij = 0} = 1− p, and
let G denote an n× n random matrix whose entries are i.i.d
standard Gaussian random variables. Then

E max
1≤i≤n

‖(W �G)i·‖2 ≤ c
√
np,

where c is an absolute constant.

Proof. See Appendix B.

APPENDIX B
PROOF OF LEMMA 4

To prove Lemma 4, we need the following facts:

Lemma 5 (Integral identity). For any random variable X , we
have

EX =

∫ ∞
0

P{X > t}dt−
∫ 0

−∞
P{X < t}dt.

In particular, for a non-negative random variable X , we have

EX =

∫ ∞
0

P{X > t}dt.



DRAFT 10

Lemma 6 (Chernoff’s inequality, [24], Theorem 4.4). Let Xi

be independent Bernoulli random variables with parameter pi.
Consider their sum SN =

∑N
i=1Xi and denote its mean by

µ = ESN . Then, for any t > µ, we have

P{SN ≥ t} ≤ e−µ
(eµ
t

)t
.

In particular, for any t ≥ e2µ we have

P{SN ≥ t} ≤ e−t.

Lemma 7 (Equivalence of sub-Gaussian properties, [25],
Lemma 5.5). Let X be a random variable. Then the following
properties are equivalent with parameters Ki > 0 differing
from each other by at most an absolute constant factor.

1. The tails of X satisfy

P{|X| > t} ≤ exp(1− t2/K2
1 ) for all t ≥ 0.

2. The moments of X satisfy

‖X‖p = (E|X|p)1/p ≤ K2
√
p.

3. The moment generating function (MGF) of X satisfies

E exp(X2/K2
3 ) ≤ 2.

The sub-Gaussian random variable is defined through the
above sub-Gaussian properties.

Definition 8 (Sub-Gaussian random variable, [25], Definition
5.7). A random variable X that satisfy one of the equivalent
properties 1−3 in Lemma 9 is called a sub-Gaussian random
variable. The sub-Gaussian norm of X , denoted ‖X‖ψ2

is
defined to be the smallest K3 in property 3. In other words,

‖X‖ψ2 = inf{t > 0 : E exp(X2/t2) ≤ 2}.

Lemma 9 (Equivalence of sub-exponential properties, [25],
pp. 221). Let X be a random variable. Then the following
properties are equivalent with parameters Ki > 0 differing
from each other by at most an absolute constant factor.

1. The tails of X satisfy

P{|X| > t} ≤ exp(1− t/K1) for all t ≥ 0.

2. The moments of X satisfy

‖X‖p = (E|X|p)1/p ≤ K2p.

3. The moment generating function (MGF) of X satisfies

E exp(X/K3) ≤ 2.

The sub-exponential random variable is defined through the
above sub-exponential properties.

Definition 10 (Sub-exponential random variable, [25], Def-
inition 5.13). A random variable X that satisfy one of the
equivalent properties 1 − 3 in Lemma 9 is called a sub-
exponential random variable. The sub-exponential norm of X ,
denoted ‖X‖ψ1 is defined to be the smallest K3 in property
3. In other words,

‖X‖ψ1
= inf{t > 0 : E exp(X/t) ≤ 2}.

The sub-exponential random variables have the following
two remarkable properties:

Lemma 11 (Centering, [25], Remark 5.18). If X is a sub-
exponential random variable then X−EX is sub-exponential
too, and

‖X − EX‖ψ1
≤ C‖X‖ψ1

,

where C is an absolute constant.

Lemma 12 (Product of sub-Gaussian is sub-exponential,
[26], Lemma 2.7.5). Let X and Y be sub-Gaussian random
variables. Then XY is sub-exponential. Moreover,

‖XY ‖ψ1
≤ ‖X‖ψ2

‖Y ‖ψ2
.

Lemma 13 (Sub-exponential is sub-Gaussian squared, [25],
Lemma 5.14). A random variable X is sub-Gaussian if and
only if X2 is sub-exponential. Moreover,

‖X2‖ψ1
≤ ‖X‖2ψ2

.

In particular, if g ∼ N(0, ν2), we have g2 is sub-exponential,
and

‖g2‖ψ1
≤ cν2.

Lemma 14 (Bernstein-type inequality). Let X be a centered
random variable satisfying

P
{
X ≥ t

}
≤ p exp(−ct),

where 0 < p < 1 and c are constant numbers. Let X1, . . . , Xn

be independent copies of X . Then

P
{ n∑
i=1

Xi ≥ t
}
≤ exp

[
− c ·min

( t2
np
, t
)]

≤

 exp
(
− ct2

np

)
, t ≤ np,

exp
(
− ct

)
, t > np.

Proof. See Appendix G.

Now we are ready to prove Lemma 4.
(1) By integral identity (Lemma 5), we know that

E max
1≤i≤n

Xi =

∫ ∞
0

P{ max
1≤i≤n

Xi > t}dt

≤
∫ s

0

1dt+

∫ ∞
s

P{ max
1≤i≤n

Xi > t}dt

= s+

∫ ∞
s

P{
⋃

1≤i≤n

Xi > t}dt

≤ s+

∫ ∞
s

n∑
i=1

P{Xi > t}dt

= s+

n∑
i=1

∫ ∞
s

P{Xi > t}dt.

If we let s = e2np, by Chernoff’s inequality (Lemma 6), we
have

E max
1≤i≤n

Xi ≤ s+

n∑
i=1

∫ ∞
s

P{Xi > t}dt

≤ e2np+

n∑
i=1

∫ ∞
e2np

e−tdt

= e2np+ ne−e
2np.
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Recall that we have assumed that np ≥ log n, thus

E max
1≤i≤n

Xi ≤ e2np+ ne−e
2np

≤ e2np+ ne−e
2 logn

= e2np+ n1−e2

≤ (e2 + 1)np,

where the last inequality comes from the fact that n−e
2 ≤

n−1 ≤ lnn
n ≤ p. This completes the proof of the first part of

Lemma 4.
(2) The proof of the second part is similar to that of the

first part. First,

E max
1≤i≤n

‖(W �G)i·‖22

≤ E max
1≤i≤n

n∑
j=1

W 2
ij(G

2
ij − 1) + E max

1≤i≤n

n∑
j=1

W 2
ij .

The second term can be bounded by part (1):

E max
1≤i≤n

n∑
j=1

W 2
ij ≤ c1np.

For the first term, let Tij = W 2
ij(G

2
ij−1), then for any t > 0,

we have

P
{
Tij ≥ t

}
= P

{
W 2

ij(G
2
ij − 1) ≥ t|Wij = 1

}
P{Wij = 1}

+ P
{
W 2

ij(G
2
ij − 1) ≥ t|Wij = 0

}
P{Wij = 0}

= pP
{
G2
ij − 1 ≥ t

}
≤ p exp(−ct), (18)

where the last inequality holds because G2
ij−1 = G2

ij−EG2
ij

is a sub-exponential random variable by Lemma 11 and 13,
and ‖G2

ij − 1‖ψ1
≤ c′‖G2

ij‖ψ1
≤ c′‖Gij‖2ψ2

≤ c′′, where c′

and c′′ are absolute constants. Thus, Lemma 14 can be used
to bound the tail probability of

∑n
j=1 Tij :

P
{ n∑
j=1

Tij ≥ t
}
≤ exp

[
− c ·min

( t2
np
, t
)]

≤

 exp
(
− ct2

np

)
, t ≤ np,

exp
(
− ct

)
, t > np.

(19)

Similarly, we will use integral identity (Lemma 5) to bound
the first term:

E max
1≤i≤n

n∑
j=1

W 2
ij(G

2
ij − 1)

=

∫ ∞
0

P
{

max
1≤i≤n

n∑
j=1

W 2
ij(G

2
ij − 1) ≥ t

}
dt

≤
∫ np

0

1dt+ n

∫ ∞
np

P
{ n∑
j=1

W 2
ij(G

2
ij − 1) ≥ t

}
dt

≤ np+ n

∫ ∞
np

exp
(
− ct

)
dt

≤ np+ n exp(−cnp)
≤ c2np,

where the last inequality comes from the fact that np ≥ log n,
and c2 is an absolute constant. Combining the two terms, we
get

E max
1≤i≤n

‖(W �G)i·‖22 ≤ c3np.

Then, Jensen’s inequality completes the proof:

E max
1≤i≤n

‖(W�G)i·‖2 ≤
[
E max

1≤i≤n
‖(W�G)i·‖22

]1/2 ≤ c√np.
APPENDIX C

LEMMAS USED FOR PROOF OF THEOREM 2

Lemma 15 (Matrix Bernstein inequality: sub-exponential case,
[27], Lemma 6.2). Consider a finite sequence Xk of indepen-
dent, random, self-adjoint matrices with dimension n. Assume
that each random matrix has zero mean, and satisfies

EXk = 0 and E(Xp
k) � p!

2
·Rp−2 ·A2

k for p = 2, 3, 4 . . .

Compute the variance parameter

σ2 :=
∥∥∥∑

k

A2
k

∥∥∥.
Then the following holds for all t ≥ 0,

P
{∥∥∥∑

k

Zk

∥∥∥ ≥ t} ≤ n · exp
[
− c ·min

( t2
σ2
,
t

R

)]
,

where c is an absolute constant.

APPENDIX D
LEMMAS USED FOR PROOF OF THEOREM 4

Lemma 16 ( [21], pp. 79-80). For any test function Φ : Y →
Du ∈ D0, the minimax risk R in (13) has the following lower
bound:

R ≥ δ

2
P{Φ(Y ) 6= D}.

Lemma 17 (Fano inequality, [28], Theorem 2.10.1). Suppose
V is a random variable taking values in a finite set V . For
any Markov chain V → X → V̂ , we have

h2

(
P(V̂ 6= V )

)
+ P(V̂ 6= V ) log(|V| − 1) ≥ H(V |V̂ ), (20)

where the function h2(p) = −p log p − (1 − p) log(1 − p)
denotes the entropy of the Bernoulli random variable with pa-
rameter p, and H(V |V̂ ) denotes the entropy of V conditioned
on V̂ .

Moreover, if we assume that V takes value u.a.r. on V ,
Lemma 17 becomes

Lemma 18. Assume that V is uniform on V . For any Markov
chain V → X → V̂ ,

P(V̂ 6= V ) ≥ 1− I(V ;X) + log 2

log |V|
,

where I(V ;X) denotes the mutual information of random
variable V and X .
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Lemma 19 (Bounding the mutual information, [28]).

I(D;Y |Ω) =
1

|D0|
∑

u:Du∈D0

DKL(Pu‖PY )

≤ 1

|D0|2
∑

u,v:Du∈D0,Dv∈D0

DKL(Pu‖Pv).

The proof of Theorem 4 is based on the following lemma:

Lemma 20. Let n ≥ 10 be a positive integer, and let
δ > 0. Then for each r = 2, . . . , n, there exists a set of
n-dimensional matrices {D1,D2, . . . ,DM} with cardinality
M = bexp

(
rn
128

)
c such that each matrix is symmetric, with

zero diagonal, has rank at most r, and moreover

‖Dl‖F = δ for all l = 1, 2, . . . ,M,

‖Dk −Dl‖F ≥ δ for all k 6= l.

Proof. See Appendix E.

Lemma 21. Let p(x1, x2) denote the probability density
function (p.d.f) of X = (X1, X2), q(x1, x2) denote the p.d.f
of X ′ = (X ′1, X

′
2), p(x1) denote the p.d.f of X1, and q(x1)

denote the p.d.f of X ′1, where X2 = X1, X ′2 = X ′1. Then, the
K-L divergence between p(x1, x2) and q(x1, x2) is equal to
that of p(x1) and q(x1):

DKL

(
p(x1, x2)‖q(x1, x2)

)
= DKL

(
p(x1)‖q(x1)

)
.

Proof. See Appendix F.

APPENDIX E
PROOF OF LEMMA 20

The idea for proof of Lemma 20 is inspired by Negahban
and Wainwright [29]. It relies on the Hoeffding’s inequality,
which gives a tail bound for sum of independent Rademaker
random variables.

Lemma 22 (Hoeffding’s inequality, [30], Theorem 2). Let
X1,. . . ,XN be independent symmetric Bernoulli random vari-
ables, and a = (a1, . . . , aN ) ∈ RN . Then, for any t > 0, we
have

P
{ N∑
i=1

aiXi ≥ t
}
≤ exp

(
− t2

2‖a‖22

)
.

We proceed via the probabilistic method, in particular by
showing that a random procedure succeeds in generating such
a set with probability at least 0.22. Let M = bexp

(
rn
128

)
c,

and for each l = 1, 2, . . . ,M , we draw a random matrix D̃l ∈
Rn×n according to the following procedure:

(a) For rows i = 1, . . . , b r2c and columns j = i+ 1, . . . , n,
choose each D̃l

ij ∈ {−1,+1} uniformly at random, indepen-
dently across (i, j).

(b) For columns j = 1, . . . , b r2c and rows i = j + 1, . . . , n,
set D̃l

ij = D̃l
ji.

(c) For rows i = b r2c + 1, . . . , n and columns j = b r2c +

1, . . . , n, and for 1 ≤ i = j ≤ n, set D̃l
ij = 0.

By construction, each matrix D̃l is symmetric, with zero
diagonal, and has rank at most r. Since there exists a ceil
operator in r

2 , we go ahead by considering r is even and odd

separately.
Case 1: r is even and r ≥ 2.
In this case b r2c = r

2 , and the Frobenius norm ‖D̃l‖F =√
r(n− r/4− 1/2). We define Dl = δ√

r(n−r/4−1/2)
D̃l for

all l = 1, . . . ,M . The rescaled matrices Dl has Frobenius
norm ‖Dl‖F = δ. We now prove that

‖Dl −Dk‖F ≥ δ for all l 6= k

holds with probability at least 0.46. Now to prove Lemma 20,
it suffices to show that ‖D̃l − D̃k‖F ≥

√
r(d− r/4− 1/2)

with probability at least 0.46 for any pair l 6= k. We have
1

r(n− r/4− 1/2)
‖D̃l − D̃k‖2F

=
2

r(n− r/4− 1/2)
·
[ r/2∑
i=1

n∑
j=i+1

(D̃l
ij − D̃k

ij)
2
]
.

This is a sum of i.i.d. variables, each taking value {0, 4} with
equal probability, so the Hoeffding’s inequality (Lemma 22)
implies that for any t ≥ 0,

P

{
2

r(n− r/4− 1/2)
·

{ r/2∑
i=1

n∑
j=i+1

[1

2
(D̃l

ij − D̃k
ij)

2 − 1
]}
≤ −t

}

≤ exp

{
− t2

2 ·
r/2∑
i=1

n∑
j=i+1

(
2

r(n−r/4−1/2)

)2
}

≤ exp
[
− r(n− r/4− 1/2)t2

4

]
.

Therefore,

P{ 1

r(n− r/4− 1/2)
‖D̃l − D̃k‖2F ≤ 2− t}

≤ exp
[
− r(n− r/4− 1/2)t2

16

]
≤ exp

(
− rnt2

32

)
,

where in the last inequality we have used the fact that n ≥
r ≥ 2. Since there are less than M2 pairs of matrices in total,
by taking union bound we get

P{min
l 6=k

1

r(n− r/4)
‖D̃l−D̃k‖2F ≤ 2−t} ≤M2 exp

(
−rnt

2

32

)
.

Letting t = 1 and substituting M = bexp
(
rn
128

)
c, we get

P
{

min
l 6=k

1

r(n− r/4)
‖D̃l − D̃k‖2F ≤ 1

}
≤ exp

(rn
64

)
exp

(
− rn

32

)
= exp

(
− rn

64

)
.

Namely,

P
{

min
l 6=k
‖D̃l − D̃k‖2F ≥ r(n− r/4)

}
≥ 1− exp

[
− rn

64

]
≥ 0.26,
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where in the last inequality we have used the fact that n ≥ 10
and r ≥ 2.
Case 2: r is odd and r ≥ 3.
In the case of r is odd, b r2c = r−1

2 , and the Frobenius norm
‖D̃l‖F =

√
(r − 1)(n− (r − 1)/4− 1/2). We define Dl =

δ√
(r−1)(n−(r−1)/4−1/2)

D̃l for all l = 1, . . . ,M . Similarly as

case 1, we will prove that the procedure generates a sequence
of matrices satisfying

‖D̃l − D̃k‖F ≥
√

(r − 1)(n− (r − 1)/4− 1/2)

with probability at least 0.2. We proceed the same as case 1,
and obtain that

P{min
l 6=k

1

(r − 1)(n− (r − 1)/4)
‖D̃l − D̃k‖2F ≥ 1}

≥ 1− exp
[
− 5rn

576

]
≥ 0.22,

where the last inequality holds because n ≥ 10 and r ≥ 3.
Combining these two cases and recalling the definition of

Dl completes the proof.

APPENDIX F
PROOF OF LEMMA 21

To prove Lemma 21, we need the following two properties
of K-L divergence:

Lemma 23 (information inequality, [28], Theorem 2.6.3). Let
p(x), q(x) be two probability density functions. Then,

DKL

(
p(x)‖q(x)

)
≥ 0

with equality if and only if p(x) = q(x) for all x.

Lemma 24 (Chain rule for K-L divergence, [28], Theo-
rem 2.5.3). Let p(x1, x2) and q(x1, x2) be the joint p.d.f’s
of (X1, X2) and (X ′1, X

′
2), respectively. Denote p(x1) and

q(x1) the marginal p.d.f’s of X1 and X ′1, and p(x2|x1) and
q(x2|x1) the conditional p.d.f’s of X2 conditioning on X1 and
X ′2 conditioning on X ′1, respectively. Then

DKL

(
p(x1, x2)‖q(x1, x2)

)
= DKL

(
p(x1)‖q(x1)

)
+ Ex1DKL

(
p(x2|x1)‖q(x2|x1)

)
.

Proof of Lemma 21. According to the chain rule for K-L di-
vergence (Lemma 24), the K-L divergence between p(x1, x2)
and q(x1, x2) can be written as

DKL

(
p(x1, x2)‖q(x1, x2)

)
= DKL

(
p(x1)‖q(x1)

)
+ Ex1

DKL

(
p(x2|x1)‖q(x2|x1)

)
,

(21)

By Lemma 21, we always have X2 = X1 and X ′2 = X ′1.
As a result, the conditional p.d.f’s p(x2|x1) and q(x2|x1)
are equivalent, i.e., both of them are delta functions at x1.
Hence, the information inequality (Lemma 23) implies that
DKL

(
p(x2|x1)‖q(x2|x1)

)
= 0. Substituting this into (21)

completes the proof.

APPENDIX G
PROOF OF LEMMA 14

Lemma 14 is a Bernstein-type inequality, and the proof
technique is standard. First, we bound the n-moments of X:

E|X|n =

∫ ∞
0

P
{
|X| ≥ t

}
ntn−1dt

≤
∫ ∞

0

p exp(−ct)ntn−1dt

≤ c1pnn.

Then the moment generating function of X can be bounded
by

E exp(λX) = 1 + |λ|EX +

∞∑
k=2

|λ|kEXk

k!

≤ 1 +

∞∑
k=2

|λ|kc1pkk

k!

≤ 1 + c1p

∞∑
k=2

(e|λ|)k

≤ 1 + c2pλ
2 (when |λ| ≤ 1/2e)

≤ exp(c2pλ
2).

Now the tail probability of Xi can be bounded by

P
{ n∑
i=1

Xi ≥ t
}

= P
{

exp
(
λ

n∑
i=1

Xi

)
≥ exp(λt)

}
≤ e−λt

∏
i

E exp(λXi).

If |λ| ≤ 1/2e, then we have

P
{ n∑
i=1

Xi ≥ t
}
≤ exp(−λt+ c2npλ

2).

It remains to optimize over λ > 0. Choosing λ =
min(t/2c2np, 1/2e) yields the desired result.
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