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Abstract—We consider the design of a linear sensing system
with a fixed energy budget assuming that the sampling noise is
the dominant noise source. The energy constraint implies that
the signal energy per measurement decreases linearly with the
number of measurements. When the maximum sampling rate of
the sampling circuit is chosen to match the designed sampling
rate, the assumption on the noise implies that its variance
increases approximately linearly with the sampling rate (number
of measurements). Therefore, the overall SNR per measurement
decreases quadratically in the number of measurements. Our
analysis shows that, in this setting there is an optimal number
of measurements. This is in contrast to the standard case, where
noise variance remains unchanged with sampling rate, in which
case more measurements imply better performance. Our results
are based on a state evolution technique of the well-known
approximate message passing algorithm. We consider both the
sparse (e.g. Bernoulli-Gaussian and least-favorable distributions)
and the non-sparse (e.g. Gaussian distribution) settings in both
the real and complex domains. Numerical results corroborate
our analysis.

Index Terms—Approximate message passing, compressed sens-
ing, state evolution, signal recovery.

I. INTRODUCTION

The problem of estimating a signal from its linear meas-
urements has been studied for many decades. From linear
algebra, at least n measurements are required in order to ensure
the reconstruction of an n-dimensional signal. Otherwise, the
solution is not unique. The field of compressed sensing (CS)
[2], [3] has shown that when the unknown signal is sparse,
assuming no further prior knowledge on the signal, the number
of measurements can be reduced below the dimension of the
signal leading to an underdetermined linear measurement sys-
tem. Many low complexity algorithms have been proposed to
solve the resulting sparse recovery problem including greedy
algorithms, for example orthogonal matching pursuit (OMP)
[4], subspace pursuit (SP) [5] and compressive sampling
matching pursuit (CoSaMP) [6], `1-norm minimisation [7],
and more recently approximate message passing (AMP) [8].
CS has been widely used in under-sampling [8]–[11], imaging
and localisation [12]–[14], and sparse learning [15].

In this paper, we study a system design problem with
focus on the sampling rate. That is, based on the typical
characteristics of the acquired signals, our goal is to choose
an optimal number of measurements to minimise the mean
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squared error (MSE) of the recovery. We assume that the
signal’s dimension, sparsity level, and statistics are given. We
also make two assumptions on the sampling process. First,
since practical systems are power limited, the energy in the
measurements for a fixed time period is fixed. This implies
that the energy per measurement decreases linearly with the
number of measurements (or equivalently sampling rate).
Second, we assume that the sampling noise is the dominant
noise source. In addition, in order to minimise hardware cost,
the sampling circuit is chosen to operate at its maximum
sampling rate. We model the sampling noise as additive white
Gaussian noise. The noise variance of the sampling circuit
follows the well known KT/C rule [16]–[18], where K is
the Boltzmann’s constant, T is the absolute temperature of
the circuit, and C is the capacitance of the sampling circuit
which is inversely proportional to the maximum and optimal
sampling rate based on our assumption. This implies that
the noise variance increases approximately linearly with the
number of measurements. In addition, although quantisation
noise is not studied in this paper, it is widely observed that
the effective number of bits of an analog-to-digital converter
decreases when the sampling frequency increases [20]. This
also results in the phenomenon that higher sampling rate
implies larger noise variance. The combined effect of these
two assumptions is that the SNR per measurement decreases
quadratically as a function of the number of measurements.

In practical systems, other noise sources exist such as
additive noise before sampling (also known as signal noise)
[19], [20] and quantisation noise [21], [22]. In this paper, we
focus on the effect of sampling noise, leaving analysis of the
effects of other noises as possible future work.

Under a quadratically decreasing SNR system, our goal is
to analyse the optimal number of measurements. Different
from the standard setting where noise variance remains un-
changed with sampling rate and hence more measurements
typically means better recovery performance, we show that
with quadratically decreasing SNR more measurements do not
necessarily imply better recovery.

More specifically, we demonstrate that in the quadratically
decreasing SNR scenario, there exists an optimal normalised
number δ† of measurements to minimise the mean squared
error (MSE) of the recovered signal. Here δ = m

n , where m
is the number of measurements and n is the dimension of
the unknown signal. We explicitly study three signal models:
Gaussian, Bernoulli-Gaussian and least-favorable distributions
in both the real and complex domains. We obtain closed-form
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expressions for δ† in the Gaussian and least-favorable models
and provide a numerical procedure to find the optimal δ† in
other cases. We show that for the three models, δ† ≤ 2.
Furthermore, when the SNR is low, δ† can be smaller than
1 implying that m < n in both the sparse and non-sparse
models. In particular, δ† < 1 in the Gaussian model when
σ2
x < 2σ2

0 where σ2
x is the signal variance and σ2

0 is the
noise base level, defined in Section II-B. For sparse vectors
we require in addition that ε = S

n is smaller than roughly 0.2
where S is the number of non-zero elements in the unknown
signal.

Our analysis and results are based on the AMP algorithm
and the associated state evolution. Though rigorous derivation
of the state evolution of AMP requires a random Gaussian mat-
rix, many works have demonstrated that the same results are
relatively accurate for partial Fourier and Rademacher matrices
[8], [23] when the sizes of these matrices are sufficiently large.

The rest of this paper is organised as follows: In Section
II we introduce our problem and mathematically explain the
quadratically decreasing SNR model. We also provide the
relationship between δ† and the MSE in the Gaussian setting
based on random matrix theory. In Section III, we introduce
AMP and state evolution which are used for sparse recovery.
The analysis of least-favorable and Bernoulli-Gaussian models
is developed in Section IV for the real case and in Section
V for the complex case. Bounds on the optimal number
of measurements and discussion about the specific situation
in which δ† < 1 are provided in Section VI, followed by
conclusions.

II. SYSTEM MODEL

A. Quadratically Decreasing SNR Model

Consider the linear system

y = s+w, (1)

where y ∈ Hm is the observation vector, s ∈ Hm represents
an unknown signal vector and w ∈ Hm is additive white
Gaussian noise. Here, H ∈ {R,C} where R denotes the real
domain and C the complex domain.

Assume the system has a fixed energy budget Es, so that
the total energy that can be allocated to s is

Es =

m∑
i=1

|si|2 . (2)

The corresponding average energy per signal sample is

Pas =
1

m

m∑
i=1

|si|2 =
1

m
Es ∝

1

m
. (3)

In practice, noise is unavoidable and comes from different
parts of the system. Consider the signal acquisition scheme
illustrated in Fig. 1. The received analog signal first passes
through a low pass or band pass filter, which filters the out of
band noise. We refer to the remaining in-band noise as signal
noise. The filtered signal is then sampled which produces
sampling noise. After that, a quantiser is applied to convert
the samples to bits which leads to quantisation errors. In [19]–
[21], the authors discuss the signal noise and the corresponding

Input
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Figure 1: Signal acquisition system.

noise folding effect. Quantisation error was studied in [22]. A
combined analysis of the signal noise and quantisation errors
is provided in [21] with the assumption of a fixed bit-budget
on the measurements.

The sampling noise (i.e. thermal noise in the sampling
circuit) is often the dominant noise source, for example in
radar systems [24, pp 5.21-5.26] and magnetic resonance
imaging (MRI) systems [25]. Here we focus on the impact
of sampling noise by assuming that both signal noise and
quantisation errors are relatively small. Based on [16]–[18],
the variance of sampling noise is approximately given by
KT/C where K is the Boltzmann’s constant, T is the absolute
temperature of the circuit and C is the sampling capacitance.
The speed of the sampling circuit (which can be simplified
as a switched-capacitor circuit) depends on the on-resistance
of the switch and the sampling capacitance C. A high speed
sampling circuit requires a small sampling capacitor. From
the system design point of view, there is a trade-off between
the sampling noise (with variance KT/C) and the designed
sampling speed. This phenomenon is discussed in Chapter 12
of [18] in detail. Here we emphasise that the sampling noise
in the sampling circuit is independent of the bandwidth of the
signal s and only depends on the sampling rate of the circuit.

As discussed above, the noise variance increases approxim-
ately linearly with the number of measurements. The average
energy per noise sample is then

Pan ∝ fs ∝ m

where fs is the sampling frequency. With these definitions, the
SNR is proportional to

SNR =
Pas
Pan

∝
1
m

m
=

1

m2

which is a quadratic decreasing model with respect to the
number of measurements m.

We have implicitly assumed that the signal noise and the
quantisation error are negligible compared to the sampling
noise [24], [25]. In reality, the former two noises will create
a small but nonzero noise floor with constant variance. As the
variance of the noise floor depends on system specifications,
we leave the detailed design considering all noise sources as
a future research topic.

B. General Linear System Model

We now extend the model in (1) to a general linear model

y = Ax+w (4)
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where Ax := s, A ∈ Hm×n denotes the measurement
matrix and x represents the unknown signal vector. In order
to incorporate the quadratically decreasing SNR assumption,
we define A as a Gaussian random matrix with elements i.i.d.
drawn from N

(
0, 1

m

)
or CN

(
0, 1

m

)
. The elements of x are

assumed to be i.i.d. drawn from a distribution px with zero
mean and variance independent of m. We assume the noise is
Gaussian N

(
0, σ2

w

)
or CN

(
0, σ2

w

)
with

σ2
w := δσ2

0 (5)

where δ := m
n and σ2

0 is the constant noise base level.
Let x̂ be an estimate of x. The associated MSE is defined

by

Err = lim
n→∞

1

n
E
[
‖x− x̂‖2

]
. (6)

Under the quadratically decreasing SNR model we want to
determine the optimal number of measurements m to minimise
the MSE in estimating x. In particular, an interesting question
is whether there are cases where m is smaller than n, which
would imply an under-sampling scenario. We consider the
system model (4) for both non-sparse and sparse signals.

C. Non-Sparse Setting

To gain intuition, we start by considering a Gaussian model.
Assume that x is drawn from N

(
0, σ2

xI
)

when H = R (or
CN

(
0, σ2

xI
)

when H = C) and the noise w is drawn from
N
(
0, σ2

wI
)

when H = R (or CN
(
0, σ2

wI
)

when H = C).
The asymptotic MSE (6) of the MMSE estimator can then
be directly calculated based on random matrix theory [26].
Denoting c = (1−δ)

δ , we have

Err =
δ

2

[(
−σ2

w+cσ2
x

)
+

√
(σ2
w+cσ2

x)
2
+4σ2

wσ
2
x

]
. (7)

An illustration of the MSE for the case in which σ2
x = 1 and

σ2
w = σ2

0 is provided in Fig. 2a. The MSE is calculated via (7)
and we choose three different values for σ2

0 : 0.1, 0.5 and 1.
The simulation results reflect, in the traditional case, that more
measurements provide better performance. When we replace
the noise variance with our model (5), a trade-off between
MSE and δ exists. Figure 2b shows that there is an optimal
number of measurements that minimizes the MSE which is
quit different from the traditional case. The optimal values of
δ for the three curves (σ2

0 = 0.1, 0.5 and 1) are smaller than
2; when σ2

0 = 1, the optimal δ is even smaller than 1 (i.e.
m < n). A detailed discussion regarding bounds on δ† and
the situation in which δ† < 1 is provided in Section VI-A.

Motivated by this phenomenon, our goal is to find a similar
relationship for sparse signals by taking into account the
nonlinear property of the sparse decoder.

III. APPROXIMATE MESSAGE PASSING

In order to treat sparse signals, a sparse decoder is required
for signal recovery. We choose the AMP algorithm which has
low computational complexity per iteration, fast convergence
speed (when it converges), and good performance guarantees
(with a standard Gaussian random matrix). Exact performance

δ=m/n
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Figure 2: MSE in a non-sparse Gaussian model.

of AMP can be predicted via the so called state evolution (SE)
technique.

The AMP algorithm was first proposed in [8] to solve (4)
in the CS scenario in which m < n and x is assumed to be
sparse. It iteratively applies the following equations:

xt+1 = η
(
A∗rt + xt

)
, (8)

rt = y−Axt +
1

δ

〈
η′
(
A∗rt−1+xt−1

)〉
rt−1, (9)

where xt denotes the t-th estimation of x, η (·) is a
component-wise estimator designed based on the statistical in-
formation on its input argument, A∗ stands for the (conjugate)
transpose of A, η′ represents the first order derivative of η,
and 〈v〉 := 1

n

∑n
i=1 vi computes the average. The last term of

(9)

Onsager :=
1

δ

〈
η′
(
A∗rt−1 + xt−1

)〉
rt−1, (10)

is called the Onsager (correction) term.
A heuristic suggestion was presented in [26], [27] to analyse

the performance of AMP. The idea is to decompose the
input of the function η (βt) into the superposition of the
original signal x and white Gaussian noise. Consider three
modifications at each iteration t: replace 1) the matrix A with
a new independent copy A (t), 2) the observation vector y
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with yt = A (t)
∗
x+w, and 3) the Onsager term in (9) with

0. The input of η (βt) can then be written as

βt := A (t)
∗
rt + xt = A (t)

∗ (
yt −A (t)xt

)
+ xt

= x+
(
A (t)

∗
A (t)− I

) (
x− xt

)
+A (t)

∗
w (11)

which is the ground truth signal x plus an equivalent noise:

wt
e :=

(
A (t)

∗
A (t)− I

) (
x− xt

)
+A (t)

∗
w. (12)

Although in the AMP algorithm, we do not have inde-
pendent copies A (t) as well as independent observations yt,
due to the Onsager term, the statistical information of the
equivalent noise can still be asymptomatically calculated via
(12) which may be treated as approximately Gaussian and
independent of x. At each iteration t, we first update the
estimated signal xt+1 = η (βt) by a particularly designed
η (·) function (detailed information is provided in Sections IV
and V) which depends on the knowledge of the signal x and
the equivalent noise wt

e (i.e. σte, the standard deviation of wt
e).

We then calculate the MSE denoted by Errt+1 of the current
estimated signal xt+1. Finally we update the variance of the
equivalent noise wt+1

e of (12) by(
σt+1
e

)2
=

1

δ
Errt+1 + σ2

w. (13)

The calculation of Errt+1 depends on the distribution of x and
will be discussed in Sections IV and V. This updated variance
of wt+1

e is used to obtain a new signal estimate xt+2 in the
next iteration.

The asymptotic performance of the AMP algorithm in the
regime in which m, n → ∞ with δ → m

n constant, is
described by SE. The SE is characterised by a sequence
{(σte)2} for t ≥ 0 calculated via (13) with initial condition(
σ0
e

)2
= E

[
X2
]
/δ+σ2

w (X has density function px). As long
as
(
σt+1
e

)2 ≤ (σte)
2 for all t ≥ 0, we say that AMP converges.

More details about SE can be found in [26], [27]. The analysis
of the optimal number of measurements to minimise the MSE
in this paper assumes that AMP converges and relies heavily
on the SE.

In the rest of this paper, when we say the practical per-
formance of AMP, we refer to the practical situation in which
n is a large but finite number. We iteratively apply (8) and
(9) to update the estimate xt. In each iteration, the MSE (6)
can be approximated by 1

n ‖x− x
t‖2. We are interested in

finding 1
n ‖x− x

∞‖2, where x∞ represents the final estimate
of x when AMP converges. When we say the theoretical
performance of AMP, we refer to SE analysis via (13). In this
case, the corresponding MSE is Err∞ when AMP converges.
An advantage of AMP is that when it converges, the theoretical
value Err∞ describes the practical performance calculated by
1
n ‖x− x

∞‖2 quite precisely. The performance guarantee of
AMP has been rigorously analysed both in the infinite [26]
and finite [28] domain.

IV. ANALYSIS IN REAL DOMAIN

We now analyse the relationship between the MSE and δ
(or equivalently m) in the real domain. We first consider a
situation in which the only prior information on the unknown

signal is that it is sparse. Because the detailed distribution
is not available, a universal decoder is applied and analysed
based on the so-called least-favorable distribution. Then we
treat the case in which the signal distribution is known a priori
and given by Bernoulli-Gaussian. We extend the analysis to
the complex domain in the next section.

A. Least-favorable Distribution (Worst Case Analysis)

Consider a vector x with i.i.d. elements drawn from an
unknown distribution px supported on (−∞,∞), where only
the normalised sparsity level ε = S

n is given. Denote the class
of corresponding signals as Fε, such that px ∈ Fε. In [8],
[27] a soft-thresholding function is used component-wise as
the estimator

xt+1
i = η

(
βti , λ

t
)

=


βti − λt βti > λt

0 − λt ≤ βti ≤ λt

βti + λt βti < −λt.
, (14)

In AMP, βt is calculated by A (t)
∗
rt + xt with initial

condition r0 = y and x0 = 0, and the non-negative value λt is
the corresponding threshold which depends on the equivalent
noise wt

e of (12). The selection of λt is detailed in (16) below.
The AMP state evolution is based on the following

component-wise analysis. Let X̂ be an estimate of a random
variable X . The worst case analysis considers the following
minimax problem

inf
X̂

sup
px∈Fε

E
[∣∣∣X − X̂∣∣∣2] ,

which minimises the MSE under the least-favorable distribu-
tion. When the estimator (14) is applied, the following least-
favorable distribution [27] turns out to be

px =
ε

2
∆x=−µ + (1− ε) ∆x=0 +

ε

2
∆x=µ (15)

where ∆ denotes the Dirac delta function, µ ∈ (−∞,∞), and
ε ∈ (0, 1] is the normalised sparsity level.

Note that the state evolution theorem [26, Theorem 1]
requires a bounded moment of (15) which implies x ∈
(−∞,∞). The analysis first assumes m, n → ∞ for any
fixed µ, and then allows µ → ∞. In [27], the author uses
px = ε

2∆x=−∞ + (1− ε) ∆x=0 + ε
2∆x=∞ for notational

brevity.
The optimal threshold that minimises the MSE when (15)

is applied, is given by

λt :=
(
α†
)t
σte,

(
α†
)t

= arg min
α∈R+

M
(
ε, α, µ, σte

)
, (16)

where

M
(
ε, α, µ, σte

)
=ε
(
α2+1

)
Φ

(
−α+

µ

σte

)
−ε
(
α+

µ

σte

)
φ

(
α− µ

σte

)
+ε

µ2

(σte)
2

(
Φ

(
α− µ

σte

)
− Φ

(
−α− µ

σte

))
+ε(α2+1)Φ

(
−α− µ

σte

)
−ε
(
α− µ

σte

)
φ

(
−α− µ

σte

)
+ (1− ε)

[
2(α2 + 1)Φ (−α)− 2αφ (α)

]
, (17)
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φ(x) is the standard Gaussian density and Φ(x) =
∫ x
−∞ φ(t)dt

is the corresponding cumulative distribution function. The
MSE at each iteration is then

Errt+1 = M

(
ε,
(
α†
)t
, µ, σte

)(
σte
)2
. (18)

Applying state evolution with these results and letting µ→
∞ leads to the following theorem.

Theorem 1. For a linear measurement system (4) with signal
model (15) (µ→∞) and additive white Gaussian noise with
variance (5), apply the AMP algorithm with estimator (14).
The optimal number of measurements in an MSE sense is
asymptotically given by

δ† = 2M
(
ε, α†

)
, (19)

which is independent of the noise variance.

Proof: By the convergence assumption, when t → ∞,
we have σt+1

e = σte = σ∞e and Errt+1 = Errt = Err∞.
Substituting (13) into (18) results in

Err∞ = M
(
ε,
(
α†
)∞

, µ, σ∞e

)(1

δ
Err∞ + δσ2

0

)
.

For the worst case µ→∞, (17) is independent of σte, and α†

becomes a constant. We then have

M
(
ε, α†

)
:= lim

µ→∞
M
(
ε,
(
α†
)∞

, µ, σ∞e

)
= ε

(
1+
(
α†
)2)

+(1−ε)
[
2
(

1+
(
α†
)2)

Φ
(
−α†

)
−2α†φ

(
α†
)]

(20)

and

Err∞ =
M
(
ε, α†

)
δ2σ2

0

δ −M (ε, α†)
. (21)

Consider Err∞ as a function of δ. Take the derivative with
respect to δ, and equate it to zero. For δ > M

(
ε, α†

)
(which

ensures that Err∞ is a positive value), we have a unique saddle
point δ† = 2M

(
ε, α†

)
(a local minima or a local maxima).

As δ → ∞, we have Err∞ → ∞, thus, δ† is a local minima
which is our required solution. In addition, δ† does not depend
on the noise base level σ2

0 .

B. Bernoulli-Gaussian Distribution

Next we consider the Bernoulli-Gaussian prior [11], [29],
[30] with probability density given by

px = (1− ε) ∆x=0 + εpG
(
x; 0, σ2

x

)
, (22)

where pG
(
x; 0, σ2

x

)
represents the zero mean Gaussian density

with variance σ2
x.

The η (·) function in (8) is designed based on the prior
information of x. Let

Rt :=
σ2
x

(σte)
2 + σ2

x

(23)

and define

I
(
Rt, ε

)
:=

∫
φ (x)

1 + 1−ε
ε

1√
1−Rt exp

(
− Rt

1−Rt
x2

2

)x2dx. (24)

The element-wise function η (·) takes the mean value of
the posterior probability p (x|βti ) which provides the MMSE
estimate [11]. For each element of βt,

η
(
xti|βti

)
:= E

[
x|βti

]
=
pG

(
βti ; 0, (σte)

2
+ σ2

x

)
p (βti )

εRtβti ,

(25)

with

p
(
βti
)

:= (1− ε) pG
(
βti ; 0,

(
σte
)2)

+ εpG
(
βti ; 0,

(
σte
)2

+ σ2
x

)
.

The corresponding derivative of η (xti|βti ) is calculated via

η′
(
xti|βti

)
=

Rt

v3 + 1
+
Rtv3v2 (βti )

2

(v3 + 1)
2

where

v1 :=
1− ε
ε

√
(σte)

2+σ2
x

(σte)
2 , v2 :=

Rt

(σte)
2 , v3 :=v1 exp

(
−1

2
v2
(
βti
)2)

,

and the MSE is given by

Errt+1 :=

[
Rtε

1−Rt
(
1−RtI

(
Rt, ε

))] (
σte
)2
. (26)

Lemma 2. [31, Lemma 2] Consider a random variable
U with conditional probability density function of the form
pU |V (u|v) := 1

Z(v)exp (φ0 (u) + uv) , where Z (v) is a nor-
malization constant. Then,

∂

∂v
logZ (v) = E [U |V = v]

∂2

∂v2
logZ (v) =

∂

∂v
E [U |V = v] = var (U |V = v) .

Based on Lemma 2 above, Errt+1 can be approximated as

Errt+1 ≈

[
1

n

n∑
i=1

η′
(
xti|βti

)] (
σte
)2
, (27)

which avoids the integration of I (Rt, ε) in (26). Equation (26)
is used in the SE analysis while (27) should be used in signal
reconstruction.

Proof of (27). Now go back to (11) and define B(t) =(
A (t)

∗
A (t)− I

)
. We borrow the statements from [26, Sec-

tion C] which claimed that, based on the central limit theorem,
each entry of B(t) is approximately normal with zero mean
and variance 1

m and B(t) (x− xt) converges to a vector
with i.i.d. normal entries. In addition, according to the law
of large numbers, A (t)

∗
w is also a vector of i.i.d. normal

entries with mean zero and variance that converges to σ2
w,

which is approximately independent of B(t) (x− xt). Thus
each entry of βt converges to x + wte where x ∼ px and
wte ∼ N (0,

(
σ2
e

)t
). Consider the conditional probability

p (x|β) =
p (x, β)

p (β)
=

(1− ε) pG
(
β − x; 0, σ2

e

)
∆x=0

p (β)

+
εpG

(
x; 0, σ2

x

)
pG
(
β − x; 0, σ2

e

)
p (β)

,
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in which we only care about the second term (the first term
has no contribution to E [x|β] and var [x|β] due to ∆x=0). The
numerator of the second term is

εpG
(
x; 0, σ2

x

)
pG
(
β − x; 0, σ2

e

)
= ε

1√
2πσ2

x

exp

(
− x2

2σ2
x

)
1√

2πσ2
e

exp

(
− (β − x)

2

2σ2
e

)

= ε
1

2πσxσe
exp

(
− β2

2σ2
e

)
exp

(
−σ2

e − σ2
x

2σ2
xσ

2
e

x2 +
xβ

σ2
e

)
.

Dividing the numerator and denominator of
1

p(β)εpG
(
x; 0, σ2

x

)
pG
(
β − x; 0, σ2

e

)
by ε 1

2πσxσe
exp

(
− β2

2σ2
e

)
,

the remaining part in the numerator is exp
(
−σ2

e−σ
2
x

2σ2
xσ

2
e
x2 + xβ

σ2
e

)
.

Comparing the term exp
(
−σ2

e−σ
2
x

2σ2
xσ

2
e
x2 + xβ

σ2
e

)
with the one

exp (φ0 (u) + uv) in Lemma 2, we have u = x
σ2
e

and v = β.
Based on (25) and Lemma 2, we get

E [U |V = β] =
E [X|V = β]

σ2
e

=
η (β)

σ2
e

,

var (U |V = β)=
η′ (β)

σ2
e

=var

(
X

σ2
e

|V =β

)
=

1

σ4
e

var (X|V =β) ,

so that
var (X|V = β) = η′ (β)σ2

e .

Since the MSE is the average of var (X|V = β) with respect
to different β’s, (27) follows.

In the Bernoulli-Gaussian case, there are no closed-form
representations of σ∞e and Err∞. These two values only can be
obtained numerically. The following shows a general process
of finding the optimal value of δ to minimise the recovery
MSE (Err∞).

When AMP converges, σt+1
e = σte = σ∞e and Errt+1 =

Errt = Err∞. Based on (13), we have

(σ∞e )
2

=
1

δ
Err∞ + δσ2

0 , (28)

where Err∞ is a function of ε, σ2
x, σ

2
0 and σ∞e . With fixed

ε, σ2
x and σ2

0 , Err∞ is a function of (σ∞e )
2 and vice versa.

For any given Err∞, (28) is a quadratic equation of δ. The
values of δ that achieve Err∞ are given by

δ =
(σ∞e )

2 ±
√

(σ∞e )
4 − 4σ2

0Err∞

2σ2
0

. (29)

According to our numerical results, if Err∞ is too small, then
there is no valid δ (must be a real value). This means that such
Err∞ is not achievable no matter how we design δ. Increase
Err∞ until

(σ∞e )
4

= 4σ2
0Err∞ (30)

which provides a unique optimal solution

δ† =
(σ∞e )2

2σ2
0

. (31)

The corresponding Err∞ is the minimum value that is achiev-
able.

The conclusions achieved above can be used to derive the
result of Theorem 1. Recall that in the worst case analysis,

based on (18), we have Err∞ = M
(
ε, α†

)
(σ∞e )

2. Substi-
tuting this Err∞ into (30) provides (σ∞e )

2
= 4σ2

0M
(
ε, α†

)
.

Further substituting this (σ∞e )
2 into (31) results in δ† =

4σ2
0M(ε,α†)
2σ2

0
= 2M

(
ε, α†

)
which coincides with the solution

of Theorem 1.
Note that it is proved in [32] that for a region of parameters

(ε, δ, σ∞e , σ
2
x, σ

2
0), belief propagation based algorithms (i.e.

AMP) may provide a suboptimal solution compared with the
one achieved by optimal Bayesian inference (the best possible
reconstruction, regardless of the algorithms). In [32], it also
shows that the suboptimal solution provided by AMP will
converge to the optimal solution when the noise variance
grows. In this paper, we focus on AMP reconstruction only
and do not consider the best possible reconstruction provided
by other algorithms.

C. Special Case when ε = 1 (Gaussian)

Consider the Bernoulli-Gaussian prior with ε = 1. In this
case, (24) degenerates to the variance of a standard Gaussian
distribution which is a constant with value equal to 1. The
estimated error (26) is then

Errt+1 = Rt
(
σte
)2
, (32)

where Rt is given by (23). Substituting (32) and (5) into (13)
and setting t = t+ 1 =∞ yields

(σ∞e )
2

=
1

δ
Err∞ + δσ2

0 (33)

=
1

δ

σ2
x (σ∞e )

2

(σ∞e )
2

+ σ2
x

+ δσ2
0 . (34)

Based on (34), we have

(σ∞e )
2

=

(
cσ2
x + δσ2

0

)
+

√
(cσ2

x + δσ2
0)

2
+ 4σ2

xδσ
2
0

2
, (35)

where c := (1−δ)
δ . We ignore the negative value due to the non-

negative property of the error. Using (33), the final estimation
error at the fixed point is

Err∞ = δ
(

(σ∞e )
2 − δσ2

0

)
. (36)

Substituting (35) into (36), we obtain (7).

V. ANALYSIS IN COMPLEX DOMAIN

We now consider the case in which all the elements of y,
x, A and w in (4) are complex values. The analysis in the
complex domain follows the same line as in the real setting
but with different formulas for M (ε, α) and Errt.

Least-favorable distribution: The complex AMP (CAMP)
algorithm for a least-favorable distribution has been analysed
in [33] with a new Onsager term. Based on [33], the η function
is

η
(
βti , λ

t) :=

(
βti −

λt
(
βti
)

|βti |

)
1{|βti |>λt} (37)

where 1{|βti |>λt} denotes the indicator function. The least-
favorable distribution becomes p|x| = (1− ε) ∆|x|=0 +
ε∆|x|=+∞ with the assumption that the phase of x is isotropic.
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The formula of ErrC,t is the same as in real case but with
a new function MC (ε, α):

MC (ε, α) :=ε
(
1+α2

)
+(1−ε)

[√
2πφ

(√
2α
)
−2α
√
πΦ
(
−
√

2α
)]
.

(38)
Comparing (38) with (20), we see that the estimation error
of the non-zero components of the signal are the same (first
term). The difference between them stems from the de-noising
for the zero components of the signal (second term). For a
complete derivation of the new Onsager term and calculation
of η′ (βti , λ), we refer the reader to [33].

Bernoulli-Gaussian distribution: We assume that the real
part and imaginary part of the complex variable share the same
mean and variance and their magnitudes are uncorrelated. Let
x ∼ CN

(
µ, σ2

x

)
. Then we have (x)R , (x)I ∼ N

(
µ,

σ2
x
2

)
. Under

this assumption,

pCG
(
x;µ, σ2

x

)
= pG

(
(x)R ;µ,

σ2
x

2

)
pG

(
(x)I ;µ,

σ2
x

2

)
=

1

πσ2
x

exp

(
−|x− µc|

2

σ2
x

)
, (39)

where µc = µ + iµ and the Bernoulli-Gaussian distribution
in the complex domain becomes p(x) = (1− ε) ∆|x|=0 +
εpCG (x). For the estimator η, we just replace the pG probab-
ility in (25) with pCG defined above.

Now let

ptβ,1 :=pCG

(
βtj ; 0, (σte)

2
+σ2

x

)
, ptβ,2 :=pCG

(
βtj ; 0, (σte)

2
)
,

ptβ,3 := (1− ε) ptβ,2 + εptβ,1,

and

pto := − 2

σ2
x + (σte)

2 p
t
β,3 +

2 (1− ε)
σ2
w

ptβ,2 +
2ε

σ2
x + (σte)

2 p
t
β,1.

The four derivatives of η can be calculated based on the
following formulas:

∂ηR
(
βtj
)

∂
(
βtj
)R =

pto(
ptβ,3

)2 ptβ,1εR((βtj)R)2 +
ptβ,1
ptβ,3

εR (40)

∂ηR
(
βtj
)

∂
(
βtj
)I =

∂ηI
(
βtj
)

∂
(
βtj
)R =

pto(
ptβ,3

)2 ptβ,1εR (βtj)R (βtj)I (41)

∂ηI
(
βtj
)

∂
(
βtj
)I =

pto(
ptβ,3

)2 ptβ,1εR((βtj)I)2 +
ptβ,1
ptβ,3

εR. (42)

Finally, (26) is replaced by

ErrC,t+1 =

[
Rtε

1−Rt
(
1−RtIC

(
Rt, ε

))] (
σte
)2
, (43)

IC
(
Rt,ε

)
=

∫
xR

∫
xI

φC (x)

1+ 1−ε
ε

1
1−Rtexp

(
− Rt

1−Rt |x|
2
) |x|2dxIdxR, (44)

where φC (x) = pCG (x; 0, 1) is the standard complex normal
distribution.

As in the real domain, we can efficiently calculate (43) by
focusing on the real part of the signal only,

ErrRC,t+1 ≈
1

n

n∑
j=1

(
∂ηR

(
βtj
)

∂
(
βtj
)R
) (

σte
)2

2
(45)

ErrC,t+1 ≈ 2ErrRC,t =
1

n

n∑
j=1

(
∂ηR

(
βtj
)

∂
(
βtj
)R
)(

σte
)2
. (46)

0 100 200 300 400 500 600 700 800 900 1000

C
1
=

x

2
/

0

2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

O
p

ti
m

a
l 

 =
 m

/n

Gaussian distribution

Curve 1

Curve 2

Figure 3: Gaussian case: Optimal δ vs C1 = σ2
x/σ

2
0 . The red

solid line (Curve 1) is directly achieved via (47) and the blue
dashed line (Curve 2) is achieved via argminδErr where Err
is defined by (7).

Based on the assumption that the real and imaginary parts of
the complex random variable are i.i.d., the total MSE is twice
the MSE of the real part.

The optimal δ† can be determined by using the Theorems in
Section IV, and replacing M(ε, α†) and Errt with MC(ε, α†)
in (38) and ErrC,t in (43), respectively.

VI. BOUNDS AND SIMULATION

A. Bounds Analysis

The optimal δ† for the least-favorable distribution is given
by (19). For a given ε, we have a unique value of M

(
ε, α†

)
to quantify δ†. For the Bernoulli-Gaussian case, we need to
try different values of σ∞e to satisfy the condition (σ∞e )

4
=

4σ2
0Err∞, thus δ† is computed numerically. In order to obtain

intuition into the values of δ† for different signals, we derive
bounds on δ† for the Gaussian, Bernoulli-Gaussian and least-
favorable distributions.

Proposition 3 (Gaussian Distribution). For a linear measure-
ment system (4) with our proposed Gaussian noise model (5),
assume the signal elements are i.i.d. drawn from the Gaussian
distribution as in Section II-C for both real and complex cases.
Then δ† < 2. In addition, when σ2

x < 2σ2
0 , we have δ† < 1.

Proof: We focus on (7) and replace σ2
w with δσ2

0 . Let
g(δ) = f(δ)

σ2
0

where

f(δ) :=
(
−δ2σ2

0 + (1− δ)σ2
x

)
+

√
(δ2σ2

0 + (1− δ)σ2
x)

2
+ 4δ3σ2

0σ
2
x.

Then

g(δ) =
(
−δ2 + (1− δ)C1

)
+

√
(δ2 + (1− δ)C1)

2
+ 4δ3C1

where C1 =
σ2
x

σ2
0

. Taking the derivative of g(δ) with respect to
δ and equating it to zero results in 2C2

1δ
2 + C3

1δ − 2C3
1 = 0.

We thus have two saddle points

δ1 =
−
√
C2

1 + 16C1 − C1

4
, δ2 =

√
C2

1 + 16C1 − C1

4
.
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Figure 4: M
(
ε, α†

)
vs ε.

Since δ must be non-negative, we consider only δ2. In order
to check whether δ2 is a minima, we rewrite g(δ) as

g(δ) =

√
(δ2 + (1− δ)C1)

2
+ 4δ3C1 − δ2 + (1− δ)C1

≥
√

(δ2 + (1− δ)C1)
2

+ 4δ3C1 −
(
δ2 + δC1

)
=

√
(δ2 + δC1)

2
+ 2C1δ2 − 2C2

1δ + C2
1 −

(
δ2 + δC1

)
.

When δ → ∞, we have 2C1δ
2 − 2C2

1δ + C2
1 → ∞ which

implies g(δ) → ∞, thus δ2 must be a local minima. The
optimal number of measurements is then

δ† = δ2 =

√
C2

1 + 16C1 − C1

4
(47)

<

√
C2

1 + 16C1 + 64− C1

4
=

(C1 + 8)− C1

4
= 2.

In addition, when
σ2
x < 2σ2

0 , (48)

we have C1 < 2. Since (47) is a monotonically increasing
function, the condition C1 < 2 results in δ† < 1.

The relationship between δ† and C1 is simulated in Fig. 3.
The red solid line (Curve 1) is calculated via (47) and the blue
dashed line (Curve 2) is achieved via argminδErr where Err
is the function of (7).

Proposition 4 (Least-favorable Distribution). For a linear
measurement system (4) with our proposed Gaussian noise
model (5), assume the signal elements are i.i.d. drawn from
the least-favorable distribution as in Section IV for the real
case and Section V for the complex case. Then δ† < 2. When
M(ε, α†) < 0.5 for the real case and MC(ε, α†) < 0.5 for
the complex case, we have δ† < 1.

Proof: Based on Theorem 1, we have δ† = 2M(ε, α†). In
order to bound δ†, we need to consider a bound on M (ε, α).

We first treat the real case, in which we rewrite M (ε, α) as

M (ε, α) = εT1 + T2,

where

T1 =
(
1 + α2

)
+ 2αφ (α)− 2

(
1 + α2

)
Φ (−α) ,

T2 = 2
(
1 + α2

)
Φ (−α)− 2αφ (α) .

For any α ≥ 0, we have Φ (−α) ≤ 1
2 . Thus,

T1 =
(
1 + α2

)
+ 2αφ (α)− 2

(
1 + α2

)
Φ (−α)

≥
(
1 + α2

)
− 2

(
1 + α2

)
Φ (−α)

=
(
1 + α2

)
(1− 2Φ (−α)) ≥ 0

which means that for any fixed α ≥ 0, M (ε, α) is a mono-
tonically increasing function. Thus, for any 0 < ε1 < ε2 ≤ 1,
we have M(ε1, α) < M(ε2, α) ≤M (1, α), where,

M (1, α) = 1 + α2.

Let α†1 be the optimal value that minimises M (1, α). Then
M(1, α†1) = 1 and for any fixed α†1, M(ε, α†1) is a monoton-
ically increasing function as mentioned above, which means
M(ε1, α

†
1) < M(1, α†1). Let α†ε1 be the optimal value that min-

imises M(ε1, α). Then M(ε1, α
†
ε1) ≤ M(ε1, α

†
1) < 1 which

means M(ε, α†) is upper bounded by 1 and δ† = 2M
(
ε, α†

)
is upper bounded by 2. Furthermore, for M(ε, α†) < 0.5, we
have δ† < 1 which only depends on ε.

For the complex case, the analysis is similar. We rewrite
(38) as MC (ε, α) = εT1 + T2 where

T1 = 1 + α2 −
√

2πφ
(√

2α
)

+ 2α
√
πΦ
(
−
√

2α
)
,

T2 =
√

2πφ
(√

2α
)
− 2α

√
πΦ
(
−
√

2α
)
.

For any given α ≥ 0, we have

T1 ≥ 1 + α2 −
√

2πφ
(√

2α
)

= 1 + α2 − exp
(
−α2

)
≥ 0.

By following the analysis in the real case, the same bound is
achieved.

To actually determine δ†, we rely on numerical evaluations.
For any given ε, there are no closed form formulas to
compute α† in (16) and M

(
ε, α†

)
in (20): they have to be

obtained numerically. As a consequence, for any given value
of M

(
ε, α†

)
, the corresponding ε has to be found numerically.

Simulations in Fig. 4 show that for both real and complex
cases, M

(
ε, α†

)
is upper bounded by 1, and ε should be

smaller (approximately) than 0.1928 for the real case and
0.2289 for the complex case to achieve δ† < 1.
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Proposition 5 (Bernoulli-Gaussian Distribution). For a linear
measurement system (4) with our proposed Gaussian noise
model (5), assume the signal elements are i.i.d. drawn from
the Bernoulli-Gaussian distribution as in Section IV for the
real case and Section V for the complex case. Then δ† < 2
and when σ2

x <
1

ε(1−R∞I(R∞,ε))σ
2
0 for the real case and σ2

x <
1

ε(1−R∞IC(R∞,ε))σ
2
0 for the complex case, we have δ† < 1.

Proof: Based on Section IV-B we known that

δ† =
(σ∞e )

2

2σ2
0

(49)

with the constraint (σ∞e )
4

= 4σ2
0Err∞ (ε). For a fixed σ2

0 , we
have δ† ∝ (σ∞e )

2 ∝ 2σ0
√

Err∞ (ε), thus we need to find the
bound on Err∞ (ε) (here we use Err∞ (ε) instead of Err∞ to
highlight that Err∞ (ε) is a function of ε).

Recall (26) which can be rewritten as

Err∞ (ε) = σ2
xε− σ2

xR
∞I (R∞, ε) ε (50)

where I (R∞, ε) is given by (24). For any given R∞ in (23)
(which depends on σ2

x and σ∞e ), let 0 < ε1 < ε2 ≤ 1. It is
easy to verify that

0 < I (R∞, ε1) < I (R∞, ε2) ≤ 1.

Define f1(ε) := σ2
xε and f2 (ε) := σ2

xR
∞I (R∞, ε) ε. Then

f1(ε)

f2 (ε)
=

1

R∞I (R∞, ε)
≥ 1

which means that Err∞ (ε) is a monotonically increasing
function of ε for any given σ2

x, σ
∞
e and σ2

0 . Thus for
0 < ε1 < ε2 ≤ 1, we have

0 < Err∞(ε1) < Err∞(ε2) ≤ Err∞(1)

and for ε = 1, the Bernoulli-Gaussian distribution degenerates
to the Gaussian signal. Thus Err∞ (ε) in the Bernoulli-
Gaussian case is upper bounded by the Gaussian case, in other
words, δ† is upper bounded by 2.

Consider the following condition

σ2
x <

1

ε(1−R∞I (R∞, ε))
σ2
0 . (51)

Based on (50) we have

Err∞ (ε) < σ2
0 .

Multiplying 4σ2
0 on both sides gives

4σ2
0Err∞ (ε) < 4σ4

0 . (52)

For δ† we have the equality constraint (σ∞e )
4

= 4σ2
0Err∞ (ε).

Substituting (σ∞e )
4

= 4σ2
0Err∞ (ε) into (52) results in

(σ∞e )
4

4σ4
0

< 1.

Taking the square root of both sides and only considering the
real value, we achieve the specific region

δ† =
(σ∞e )

2

2σ2
0

< 1.

The same analysis holds in the complex case.

Currently, there is no simple closed-form expression to
describe the relationship between σ2

0 , σ2
x, ε and (σ∞e )

2. Sim-
ulation of the specific region δ† < 1 is provided in Fig. 5,
where δ† is calculated via (49). Here we set σ2

x = 1 and try
different values of σ∞e such that

∣∣∣(σ∞e )
4 − 4σ2

0Err∞

∣∣∣ < 10−6,

after which we compute δ† =
(σ∞
e )2

2σ2
0

to find the optimal value.
For the case ε = 1, we found δ† = 1 when σ2

0 = 0.5 which
coincides with the results from Fig. 2b.

B. Numerical Justification

Both the theorems provided in Section IV and the bounds
in Section VI rely heavily on the SE technique of the AMP
algorithm. We compare the practical curves of the MSE of
AMP and the theoretical curves achieved by SE.

For the simulation, we set n = 1000, σ2
0 = 0.01 as constant

values. For the Bernoulli-Gaussian signal, we let σ2
x = 1,

and for the least-favorable signal, we use a Bernoulli-Gaussian
distribution but with large variance σ2

x = 100. Each simulation
point is the average of 100 independent trials.

The simulation results provided in Fig. 6 show the rela-
tionship between the MSE and the measurement ratio δ for
a given normalised sparsity level ε = S

n . From the figure,
one can observe that when δ increases, the MSE decreases
dramatically until it reaches a minimum. After that, further
increase in δ increases the MSE. This phenomenon verifies
our presumption that there exists an optimal δ† (or m†) for an
energy fixed signal transmission system.

The overall performance of the Bernoulli-Gaussian dis-
tribution is better than the least-favorable distribution. The
numerical results of the Bernoulli-Gaussian signal match the
theoretical curves quite well but for the least-favorable distri-
bution, the numerical results (MSE) are slightly larger than the
theoretical curves. The main reason is that for the theoretical
analysis in this case, we assume that the values of the non-zero
coefficients are ±∞, but in simulations, these values can only
be set as certain large numbers which results in a lower SNR
compared with the one in the theoretical case. For both signal
distributions, the trends of δ† for different ε values coincides
with our theoretical analysis.

VII. CONCLUSIONS

In this paper, we study the quadratically decreasing SNR
setting by assuming an energy limited system with a noise
model whose variance is proportional to the number of
measurements. Analyses via random matrix theory and state
evolution both show there exists an optimal choice of number
of measurements to minimise the MSE of the estimated signal.
The obtained conclusion is quit different from the traditional
case which usually suggests the more measurements the better.
Bounds on the optimal value δ = m

n for three commonly used
signal distributions, Gaussian, Bernoulli-Gaussian and least-
favorable, show that in both the real and complex domains, the
optimal value δ is upper bounded by the value of 2. Specific
situations in which δ† < 1 for the three signal models have
also been analysed.
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(b) 2D plot (real case)
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(c) 3D plot (complex case)
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(d) 2D plot (complex case)

Figure 5: Simulation of δ† with respect to σ2
0 and ε with fixed value σ2

x = 1. Only the specific region δ† < 1 is plotted.

APPENDIX

A. η and Errt for Bernoulli-Gaussian Prior (Real)

In this section, we provide the derivations of (25) and (26)
in the real domain.

Assume the following scalar equation

β = x+ we (53)

where x has density function (22) and we is the noise with
density N

(
0, σ2

e

)
. The joint probability of x and β is

p (x, β) =pG
(
β − x; 0, σ2

e

)
(1− ε) ∆x=0

+ εpG
(
β − x; 0, σ2

e

)
pG
(
x; 0, σ2

x

)
and

p (β) = (1− ε) pG
(
β; 0, σ2

e

)
+ εpG

(
β; 0, σ2

x + σ2
e

)
.

Let the estimation be x̂ = η (β) = Ex|β [x|β]. Based on Bayes’
theorem, we have

x̂ =

∫
x
p (x, β)

p (β)
dx

=

∫
xpG

(
β − x; x, σ2

e

)
pG
(
x; 0, σ2

x

)
dx

(1−ε)
ε pG (β; 0, σ2

e) + pG (β; 0, σ2
x + σ2

e)
. (54)

We next rely on the following lemma.

Lemma 6. Let y = Ax + w where A ∈ Rm×n is a
deterministic matrix, x ∼ N (0,Σx) and w ∼ N (0,Σw)

are Gaussian random vectors. Assume all the matrix inverses
exist. Then

µx|y = ΣxA
T
(
AΣxA

T + Σw

)−1
y

=
(
Σ−1x +ATΣ−1w A

)−1
ATΣ−1w y,

Σx|y =
(
Σ−1x +ATΣ−1w A

)−1
= Σx −ΣxA

T
(
AΣxA

T + Σw

)−1
Σx

where µx|y is the conditional mean and Σx|y is the condi-
tional covariance matrix.

Consider the mean value µx|y in Lemma 6, which is used
to compute Ex|y [x|y]. Now apply this result to the scalar
function (53). By setting ε = 1, we have the following fact∫

xpG
(
β − x; x, σ2

e

)
pG
(
x; 0, σ2

x

)
dx

pG (β; 0, σ2
x + σ2

e)
= Rβ, (55)

where R :=
σ2
x

σ2
x+σ

2
e

. Substituting (55) into (54) provides

x̂ =
pG
(
β; 0, σ2

x + σ2
e

)
εRβ

(1− ε) pG (β; 0, σ2
e) + εpG (β; 0, σ2

x + σ2
e)

=
pG
(
β; 0, σ2

x + σ2
e

)
εRβ

p (β)

which has the same form as (25).
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Figure 6: MSE (Err∞) vs δ.

Now consider the MSE as Err = E
[
(x− x̂)

2
]
. Thus

Err = E
[
x2 − 2Ex|β [x|β]x+ Ex|β [x|β]

2
]

= Eβ

[
Ex|β

[
x2 − 2Ex|β [x|β]x+ Ex|β [x|β]

2
]]

= Eβ
[
Ex|β

[
x2|β

]]
− Eβ

[
Ex|β [x|β]

2
]
.

Note that Eβ
[
Ex|β

[
x2|β

]]
= E

[
x2
]

= εσ2
x based on the law

of total expectation. For Eβ

[
Ex|β [x|β]

2
]

we have

Eβ

[
Ex|β [x|β]

2
]

=

∫
pG
(
β; 0, σ2

x + σ2
e

)2
ε2R2β2

p (β)
dβ

=εσ2
xR

∫ 1
σ2
x+σ

2
e
pG
(
β; 0, σ2

x + σ2
e

)
β2

(1−ε)
ε

pG(β; 0, σ2
e)

pG(β; 0, σ2
x+σ

2
e)

+ 1
dβ.

Define β :=
√
σ2
x + σ2

eγ. Then

Eβ
[
Ex|β [x|β]2

]
=εσ2

xR

∫ 1√
2π

exp
(
− γ

2

2

)
(1−ε)
ε

√
1

1−Rexp
(
− γ

2σ2
x

2σ2
e

)
+ 1

γ2dγ

=εσ2
xRI (R, ε)

and

Err = εσ2
x − εσ2

xRI (R, ε)

=

[
Rε

1−R
(1−RI (R, ε))

]
σ2
e

which has the same form as (26).

B. η and Errt for Bernoulli-Gaussian Prior (Complex)

In this section, we extend (25) and (26) to the complex case.
We start from (39). Following the same steps as in Appendix
A, we have

x̂ = E [x|β] =

∫
xp (x|β) dx,

=
pCG

(
β; 0, σ2

e + σ2
x

)
pC (β)

εRβ,

where

pC (β) = (1− ε) pCG
(
β; 0, σ2

e

)
+ εpCG

(
β; 0, σ2

e + σ2
x

)
.

The MSE calculation in the complex case, becomes

ErrC = Ex2 − Eβ

[∣∣Ex|β [x|β]
∣∣2]
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where we still have Ex2 = εσ2
x. The second term gives

Eβ

[∣∣Ex|β [x|β]
∣∣2]

=

∫ ∣∣Ex|β [x|β]
∣∣2 pC (β) dβ (56)

= εR2

∫
βR

∫
βI

pCG
(
β; 0, σ2

e + σ2
x

)
(1−ε)
ε

pCG(β;0,σ2
e)

pCG(β;0,σ2
e+σ

2
x)

+ 1
|β|2 dβRdβI .

(57)

In addition, we have pCG
(
x; 0, σ2

x

)
= 1

σ2
x

1
π exp

(
− |x|

2

σ2
x

)
.

Let x = σxy. Then,

pCG
(
x; 0, σ2

x

)
=

1

σ2
x

1

π
exp

(
−σ

2
x |y|

2

σ2
x

)

=
1

σ2
x

φc (y) =
1

σ2
x

φc

(
x

σx

)
,

which implies that we can rewrite (57) as

Eβ

[∣∣Ex|β [x|β]
∣∣2]

= εR2

∫
βR

∫
βI

1
σ2
e+σ

2
x
φc

(
β√

σ2
e+σ

2
x

)
(1−ε)
ε

1
1−Rexp

(
−R |β|

2

σ2
e

)
+ 1
|β|2 dβRdβI .

(58)

Define β :=
√
σ2
x + σ2

eγ. We then have dβR =√
σ2
e + σ2

xdγ
R , dβI =

√
σ2
e + σ2

xdγ
I , and |β|2 =(

σ2
e + σ2

x

)
|γ|2. Substituting into (58) leads to

ErrC

= εσ2
x

− σ2
xεR

∫
γR

∫
γI

φc (γ)
(1−ε)
ε

1
1−Rexp

(
− R

1−R |γ|
2
)

+ 1
|γ|2 dγRdγI ,

= εσ2
x (1−RIC (R, ε)) =

[
Rε

1−R
(1−RIC (R, ε))

]
σ2
e

which has the same form as (43).
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