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Optimal shrinkage covariance matrix estimation

under random sampling from elliptical distributions
Esa Ollila, Member, IEEE, and Elias Raninen, Student Member, IEEE

Abstract—This paper considers the problem of estimating
a high-dimensional (HD) covariance matrix when the sample
size is smaller, or not much larger, than the dimensionality of
the data, which could potentially be very large. We develop a
regularized sample covariance matrix (RSCM) estimator which
can be applied in commonly occurring sparse data problems.
The proposed RSCM estimator is based on estimators of the
unknown optimal (oracle) shrinkage parameters that yield the
minimum mean squared error (MMSE) between the RSCM and
the true covariance matrix when the data is sampled from an
unspecified elliptically symmetric distribution. We propose two
variants of the RSCM estimator which differ in the approach in
which they estimate the underlying sphericity parameter involved
in the theoretical optimal shrinkage parameter. The performance
of the proposed RSCM estimators are evaluated with numerical
simulation studies. In particular when the sample sizes are
low, the proposed RSCM estimators often show a significant
improvement over the conventional RSCM estimator by Ledoit
and Wolf (2004). We further evaluate the performance of the
proposed estimators in classification and portfolio optimization
problems with real data wherein the proposed methods are able
to outperform the benchmark methods.

Index Terms—Sample covariance matrix, shrinkage estimation,
regularization, elliptical distribution

I. INTRODUCTION

ESTIMATING high-dimensional covariance matrices

where the sample size n is smaller, or not much larger

than the dimension p of the samples, is a problem that has

attracted significant research interest in the recent years [1]–

[9]. This is due to the fact that high-dimensional data analysis

problems have become increasingly common in a wide

spectrum of fields, such as in finance [2], bioinformatics, and

classification [10].

We consider the problem of estimating the high-dimensional

covariance matrix based on a sample x1, . . . ,xn of indepen-

dent and identically distributed (i.i.d.) random vectors. The

observations are assumed to be generated from an unspecified

p-variate distribution x ∼ F with a mean vector µ = E[x]
and a p× p positive definite covariance matrix

Σ = E
[

(x− µ)(x− µ)⊤
]

∈ S
p×p
++ .

The most commonly used estimators of the unknown parame-

ters (µ,Σ) ∈ R
p × S

p×p
++ are the sample mean vector and the

E. Ollila and E. Raninen are with the Department of Signal Processing and
Acoustics, Aalto University, Espoo, P.O. Box 13000, FIN-00076 Aalto; e-
mail: {esa.ollila,elias.raninen}@aalto.fi (see http://users.spa.aalto.fi/esollila/),
The research was supported by the Academy of Finland grant no. 298118
which is gratefully acknowledged

Manuscript received XX/20XX

sample covariance matrix (SCM),

x̄ =
1

n

n
∑

i=1

xi,

S =
1

n− 1

n
∑

i=1

(xi − x̄)(xi − x̄)⊤.

They have desirable properties, such as being the sufficient

statistics and unbiased. However, the SCM does not per-

form well in high-dimensional problems for several reasons.

Foremost, significant estimation errors result from having an

insufficient number of samples. Moreover, if p > n, the SCM

is always singular, i.e., it is not invertible even though the true

covariance matrix is known to be positive definite and hence

non-singular. In these situations, a frequently used approach

for improving the estimation accuracy is to use shrinkage

regularization.

One of the most commonly used estimators in low sample

support problems, where p is large compared to the sample

size n, is the regularized SCM (RSCM) of the form

Sα,β = βS+ αI, (1)

where α, β > 0 denote the shrinkage parameters or regular-

ization parameters. In signal processing, an estimator of the

form (1) was proposed in [11], [12] and is often referred to

as the diagonal loading estimator. Another line of research

has been to consider robust regularized covariance matrix

estimators, e.g., [2]–[8], and [9]. In this paper, the focus is on

determining the optimal (in MSE sense) shrinkage parameters

for the RSCM.

We define the optimal RSCM estimator as the one that

is based on the oracle shrinkage parameters minimizing the

mean squared error (MSE), that is,

(αo, βo) = argmin
α,β>0

E

[

∥

∥Sα,β −Σ
∥

∥

2

F

]

, (2)

where ‖ ·‖F denotes the Frobenius matrix norm, i.e., ‖A‖2F =
tr(A⊤

A) = tr(AA
⊤) for any matrix A. We use the prefix

oracle for the shrinkage parameters (αo, βo) as they depend on

the true unknown covariance matrix Σ. Although, the oracle

shrinkage parameters cannot be used in practice, they have the

theoretical significance for being a benchmark for best possible

performance w.r.t. the MSE metric.

The widely popular Ledoit-Wolf (LW-)RSCM [2] estimator

is based on the consistent estimators (α̂LW
o , β̂LW

o ) of the oracle

parameters (αo, βo) under the random matrix theory (RMT)

regime, i.e., as n, p → ∞, we have

c = p/n → c0, (R1)

http://arxiv.org/abs/1808.10188v1
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It is, however, possible to improve upon the LW-estimator and

obtain a more accurate finite sample estimation performance

by assuming that the observations are generated from a specific

p-variate distribution, e.g., the multivariate normal (MVN)

distribution. For example, in [7, Theorem 1], the authors

derived an optimal shrinkage parameter assuming that the

samples have a Gaussian distribution with a known location

(µ). Such a strict assumption on distribution of the data

however implies performance loss if the assumption does not

hold. Another somewhat related approach has been taken for

example in [13, Proposition 3], where the authors considered

robust M -estimators and looked for an asymptotically optimal

shrinkage parameter in the RMT regime which minimizes the

squared Frobenius distance between normalized regularized

M -estimators of scatter matrix and a normalized covariance

matrix.

In this paper, we instead assume that the observations are

from an unspecified elliptically symmetric (ES) distribution

and derive estimators of the optimal oracle shrinkage pa-

rameters (αo, βo) that are able to perform reliably under the

RMT regime. ES distributions is a large class of distributions

comprising, e.g., the MVN distribution, generalized Gaussian,

and all compound Gaussian distributions as special cases, see

e.g., [14], [15], and [16].

The rest of this paper is organized as follows. In Section II

and Section III, we derive the optimal shrinkage parameters

(αo, βo) under the general assumption of sampling from any

p-variate distribution and an elliptical distribution with finite

fourth order moments, respectively. In Section IV, we develop

estimators of (αo, βo) under the RMT regime and when sam-

pling from an unspecified elliptically symmetric distribution.

In Section V, we conduct several simulation studies and

compare the proposed estimators with the popular LW-RSCM

estimator. In Section VI, we illustrate the performance of the

proposed estimators in two applications. First, the proposed

methods are used in a regularized discriminant analysis (RDA)

framework, where they are applied to the classification of

phoneme data. Then the methods are used in a portfolio

optimization problem using the Global Minimum Variance

Portfolio (GMVP) framework, where we use real data of

historical (daily) stock returns from the Hong Kong’s Hang

Seng Index (HSI) and Standard and Poor’s 500 (SP500) index.

In both applications the proposed methods are shown to per-

form better than the benchmark methods. Finally, Section VII

concludes.

Notation: We denote the open cone of p × p positive

definite symmetric matrices by S
p×p
++ . The vectorization of

an n × p matrix A = (a1, . . . ap) is denoted by vec(A) =

(a⊤1 , . . . , a
⊤
p )

⊤
. The matrix trace of a square matrix A is

denoted by tr(A). The Kronecker product A ⊗ B of any

matrices A and B is a block matrix with its ijth block being

equal to aijB. Kronecker product has the useful property:

(A ⊗ B)(C ⊗ D) = (AC ⊗ BD) for the matrices A, B,

C, and D of appropriate dimensions. We denote the identity

matrix of proper dimension by I and the centering matrix of

proper dimension by H = I− 11
⊤/n, where 1 is a vector of

ones. The canonical basis vector, which has its ith element

equal to 1 and all other elements zero is denoted by ei. The

commutation matrix Kp is a p2×p2 block matrix with its ijth

block equal to a p × p matrix that has a 1 at element ji and

zeros elsewhere, i.e., Kp =
∑

i,j eie
⊤
j ⊗ eje

⊤
i . It also has the

following important properties [17]: Kpvec(A) = vec(A⊤)
and Kp(A ⊗ B)Kp = (B ⊗ A) for any p × p matrices A

and B. In our developments, we will also use the following

identities: tr(A ⊗ B) = tr(A)tr(B), tr(vec(A)vec(B)⊤) =
tr(A⊤

B) = vec(B)⊤vec(A) for any square matrices A

and B of same order. Notation ”=d” reads ”has the same

distribution as”.

II. OPTIMAL ORACLE SHRINKAGE PARAMETERS

In this section, we derive the oracle shrinkage parameters

(αo, βo) for any p-variate distribution. First, we define the

scale and sphericity parameters of Σ ∈ S
p×p
++ as

η =
tr(Σ)

p
and γ =

ptr(Σ2)

tr(Σ)2
. (3)

Note that η equals the mean of the eigenvalues of Σ whereas

γ is equal to the ratio of the mean of the squared eigenvalues

relative to mean of eigenvalues squared. The sphericity γ [1],

[18] measures how close the covariance matrix is to a scaled

identity matrix. Furthermore, the values for the sphericity are

in the range 1 ≤ γ ≤ p. This can be seen by applying the

Cauchy-Schwartz inequality:

tr(Σ)2 =

(

p
∑

i=1

λi · 1
)2

≤ p ·
p
∑

i=1

λ2
i = ptr(Σ2).

By dividing the right-hand side of the equation by the left-hand

side, we have γ ≥ 1 with equality if and only if Σ = cI for

some c > 0. Furthermore, the upper bound γ = p is achieved

for rank one matrices, in which case Σ has only one non-zero

eigenvalue.

The scale and sphericity, η and γ, are elemental in our

developments. As is shown in Theorem 3, the optimal shrink-

age parameter pair (αo, βo) for a given elliptical distribution

depends on the true covariance matrix Σ only through η and

γ. Simple plug-in estimates of (αo, βo) can then be obtained

by replacing (η, γ) with their estimates. If the elliptical distri-

bution is unknown an additional elliptical kurtosis parameter

needs to be estimated.

The next theorem provides the expressions for the oracle

shrinkage parameters in the case of sampling from an unspec-

ified p-variate distribution with finite fourth order moments.

Write MSE(S) = E

[

∥

∥S −Σ
∥

∥

2

F

]

for the mean squared error

(MSE) and

NMSE(S) =
E
[

‖S−Σ‖2F
]

‖Σ‖2F
.

for the normalized MSE.

Theorem 1. Let x1, . . . ,xn denote an i.i.d. random sample

from any p-variate distribution with finite fourth order mo-
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ments, mean vector µ, and covariance matrix Σ. Then, the

oracle shrinkage parameters in (2) are

βo =
p(γ − 1)η2

E
[

tr
(

S2
)]

− pη2
(4)

=
(γ − 1)

(γ − 1) + γ ·NMSE(S)
(5)

and

αo = (1− βo)η, (6)

where η and γ are defined in (3). Furthermore, the optimal

βo is always in the range [0, 1) and the value of the MSE at

the optimum is

MSE(Sαo,βo
) = (1− βo)‖Σ− ηI‖2F. (7)

Proof. It was shown in [2, Theorem 2.1] that

βo =
‖Σ− ηI‖2F

‖Σ− ηI‖2F +MSE(S)
(8)

and αo = (1−βo)η. Although, the result was shown assuming

µ = 0 is known and for S0 = (1/n)
∑n

i=1 xix
⊤
i , this

result transfers to the non-centered case as the derivation only

assumes that E[S0] = Σ which applies to S as well. Note that,

βo = 1 only if S = Σ, and thus MSE(S) = 0, which has zero

probability when sampling from a continuous distribution. The

form of βo in (8) therefore implies that βo ∈ [0, 1). We now

show that (8) can be expressed in the form (4).

First, we write

a1 = MSE(S) = E
[

‖S−Σ‖2F
]

= E
[

tr
(

S
2
)]

− 2E
[

tr
(

SΣ
)]

+ tr
(

Σ
2
)

= E
[

tr
(

S
2
)]

− tr(Σ2), (9)

where we used that E[tr(SΣ)] = tr(E[S]Σ) = tr(Σ2). The

numerator of βo in (8) is

a2 = ‖Σ− ηI‖2F = tr(Σ2)− (1/p)tr(Σ)2

= p(ϑ− η2) = p(γ − 1)η2, (10)

where we denote ϑ = tr(Σ2)/p. This shows that the de-

nominator of βo is a1 + a2 = E
[

tr
(

S
2
)]

− (1/p)tr(Σ)2 =
E
[

tr
(

S
2
)]

− pη2. These expressions for the numerator and

the denominator of βo yield the assertion (4) for βo. Substi-

tuting (10) into (8) and multiplying both the numerator and

denominator by 1/(pη2) gives (5).

Next, we derive the expression for the MSE of the RSCM

Sα,β . By using the variance and bias decomposition of the

MSE, we have

MSE(Sα,β) = tr(var(vec (Sα,β))) + ‖E[Sα,β ]−Σ‖2F
= β2tr(var(vec (S))) + ‖αI− (1− β)Σ‖2F
= β2MSE(S) + ‖αI− (1− β)Σ‖2F.

We used the fact that from the unbiasedness of S it follows

that MSE(S) = tr(var(vec (S))) = a1. At the optimum, we

have βoa1 = (1 − βo)a2, which can be seen from (8), and

αo = (1− βo)η. The MSE at the optimum is therefore

MSE(S(1−βo)η,βo
) = β2

oMSE(S) + (1 − βo)
2‖Σ− ηI‖2F

= βo(1− βo)a2 + (1− βo)
2a2

= (1− βo)a2,

which concludes the proof.

Theorem 1 has important implications. First, since αo =
(1−βo)η is determined by the value of βo ∈ [0, 1), the optimal

RSCM can be expressed as

Sαo,βo
= βoS+ (1− βo)ηI.

The scale η can be estimated with

η̂ =
tr(S)

p
, (11)

which is a consistent estimator both in the conventional (fixed

p) and the RMT asymptotic regime. Therefore, the estimator

of αo is simply α̂o = (1− β̂o)η̂, and we can focus on finding

an estimator β̂o of βo.

This is the approach also taken by Ledoit and Wolf [2] who

develop an estimator β̂LW
o that converges to βo in (4) under

the RMT regime (R1) and some mild technical assumptions

when sampling from a distribution x ∼ F with finite 8th order

moments. The estimate of αo is then α̂LW
o = (1− β̂LW

o )η̂. The

RSCM based on the shrinkage parameter pair (α̂LW
o , β̂LW

o ) of

[2] is referred hereafter as the LW-RSCM estimator.

III. OPTIMAL ORACLE SHRINKAGE PARAMETERS: THE

ELLIPTICAL CASE

We now derive the optimal oracle shrinkage parameters

for the case in which the data can be assumed elliptically

distributed. For a review of elliptical distributions, see [14],

[15], and [16].

The probability density function (p.d.f.) of an elliptically

distributed random vector x ∼ Ep(µ,Σ, g) is

f(x) = Cp,g|Σ|−1/2g
(

(x− µ)⊤Σ−1(x− µ)
)

,

where E[x] = µ is the mean vector, Σ is the positive

definite covariance matrix, g : [0,∞) → [0,∞) is the density

generator, which is a fixed function that is independent of

x, µ and Σ, and Cp,g is a normalizing constant ensuring

that f(x) integrates to 1. Here, we let g to be defined

so that Σ represents the covariance matrix of x, which

means that
∫∞

0 tp/2 g(t)dt = p. The functional form of the

density generator g determines the elliptical distribution. For

example, the multivariate normal (MVN) distribution, denoted

x ∼ Np(µ,Σ), is obtained when g(t) = exp(−t/2). As in

Theorem 1, we assume that the elliptical population possesses

finite fourth order moments. Technically, this implies that
∫ ∞

0

tp/2+1 g(t)dt < ∞. (12)

For example, the MVN and the multivariate t-distribution with

degrees of freedom ν > 4 all verify the above condition.
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The kurtosis of a random variable x is defined as

kurt(x) =
E[(x− µ)4]

(E[(x − µ)2])2
− 3,

where µ = E[x]. The elliptical kurtosis parameter [14] κ of

a random vector x = (x1, . . . , xp)
⊤ ∼ Ep(µ,Σ, g) is defined

as

κ =
E[r4]

p(p+ 2)
− 1 =

1

3
· kurt(xi), (13)

where r is the generating variate or second order modular

variate of the elliptical distribution, which is defined as the

square-root of the quadratic form r2 = (x − µ)⊤Σ−1(x −
µ). Above kurt(xi) denotes the kurtosis of (any) marginal

variable xi. The elliptical kurtosis shares properties similar

to the kurtosis of a real random variable. Especially, if x ∼
Np(µ,Σ), then κ = 0. This is obvious since the marginal

distributions are Gaussian and hence κ = (1/3) kurt(xi) = 0.

Another way to derive this is by noting that the quadratic form

r2 has a chi-squared distribution with p degrees of freedom,

i.e., r2 ∼ χ2
p, and hence E[r4] = p(p+ 2).

The importance of the elliptical kurtosis parameter κ is due

to the fact that the p2×p2 covariance matrix of vec(S) depends

on the underlying elliptical distribution g only through κ. This

result is established in Theorem 2.

We will utilize the following matrix decomposition in our

proofs. Let X = (x1 · · ·xn)
⊤ denote the n × p data matrix

with ith transposed observation as its row vector. Then, the

SCM can be written as

S =
1

n− 1
X

⊤
HX

where H is the centering matrix.

Theorem 2. Let x1, . . . ,xn denote an i.i.d. random sample

from an elliptical distribution with finite fourth order moments,

mean vector µ, and covariance matrix Σ. Then,

var(vec(S)) =
( 1

n− 1
+

κ

n

)

(I+Kp)(Σ⊗Σ) +
κ

n
vec(Σ)vec(Σ)⊤. (14)

Proof. For elliptically distributed observations {xi}ni=1
iid∼

Ep(µ,Σ, g), we have the following stochastic decomposition

xi =d Σ
1/2

zi + µ, where zi ∼ Ep(0, I, g). Let Z =
(z1 · · · zn)⊤ denote the n × p data matrix collecting the

random vectors zi as its row vectors. Then, the stochastic

decomposition implies that

X
⊤
HX =d Σ

1/2
Z
⊤
HZΣ

1/2.

Hence,

var (vec (S)) =

(

var

(

1

n− 1
vec
(

Σ
1/2

Z
⊤
HZΣ

1/2
)

))

= (Σ1/2 ⊗Σ
1/2) var

(

1

n− 1
vec
(

Z
⊤
HZ

)

)

(Σ1/2 ⊗Σ
1/2).

(15)

Since the matrix Z
⊤
HZ is radially distributed, we can ap-

ply [19], which states

var

(

1

n− 1
vec
(

Z
⊤
HZ

)

)

= τ1(I+Kp)+τ2vec (I) vec (I)
⊤
,

(16)

where the parameters τ1 and τ2 correspond to the variance

of any off-diagonal element and the covariance of any two

diagonal elements of the matrix 1
n−1Z

⊤
HZ, respectively.

We will first derive the expression for τ1. For q 6= r, it holds

that

(n− 1)
2
τ1 = var

(

(Zeq)
⊤
H(Zer)

)

= var
(

tr
(

H(Zer)(Zeq)
⊤
))

= var
(

vec (H)
⊤
vec
(

(Zer)(Zeq)
⊤
))

= vec (H)
⊤
var
(

vec
(

(Zer)(Zeq)
⊤
))

vec (H) .

Next we recall that zi ∼ Ep(0, I, g) has a stochastic repre-

sentation (cf. [15, Theorem 2.9]) zi =d riui, where ri is the

generating variate with a density f(r) = C ·rp−1g(r2) (where

C is normalizing constant) and ui = (ui1, ui2, . . . , uip)
⊤

is uniformly distributed on the unit hypersphere Sp−1 =
{x ∈ R

p : x
⊤
x = 1} and ri is independent of ui.

Using this stochastic representation for zi, we can write

Zeq = (r1u1q, r2u2q, . . . , rnunq)
⊤

, The klth element of the

ijth block (i.e., the ijklth element) of the n2 × n2 matrix

var
(

vec
(

(Zer)(Zeq)
⊤))

can then be written as

cov ((Zer)k(Zeq)i, (Zer)l(Zeq)j) =

E [rkukr · riuiq · rlulr · rjujq]

− E [rkukr · riuiq]E [rlulr · rjujq] .

Using the following identities for ∀i, j and q 6= r (cf. [15,

Section 3.1]) :

E [uiqujr] = 0, E
[

u2
iqu

2
ir

]

=
1

p(p+ 2)
,

E
[

u2
iq

]

=
1

p
, E

[

u4
iq

]

=
3

p(p+ 2)
,

E
[

r2i
]

= p, E
[

r4i
]

= (1 + κ)p(p+ 2),

where 3κ = kurt(ziq) = kurt(xiq), we find that the only non-

zero elements of var
(

vec
(

(Zer)(Zeq)
⊤))

correspond to

E[r4i ]E[u
2
iru

2
iq] = 1 + κ for i = j = k = l, and

E[r2i ]E[r
2
k]E[u

2
ir]E[u

2
kq ] = 1 for i = j, k = l, i 6= k.

This implies that

var
(

vec
(

(Zer)(Zeq)
⊤
))

= I+ κ

n
∑

i=1

eie
⊤
i ⊗ eie

⊤
i . (17)

Hence, we can write τ1 as

τ1 =
1

(n− 1)
2 vec (H)

⊤

(

I+ κ

n
∑

i=1

eie
⊤
i ⊗ eie

⊤
i

)

vec (H)

=
1

n− 1
+

κ

n
, (18)

where we used vec (H)
⊤
vec (H) = n− 1 and

n
∑

i=1

vec (H)⊤ (eie
⊤
i ⊗ eie

⊤
i )vec (H) =

n
∑

i=1

h2
ii =

(n− 1)2

n
.
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Next, we find the expression for τ2. For q 6= r, we have

(n− 1)2τ2 = cov
(

(Zeq)
⊤
H(Zeq), (Zer)

⊤
H(Zer)

)

= E
[

(Zeq)
⊤
H(Zeq)(Zer)

⊤
H(Zer)

]

− E[(Zeq)
⊤
H(Zeq)]E[(Zer)

⊤
H(Zer)].

By using basic algebraic properties of the trace and the

vectorization transform and noting that E[(Zer)(Zer)
⊤] = I,

we arrive at the form

(n− 1)2τ2 =

tr
(

(H⊗H)E
[

vec
(

(Zeq)(Zer)
⊤
)

vec
(

(Zeq)(Zer)
⊤
)⊤
])

− tr(H)2.

The expression involving the expectation is equal to

var
(

vec
(

(Zeq)(Zer)
⊤
))

, which implies

(n− 1)
2
τ2 =

tr

{

(H⊗H)

(

I+ κ

n
∑

i=1

eie
⊤
i ⊗ eie

⊤
i

)}

− tr(H)2.

By noting that tr(H⊗H) = tr(H)2 and

n
∑

i=1

tr
(

(H⊗H)(eie
⊤
i ⊗ eie

⊤
i

)

=

n
∑

i=1

h2
ii,

we find that

τ2 =
1

(n− 1)
2 κ

(n− 1)
2

n
=

κ

n
. (19)

By substituting (16) into (15), and noticing that

(Σ1/2 ⊗Σ
1/2)vec(I) = vec(Σ) and

(Σ1/2 ⊗Σ
1/2)(I +Kp)(Σ

1/2 ⊗Σ
1/2) = (I+Kp)(Σ⊗Σ),

completes the proof.

Theorem 2 reveals that the elliptical kurtosis parameter κ
along with the true covariance matrix Σ provide a complete

description of the covariances between the elements sij and

skl of the SCM S = (sij). The mathematics underlying

Theorem 2 is so rich that we are able to relate it to at least

three fundamental results in the field of statistics given below.

First, consider the one-dimensional case, p = 1, where we

have a univariate sample x1, . . . , xn from a distribution of

a random variable x ∈ R. Then, the SCM reduces to the

unbiased sample variance s2 = (1/(n − 1))
∑n

i=1(xi − x̄)2

and equation (14) reduces to var(s2). We can now compute

var(s2) using (14), which states that

var(s2) =

(

1

n− 1
+

κ

n

)

2σ4 +
κ

n
σ4

= σ4

(

2

n− 1
+

kurt(x)

n

)

, (20)

where we used that Σ ≡ σ2 = E[(x−E[x])2 ], Σ⊗Σ = σ4 and

κ = kurt(x)/3 due to (13). Hence, we obtained the classic

formula for var(s2) often encountered in elementary statistics

textbooks. Under the Gaussian distribution, kurt(x) = 0, in

which case Theorem 2 states that var(s2) = 2σ4/(n−1). This

is an expected result since (n−1)s2/σ2 =
∑

i(xi− x̄)2/σ2 ∼
χ2
n−1.

Secondly, we can connect Theorem 2 with the well-known

covariance matrix of the Wishart distribution. Let Wp(m,M)
denote the Wishart distribution of a random symmetric positive

definite p × p matrix where m > p − 1 denotes the degrees

of freedom parameter and M ∈ S
p×p
++ denotes the scale

matrix parameter of the Wishart distribution. Under the MVN

assumption, it is well-known that (n−1)S ∼ Wp(n−1,Σ) and

consequently var(vec(S)) has the famous covariance matrix

form

var(vec(S)) =
1

n− 1
(I+Kp)(Σ⊗Σ). (21)

Suppose now that the elliptical distribution in Theorem 2 is

the multivariate normal, thus, x1, . . . ,xn
iid∼ Np(µ,Σ). Since

in this case κ = 0, we have that (14) reduces to (21).

Lastly, notice that

var(
√
nvec(S)) → (1+κ)(I+Kp)(Σ⊗Σ)+κ vec(Σ)vec(Σ)⊤

as n → ∞. The right hand side of the previous equation

equals the well-known asymptotic covariance matrix of the

limiting normal distribution of
√
n(vec(S) − vec(Σ)) when

sampling from an elliptical distribution Ep(µ,Σ, g) with finite

fourth order moments. This is a famous result in multivariate

statistics [14].

In the next Lemma, we derive the MSE and normalized

MSE of the SCM.

Lemma 1. Let x1, . . . ,xn denote an i.i.d. random sample

from a p-variate elliptical distribution with finite fourth order

moments, mean µ, and covariance matrix Σ. Then, the MSE

and the NMSE of S are

MSE(S) =
( 1

n− 1
+

κ

n

)

tr(Σ)2 +
( 1

n− 1
+

2κ

n

)

tr(Σ2)

NMSE(S) =

(

1 +
p

γ

)

( 1

n− 1
+

κ

n

)

+
κ

n

where γ and κ are defined in (3) and (13), respectively.

Proof. Since S is unbiased, i.e., E[S] = Σ, it holds that

MSE(S) = E
[

‖S−Σ‖2F
]

= E
[

vec(S−Σ)⊤vec(S−Σ)
]

= tr
(

E

[

vec (S− E[S]) vec (S− E[S])
⊤
])

= tr (var(vec(S))) , (22)

Then we substitute the expression stated in (14) for

var(vec(S)) into equation (22) and use the following identities

tr(Σ⊗Σ) = tr(Σ)2,

tr
(

vec(Σ)vec(Σ)⊤
)

= tr(Σ2), and

tr
(

Kp(Σ⊗Σ)
)

= tr(Σ2)

where the last identity follows from

tr
(

Kp(Σ⊗Σ)
)

=
∑

i,j

tr
( (

eie
⊤
j ⊗ eje

⊤
i

)

(Σ⊗Σ)
)

=
∑

i,j

tr
(

e
⊤
j Σei · e⊤i Σej

)

= tr(Σ2),



SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING 6

to obtain the stated expression of the MSE(S). The expression

for the NMSE(S) is obtained by dividing the MSE(S) by

‖Σ‖2F = tr(Σ2).

The next theorem states that the oracle parameters derived

in Theorem 1 can be written in a much simpler form when

sampling from an elliptically symmetric distribution.

Theorem 3. Let x1, . . . ,xn denote an i.i.d. random sample

from an elliptical distribution with finite fourth order moments,

mean µ, and covariance matrix Σ. Then the oracle parameters

(αo, βo) that minimize the MSE are

βEll
o =

(γ − 1)

(γ − 1) + κ(2γ + p)/n+ (γ + p)/(n− 1)
,

and αEll
o = (1 − βEll

o )η, where the parameters η, γ and κ are

defined in (3) and (13), respectively.

Proof. Follows from (5) and Lemma 1.

It is not surprising that βo, and hence also αo, depend on

the density generator g of the elliptical distribution only via

the elliptical kurtosis parameter κ. Specifying the elliptical

distribution also specifies the value of κ. For example, when

sampling from the Gaussian distribution, the elliptical kurtosis

parameter is κ = 0 and βEll
o in Theorem 3 reduces to

βGau
o =

(γ − 1)

(γ − 1) + (γ + p)/(n− 1)
. (23)

Consequently, an estimator of βGau
o is obtained by substituting

an estimator γ̂ in place of γ in (23). Recall that an estimator

of αGau
o is then obtained as α̂Gau

o = (1 − β̂Gau
o )tr(S)/p.

Since in this paper we do not assume any particular elliptical

distribution, we need to find an estimator κ̂ of the elliptical

kurtosis parameter κ as well. Naturally, if the assumption on

multivariate normality of the data is valid, then (23) should be

used for estimating the optimal oracle value.

When the mean vector of the population is known, the

unbiased SCM is S = 1
n

∑n
i=1 xix

⊤
i (as one can assume

without loss of generality that µ = 0). In this case the optimal

shrinkage parameter βo of the RSCM stated in Theorem 3

remains unchanged apart from the last term in the denominator

of βo, that is, (γ + p)/(n− 1) is replaced by (γ + p)/n. This

centered case was addressed in [20].

IV. ESTIMATION OF THE ORACLE PARAMETERS

In this section, we develop estimators γ̂ and κ̂ of the

unknown parameters κ and γ that determine the shrinkage

parameter βo (cf. Theorem 3). These are used to obtain a

plug-in estimators of the shrinkage parameters as

β̂Ell
o =

(γ̂ − 1)

(γ̂ − 1) + κ̂(2γ̂ + p)/n+ (γ̂ + p)/(n− 1)
,

α̂Ell
o = (1 − β̂Ell

o )η̂.

Next, we will address how to estimate the needed statistical

parameters. First, we will address the estimation of κ. Regard-

ing γ, we found two different well performing estimators, and

hence, we will address its estimation last.

A natural estimate of κ is the conventional sample average

κ̂ = max

(

− 2

p+ 2
,
1

3p

p
∑

j=1

K̂j

)

, (24)

where K̂j is an estimate of the kurtosis of the jth variable and

defined as

K̂j =
n− 1

(n− 2)(n− 3)

(

(n+ 1)k̂j + 6
)

.

Here k̂j = m
(4)
j /
(

m
(2)
j

)2−3 denotes the conventional sample

estimate of the kurtosis of the jth variable, where m
(q)
j =

1
n

∑n
i=1(xij − x̄j)

q denotes the qth order sample moment.

The estimate K̂j is a commonly used estimate of the kurtosis

which is based on the relationship between the kurtosis and

the cumulants of the distribution [21]. It corrects for the bias

of the conventional sample kurtosis k̂j . To ensure that the final

estimate κ̂ does not go below the theoretical lower bound of

−2/(p+ 2) [22], a maximum constraint is used in (24). The

constructed estimate of κ is consistent both in the conventional

and the RMT regime.

Note that, if the estimates (γ̂, κ̂) are restricted to be within

their theoretical ranges, i.e., 1 ≤ γ̂ ≤ p and κ̂ ≥ −2/(p+ 2),
then it is straightforward to verify that the plug-in estimator

satisfies β̂Ell
o ∈ [0, 1).

In the following subsections, we consider two options for

estimating the sphericity γ under the RMT regime. We denote

the estimators by γ̂Ell1 and γ̂Ell2. Both estimators have their

own benefits and disadvantages. The first estimator, γ̂Ell1,

enjoys statistical robustness with respect to heavier-tailed

distributions. The second estimator, γ̂Ell2, is computationally

more efficient and can easily be used and tuned for very high-

dimensional set-ups such as microarray studies where p is

often tens of thousands but n is of few tens [23]. It is also

highly efficient under Gaussianity, or for mild departures from

Gaussianity. Its obvious disadvantage is that it is not very

efficient for heavier-tailed elliptical distributions.

A. Ell1-RSCM estimator

The first estimator of the sphericity γ, uses the sample

spatial sign covariance matrix, defined as

Ssgn =
1

n

n
∑

i=1

(xi − µ̂)(xi − µ̂)⊤

‖xi − µ̂‖2 , (25)

where µ̂ = argminµ
∑n

i=1 ‖xi − µ‖ is the sample spatial

median [24]. The sample sign covariance matrix is well-known

to be highly robust although it is not a consistent estimator

of the covariance matrix [25], [26]. Namely, it does provide

consistent estimators of the eigenvectors of the covariance

matrix but not of the eigenvalues.

Consider an estimator of the form,

γ̂Ell1∗ =
n

n− 1

(

ptr
(

S
2
sgn

)

− p

n

)

=
p

n(n− 1)

∑

i6=j

(v⊤
i vj)

2

= p avei6=j{cos2(∢(xi,xj))}
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where avei,j denotes arithmetic average over indices, i, j ∈
{1, . . . , n}, i 6= j, and vi = (xi − µ̂)/‖xi − µ̂‖.

In [5, Lemma 4.1] it was shown that γ̂Ell1∗ is a consistent

estimator of γ when sampling from a centered elliptical

distribution Ep(0,Σ, g) under the RMT regime (R1) and when

the eigenvalues of Σ converge to a fixed spectrum such that

tr(Σi)/p has a finite and positive limit

for i = 1, 2, 3, 4 as p → ∞.
(R2)

In their paper, it was assumed that the location (symmetry

center) is known to be zero, which is why they do not have

the centering of the samples by the sample spatial median

in (25). We also remark that our estimator γ̂Ell1∗ differs from

[5, Lemma 4.1] in that we scale their estimator by n
n−1 .

This scaling is used for correcting bias for small samples and

needed to ensure that E[γ̂Ell1*] ∈ [1, p]. In order to guarantee

that the estimate remains inside the valid interval [1, p], as a

final estimator, we use

γ̂Ell1 = min(p,max(1, γ̂Ell1*)). (26)

We can now define the Ell1-RSCM estimator as the RSCM

based on the estimators of the optimal shrinkage parameters

using the plugin estimates η̂ of (11), κ̂ of (24) and γ̂Ell1 of (26).

B. Ell2-RSCM estimator

In order to develop the second estimator γ̂Ell2 of γ, we need

to find the values of E[tr(S2)] and E[tr(S)2], which are given

in the following Lemma 2.

Lemma 2. Let x1, . . . ,xn denote an i.i.d. random sample

from an elliptical distribution with finite fourth order moments,

mean vector µ, and covariance matrix Σ. Then,

E[tr(S2)] =
(

1

n− 1
+

κ

n

)

tr(Σ)2 +

(

1 +
1

n− 1
+

2κ

n

)

tr(Σ2)

and

E[tr(S)2] =

(

1 +
κ

n

)

tr(Σ)2 + 2

(

1

n− 1
+

κ

n

)

tr(Σ2)

Proof. The first statement for E[tr(S2)] follows from

Lemma 1 by noting that E[tr(S2)] = MSE(S)+tr(Σ2), which

was shown in (9).

Regarding the second statement, we first write

E
[

tr(S)2
]

= E

[

∑

i

sii
∑

j

sjj

]

=
∑

i,j

E [siisjj ]

=
∑

i,j

(cov (sii, sjj) + E [sii]E [sjj ]) .

Here, the covariance of sii and sjj is the ijth element of the

ijth block of var (vec (S)) in (14) since

cov(sii, sjj) = cov(e⊤i Sei, e
⊤
j Sej)

= cov
(

(ei ⊗ ei)
⊤vec(S), (ej ⊗ ej)

⊤vec(S)
)

= (e⊤i ⊗ e
⊤
i ) var(vec (S))(ej ⊗ ej).

Using the following identities:

(e⊤i ⊗ e
⊤
i )(Σ⊗Σ)(ej ⊗ ej) = e

⊤
i Σej · e⊤i Σej,

(e⊤i ⊗ e
⊤
i )Kp(Σ⊗Σ)(ej ⊗ ej) = e

⊤
i Σej · e⊤i Σej,

(e⊤i ⊗ e
⊤
i )vec (Σ) vec (Σ)

⊤
(ej ⊗ ej) = e

⊤
i Σei · e⊤j Σej ,

and the fact that S is unbiased, i.e., E[sii] = e
⊤
i Σei, we can

write using (14) that

E[siisjj ] = cov(sii, sjj) + E[sii]E[sjj ]

= 2τ1(e
⊤
i Σej · e⊤i Σej) + (1 + τ2)(e

⊤
i Σei · e⊤j Σej),

where τ1 and τ2 are given in (18) and (19), respectively. By

summing all i and j, we have

E[tr(S)2] =
∑

i,j

E[siisjj ] = 2τ1tr(Σ
2) + (1 + τ2)tr(Σ)2,

which completes the proof.

Next, we construct an estimator for ϑ = tr(Σ2)/p. The

natural plug-in estimate, tr(S2)/p, is not a consistent estimator

in the RMT regime (R1) and (R2). This follows at once from

Lemma 2 as it shows that tr(S2)/p is not asymptotically

unbiased since

lim
n,p→∞
p/n→co

E[tr(S2)]

p
= c0(1 + κ)η2o + ϑ0,

where ηo > 0 and ϑo > 0 denote finite limit values of tr(Σ)/p
and tr(Σ2)/p, respectively, as p → ∞.

In the next Theorem 4, a proper estimator ϑ̂ of ϑ un-

der the RMT regime is developed. Theorem 4 extends [18,

Lemma 2.1] to the elliptical case.

Theorem 4. Let x1, . . . ,xn denote an i.i.d. random sample

from a p-variate elliptical distribution with finite fourth order

moments, mean vector µ, and covariance matrix Σ. Then, an

unbiased estimate of ϑ = tr(Σ2)/p for any finite n and any

p is

ϑ̂ = bn

(

tr(S2)

p
− an

p

n

[

tr(S)

p

]2
)

where

an =

(

n

n+ κ

)(

n

n− 1
+ κ

)

bn =
(κ+ n)(n− 1)2

(n− 2)(3κ(n− 1) + n(n+ 1))
.

Furtheremore, under the RMT regime (R1) and (R2), the

estimator is asymptotically unbiased, i.e., E[ϑ̂] → ϑo, where

ϑo > 0 denotes the finite limit of ϑ as p → ∞.

Proof. Using Lemma 2 write

b−1
n pE[ϑ̂] =
(

τ1 −
an
n
(1 + τ2)

)

tr(Σ)2 +
(

1 + τ1 + τ2 − 2τ1
an
n

)

tr(Σ2),

where τ1 and τ2 are defined in (18) and (19). By choosing

an = nτ1/(1+τ2), we see that bn = (1+τ1+τ2−2τ1an/n
)−1

.

The terms an and bn can equivalently be expressed in the form

given in the theorem by using the equations for τ1 and τ2. The
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last statement is a consequence of the fact that ϑ converges to

a finite limit value as p → ∞ and that E[ϑ̂] = ϑ.

Note that an and bn depend on the elliptical distribution

via the elliptical kurtosis parameter κ. Using the estimate of

the kurtosis by defining ân = an(κ̂) and b̂n = bn(κ̂) one

obtains an estimate of ϑ which does not require knowing the

underlying elliptical distribution. Thus based on Theorem 4,

we propose an estimator of the form

γ̂Ell2* = b̂n

(

ptr(S2)

tr(S)2
− ânc

)

. (27)

Note that, if n is reasonably large (e.g., n > 100), then ân ≈
1 + κ̂ and bn ≈ 1 and then one may use

γ̂Ell2∗ =

(

ptr(S2)

tr(S)2
− (1 + κ̂)c

)

.

In order to guarantee that the estimator remains in the valid

interval, 1 ≤ γ ≤ p, we use

γ̂Ell2 = min(p,max(1, γ̂Ell2*)). (28)

as our final estimator. We can now define the Ell2-RSCM

estimator as the RSCM, which uses η̂ of (11), κ̂ of (24), and

γ̂Ell2 of (28) as plug-in estimates for the optimal shrinkage

parameters.

Finally, we wish to note that albeit γ̂Ell2 does not require

knowledge of the underlying elliptically symmetric distribu-

tion of the data, it is not a robust estimator. This is due to the

fact that tr(S2) contains 4th order moments of the data, and

8th order moments of the elliptically symmetric distribution

needs to exists in order for tr(S2) to be asymptotically normal.

Consequently, the Ell2-RSCM estimator is not well suited for

heavier-tailed distributions.

C. Ell3-RSCM estimator

Ell3-RSCM is a hybrid of the Ell1-RSCM and Ell2-RSCM

estimators. The Ell3-RSCM will use the estimator which has a

smaller estimated sphericity γ̂. Thus, it will always favor more

shrinkage over less shrinkage. This rule can be summarized

as: if γ̂Ell1 < γ̂Ell2, then choose Ell1-RSCM, otherwise choose

Ell2-RSCM.

V. SIMULATION STUDY

We conduct a small simulation study to investigate the

performance of the RSCM estimators in terms of their finite

sample NMSE. Each simulation is repeated 10000 times and

the NMSE is averaged over the Monte-Carlo runs for each

RSCM estimator. The theoretical oracle MSE value derived

in (7) is normalized by ‖Σ‖2F and used as a benchmark for

the empirical NMSE values, which is shown in the figures as

a solid black line. The mean vector µ is fixed for each MC

trial and generated randomly as {µi}pi=1
iid∼ N (0, 4).

20 40
0

0.1

0.2

0.3

0.4

n

N
M
S
E

Theory; Ell1; Ell2; Ell3; LW

(a) ̺ = 0.1

20 40

0.3

0.4

0.5

n

N
M
S
E

(b) ̺ = 0.4

Fig. 1. AR(1) process: comparison of covariance estimators when p = 100,
̺ ∈ {0.1, 0.4}, and the samples are from a Gaussian distribution.

A. AR(1) covariance matrix

In the first experiment, an autoregressive covariance struc-

ture is used. We let Σ be the covariance matrix of a Gaussian

AR(1) process,

(Σ)ij = ̺|i−j|, where ̺ ∈ (0, 1).

Note that, Σ verifies η = tr(Σ)/p = 1. Also, when ̺ ↓ 0, then

Σ is close to an identity matrix, and when ̺ ↑ 1, Σ tends to a

singular matrix of rank 1. The dimension is fixed at p = 100
and n varies from 10 to 50 in steps of 5 samples. Figure 1

depicts the NMSE performance as a function of sample length

n when the samples were drawn from a Gaussian distribution.

It can be noted that when the sample sizes were small,

both the Ell1-RSCM estimator and the Ell2-RSCM estimator

outperformed the LW-RSCM estimator with a significant mar-

gin. We also notice that the performance of the Ell2-RSCM

and Ell3-RSCM estimators were almost overlapping with the

theoretical optimal value for all values of n and for both values

of ̺.

Next, we consider heavier-tailed distributions than the Gaus-

sian. Namely, the tν -distribution with ν = 12 and ν = 7
degrees of freedom; the kurtosis of the marginal variable being

kurt(xi) = 0.75 and kurt(xi) = 2, respectively. The results

are given in Figure 2.

First, we notice that Ell1-RSCM and Ell3-RSCM outper-

formed Ell2-RSCM and LW-RSCM for all values of c = p/n,

ν and ρ. In the case of ν = 7, the performance of the Ell2-

RSCM estimator declined due to its non-robustness, and it

is performing the worst among the shrinkage estimators. In

the case of ν = 12, the LW-RSCM estimator and the Ell2-

RSCM estimator had similar performances for larger values

of n, but Ell2-RSCM performed better at small values of

n. Since Ell1-RSCM and Ell2-RSCM differ only in the way

they estimate the sphericity γ, the performance loss of Ell2-

RSCM over Ell1-RSCM can be attributed to a larger variability

and the non-robustness of the estimator γ̂Ell2 as compared to

γ̂Ell1. Also note that when the samples were drawn from the

t7-distribution, the performance loss of LW-RSCM to Ell1-

RSCM and Ell3-RSCM increased. Indeed, this difference in

performance can be attributed to better robustness properties
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Fig. 2. AR(1) process: comparison of covariance estimators when p = 100,
̺ ∈ {0.1, 0.4}, and the samples are drawn from a tν -distribution.

of the Ell1-RSCM estimator over the LW-RSCM estimator

when sampling from a heavier-tailed elliptical distribution.

Finally, for the case ρ = 0.4 and n = 20, the Figure 3

depicts the theoretical NMSE of S(1−β)η,β as a function of

β. Notice that the minimum NMSE is obtained at βEll
o which

is shown by black vertical line. The average estimates of the

optimal value βEll
o given by the different estimators are also

indicated by vertical lines.

As can be seen, for Gaussian data, the Ell2-RSCM esti-

mator of βo was very close to the theoretical minimum, and

significantly better than the Ell1-RSCM estimator. The LW-

RSCM estimator was far apart from the minimum compared to

Ell1-RSCM and Ell2-RSCM. In the case of the tν-distribution

with ν = 12 degrees of freedom, the Ell1-RSCM estimator

was performing better than Ell2-RSCM due to its robustness,

and both were significantly closer to the minimum than the

LW-RSCM estimator.

B. Largely varying spectrum

The next study follows the set-up in [5], where Σ has one

(or a few) large eigenvalues. In the first set-up, Σ is a diagonal

matrix of size 50 × 50, where m eigenvalues are equal to 1
and the remaining 50−m eigenvalues are equal to 0.01. For

the case n = 10, Figure 4 depicts the NMSE as a function

of m averaged over 10 000 Monte Carlo runs when sampling

from a Gaussian distribution and a tν -distribution with ν = 10
degrees of freedom.

In the Gaussian case, the Ell2-RSCM estimator had excel-

lent performance as its NMSE curve is essentially overlapping

0 0.05 0.1 0.15

0.26
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0.3

β
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E

NMSE; Theory; Ell1; Ell2; Ell3; LW

(a) Gaussian samples

0 0.05 0.1 0.15

0.26

0.28

0.3

0.32

0.34

β
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M

S
E

(b) t12-distributed samples

Fig. 3. The theoretical NMSE of the shrinkage estimator S(1−β)η,β as a

function of β when the covariance matrix has an AR(1) structure with ρ =
0.4, p = 100 and n = 20. The minimum NMSE is obtained at βEll

o which is
indicated by a solid vertical line. The average estimated value of the shrinkage
parameter β obtained by LW-, Ell1-, Ell2, and Ell3-estimators are shown.

with the theoretical NMSE curve. This is attested also in the

right-hand side plot which depicts the graph of the average

estimate β̂o and the theoretical optimal value βo as a function

of m. As can be seen, the Ell2-RSCM estimator was essen-

tially performing at the oracle level, whereas the shrinkage

parameter corresponding to the LW-RSCM estimator was

somewhat far from the theoretical optimal. The NMSE curves

show that the Ell2-RSCM estimator performed better than

the Ell1-RSCM estimator for Gaussian samples, however,

with a rather small margin. In the case of t10-distribution,

as expected, Ell1-RSCM performed better than Ell2-RSCM

due to its robustness in estimating the sphericity. The hybrid

estimator Ell3-RSCM was able to perform slightly better than

the other estimators in both cases.

The next simulation set-up considers a very challenging

scenario in which the spectrum of Σ consists of several

different eigenvalues. We consider the case that p = 100 and

the covariance matrix Σ has 30 eigenvalues equal to 100,

40 eigenvalues equal to 1, and 30 eigenvalues of 0.01. The

samples were drawn from a Gaussian distribution and a tν-

distribution with ν = 10 degrees of freedom. The NMSE

curves are plotted as a function of the sample length n in

Figure 5.

It can be seen that under Gaussian sampling, the Ell2-

RSCM and the Ell3-RSCM estimators achieved near optimal

performance for all n considered. Indeed, this behavior was

already seen in the other simulation studies. The more robust

Ell1-RSCM estimator performed slightly worse than the Ell2-

RSCM estimator in the Gaussian case for small n. It can

be noticed that the performance of the LW-RSCM estimator

degrades for small n. In the case when the samples are from a

t10-distribution, we observe that the more robust Ell1-RSCM

estimator starts dominating the non-robust Ell2-RSCM estima-

tor. Again, we note that the Ell3-RSCM estimator performed

the best.

In the last synthetic simulation study, the setup is otherwise

similar to the AR(1) setup in Subsection V-A, but now the

sample size is held constant at n = 10 and the degrees of
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Fig. 4. The covariance matrix Σ has m eigenvalues equal to 1 and 50−m
eigenvalues equal to 0.01. Here p = 50 and n = 10.

freedom of the tν-distribution of the samples is varied from

ν = 8 up to ν = 1000. The results are shown in Figure 6. One

can observe that the Ell3-RSCM estimator is able to attain the

lowest empirical NMSE among all of the estimators.

From these simulations, we can conclude that the Ell1-

RSCM estimator is better suited for heavier-tailed distributions

than the Ell2-RSCM estimator, which then again works well

for Gaussian or close to Gaussian distributions. The Ell3-

RSCM estimator is, however, able to perform the best in

all of the cases. This is due to the fact that it has the

freedom of choosing among two different estimates of the

sphericity; and in the conducted simulations, the rule choosing

the smaller estimate of the sphericity turns out to work well.

In the synthetic simulations, all three proposed estimators

outperformed the LW-RSCM estimator apart from the Ell2-

RSCM estimator in the case of t7-distributed samples.

VI. DATA-ANALYSIS EXAMPLES

A. Regularized QDA

Suppose there are K different p-variate populations with

covariance matrix Σk ∈ S
p×p
++ and a mean vector µk ∈ R

p,

k = 1, . . . ,K . The problem is to classify an observation x ∈
R

p to one of the populations. We assume no knowledge of

the class prior probabilities. In quadratic discriminant analysis

(QDA) classification, a new observation x is assigned to class

k̂ by the rule

k̂ = argmin
k∈{1,...,K}

(x− µk)
⊤
Σk

−1(x− µk) + log |Σk|.

Commonly, µk and Σk are estimated by the sample mean

vectors x̄k and the SCMs Sk computed from the training
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Fig. 5. The covariance matrix Σ has 30 eigenvalues equal to 100, 40
eigenvalues equal to 1, and 30 eigenvalues equal to 0.01 (p = 100).

10 15 25 50 100 500 1,000

0.3

0.4

0.5
0.6
0.7

ν

N
M
S
E

10 15 25 50 100 500 1,000

0.03

0.06

0.12

0.24

ν

β̂

Theory; Ell1; Ell2; Ell3; LW

Fig. 6. The NMSE and β̂ as the tν -distribution changes with ν = 8, 10, 12,
15, 25, 50, 100, 500, and 1000. The plots are in log-log scale.

dataset X = (x1 · · · xn), which consists of nk observations

from each class k = 1, . . . ,K and where n = n1 + · · ·+ nk

denotes the total sample size. In linear discriminant analysis

(LDA), one assumes that the class covariance matrices are

equal, so Σ = Σk for each k = 1, . . . ,K . Then, the unknown

common covariance matrix is estimated by the pooled SCM

defined as

Spool =
K
∑

k=1

nk − 1

n−K
Sk.
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The benefit of LDA over QDA is that it can also be applied in

the case when nk < p (for any k) as long as n =
∑

k nk > p.

In this case, QDA is no longer applicable since the SCM Sk is

not invertible for nk < p. LDA can be viewed as a regularized

form of QDA since it decreases the variance of Sk by using

the pooled SCM. LDA can often have superior performance

over QDA, especially in small-sample settings.

Since the performance of LDA and QDA classification rules

are highly dependent on the covariance matrix estimates, in

order to reduce the misclassification rate, a popular approach is

to use RSCM estimators instead of the class sample covariance

matrices; see e.g., [10]. RSCMs can be applied to LDA and

QDA regardless of what the available sample sizes nk of the

classes are. Here, we use a regularized version of QDA and

LDA, where we estimate the means by x̄k, but use Ell1-

RSCM, Ell2-RSCM, or LW-RSCM in place of the unknown

covariance matrices Σk in QDA and Σ in case of LDA. Such

approach is referred to as regularized discriminant analysis

(RDA) [10].

We compute the misclassification rates of LDA and QDA

and different RDA methods for the phoneme dataset [27].

The original data consists of short speech frames of 32 msec

duration (512 samples with at a 16kHz sampling rate) and each

frame represents one of the following phonemes, “aa”, “ao”,

“dcl”, “iy”, or “sh” with the number of occurrencies 695, 1022,

757, 1163, and 872, respectively. The full data set consists of

4509 speech frames spoken by 50 different male speakers. The

data used for classification consists of the log-periodograms of

the speech frames measured at p = 256 distinct frequencies.

The goal is to classify the spoken phonemes.

In the simulations, we randomly split the dataset into a

training set and test set with the ratio 1:12. Then the sizes of

the training sets were close to or smaller than the dimension

p as this is the regime where regularization is needed the

most. The frequencies of phonemes in the training set were

53, 79, 58, 89, and 67, respectively, while the remaining

dataset was used as a test set. The full length of the training

data was N =
∑

k nk = 346 > p = 256, and thus,

the conventional LDA could be applied but the QDA could

not be used as nk < p. The misclassification rates were

calculated by classifying the observations from the test set

using the classification rule estimated from the training set.

We report the corresponding misclassification rates based on

50 repetitions of random splits of the full data set into test

sets and training sets. The boxplots of the test misclassification

rates given in Figure 7 compare the conventional LDA with

regularized QDA and regularized LDA. Here we also compare

the performance of the Ell-RSCM estimators to an estimator

that presumes Gaussianity (κ = 0) and uses the shrinkage

parameter estimate β̂Gau
o as in (23) and the estimate of the

sphericity γ̂Ell2 in place of the unknown γ.

Several conclusions can be drawn from Figure 7. First,

the regularized LDA rules that used Ell-RSCM or LW-RSCM

outperformed the LDA with a significant margin: the median

test errors of the regularized LDA (resp. regularized QDA)

methods based on Ell1-, Ell2-, and LW-RSCM were 9.96%,

10.57%, and 10.62%. (resp. 12.86%, 14.36%, and 15.21%)

which may be compared with the 16.8% median error rate of

LDA
Ell1-QDA

Ell2-QDA

LW
-QDA

Gau-QDA

Ell1-LDA

Ell2-LDA

LW
-LDA

Gau-LDA

0.1

0.15

0.2

0.25

Fig. 7. Phoneme data: Box plots of the test misclassification rates of the
conventional LDA compared with the regularized QDA and LDA methods
based on different RSCM estimators.

the conventional LDA. Second, the overall performance of the

regularized LDA methods was better than the performance of

the regularized QDA methods. Third, in all cases, both Ell1-

RSCM and Ell2-RSCM outperformed LW-RSCM, and again,

Ell1-RSCM had the best performance among all methods.

Fourth, we notice that the Gau-RSCM estimator which pre-

sumes Gaussianity (and thus uses κ = 0) is not able to perform

better than the other RSCM estimators. In fact, Gau-RSCM

had the worst performance among all methods when applied

to the QDA rule. This illustrates the fact that the Gaussianity

assumption is a poor approximation of reality for many real

data analysis problems.

B. Portfolio optimization

Portfolio selection and optimization is one of the most

important topics in investment theory. It is a mathematical

framework wherein one seeks portfolio allocations which bal-

ance the return-risk tradeoff such that it satisfies the investor’s

needs. Some historical key references are [29]–[32], and [33].

Consider a portfolio consisting of p assets. The objective

is to find optimal portfolio weights which determine the

proportion of wealth that is to be invested in each particular

stock. That is, a fraction wi ∈ R of the total wealth is invested

in the ith asset, i = 1, . . . , p, and the portfolio P with p
assets is described by the portfolio weight or allocation vector

w ∈ R
p which satisfies the constraint 1⊤

w = 1. The global

mean variance portfolio (GMVP) aims at finding the weight

vector that minimizes the portfolio variance (risk or volatility),

and hence does not require specifying the mean vector. Let

rt ∈ R
p denote the net returns of the p assets at time t. The

GMVP optimization problem is

minimize
w∈Rp

w
⊤
Σw subject to 1

⊤
w = 1,

where 1 denotes is a p-vector of ones and Σ denotes the

covariance matrix of the vector rt of returns. The problem is

straight-forward to solve and the well-known solution is

wo =
Σ

−1
1

1⊤Σ
−1

1
. (29)

Naturally, the covariances of the net returns cannot be fore-

seen, and hence, the covariance matrix needs to be estimated
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Fig. 8. Annualized realized portfolio risk and average β̂ achieved out-of-
sample for a portfolio consisting of p = 45 stocks in HSI for Jan. 4, 2010 to
Dec. 24, 2011 (upper panel); and p = 50 stocks for Jan. 1, 2016 to Dec. 27,
2017 (lower panel). Both time-series contain 491 trading days. The portfolio
allocations are estimated by GMVP using different RSCM estimators and
different training window lengths n. The method of [28] that uses a robust
regularized covariance estimator is also included and referred to as Rob.
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Fig. 9. Annualized realized portfolio risk achieved out-of-sample over 583
trading days for a portfolio consisting of p = 396 stocks in S&P 500 index
for Jan. 4, 2016 to to Apr. 27, 2018. The portfolio allocations are estimated
by GMVP using different regularized SCM estimators and different training

window length n. The right panel shows average β̂ for different training
windows lengths for RSCM estimators.

from the historical data. Next, we apply the proposed RSCM

estimators in the GMVP optimization application.

We investigate the out-of-sample portfolio performance of

different RSCM estimators. In particular, we use the divident

adjusted daily closing prices downloaded from the Yahoo!

Finance (http://finance.yahoo.com) database to obtain the net

returns for 50 stocks that are currently included in the Hang

Seng Index (HSI) for two different time periods, from Jan. 4,

2010 to Dec. 24, 2011, and from Jan. 1, 2016 to Dec. 27, 2017

(excluding the weekends and public holidays). In both cases,

the time series contain T = 491 trading days. For the first

period (2010-2011), we had full length time series for only

p = 45 stocks, whereas in the latter case we had full length

time series for all stocks, so p = 50. Our third time series

contains the net returns of p = 396 stocks from Standard and

Poor’s 500 (SP500) index for the time period from Jan. 4, 2016

to Apr. 27, 2018 (excluding the weekends and public holidays).

In this case, the time series contains T = 583 trading days.

At a particular day t, we used the previous n days (i.e.,

from t − n to t − 1) as the training window to estimate

the covariance matrix, and the portfolio weight vector. The

obtained weight vector ŵ0 was then used to compute the

portfolio returns for the following 20 days. Next, the window

was shifted 20 trading days forward, a new weight vector was

computed, and the portfolio returns for another 20 days were

computed. Hence, this scenario corresponds to the case that

the portfolio manager holds the assets for approximately a

month (20 trading days), after which they are liquidated and

new weights are computed. In this manner, we obtained T −n
daily returns from which the realized risk was computed as

the sample standard deviation of the obtained portfolio returns.

To obtain the annualized realized risk, the sample standard

deviations of the daily returns were multiplied by
√
250. In

our tests, different training window lengths n were considered.

Figure 8 depicts the annualized realized risks for the different

RSCM estimators for both time periods of the HSI data. We

also included in our study the robust GMVP weight estimator

proposed in [28] that uses a robust regularized Tyler’s M -

estimator with a tuning parameter selection that is optimized

for the GMVP problem. In [28], it was illustrated that their

estimator outperforms a large array of regularized covariance

matrix estimators both for simulated and real financial data.

As can be seen from Figure 8, for period 2010-2011, the

Ell1-RSCM (and Ell3-RSCM) estimator achieved the smallest

realized risk, outperforming all the other estimators for all

window lengths. The robust method of [28] performed slightly

better than the Ell2-RSCM estimator only for certain window

lengths (n = 70 and n = 110), but it was also the worst

method for a very small window length (n = 50). For period

2016-2017, the differences between the estimators were not as

large as in the period 2010-2011. Here we observed that for

some window lengths, the Ell1- and the Ell2-RSCM estimators

and the robust method of [28] had rather identical behaviour

(e.g., when n = 210). Overall, however, the Ell1-RSCM

method was the best performing method.

Finally, we wish to point out that while Ell1-RSCM was

observed to have the best performance in general, also the

Ell2-RSCM estimator outperformed the LW-RSCM over the

entire span of the estimation windows considered for both

periods. Also, note that the optimal training window length

which yielded the smallest realized risk was n = 90 for the

period 2010-2011, but much larger (n = 230) for the period

2016-2017. This could be explained by the fact that the stock

markets were more turbulent in the first period, and hence, the

realized risks were much higher.
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Figure 9 depicts the annualized realized risks for the differ-

ent RSCM estimators for the time period from Jan. 4, 2016 to

Apr. 27, 2018 of the SP500 data. We have excluded the method

of [28] from this study as it is not well suited for very high-

dimensional problems because of its large computational cost

due to the grid search method it uses in finding the optimal

tuning parameter.

With the SP500 data, Ell1-RSCM achieved the smallest real-

ized risk and outperformed the other estimators for all training

window lengths n. The Ell2-RSCM estimator outperformed

LW-RSCM when n ≥ 130. The Ell3-RSCM estimator had

similar performance as Ell2-RSCM when n ≤ 170 and it

performed similar to Ell1-RSCM for n ≥ 170. The optimal

training window length which produced the smallest realized

risk was n = 230 for all methods. Note that, the same result

was achieved with the HSI data for the period 2016-2017.

VII. CONCLUSION

This paper proposed a regularized sample covariance matrix

(RSCM) estimator Ell-RSCM, which is suitable for high-

dimensional problems, where the data can be considered

as generated from an unknown elliptically symmetric distri-

bution. The proposed estimator is based on the estimation

of the optimal shrinkage parameters which minimizes the

mean squared error. The estimation of the optimal shrinkage

parameters was shown to reduce to a simpler problem of

estimating three statistical population parameters: the scale

η, the sphericity γ, and the elliptical kurtosis κ. The paper

showed alternative ways of how to estimate these parameters

under the random matrix regime. In the construction of the

proposed estimator Ell-RSCM, elliptical distribution theory

was used in the derivation of the analytical form of the mean

squared error of the SCM. The conducted synthetic simulation

studies showed an advantage of using the proposed Ell-

RSCM estimator over the widely popular Ledoit-Wolf (LW-

RSCM) estimator. Furthermore, we tested the performance

of the proposed Ell-RSCM estimator using real data in a

classification problem and in a portfolio optimization problem,

wherein the proposed methods were able to outperform the

benchmark methods. MATLAB codes of the proposed Ell-

RSCM methods and codes and datasets to reproduce the results

of real data-analysis examples of Section VI are available at

http://users.spa.aalto.fi/esollila/regscm/.
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