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Abstract—The practical application of a new class of coprime
arrays based on the Chinese remainder theorem (CRT) over
quadratic fields is presented in this paper. The proposed CRT
arrays are constructed by ideal lattices embedded from coprime
quadratic integers with B1 and B2 being their matrix repre-
sentations respectively, whereby the degrees of freedom (DOF)
surges to O(|det (B1B2)|) with |det(B1)|+ |det(B2)| sensors.
The geometrical constructions and theoretical foundations were
discussed in the accompanying paper in great detail, while this
paper focuses on aspects of the application of the proposed
arrays in two-dimensional (2D) remote sensing. A generaliza-
tion of CRT arrays based on two or more pairwise coprime
ideal lattices is proposed with closed-form expressions on sensor
locations, the total number of sensors and the achievable DOF.
The issues pertaining to the coprimality of any two quadratic
integers are also addressed to explore all possible ideal lattices.
Exploiting the symmetry of lattices, sensor reduction methods
are discussed with the coarray remaining intact for economic
maximization. In order to extend conventional angle estimation
techniques based on uniformly distributed arrays to the method
that can exploit any coarray configurations based on lattices,
this paper introduces a hexagon-to-rectangular transformation
to 2D spatial smoothing, providing the possibility of finding
more compact sensor arrays. Examples are provided to verify
the feasibility of the proposed methods.

Index Terms—Remote sensing, DOA estimation, sparse
arrays, coprime matrices, spatial smoothing, hexagon-to-
rectangular transformation, Voronoi cell.

I. INTRODUCTION

S
parse arrays significantly increase the degrees of free-

dom by exploiting the concept of the coarray. As a

result, they find a broad range of applications including the

direction of arrival estimation (DOA) [2], beamforming [3]

and imaging [4]. A planar array consists of a set of antennas

placed on a 2D lattice, which can estimate both azimuths and

elevations of the impinging sources. In the accompanying pa-

per [5], a new class of 2D sparse array configuration, namely

the CRT array was introduced, which exploits quadratic
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integers to allocate antennas. Precisely, a CRT array is

constructed by two coprime lattices generated from two

quadratic integers respectively in the same field. According

to the generalized CRT stated in [6], the difference vectors of

two coprime lattices enjoy a quadratic surge of DOF, which

allows the identification of more sources than the number

of sensors. The coprimality of lattices is guaranteed by

the coprimality of their corresponding quadratic integers [5,

Theroem 1]. The theoretical foundations including the ring

of quadratic integers and the issues pertaining to the prime

factorization were also discussed in [5]. One advantage of

the CRT array is that it only requires a single prime integer

p for the prime factorization and offers simple closed-form

representations of sensor locations, the number of sensors,

the resulting DOF and so forth. Because of the limitations

of conventional subspace-based algorithms, it is essential to

enlarge the continuous coarray. A hole-free symmetric CRT

array (HSCRT) with the enhanced coarray was proposed,

which uses the notations of CRT arrays and modifies one of

the subarrays by scaling its Voronoi cell [5].

In array processing, the basic idea of subspace-based

algorithms is the orthogonality between the signal subspace

and its corresponding noise subspace obtained from the

eigendecomposition of the data covariance matrix [7], [8].

Therefore, by rearranging array manifold vectors and repro-

cessing signal outputs accordingly, the dimensions of the

covariance matrices can be enhanced. Thus more sources can

be detected from non-uniformly distributed array configura-

tions including [3], [9]–[15]. Among these, the sparse arrays

including coprime arrays [10], generalized coprime arrays

[13] and super nested arrays [14] are more robust to mutual

coupling compared to other one-dimensional (1D) array

configurations such as minimum redundancy arrays [9] and

nested arrays [3]. While in the case of 2D sensor arrays, their

applications include multidimensional DFT filter banks [11],

angle estimations in the passive sensing scenario [12], [15]

and so forth. Nevertheless, the application of 2D coprime

arrays in the context of parameter estimations in MIMO

radar has not been fully investigated.

Because algebraic lattices are symmetric with respect to

the origin, for any HSCRT, its sum coarray is identical

to its difference coarray, which implies that HSCRT not

only can be applied to active sensing (corresponding to

http://arxiv.org/abs/1808.07511v2
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the sum coarray) but also can be exploited for passive

sensing (corresponding to the difference coarray). In this

contribution, HSCRT is extended to new array configurations

such as T, spinner, Z2 cross and A2 cross to improve the

essentialness [16] while keeping the coarray intact as its

corresponding HSCRT. Unlike HSCRT, such arrays are not

symmetric with respect to the origin, but their subarrays have

the symmetry with respect to the midpoint of two adjacent

Voronoi cells.

To verify the feasibility of the proposed arrays, we apply

the CRT arrays to MIMO radar to estimate arrival angles

whereby the half power beamwidth (HPBW) is significantly

reduced, and the side lobes are largely suppressed. On the

other hand, in the passive sensing scenario, we discuss the

applications of CRT arrays as multi-antenna receivers in

the context of 2D DOA estimation with the presence of

sensor mutual coupling. It has been proved in [14] and

[15] that the sparsity of the antennas is inversely related

to the mutual coupling effect caused by electromagnetic

interactions between adjacent antennas. As a result, one

superiority of the proposed CRT arrays lies in the robustness

to mutual coupling since all sensors placed on coprime

lattices are well-separated.

The rest of the paper is outlined as follows. In Section II, a

general approach to coprime quadratic integers is proposed,

providing a feasible method of generating coprime lattices.

Section III generalizes CRT to any number of pairwise

coprime algebraic integers. By considering the symmetry of

algebraic lattices, sliced CRT and cross arrays are introduced

in Section IV to improve the essentialness. Based on the

concept of 2D spatial smoothing, Section V exploits the

hexagon-to-rectangular technique for subspace-based algo-

rithms. The superior performance of the proposed arrays is

validated in Section VI. Section VII concludes the paper.

Notations: R denotes a ring and Λ is its algebraic lattice.

i and ω denote the roots of X2+1 = 0 and X2−X+1 = 0
respectively. Z[i] and Z[ω] denote the rings of Gaussian and

Eisenstein respectively. Bold font lowercase letters (e.g., x1),

bold font uppercase letters (e.g., G), fraktur font letters (e.g.,

p1) and calligraphy font alphabets (e.g., D) denote vectors,

matrices, principal ideals and sets respectively. N(m) = mm̂
denotes the norm of m where m̂ is the algebraic conjugate

of m. R(m) and J (m) represent real and imaginary parts

of m respectively.

II. A GENERAL APPROACH TO COPRIME PAIRS OF

QUADRATIC INTEGERS

To achieve a quadratic surge of DOF, the two lattices

shall be coprime [5], [11], [17]. All of the CRT arrays

introduced in the accompanying paper [5] necessitate the use

of pairwise coprime integers to construct coprime lattices.

For this reason, the test of coprimality is essential in the

coprime array design. A prime decomposition method and

the coprime conditions on algebraic conjugate pairs were

introduced in [5], by which two coprime lattices were

generated.

However, the number of ideals obtained from the prime

decomposition is limited, and the existence of Bezout’s

identity is very difficult to verify when it comes to large

complex numbers in general. In this section, we establish

simplified necessary and sufficient conditions on relatively

prime quadratic integers, which enrich the classes of co-

prime integers in number theory and offer more options

on the selection of coprime lattices. Note that according

to [5, Theorem 1], the following theorem is equivalent to

conditions on coprime matrices, which can be exploited

not only in angle estimations but also in other applications

such as beamforming and filter banks. The coprimality

issues pertaining to Gaussian and Eisenstein integers are also

addressed as special cases.

Theorem 1: Let Z[q] denote a ring of integers with

minimum polynomial X2+BX+C. Two quadratic integers

m = m1 + m2q and n = n1 + n2q in Z[q] are coprime if

and only if

GCD(N(m),N(n),m1n2 −m2n1) = 1 or equivalently (1)

GCD(N(m),N(n),m1n1 −Bm1n2 + Cm2n2) = 1, (2)

where GCD denotes the greatest common divisor and N(m)
is the norm of m that is defined by N(m) = mm̂ = (m1 +
m2q)(m1 +m2q̂) = m2

1 −m1m2B +m2
2C, m1,m2 ∈ Z.

Proof : See Appendix A. �

Taking Z[ω] and Z[i] as examples, the following two

corollaries impose the coprime conditions on Eisenstein

integers and Gaussian integers respectively.

Corollary 1: Two arbitrary Eisenstein integers m and n
are relatively prime if and only if

GCD(N(m),N(n),
2√
3
Im(mn̂)) = 1, (3)

or equivalently,

GCD(N(m),N(n),Re(mn̂)− 1√
3
Im(mn̂)) = 1. (4)

Proof : Recall that Eisenstein integers are complex numbers

of the form m = m1 + ωm2 where ω and ω̂ are the roots

of the polynomial ω2 − ω + 1 = 0, i.e., ω = 1
2 +

√
3
2 i and

ω̂ = 1
2 −

√
3
2 i. By noticing that mn̂ = (m1n1 +

1
2 (m1n2 +

m2n1)+m2n2)+
√
3
2 (m2n1−m1n2)i, (1) can be simplified

to (3). Similarly, substituting B = −1 and C = 1 into (2)

results in (4). �

Corollary 2: Two arbitrary Gaussian integers m and n are

relatively prime if and only if

GCD(N(m),N(n), Im(mn̂)) = 1, (5)

or equivalently,

GCD(N(m),N(n),Re(mn̂)) = 1. (6)

Proof : The minimum polynomial of Gaussian integers is

X2+1 = 0 whereby all the integers are in the form of m =
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m1+m2i. Noticing that mn̂ = (m1n1+m2n2)+ (m2n1−
m1n2)i, the two coprimality conditions can be simplified to

(5) and (6) respectively. �

In [5, Theorem 1], it has been shown that if two quadratic

integers in a principal ideal domain (PID) are coprime,

their corresponding ideal lattices represented by matrices are

relatively prime as well, i.e., the following two matrices:

Bm =

(

m1 −Cm2

m2 m1 −Bm2

)

and

Bn =

(

n1 −Cn2

n2 n1 −Bn2

)

are coprime if and only if (1) or (2) holds. Therefore,

Theorem 1 along with its corollaries further generalizes the

coprimality conditions of algebraic lattices of dimension two

to which CRT applies.

III. Q-TUPLE CRT ARRAYS

In [5], a novel method of designing sparse arrays was

proposed by exploiting two prime ideals in quadratic number

fields such as the fields of Gaussian and Eisenstein. Never-

theless, in general, the Chinese remaindering is applicable

to any finite number of pairwise coprime integers which do

not have to be prime elements and conjugate pairs. In this

section, we will present the generalization of CRT arrays

based on multiple quadratic integers.

Definition 1: A Q-tuple CRT array consists of a number Q
of subarrays which are built from pairwise coprime ideals1

pk in a ring R (k = 1 · · ·Q). Let P =
∏Q

k=1 pk, with

pk 6= pj of k 6= j being the factorization of the ideal P, then

a Q-tuple CRT array incorporating with Q ideal lattices can

be characterized by

Z = σ(p1)/σ(P) ∪ σ(p2)/σ(P) · · · ∪ σ(pQ)/σ(P).

The virtual difference coarray of Z is an extension of the

two-integer case defined in [18, Definition 4], which can be

represented by the set D:

D = {zm − zn | zm, zn ∈ Z}. (7)

The Chinese Remaindering Theorem for multiple ideals [6,

Theorem 3.5] asserts that there exists a canonical isomor-

phism

R/P ≃
Q
∏

k=1

R/pk, (8)

which implies that for all {a1 · · · aQ} ∈ ∏Q

k=1 R/pk, there

exists z ∈ R/P such that

z ≡
Q
∑

k=1

akck (mod P) (9)

where c1 · · · cQ ∈ R such that ck ≡ 1 (mod pk) and ck ≡ 0
(mod pj) for all k 6= j as all ideals are pairwise coprime.

1Note that any two ideals I and J in a ring R are coprime if and only
if I + J = R, which implies that they are distinct [5].

Here {c1, · · · cQ} serves as our CRT basis. Based on this,

the next proposition derives the properties of the generalized

Q-tuple CRT arrays.

Proposition 1: The number of sensors in the Q-tuple CRT

array is given by

|Z| =
Q
∑

k1=1

N(p−1
k1

P)−
∑

1≤k1<k2≤Q

N((pk1
pk2

)−1P)

+
∑

1≤k1<k2<k3≤Q

N((pk1
pk2

pk3
)−1P) · · ·+ (−1)Q−1

=

Q
∑

k1=1

| det(BP)|
| det(Bk1

)| −
∑

1≤k1<k2≤Q

| det(BP)|
| det(Bk1

) det(Bk2
)| · · ·

=

Q
∑

k=1

(−1)k+1
∑

1≤k1<···<kk≤Q

| det(BP)|
∏k

j=1 | det(Bkj
)|
,

(10)

and the maximum DOF is

|D| = N(P) = | det(BP)|, (11)

where |D|, N(pk) and | det(Bk)| denote the cardinality of

D, the norm of pk and the absolute value of the determinent

of Bk respectively. BP is the matrix representation of the

ideal P and Bk is the matrix representation of pk for all

1 ≤ k ≤ Q.

Proof : The total number of physical sensors parameterized

by the norm of pk is the sum of all the identical lattice points

within σ(p1)/σ(P), · · ·σ(pQ−1)/σ(P) and σ(pQ)/σ(P).
From lattice theory point of view [19], σ(P) can be viewed

as a sublattice of σ(pk). By [20, Definition 3.12], the

cardinality of the quotient group σ(pk)/σ(P) is the number

of lattice points within this group and can be calculated as:

|σ(pk)/σ(P)| = | det(BP)|
| det(Bk)|

,

which is also the norm of p−1
k P for all 1 ≤ k ≤ Q because

the embedding σ is bijective and N(p−1
k P) = N(P)/N(pk)

[21, Corollary 2.12].

Due to the assumption that all the ideals are pairwise

coprime, i.e., pk + pj = R for all k 6= j, there are no

duplicate elements excluding the origin 0 and thier products.

Therefore, the calculation is executed by the inclusion-

exclusion principle [22]. For example, with Q = 3 there

are a number N((p1p2)
−1P) of the multiplications N(p1p2)

in N(P) and the process ends when N((p1p2p3)
−1P) = 1.

With Q = 2, there are no duplicate sensors except 0 since p1
and p2 are relatively prime. (10) becomes N(p1) +N(p1)−
N((p1p2)

−1P) = N(p1) + N(p1) − 1, which coincides

with [5, Proposition 1] with p1 = 〈m 〉, p2 = 〈n 〉 and

P = 〈mn 〉 = 〈 p 〉.
According to the ring isomorphism (8), the solutions of z

are unique, which can also be verified by extending the case

of two coprime ideals given in [5, Proposition 1] by setting

I = pk and J = (pk)
−1P.

�
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Figure 1. An example of a multi-lattice array constructed from three
pairwise coprime algebraic integers. p1 = 〈−1− 2i 〉 (orange diamonds),
p2 = 〈 −1+ 2i 〉 (blue dots), p3 = 〈−1 + 4i 〉 (red hexagrams) and P as
the Voronoi cell (yellow polygon).

Considering a PID, for example, in Z, 2, 3 and 7 are

pairwise coprime, thus 〈 2 〉 = 2Z, 〈 3 〉 = 3Z and 〈 7 〉 = 7Z
are coprime ideals. According to CRT, Z can be generated by

a linear combination of these three ideals with coefficients

in Z, i.e., −〈 2 〉 − 〈 3 〉+ 〈 7 〉 = Z where 1,−1 ∈ Z. These

three ideals form a 3-tuple CRT array in 1D with p1 = 〈 2 〉,
p2 = 〈 3 〉, p3 = 〈 7 〉 and P = 〈 42 〉. The total number of

antennas is 42
2 + 42

3 + 42
7 −(2+3+7)+1 = 30 if only the left

boundary is defined in this Voronoi cell. Analogously, in 2D,

a 3-tuple CRT array consists of three pairwise coprime ideals

in quadratic fields. Taking Z[i] as an example, by Theorem

1, 〈−1+ 2i 〉, 〈−1+ 4i 〉 and 〈−1− 2i 〉 are three pairwise

coprime ideals whose matrix representations are [5]:

B1 =

(

−1 −2
2 −1

)

, B2 =

(

−1 −4
4 −1

)

,

and B3 =

(

−1 2
−2 −1

)

.

In this case P = 〈−1+ 2i 〉〈−1+ 4i 〉〈−1− 2i 〉 = 〈−5+
20i 〉 and | det(BP|) = N(P) = 425. Thus the total number

of sensors is

|Z| = | det(BP)|
| det(B1)|

+
| det(BP)|
| det(B2)|

+
| det(BP)|
| det(B3)|

−
( | det(BP)|
| det(B1B2)|

+
| det(BP)|

| det(B2B3)|
+

| det(BP)|
| det(B1B3)|

)

+ 1

= N(9− 2i) + N(5) + N(−7− 6i)

−
(

N(−1 + 2i) + N(−1 + 4i) + N(−1− 2i)
)

+ 1

=
425

5
+

425

17
+

425

5
− (17 + 5 + 5) + 1 = 169.

Fig. 1 depicts the array configuration of this 3-tuple CRT

example.

IV. ECONOMIC MAXIMIZATION OF CRT ARRAYS

A sensor in the array is called essential, if the coarray

configuration of this array varies between with and without

it [23]. Depending on the number of essential sensors in

the array, the criterion of maximally economic arrays was

first proposed in [23] and further discussed in [16] along

with trade-offs between the robustness and the size of the

coarray. Due to the symmetry of ideal lattices, the number

of sensors in HSCRT can be reduced without degrading the

coarrays to boost the economy of the sensor arrays. In this

section, we will improve essentialness of the CRT arrays that

are based on Z2 lattice and A2 lattice which can be inherited

to other lattices.

A. Sliced CRT arrays

Let us first recall the definition of the difference coarray:

D = {dm,n = zm − zn | zn, zm ∈ Z}.
Note that if the array configuration is non-symmetric with

respect to the Voronoi central point, the difference vector

zm − zn is different from zn − zm.

The first economic maximization method is simply a

reduction of the subarray with the larger aperture. Recall that

HSCRT consists of two subarrays, namely σ(p1) ∩ V(pR)
and σ(p2) ∩ V(2pR) where p is a prime [5]. A sliced CRT

array is a modified version of HSCRT with the number of

elements in one of the subarrays reduced to half. Precisely,

we partition the larger Voronoi cell σ(p2) ∩ V(2pR) into r
sectors (r is even) with equal area so that these sectors are

symmetric with respect to its Voronoi central in pairs. Then

it is feasible to remove the points in one sector of each

pair without degrading the performance, i.e., the consecu-

tive array aperture remains intact. Considering underlying

symmetries of Z2 and A2, we select r = 2 to all Z2-based

arrays and r = 6 to all A2-based arrays, after which their

array configurations resemble T and spinner respectively. Let

Z1 = σ(p1) ∩ V
(

σ(p1p2)
)

and Z2 = σ(p2) ∩ V
(

σ(p1p2)
)

,

the definitions of some examples of sliced arrays are given

using Voronoi cells V as follows.

Definition 2 (T arrays): The T array configuration is given

as:

T = Z1 ∪ {z = (zx, zy) | zy > 0, z ∈ Z2}.
Definition 3 (Spinner arrays): The sensors of the spinner

array are allocated on

P = Z1 ∪ {z = (zx, zy) | 0 < zy <
√
3zx,

or 0 < zy < −
√
3zx, or zy < ±

√
3zx; z ∈ Z2}.

Proposition 2: Let Λ denote the algebraic lattice of R =
Z[q]. The contiguous coarrays of sliced arrays include all

lattice points in Λ ∩ V(pΛ).
Proof : Let zm and zn be two arbitrary points in Z1 and

Z2 respectively. The difference vector can be rewritten as:

zm − zn = (−zn)− (−zm).
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Because Z1 and Z1 are centrosymmetric, it can be verified

that −zm ∈ Z1 and −zn ∈ Z2. Half of the elements in Z2

become redundant as they do not contribute to the difference

coarray and can be replaced by (−zm). This implies if we

remove half of the elements in Z2, the difference coarray is

intact. For instance with r = 2, the new subarray is Z ′
2 =

{z = (zx, zy) | z ∈ Z2, zy > 0} while Z1 remains the same.

Elements in the set Z ′′
2 = Z2 − Z ′

2 = {z ∈ Z2 and z /∈ Z ′
2}

are redundant regarding the contribution to the difference

coarray because zj
′′ − zn can be replaced by (−zn) − z

′
m

for all zj
′′ ∈ Z ′′

2 and zm
′ ∈ Z ′

2. �

The properties of sliced CRT arrays can be derived as

follows: Assuming the two subarrays are generated by two

coprime ideals p1 and p2, the total number of sensors is

2(N(p1) − 1) + N(p2) and also equals 3p − 2 if the two

ideals are obtained from the decomposition of prime p [5].

Thus the total decrease of sensor number is 2(N(p1) − 1)
compared to HSCRT.

Examples of T array and spinner array are illustrated in

Fig. 2 where the symmetry is indicated by black dashed

lines.

B. Cross Arrays

In this subsection, we introduce cross shape array con-

figurations with further sensor reduction by exploiting the

underlying symmetry of the Voronoi cells. According to

Proposition 2, all sensors below the x axis in the larger

array can be removed, after which the remaining points in

the larger Voronoi cell σ(p2) ∩ V(2pΛ) have the symmetry

with respect to the corresponding centroid of two adjacent

Voronoi central points. Note that the center of the mass is

also the generating point of each cell. Therefore this center

of symmetry is identical to the midpoints of edge segments

of the Voronoi cell V(pΛ). For example, the points in the set

{z = (zx, zy) | z ∈ σ(p2)/26Z
2, zy ≥ 0} are symmetric

with respect to the midpoint of the edge of V(13Z2), namely

(0, 13
2 ). Regarding the midpoint as the center of symmetry,

the redundant sensors in the larger array can be removed

after extending the smaller array symmetrically with respect

to the midpoint of the edge segment as compensation to the

coarray, thus it comes to the term of the cross array. For

instance, it can be verified that after the extension of the

smaller cell, the points inside the ⊤ shape as shown in Fig.

3(a) and the points inside the ⊥ shape as shown in Fig.

3(b) yield the same difference coarray in the small Voronoi

cell. In the interest of the intact virtual coarray, Fig. 3(b) is

adequate for our purpose.

Let us denote (xx, xy) as the position of the centroid of

two adjacent Voronoi central points of V(pΛ) and H = {h =
(hx, hy) | h ∈ Z1, hy > 0} for simplicity.

Definition 4 (Cross arrays): The sensors positions of the

cross array are explicitly given by (zx, zy) ∈ C where

C = Z1 ∪ {z = (zx, zy) | 0 < zy < xx, z ∈ Z2} ∪
{(zx, zy) | zx = 2xx − hx, zy = 2xy − hy, (hx, hy) ∈ H}
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Figure 2. The T array configuration from the decomposition of p = 13 (a)
over Gaussian integers with sensors in σ(〈 3 + 2i 〉)/13Z2 shown in blue
dots and reduced sensors in σ(〈 3 − 2i 〉)/26Z2 in red stars. The spinner
shape configuration of p = 13 (b) over Eisenstein integers with σ(〈 1 +
2
√
3i 〉)/13A2 in blue dots and reduced sensors in σ(〈 1−2

√
3i 〉)/26A2

in red stars. The Voronoi cells V(13Λ) and V(26Λ) are shown in red and
blue.

Proposition 3: The cross array can generate all lattice

points in Λ ∩ V(pΛ).
Proof : Let c ∈ C and e ∈ E where C = {c =

(cx, cy) | c ∈ Λ ∩ V(2σ(p1)), cx ≥ 0}, and E = Λ ∩
V(σ(p2)). Denote G1 and G2 as generator matrices of σ(p1)
and σ(p2) respectively. According to the commutativity of

matrix representations [5, Lemma 2] (B1B2 = B2B1), an

arbitrary element in the difference coarray can be expressed

as
d = G2c−G1e = G(B2c−B1e)

= G
(

B1(B2b− e)−B2(B1b− c)
)

= G
(

B1e
′ −B2c

′) = G1e
′ −G2c

′,

(12)

where b , 2B−1
1 B

−1
2 x and G is the generator matrix of

Λ [5, Section II-B]. By varying the vector c such that it

exhausts all values in C respectively, c′ , B1b − c varies

accordingly. Left multiplying GB2 to c
′ yields GB2c

′ =
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Figure 3. Illustration of the symmetry for Z2 array. The extend points of
σ(p2)/13Z2 are shown in ’+’ which are symmetrical with respect to the
midpoint of the Voronoi edge. The midpoint is shown in the small triangle.
The remaining half of 2σ(p1)/13Z2 in red which are also symmetric with
respect to the triangle point.

GB1B2b−GB2c, i.e.

1

2
(G2c+G2c

′) = Gx,

which implies that for all c ∈ C, G2c is symmetric to G2c
′

with respect to Gx. Induced by the symmetry of the Voronoi

cell, G2c
′ is in C for all c′ = B1b−c and can be removed.

Likewise, G1e
′ and G1e are symmetric with respect to

Gx (G1e+G1e
′ = 2Gx) and by exhausting a ∈ E , G1e

′ =
2Gx

T −G1e gives the positions of extending points in the

cross array. �

In the example for the Z2 cross array shown in Fig. 3,

the sensor reduction can be executed by removing half of

the points in the set Λ∩V(2σ(p1)) to get C and introducing

e
′ = 2G−1

1 x
T − e into E , whereby the total number of

physical sensors is decreased by 5
2 (p− 1) to 1

2 (5p− 3).

Fig. 4(a) depicts an example of the Z2 cross array where

Gx = (0, 6.5)T and the number of sensors is decreased

to 31. Likewise, in the A2 case, it can be observed that

after removing sensors below x axis in the larger subarray

and symmetrically extending the smaller subarray, the total

-20 -10 0 10 20
-15

-10

-5

0

5

10

15

(a)

-20 -10 0 10 20
-15

-10

-5

0

5

10

15

(b)

Figure 4. Z2 cross array (a) and A2 cross array (b) with p = 13. The
Voronoi cells V(13Λ) and V(26Λ) are shown in red and blue with the
symmetric extension shown as black dashed lines and remaining part of
V(26Λ) as yellow dashed lines.

number of sensors becomes 1
3 (8p − 5) which is 7

3 (p − 1)
fewer than HSCRT. The reduction difference between Z2

and A2 cross arrays is caused by the different shapes of the

Voronoi cells when extending the smaller subarray, i.e., the

Voronoi cell of the former is square whereas it is hexagonal

for the latter. Fig. 4(b) depicts an example of A2 cross array,

from which it can be observed that the total number of

sensors is reduced to 33.

Recall that the fragility is defined as the ratio of the

number of essential sensors to the total number of sensors

[16], i.e.,

Fragility =
The number of essential sensors

Total number of sensors
.

Thus it can be calculated that the fragile parameters are

0.26 for hole-free Z2 and 0.30 for hole-free A2. By the

two economic maximization methods, fragility surges to

1 for all sliced CRT and cross arrays, i.e., all sensors

are essential, which implies that the new arrays achieve

maximally economic while the HSCRT arrays are more

robust. Table I lists the sensor number and the fragility of
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Table I
SUMMARY OF PROPOSED SENSOR CONFIGURATIONS

Senor Number Fragility

Hole-free Z2 [5] 5p− 4 0.26

Hole-free A2 [5] 5p− 4 0.30

T array 3p− 2 1

Spinner array 3p− 2 1

Z2 cross 1/2(5p− 3) 1

A2 cross 1/3(8p− 5) 1

the proposed array configurations for convenience.

V. APPLICATIONS TO 2D DOA ESTIMATION

This section verifies the feasibility of the proposed arrays

including T, spinner, Z2 cross and A2 cross in both pas-

sive sensing and active sensing scenarios corresponding to

difference and sum coarrays respectively. A transformation

technique will be exploited for converting the coarray from

an arbitrary algebraic lattice to a uniformly distributed array,

to which spatial smoothing and subspace-based methods can

be applied.

A. Passive Sensing

In the passive sensing scenario, the data model is similar

to that in [3], [12], [15]. Suppose K uncorrelated narrow-

band sources s1(t), s2(t), · · · sK(t) impinge on a planar

array whose N antennas are placed on a 2D lattice Z with

z = [zx, zy]
T ∈ Z representing sensor positions. The re-

ceived signals x1(t), x2(t), · · · , xK(t) are dependent on the

elevation angle set θ = {θ1, θ2, · · · , θK} and azimuth angle

set φ = {φ1, φ2, · · · , φK} and are corrupted by additive

spatial wide-sense stationary (WSS) noise n(t) ∼ N (0, η2).
Therefore, the output of the antenna array can be expressed

as:

x(t) = As(t) + n(t). (13)

Here x(t),A, s(t) and n(t) represent the output vector, the

steering matrix, the source vector and the noise signal vector

respectively. A ∈ CN×K whose element at qth row and kth

column is

[A]q,k = exp

(

− i
2πd

λ
v
(k)
θ,φz

)

, (14)

where v
(k)
θ,φ = sinφk

[

cos θk, sin θk
]

and d is the minimum

distance of the interelement spacing. Since the noise n(t)
is WSS and the transmitting signals are uncorrelated by

assumption, the autocorrelation matrix of received data can

be expressed as

Rx = E[xxH ] = ARsA
H + η2I. (15)

After vectorizing Rx and removing the rows corresponding

to zero elements in s, the manifold vector can be written by

xz = A1s1 + n1, (16)

where A1 = A
∗⊙A (⊙ is Khatri-Rao Product operation and

∗ denote the Hermitian transpose), s1 = [σ2
1 , σ

2
2 , · · ·σ2

K ]T .

Note that xz has the same form as Equation (13); Therefore

we can consider it as a new system input with the N2-by-

K steering vector A1, the source vector s1 and the noise

vector n1. Substituting (14) into (15) and performing the

vectorization results in

[A1]j,k = exp

(

i
2πd

λ
v
(k)
θ,φdm,n

)

(17)

where dm,n is the (m,n)th element in difference coarray set

D whose cardinality limits the maximum DOF. Note that

in general dm,n is not an integer vector since the sensor

location set Z can have non-integer elements.

As a quantification of occurrences of dm,n, the weighting

function w(d) is defined as the number of identical pairs

occurring in D:

w(d) =
∣

∣{ d = zm − zn zm, zn ∈ Z.
}

|, (18)

With the presence of mutual coupling, the antenna array

output can be rewritten by incorporating a mutual coupling

matrix C into (13), i.e.,

x(t) = CAs(t) + n(t). (19)

Considering assumptions underlying the circuit model of

dipole antennas, we assume that the absolute values of

mutual coupling coefficients are inversely proportional to

Euclidean norms of difference vectors of the planar array

[14], [24]–[26]. Under this assumption, the design method

with smaller values of w(d) at close sensor separations

(shorter length of d) performs better since the effect of

mutual coupling is mitigated as the increasing of the in-

terelement spacing. In other words, the sparser the array is,

the lower electromagnetic interactions will be.

B. MIMO radar

Let us consider a MIMO radar consisting of M transmit-

ting antennas allocated at lattice points zm ∈ ZI and N
receiving antennas allocated at zn ∈ ZJ whose radiation

patterns are represented as CE(θ, φ) with θ and φ being

elevation and azimuth respectively. Thus the radiation pattern

of an antenna array with identical elements can be given by

C(θ, φ) = CE(θ, φ)AF
′(θ, φ), (20)

where AF ′(θ, φ) denotes the normalized array factor

AF (θ, φ) of this antenna element:

AF ′(θ, φ) = |AF (θ, φ)/AF (θ, φ)max |.
The MIMO radar system possesses the two-way radiation

pattern CMN which is the product of the transmitting
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radiation pattern and the receiving antenna pattern, i.e.,

CMN = CM (θ, φ)CN (θ, φ), (21)

where the array factors of transmitting and receiving arrays

are given by

AFM (θ, φ) =

M
∑

m=1

Im exp
(

j
2πd

λ
zm sin(θ) cos(φ)

)

(22)

and

AFN (θ, φ) =

N
∑

n=1

In exp
(

j
2πd

λ
zn sin(θ) sin(φ)

)

(23)

respectively, where Im (In) is determined by the weights

of the mth transmitter (the nth receiver) [4], [27]–[29].

From (20) and (21), the two-way radiation pattern can be

rewritten using the normalized array factors of transmitters

and receivers:

CMN (θ, φ) = CE(θ, φ)
2AF ′

M (θ, φ)AF ′
N (θ, φ). (24)

Therefore we can consider a virtual array with the nor-

malized array factor AF ′
MN (θ, φ) = AF ′

M (θ, φ)AF ′
N (θ, φ).

Substituting (22) and (23) to AFMN (θ, φ) results

AFMN (θ, φ) =

M
∑

m=1

N
∑

n=1

ImIn exp
(

j
2πd

λ
vθ,φsm,n

)

,

where vθ,φ = sin(θ)
[

cos(φ) sin(θ)
]

and sm,n is the

(m,n)th element in the sum coarray set, which can be

defined as follows:

Definition 5 (Sum coarrays of CRT arrays): The sum

virtual coarray S generated by a CRT array is given by:

S = {zm + zn | zm ∈ ZI , zn ∈ ZJ},

where ZI and ZJ are subarrays based on σ(I) and σ(J )
respectively. For example, for cross arrays, ZI = Z1 ∪
{(zx, zy) | zx = 2xx − hx, zy = 2xy − hy, (hx, hy) ∈ H}
and ZJ = {z = (zx, zy) | z ∈ Z2, 0 < zy < xx}. The

cardinality of S limits the maximum number of targets that

can be detected. Note that when they are applied to MIMO

radar, the HSCRT arrays ( [5, Definition 6]) inherit all the

properties derived in the passive sensing case including the

hole-free property because their sum coarrays are identical

to difference coarrays despite the fact that one subarray acts

like a transmitter and the other is employed as a receiver.

C. Hexagon-to-rectangular Transformation in 2D Spatial

Smoothing

The conventional angle estimation techniques such as

MUSIC and ESPRIT require uniformly distributed coarrays

[7], [8], [30], [31]. However, both sum and difference

coarrays of CRT arrays are algebraic lattices which are not

uniform rectangular arrays in most cases. Therefore, it is

adequate to utilize the hexagon-to-rectangular transformation

introduced in [32] that extends the direct-solution DOA

techniques to other array geometries such as A2 arrays.

Let DC,E denote the continuous hexagonal part of the

coarray and lR denote the circumradius of DC,E . Thus (17)

can be rewritten as the following:

[A1]d′,k = exp

(

i
2πd

λ
v
(k)
θ,φG[d′x, d

′
y]

T

)

, (25)

where G is the generator matrix of the algebraic lattice

Λ = σ(Z[q]) of the ring Z[q], d′x, d
′
y are rational integers,

−lR ≤ d′x ≤ lR and −lR ≤ d′y ≤ lR. Thus the difference

vector d can be expressed as G[d′x, d
′
y]

T for all d ∈ DC,E .

The transformation from an arbitrary lattice to an equivalent

rectangular array is realized by introducing an incident wave

vector in the u space. For every source k, its wave vector

is defined by:

u
(k)
θ,φ = sinφk[cos θk, sin θk]G. (26)

By substituting (26) to (25), the steering vector of the

rectangular coarray in the u space can be written as

[A1]d′,k = exp

(

− i
2πd

λ
u
(k)
θ,φ[d

′
x, d

′
y]

T

)

.

Here the affine transformation for an arbitrary point d =
(dx, dy) with Cartesian coordinate system to the u space is

d
′ = G

−1
d.

For example, the transformation from a A2 lattice to a

uniformly distributed array is realized by:

(

d′x
d′y

)

=

(

1 − 1√
3

0 2√
3

)

(

dx
dy

)

, (27)

as illustrated in Fig. 5 where DC,E = Λ ∩ V(14A2). In

this case, after the affine transformation, DC,E becomes

a parallelogram-like polygon in the u space whose edges

are (−lR, 0), (−lR, lR), (0, lR), (lR, 0), (lR,−lR), (0,−lR).
Note that if the subarrays are generated by coprime integer

matrices, according to CRT, the generator matrix of their

coarray is an identity matrix, implying that this coarray is a

uniformly distributed array. Thus all Z2-based arrays do not

require this transformation.

In short, we transform an arbitrary difference coarray

described by an algebraic lattice in the Cartesian system with

wave vector v
(k)
θ,φ to an equivalent parallelogram-like array

based in the u space whose wave vector is u
(k)
θ,φ. Considering

the estimation process formulated by the virtual array model

(16) with a larger array aperture and enhanced DOF, the

rank of the coarray output covariance matrix Rz = xzx
H
z

is one because of the vectorization on Rs, i.e., all receiving

sources of virtual array become coherent. As a result, it is

infeasible to apply subspace-based methods. Herein, spatial

smoothing is done using parallelogram-like polygon arrays

transformed by the aforementioned technique, after which

the estimated DOAs are relocated back to the Euclidean
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Figure 5. An example of an A2 array (a) and its equivalent array on u

space (b).

space using Cartesian coordinates.

Let us define the jth subarray in the u space by

Sj = {(d′x, d′y) | j − lR ≤ d′x ≤ j,

− j ≤ d′y ≤ lR − j}, (28)

where 0 ≤ j ≤ lR. Let vj denote the array manifold vector

of the jth subarray. By the spatial smoothing, the covariance

matrix can be calculated as

Rsmooth =
1

lR + 1

lR
∑

j=0

vjv
H
j , (29)

whereby direct-solution estimation schemes like Unitary-

ESPRIT can be performed. However, it can be observed from

(29) that the number of spatial smoothing operations is only

lR + 1, which leads to low estimation accuracy with small

apertures of contiguous coarrays. To overcome this problem,

we propose the following two data preprocessing methods.

1) Generalized Spatial Smoothing Method I: In the equiv-

alent u space, we select the rectangular contiguous part of

the transformed virtual coarray with length 2xg and width

2yg as depicted in Fig. 6(a).

The (0, 0)th subarray is a lx-by-ly rectangular within the

whole continuous array aperture as shown in gray shade

(a)

(b)

Figure 6. Spatial smoothing methods in the u space for p = 13 :
rectangular coarray (a) and parallelogram-like coarray (b) with the first
subarray within gray shade.

at the bottom left in Fig. 6(a). The (i1, i2)th subarray

is constructed by extracting elements from the difference

coarray D [3], [11], [33]:

Si1,i2 = {d′ = (d′x, d
′
y)

T |
− xg + i1 ≤ d′x ≤ −xg + lx + i1,

− yg + i2 ≤ d′y ≤ −yg + ly + i2}
(30)

where 0 ≤ i1 ≤ 2xg − lx and 0 ≤ i2 ≤ 2yg − ly . Let Ix =
2xg− lx+1 and Iy = 2yg− ly+1. The number of subarrays

is IxIy and the DOF of each subarray is (lx + 1)(ly + 1).
Next step is evaluating the output of the (i1, i2)th subarray

by searching all differences in Si1,i2 from D with the same d

and then reprocessing the output data accordingly. Let xi1,i2

extract the matched elements in xz from (16) to form a new

output vector:

xi1,i2 = Ai1,i2s1 + ni1,i2 . (31)

In practice, if there is more than one element in xz that

correspond to the same difference d, we take the average
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over these elements, i.e.,

xi1,i2(d) =
1

w(d)

j=w(d)
∑

j=1

xz,j(d), (32)

where 1 ≤ j ≤ w(d) and xz,j(d) ∈ xz denotes the rows of

xz that correspond to the difference vector d and there are

a number w(d) of such rows. Note that ni1,i2 is a vector

with all zeros entries except η2 at the entries corresponding

to 0 element in the difference coarray, i.e., zm − zn = 0;

Ai1,i2 is a (lx + 1)(ly + 1)-by-K matrix defined by

Ai1,i2 = [AxD1(Ay),AxD2(Ay), · · · ,AxDly (Ay)]
T ,
(33)

Here Dr(Ay) is a diagonal matrix of dimension ly whose

diagonal entries are the rth row of Ay . Ax and Ay are the

steering matrices of the (lx+1) sensors on x axis and of the

(ly +1) sensors on y axis respectively, which are expressed

as two Vandermonde matrices, namely

[Ax]a1,k = exp
(

−i
2πd

λ
sinφk sin θk(−xg+a1+i1

)

, (34)

[Ay]a2,k = exp
(

−i
2πd

λ
sinφk cos θk(−yg+a2+i2

)

, (35)

where 0 ≤ a1 ≤ lx and 0 ≤ a2 ≤ ly . Therefore, spatial

smoothing can be performed by averaging the output data

covariance of all virtual rectangular subarrays, i.e.,

Rsmooth =
1

IxIy

Ix−1
∑

i1=0

Iy−1
∑

i2=0

xi1,i2x
H
i1,i2

(36)

Even if Ax and Ay are full-rank Vandermonde matrices,

it can be observed from (33) that the steering vector

Ai1,i2 may be rank deficient which leads to identification

issues when the subspace-based algorithms are applied using

Rsmooth. [12] provides a sufficient condition on the unique

identifiability, namely the objective sources must be fewer

than or equal to (lx + 1)(ly + 1) distinct pairs.
2) Generalized Spatial Smoothing Method II: Likewise,

the parallelogram-like subarray structure is shown in Fig.

6(b) where each subarray is shifted along x axis or y axis

by a unit till it reaches the boundary. Precisely, let lp ∈ Z

denote the aperture of parallelogram-like subarrays and 0 <
lp < lR. For instance, the (0, 0)th subarray is bounded by

(−lR, 0) (−lR, lp), (lp− lR, lp), (2lp− lR, 0), (2lp− lR,−lp)
and (lp − lR,−lp). Spatial smoothing is done by averaging

these subarrays in the u space of which (i1, i2)th subarray

is defined as:

Si1,i2 ={d′ = (d′x, d
′
y) | d

′ ∈ D′
C,E

d′x + d′y + lR − i1 − i2 ≥ 0,

− lR + i1 ≤ d′x ≤ 2lp − lR + i1,

lp + i2 ≤ d′y ≤ −lp + i2,

d′x + d′y + lR − 2lp − i1 − i2 ≤ 0},

(37)

where D′
C,E = {d′ = G

−1
d | d ∈ DC,E}, 0 ≤ i1 ≤ 2lR

and −lR ≤ i2 ≤ lR. The DOF is obtained by calculating

Figure 7. A graphical representation of elements in S0,0 with lR = 7 and
lp = 3 from which Jx1 can be selected by matrix Jx1. Physical positions
of sensors on the edges are shown by coordinates in the u space.

the number of elements in Si1,i2 , i.e., DOF = |Si1,i2 | =
3l2p +3lp +1. Note that direct searching algorithms such as

MUSIC can still apply on the parallelogram-like subarrays.

However, the ESPRIT-like algorithms which are computa-

tionally easier require URA array geometries since their

array manifold formulations are based on the extension of

ULAs. Induced by the translational invariance structure of

virtual coarray, the estimation parameters can be calculated

by exploiting the underlying shift invariance property after

spatial smoothing. Similar to the vector selection technique

employed on physical sensors [8], [32], [34], we define

the array selection matrix Jx1 as a R-by-Q matrix whose

elements in the rth row is defined by

[Jx1]r,q =

{

1 if q ∈ Jx1

0 otherwise
, (38)

where Jx1 is an R element integer set composed of the

numerical orders of elements within the selected hexagon.

For example, the (0, 0)th subarray in the case of p =
13 is shown in Fig. 7 and the elements in Jx1 are

S0,0\{22, 28, 33, 34, 35, 36, 37}, where \ denotes the set-

theoretic difference operation.

Likewise, Jx2 is defined by shifting Jx1 along the positive

direction of x axis. Jy1 and Jy2 are defined by shifting

one unit along negative and positive directions of y axis

respectively. It can be verified that these selected subar-

rays are symmetric and contain the estimation information.

Therefore, unitary ESPRIT can be applied after which es-

timations of wave vectors in the Cartesian system can be

achieved by left-multiplying the transpose vector, namely

G. Both generalized spatial smoothing methods are feasible

and significantly increase the number of sources that can

be detected. Considering variations of coarray apertures

obtained by different ideals, we shall choose the method

with a larger continuous region in order to reprocess more

data.

VI. NUMERICAL RESULTS

In this session, the feasibility of the proposed arrays

including T, spinner, Z2 cross and A2 cross will be explicitly

demonstrated in the context of the passive sensing and
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MIMO radar, where the generalized spatial smoothing I

and II will be employed for Z2-based and A2-based arrays

respectively to exploit more elements in virtual coarrays.

For illustration purposes, all proposed arrays are generated

from p = 13 with notations shown in Fig. 2 and Fig. 4, and

compared with 2D nested arrays [12] with N1 = N2 = 3.

The numbers of sensors are only 31 for Z2 cross and 33 for

A2 cross while all the other arrays require a number 37 of

sensors. It is noteworthy that the perimeters and the areas

of all A2-based arrays (A2 cross and spinner) are 86% of

those Z2-based arrays (Z2 cross and T) [5]. The minimum

interelement distance d is chosen to be 1/2λ.

A. Direction of Arrival Estimation

The numerical results are presented to compare the DOA

estimation performances among the proposed arrays, where

all antennas are employed as receivers.

K = 6 narrow-band uncorrelated sources modeled as

Gaussian are buried in temporally and spatially WSS noise

(SNR = 0dB). Impingement angles are randomly distributed

on [−π, π]2. The input data is formulated as in (19) with

maximum mutual coupling coefficient being 0.2, and each

antenna can be affected by adjacent antennas within a

circular aperture of length 3d. Generalized spatial smoothing

method I and II are applied by choosing xg = yg = lx =
ly = 7 for the former and lR = 7 and lp = 3 for the

latter. The root-mean-square error (RMSE) is calculated by

averaging the errors over all sources and over all independent

simulations, i.e.,

RMSE =

√

√

√

√

1

KT

T
∑

j=1

K
∑

k=1

(

(θ̄k − θ̂k,j)2 + (φ̄k − φ̂k,j)2
)

,

(39)

where (θ̄k, φ̄k) and (θ̂k,j , φ̂k,j) are real and estimated DOAs

respectively. T = 1000 Monte Carlo trials are performed on

all the proposed arrays.

Fig. 8(a) plots the RMSE values depending on the number

of snapshots where the SNR is set to be 0 dB. It is noticeable

that all CRT arrays can manage DOA estimation within

relatively small errors using only L = 50 snapshots. With an

increased number of snapshots, CRT-based arrays improve

the estimation performance significantly. T and A2 cross

achieve superior performances when L < 100 whereas

the difference between the spinner array and A2 cross is

less prominent for L > 100. Fig. 8(b) demonstrates the

performances of CRT-based arrays by comparing the RMSE

as a function of SNR. The minimum RMSE is achieved by T

array, followed by the spinner array and A2 cross. It can be

observed that the proposed design methods have remarkably

enhanced the estimation performance with fewer sensors.

B. Radiation Pattern of MIMO Radar

Within the MIMO framework, the superiority of the pro-

posed arrays is demonstrated in the context of the radiation
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Figure 8. RMSE versus snapshots where SNR= 0dB (a) and RMSE versus
SNR where L = 200 (b).
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Figure 9. Radiation patterns of T, spinner, Z2 cross, A2 cross and the 2D
nest array, where the azimuthal angle φ is set for the largest occurring side
lobe.

patterns where sensors placed on the subset of σ(p1) (or

equivalently, on ZI ) are employed as transmitters and the

rest as receivers. For the 2D nested array given in [12], the

dense array configuration corresponding to N1 = 3 acts like

the transmitting array and the sparse array with N2 = 3 is

the receiving array.

A comparison of MIMO concepts is shown in Fig. 9. It

can be measured that the side lobe suppression (SLS) of T

array is dramatically reduced to SLSA2
= 20dB which is

better than SLSnested = 11.41dB of the 2D nested array. As

a result, the T array can target sources at a better separation.

The least half power beam width is exhibited by T and Z2

cross, followed by spinner, A2 cross and the 2D nested array.

T array and Z2 array improve the angular resolution by

approximately 3.6◦ compared to the nested array. In short,

the proposed CRT-based arrays outperform the known sparse
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array in terms of SLS and the angular resolution.

VII. CONCLUSION

This paper has explicitly demonstrated how the derivations

of CRT arrays including T, spinner, Z2 cross and A2 cross

arrays can be applied to both active and passive sensing.

A general approach to coprime lattices has been proposed

based on Bezout’s identity and the closed property of

quadratic fields, which provides the possibility of exploiting

all quadratic integers in number theory. By the underlying

symmetry of ideal lattices, the number of sensors was sig-

nificantly reduced from HSCRT while the difference coarray

aperture remains intact. We incorporated the hexagon-to-

rectangular technique with 2D spatial smoothing along with

matrix selections of coarrays, which extends subspace-based

estimation algorithms to non-uniformly distributed sparse

arrays. The proposed design methods provide sparse array

geometries and increased DOF and significantly alleviate the

mutual coupling effect. The numerical analysis illustrates the

performance of the CRT-based arrays with variations of SNR

and snapshots.

Future work will address the application of the proposed

methods in the case of coherent signals. Another direction

in the future research is towards the optimization of coarray

apertures by maximizing norms of the ideals in quadratic

fields.

APPENDIX A

PROOF OF THEOREM 1

By the quadratic formula, we can express q and q̂ by the

following [5], [6], [35]:

q = −1

2
B +

1

2

√

B2 − 4C, q̂ = −1

2
B − 1

2

√

B2 − 4C.

(40)

Here q and q̂ can be real or complex numbers corresponding

to real and imaginary quadratic field respectively.

According to Bezout’s identity [36], with {1, q} being the

basis, m,n ∈ Z[q] are coprime if and only if there exist

α = α1 + α2q ∈ Z[q] and β = β1 + β2q ∈ Z[q] such

that αm+ βn = 1. Because number fields are closed under

multiplication and addition, αm+ βn is also an element in

Z[q], if all four quadratic integers are in Z[q]. Taking the

norms of both sides of Bezout’s equation results in:

1 = (αm+ βn)(α̂m̂+ β̂n̂)

= N(α)N(m) + N(β)N(n) + α̂βm̂n+ αβ̂mn̂,
(41)

where m̂ = m1 +m2q̂ is the algebraic conjugate of m and

same with n̂, α̂ and β̂. Similarly, because m,n, m̂, n̂ are all

in Z[q], m̂n and mn̂ are also elements in Z[q] and can be

expressed as m̂n = δ1 + δ2q and mn̂ = δ1 + δ2q̂ where

δ1 = m1n1 − Bm2n1 + Cm2n2 and δ2 = m1n2 −m2n1.

Note that q and q̂ are roots of X2 + BX + C = 0, thus

q + q̂ = −B and qq̂ = C. Likewise, α̂β = γ1 + γ2q and

αβ̂ = γ1 + γ2q̂. Therefore, (41) can be rewritten as

N(α)N(m) + N(β)N(n) + δ1(2γ1 −Bγ2)

+ δ2(−Bγ1 −B2γ2 − 2Cγ2) = 1,
(42)

which indicates that N(m), N(n), δ1 and δ2 are coprime

from Bezout’s identity, i.e.,

GCD(N(m),N(n), δ1, δ2) = 1, (43)

Since N(m)N(n) = mm̂nn̂ = (mn̂)(m̂n) = (δ1+δ2q)(δ1+
δ2q̂) = δ21−Bδ1δ2+Cδ22 , the coprimality of all four integer

elements is the same as the coprimality of the first three

elements:

GCD(N(m),N(n), δ1, δ2) = GCD(N(m),N(n), δ21 , δ2)

= GCD(N(m),N(n), δ21 − N(m)N(n), δ2)

= GCD(N(m),N(n), δ2(Bδ1 − Cδ2), δ2)

= GCD(N(m),N(n), δ2).

Likewise, it can also be verified that (43) holds if and only

if (2) holds. This implies that both coprime conditions are

necessary.

Next, we show that both of the necessary conditions are

also sufficient. In other words, we prove the coprimality of

m and n by assuming any of the coprimality conditions is

satisfied. To begin with, let us assume (1) holds. By adding

and subtracting m2n2q to the last term in (1), this condition

can be rewritten as

GCD(N(m),N(n), (m1n2+m2n2q)−(m2n1+m2n2q)) = 1,
(44)

Recalling that m = m1 +m2q and n = n1 + n2q, (44) can

be simplified to

GCD(N(m),N(n), n2m−m2n) = 1.

According to Bezout’s identity, there exists quadratic inte-

gers ζ, η and µ in Z[q] such that

ζN(m) + ηN(n) + µ(n2m−m2n) = 1. (45)

Substituting N(m) = mm̂ and N(n) = nn̂ to (45) results

m(ζm̂+ µn2) + n(ηn̂− µm2) = 1,

therefore, m and n are coprime if (1) holds. Similarly, (2)

can be rewritten as

GCD(N(m),N(n), (n1 −Bn2)m− qm2n) = 1,

which implies that there exist ζ′, η′ and µ′ in Z[q] such that

ζ′N(m) + η′N(n) + µ′((n1 −Bn2)m− qm2n) = 1,

which can be simplified as

m(ζ′m̂+ µ′(n1 −Bn2)) + n(η′n̂− µ′m2q) = 1.

Summarizing, the coprimality conditions are not only suffi-

cient but also necessary.
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