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Coprime Sensing via Chinese Remaindering over

Quadratic Fields, Part I: Array Designs
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Abstract—A coprime antenna array consists of two or more
sparse subarrays featuring enhanced degrees of freedom (DOF)
and reduced mutual coupling. This paper introduces a new
class of planar coprime arrays, based on the theory of ideal
lattices. In quadratic number fields, a splitting prime p can
be decomposed into the product of two distinct prime ideals,
which give rise to the two sparse subarrays. Their virtual
difference coarray enjoys a quadratic gain in DOF, thanks
to the generalized Chinese Remainder Theorem (CRT). To
enlarge the contiguous aperture of the coarray, we present
hole-free symmetric CRT arrays with simple closed-form
expressions. The ring of Gaussian integers and the ring of
Eisenstein integers are considered as examples to demonstrate
the procedure of designing coprime arrays. With Eisenstein
integers, our design yields a difference coarray that is a subset
of the hexagonal lattice, offering a significant gain in DOF
over the rectangular lattice, given the same physical areas.
Maximization of CRT arrays in the aspect of essentialness and
the superior performance in the context of angle estimation
will be presented in the companioning Part II.

Index Terms—Array processing, Chinese Remainder Theo-
rem, ideal lattices, sparse arrays.

I. INTRODUCTION

A
N antenna array is a set of antennas placed in a

certain configuration to transmit and/or receive signals.

Earlier studies were based on uniform linear arrays (ULAs),

uniform rectangular arrays (URAs) and uniform circular

arrays (UCAs) by which only a limited number of sources

were detected [2], [3].

Previous studies have investigated sparse arrays with

O(N) physical sensors for one-dimensional (1D) source

estimation such as minimum redundancy arrays (MRAs) [4],

nested arrays [5], super nested arrays [6], coprime arrays

[7] and coprime arrays with displaced subarrays [8], which

offer O(N2) DOF by exploiting the concept of the virtual

coarray. Here the DOF of an array is defined as the number

of uncorrelated sources that can be identified by the receiver

array. Such arrays can identify more sources than the number

of sensors because of the enhanced apertures of coarrays.

Particularly, among these arrays, super nested arrays and
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coprime arrays along with their derivatives significantly

alleviate the mutual coupling effect among antennas thanks

to the sparse geometries.

In two-dimensional (2D) space, lattices have been well

studied in the application of array processing where physical

antenna subarrays can be placed on lattices. The virtual

coarray is defined as a set of all difference vectors between

subarrays. In an example of an antenna system with two

subarrays, the cross-difference coarray is defined by

D = {d : d = G1x2 −G2x1},
where G1x2 and G2x1 represent receiver sensor locations;

G1 and G2 are generator matrices of the subarrays; and

x1 and x2 are integer vectors [9], [10]. By selecting G1

and G2 to be commuting and left coprime integer matrices

(i.e., there exist two integer matrices M and N, such

that G1M + G2N = I, where I is the identity matrix),

a difference coarray can be obtained, whereby the DOF

surges to O(| det (G1G2)|) with | det(G1)| + | det(G2)|
sensors. A method based on Smith Form Decomposition

was outlined in [9] to guarantee the coprimality of G1 and

G2, whereas in [10], the two generator matrices satisfy the

relation G1 = G2P where P is a 2-by-2 integer matrix.

More recently, [11] derived a novel algorithm from the view

of the sum-difference coarray where the coprimality of G1

and G2 was guaranteed by extending two orthogonal 1D

coprime arrays. Examples of non-lattice based sparse arrays

include [12], which redistributed the open-box array [13] to

reduce the mutual coupling effect and possess the hole-free

property. Nevertheless, the coarray has been restricted to a

subset of Z or Z2 in previous studies [4]–[12].

This paper along with its companion paper further com-

pletes the investigation of coprime array design by means of

the Chinese remainder theorem (CRT) over quadratic fields.

The classical CRT allows the reconstruction of a rational

integer from its remainders by pairwise coprime divisors. A

crucial consequence of this theorem is that it can be extended

to a general form in ring theory, which allows the compu-

tation of algebraic integers by rephrasing the classical CRT

in terms of ideals and rings [14]. As a result, the coprime

arrays introduced in [7] and [9] can be interpreted as cases

of CRT over Z and over Z2 respectively. Herein, we relate

pairwise coprime algebraic integers to multi-dimensional

lattices in Euclidean space through canonical embedding.

Specifically, we apply CRT over rings of algebraic integers

to construct coprime subarrays, which are subsets of ideal

http://arxiv.org/abs/1808.07505v2
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lattices arising from the prime decomposition. However, the

conditions pertaining to the coprimality of algebraic integers

and ideal lattices are non-trivial.

This paper shows the connection between coprime al-

gebraic integers and their corresponding lattices that are

obtained by embeddings and represented by integer matrices.

In general, the coprimality of integer matrices is defined

in matrix rings [15], [16]. The class of integer matrices

obtained from algebraic integers in this work may be seen

as special matrix rings. Principal advantages of relating

algebraic integers with matrices include commutativity, sim-

plified expressions and the potential to exploit the nice

properties of algebraic integers (e.g., the convenience to

check coprimality). For instance, the coprimality issues of

some classes of matrices such as adjugate pairs and skew

circulant pairs [17], [18] can be addressed as special cases of

algebraic conjugate integers. Examples of algebraic integers

in quadratic fields including ring of Gaussian integers and

ring of Eisenstein integers are studied in this paper.

An important advantage of Eisenstein integers is that the

difference coarray becomes a subset of the hexagonal lattice

A2. It is well known that A2 is the optimum lattice for sphere

packing in two-dimensional space [19]. Numerical analysis

reveals that the optimum packing density results in a 15.5%
gain in DOF for a fixed physical area of the array. Due

to this reason, the hexagonal geometry is currently used in

the design of some phased-array antennas [20], [21]. This

paper together with its accompanying paper puts forward

the application of hexagonal lattices and hence provides

the potential to decrease the physical array aperture without

sacrificing DOF.

The main contribution of this paper along with its ac-

companying paper is that they further develop the design

methods of 2D coprime arrays, which brings a new class of

2D array configurations, namely CRT arrays. Such arrays

can provide enhanced DOF, sparse geometry, and hole-free

coarrays. By lattice representations, the configurations of

the proposed arrays along with their virtual coarrays enjoy

simple closed-form expressions. This paper addresses the

issues relating to geometry and the generation of CRT arrays

including the mapping between number fields and lattices,

coprimality issues pertaining quadratic integers and embed-

ded matrices, and lattice representations of CRT arrays along

with their coarrays, whereas the accompanying part II em-

ploys CRT arrays to propose practical algorithms for angle

estimations in both active and passive sensing scenarios.

Other potential applications of Chinese remaindering over

quadratic fields include sparse 2D discrete fourier transform

[22], the radar measurements on multiple targets [23], [24],

filter banks [9], imaging [25], [26] and direction finding

problems using compressive sensing [27].

The rest of the paper is organized as follows. Before

constructing coprime lattices from prime ideals in Section

III, the concepts of quadratic fields and their rings of integers

are briefly reviewed in Section II along with algebraic

lattices. Based on CRT, Section IV proposes a new class

of coprime arrays allocated on coprime lattices and derives

closed-form expressions of CRT array geometries, which

are inherent in any rings of algebraic integers. Section

V extends CRT to hole-free symmetric CRT whereby the

parameter identifiability is enhanced, after which examples

are provided for Z2 and A2 as special cases of quadratic

integers. Section VI concludes the paper.

Notations: Bold font lowercase letters (e.g., x1), bold font

uppercase letters (e.g., G), fraktur font letters (e.g., p1) and

calligraphy font alphabets (e.g., D) denote vectors, matrices,

principal ideals and sets respectively. Z and Q denote

rational integers {· · · − 1, 0, 1 · · · } and rational numbers

{a
b | a, b ∈ Z, b 6= 0} respectively. RF denotes the F -

dimensional Euclidean space. Re(m) and Im(m) represent

the real and imaginary parts of a complex number m
respectively. N(m) = mm̂ denotes the norm of m where m̂
is the algebraic conjugate of m (Section II-A). For example

in the ring of Gaussian integers, with m = 3+ 2i, it can be

readily verified that N(m) = mm̂ = 13.

II. REVIEW OF QUADRATIC FIELDS AND ALGEBRAIC

LATTICES

Let us first briefly review some definitions and preliminary

results related to quadratic field along with its ring of

integers; and based on algebraic integers, the construction of

algebraic lattices, on which sensor arrays can be allocated.

[7], [14]

A. Quadratic Field and Its Ring of Integers

A quadratic field K is a field extension of degree 2 over

rational numbers Q, i.e., it is a Q-vector space of dimension

two. Note that Q ⊆ K . For instance,
√
−1 is not an element

in Q but it is an element in the field extension of Q. In order

to be a field, this new field extended from Q must contain Q

and all the powers and multiples of
√
−1. In other words,

Q is extended into a new vector space over Q, which is

generated by the powers of
√
−1. Let i ,

√
−1 and Q(i)

denote this field extension. Every element m ∈ Q(i) can be

expressed as m = m1+m2i, m1,m2 ∈ Q, i.e., {1, i} is the

basis of Q(i). In this case, an algebraic integer takes the

form of m1 +m2i where m1,m2,∈ Z. The ring of integers

of Q(i) is the set of all algebraic integers in Q(i), which

can be represented by Z[i] = {m1 +m2i,m1,m2,∈ Z}.

In general, a quadratic field is denoted by K = Q(
√
D),

where D is a square-free rational integer. Note that if D is a

perfect square, K = Q. The ring of integers is often denoted

as OK , which is a set that contains all algebraic integers in

K . In quadratic fields, algebraic integers are also known as

quadratic integers which are roots of quadratic polynomials

with coefficients in Z. The minimal polynomial denoted as

f(X) of OK can be expressed as:

f(X) =

{
X2 −D, if D 6≡ 1 (mod 4) ;

X2 −X + 1−D
4 , if D ≡ 1 (mod 4),

(1)

or alternatively,

f(X) = X2 +BX + C, (2)
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where B = 0 and C = −D when D 6≡ 1 (mod 4), and

B = −1 and C = 1−D
4 when D ≡ 1 (mod 4). The proof

of f(X) can be found in [14]. Let q and q̂ denote the two

roots of f(X) respectively. With the notations above, it can

be easily calculated that

q = −1

2
B +

1

2

√

B2 − 4C, and (3)

q̂ = −1

2
B − 1

2

√

B2 − 4C (4)

Here {1, q} and {1, q̂} are called the integral bases of

Q(
√
D) [14], i.e., every element in Q(

√
D) can be written as

m1+m2q corresponding to the former basis or as m1+m2q̂
corresponding to the latter with m1,m2 ∈ Q. Accordingly,

every element in its ring of integers can be formed by

m = m1 +m2q or m̂ = m1 +m2q̂ with m1,m2 ∈ Z. Here

m1+m2q and m1+m2q̂ are called algebraic conjugates of

each other, which can be viewed as a generalization of the

complex conjugation. From (3) and (4), it can be verified

that with B2 − 4C < 0 (D < 0), the two conjugations are

identical to each other.

With the knowledge of the integral basis, the ring of

integers OK can be denoted as Z[q], and m = m1+m2q is

called a quadratic integer of Z[q] for any m1 and m2 in Z,

which generalizes rational integers in Z to quadratic fields.

Note that q 6= q̂ since D is square-free, whereas Z[q] and

Z[q̂] represent the same ring of integers as q̂ = −B − q.

Henceforth, we will use Z[q] as the notation of the ring of

integers of Q(
√
D).

When D = −1, for example, f(X) = X2 + 1 whose

roots are q = i and q̂ = −i. The ring of integers of

Q(i) denoted by OK = Z[i] is also known as the ring

of Gaussian integers. In this case, {1, i} is an integral

basis of Z[i], since −1 ≡ 3 (mod 4). Therefore, every

element in Z[i] can be uniquely expressed as m1 + m2i
with m1,m2 ∈ Z. The algebraic conjugation of m is

m̂ = m1 + m2q̂ = m1 − m2i which is also the complex

conjugation of m. Another example that will be used in

this paper for illustrative purposes is the ring of Eisenstein

integers with D = −3. In this case, OK = Z[ω] with {1, ω}
as its integral basis where ω = eiπ/3 = 1

2+i
√
3
2 since D ≡ 1

(mod 4). An arbitrary element in Z[ω] can be expressed as

n = n1 + n2ω with n̂ = n1 + n2ω̂ being its algebraic

conjugation where ω̂ = 1
2 − i

√
3
2 .

B. Construction of Algebraic Lattices

Definition 1: Given F linearly independent column vec-

tors g1,g2, . . . ,gF ∈ RF , an F -dimensional lattice Λ is

defined as the set of integer combinations of the basis

vectors, i.e.,

Λ =

{
F∑

k=1

xkgk : xk ∈ Z

}

.

Accordingly, the generator matrix of the lattice Λ is obtained

by

G = [g1|g2| · · · |gF ].

The Voronoi cell of Λ is defined by

V(Λ) = {y ∈ RF : ‖y‖ ≤ ‖y − λ‖, ∀λ ∈ Λ}, (5)

where ties are broken in a systematic manner.

There are various ways to construct lattices, for instance,

from codes and groups. In this paper, lattices and their ideals

are obtained from rings of quadratic integers Z[q] via the

canonical embedding.

In general, the canonical embedding builds a bridge

between lattices and rings of algebraic integers as it es-

tablishes a bijective mapping between the elements in an

algebraic number field of degree F and the vectors of the F -

dimensional Euclidean space. In other words, the canonical

embedding σ sends an algebraic integer m to a lattice point

m = σ(m) in Euclidean space where m is an F -by-1 vector.

The canonical embedding of any algebraic number field of

degree F is given in [28, Definition 5.15].

Herein we consider quadratic fields where F = 2. Then

the embeddings of Q(
√
D) are simply given by

σ1(
√
D) =

√
D, and σ2(

√
D) = −

√
D.

The canonical embedding σ is a geometrical representation

of Q(
√
D) that maps m ∈ Q(

√
D) to a vector of 2D

Euclidean space, i.e., σ(m) = (σ1(m), σ2(m))T ∈ R2.

For example, the embeddings of an arbitrary element m =
m1 +

√
2m2 ∈ Q(

√
2) are given by σ1(m) = m1 +

√
2m2

and σ2(m) = m1 −
√
2m2. Therefore, an algebraic lattice

can be constructed by embeddings as follows:

Given {1, q} as an integral basis of Q(
√
D), a 2D al-

gebraic lattice Λ = Λ(OK) = σ(OK) is a lattice whose

generator matrix is explicitly given by

G =

(
1 σ1(q)
1 σ2(q)

)

for D > 0, (6)

whereas if D < 0, Q(
√
D) is also known as an imag-

inary quadratic field where the canonical embedding is

further simplified and can be formulated by σ(m) =
(Re(m), Im(m))T . Hence the corresponding generator ma-

trix is computed by stacking the real and imaginary parts of

1 and q:

G =

(
1 Re(q)
0 Im(q)

)

for D < 0. (7)

Note that G is a non-singular matrix whose absolute deter-

minant equals to the fundamental volume of its correspond-

ing lattice, i.e., V (Λ) = | det(G)| [28, Theorem 5.8].

For example, in the case of D = −3 (Eisenstein integers),

since the integral basis is {1, ω}, the generator matrix of the

corresponding algebraic lattice is given by

GE =

(
1 Re(ω)
0 Im(ω)

)

=

(
1 1

2

0
√
3
2

)

. (8)

The lattice constructed from GE is shown in Fig. 1, which

is also known as the hexagonal lattice A2 with the densest

sphere packing in dimension two. The fundamental volume

of A2 is V (A2) =
√
3/2 with a minimum distance 1.

Analogously, the ring of Gaussian integers gives rise to
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Y

Figure 1. An illustration of A2 lattice.

X

Y

Figure 2. An illustration of Z2 lattice.

the integer lattice Z2 whose generator matrix is

GG =

(
1 Re(i)
0 Im(i)

)

=

(
1 0
0 1

)

. (9)

Fig. 2 depicts the configuration of Z2.

In general, given a number field of degree F , its ring of

integers OK can always construct the algebraic lattice that is

expressed by means of the generator matrix. This construc-

tion provides a general and straightforward way of finding

pairwise coprime matrices from pairwise coprime algebraic

integers, which significantly simplifies the method of matrix

factorization from Smith form [9], [29] and extends integer

matrices in Smith form to any matrices that correspond to

coprime elements in OK .

III. PRIME IDEALS IN QUADRATIC FIELDS AND

CONSTRUCTION OF IDEAL LATTICES

In the previous section, the construction of 2D algebraic

lattices from quadratic fields was briefly reviewed. Similar to

1-D arrays [7] where two coprime rational integers in Z were

applied to determine sensor positions, in 2D array design,

the quadratic integers in Z[q] shall be coprime as well,

to which Chinese Remainder Theorem applies. Therefore,

this section studies prime quadratic integers along with

its corresponding prime ideals, from which the algebraic

lattices will be constructed. The computation of prime ideals

and the issue of coprimality pertaining algebraic conjugates

will be addressed. Examples are provided in Gaussian and

Eisenstein integers, which will be exploited to design CRT

arrays in the following sections.

A. Prime Elements in Quadratic Fields

To distinguish from prime numbers in Z (e.g.,

±2,±3,±5,±7 · · · ), a non-zero element m in Z[q] is a

prime element if and only if it is not a unit of Z[q] and

whenever m divides a product in Z[q], it also divides one of

the factors. Herein, the unit is defined as a quadratic integer

u ∈ Z[q] with N(u) = ±1. In the case of Gaussian integers,

there are four units: ±1,±i, and in Z[ω], the six units are

±1, (±1±
√
3)/2.

For example, 7 is a prime number in Z but not a prime

element in Z[ω] since it is reducible, i.e., 7 = (1+ 2ω)(3−
2ω). Analogous to the norm of a complex number, with

the notations above, the norm of a quadratic integer m =
m1 + m2q in Z[q] is defined as the product of m and its

algebraic conjugate m̂, i.e., N(m) = mm̂. As q and q̂ are

roots of Equation (2), q+ q̂ = −B and qq̂ = C. Thus N(m)
can be derived as follows:
N(m) = mm̂ = (m1 +m2q)(m1 +m2q̂)

= m2
1 +m1m2(q + q̂) +m2

2qq̂ = m2
1 −Bm1m2 + Cm2

2.
(10)

Since m1,m2, B, C ∈ Z, the norm of a quadratic integer is

always in Z. In general, for all m ∈ Z[q], it can be verified

from [30, Theorem 1.8] that if N(m) is a prime number in

Z, then m is a prime element. In the cases of Gaussian and

Eisenstein primes, the sufficient and necessary conditions of

prime elements can be derived [31].

A Gaussian prime is a prime element in the ring of

Gaussian integers of the form m1 + m2i that satisfies one

of the following:

• Both m1 and m2 are nonzero and N(m) = m2
1 +m2

2

is a prime number.

• m1 = 0 and m2 6= 0 (or m1 6= 0 and m2 = 0), m2

is a prime number and |m2| ≡ 3 (mod 4) (or m1 is a

prime number and |m1| ≡ 3 (mod 4)).

In Z[ω], an Eisenstein integer of the form n = n1 + n2ω is

a Eisenstein prime if either:

• n1 + n2ω equals to the product of a unit and a prime

number of the form 3a− 1, a ∈ Z, or

• N(n) = n2
1 + n1n2 + n2

2 is a prime number.

For example, 2+i is a Gaussian prime because 12+22 = 5 is

a prime number. Likewise, 2+
√
3i = 1+2ω is a Eisenstein

prime since 12 + 2 + 22 = 7 is a prime number.

B. Prime Factorization into Ideals

An ideal I in a quadratic field is a subset of Z[q] such

that whenever x ∈ I and m ∈ Z[q], mx belongs to I. If the

ideal is generated by a single element in Z[q], this ideal is

called a principal ideal. For instance, 5Z of Z is a principal

ideal whose elements are ±5,±10± 15 · · · . For simplicity,



5

we can write 5Z = 〈 5 〉. Similar to the prime elements in

Z[q] mentioned in Section III-A, a prime ideal is an ideal

such that mn ∈ I implies m ∈ I or n ∈ I. In a principal

ideal domain (PID) where every ideal is principal, prime

ideals are simply generated by prime elements. All quadratic

fields with class number one are PIDs. It has been proved

that the PIDs in imaginary quadratic fields are Q(
√
D),

for D = −1,−2,−3,−7,−11,−19,−43,−67,−163, while

the full list of PIDs in real quadratic fields is not known

yet. Examples include D = 2, 3, 5, 6, 7, 11, 13, 14, 17, 19 · · ·
[32]. For simplicity, we only consider PIDs henceforth. For

example, 〈 2+
√
3i 〉 is a prime ideal of the ring of integers

of Q(
√
−3), namely Z[ω], since Q(

√
−3) is a PID and

2 +
√
3i is a prime element (Section III-A). The elements

in 〈 2+
√
3i 〉 are in the set 〈 2+

√
3i 〉 = 〈 2+

√
3i 〉Z[ω] =

{(2 +
√
3i)m : m ∈ Z[ω]}.

Similar to the fundamental theorem of arithmetic to ra-

tional integers [16, Theorem 5.3], every non-zero element

in a unique factorization domain (UFD) can be written as a

product of prime elements. More generally, a nonzero ideal

〈 p 〉 of OK where K = Q(
√
D) can be uniquely factored

as

〈 p 〉 =
∏

k=1

p
αk

k (11)

where pk’s are distinct prime ideals. Particularly, if p is a

rational prime greater than 2, then [14]

〈 p 〉 = pOK =







p1p2, if
(

D
p

)

= 1;

p, if
(

D
p

)

= −1;

p2, if p|D.

(12)

where p1 and p2 are distinct prime ideals, and
(

a
p

)

is the

Legendre symbol defined by
(
a

p

)

=

{
1 if for some x ∈ Z : a ≡ x2 (mod p),

−1 otherwise.

In the first case where p splits, p1 and p2 are distinct

prime ideals of norm p, thus they are coprime by nature.

Particularly in PIDs, the primality of these two ideals can

be tested using the criteria given in Section III-A. Based

on p1 and p2, two coprime ideal lattices can be constructed

whereby two subarrays can be allocated on respectively.

C. Coprime Ideal lattices and their matrix representations

In general, an ideal lattice Λ1 = σ(I) is constructed by

canonical embedding from an ideal I ⊆ OK , which is a

sublattice of the algebraic lattice Λ constructed from OK .

For example, 7A2 is an ideal lattice constructed from the

ideal 〈 7 〉 ⊂ Z[ω], thus it is a sublattice of A2 constructed

from Z[ω].

In Z[q], an integral basis of the principal ideal 〈m 〉
generated by the quadratic integer m = m1 + m2q can be

calculated as
m{1, q} = {m1 +m2q, (m1 +m2q)q}

= {m1 +m2q,−Cm2 + q(m1 −Bm2)}.

The canonical embedding of a principal ideal maps the

elements in the ideal to lattice points, which are similar to

that of OK defined in (6) and (7) for D > 0 and D < 0
respectively. Therefore, an ideal lattice denoted as σ(p) that

is generated by a principal ideal p = 〈m 〉 has a generator

matrix given by

Gm = GBm, where (13)

Bm =

(
m1 −Cm2

m2 m1 −Bm2

)

. (14)

Here G is the generator matrix of OK that expressed in

(6) or (7) for real or imaginary quadratic field respectively.

Bm is called the matrix representation of m ∈ Z[q] and

| det(Bm)| = N(m) [28, Theorem 5.11]. Note that Bm

is always an integer matrix by definition, i.e., all entries

in Bm are rational integers. The following two lemmas

discuss the properties of Bm from the perspectives of

eigenvectors/eigenvalues and commutativity respectively.

Lemma 1: (1, q) and (1, q̂) are left row eigenvectors of

Bm with eigenvalues m and m̂ respectively.

Proof: The row vector (1, q) is a left eigenvector of Bm

if (1, q)Bm = m(1, q) [33, Definition 4.2]. Substituting

(14) to the left hand side of the equation results in

(1, q)

(
m1 −Cm2

m2 m1 −Bm2

)

=
(
m1 +m2q, m1q +m2(−Bq − C)

)

As q is the root of f(X) = 0 where f(X) is given in (2), it

satisfies q2 +Bq + C = 0. Then the second element in the

row vector becomes m1q + m2q
2 = (m1 + m2q)q = mq.

Likewise, substituting q̂2 = −Bq̂ − C and m̂ = m1 +m2q̂
to (1, q̂)Bm yields (1, q̂)Bm = m̂(1, q̂). �

Lemma 2: Any two matrix representations of quadratic

integers are commutative.

Proof: By the eigendecomposition discussed in Lemma 1,

any two matrix representations Bm and Bn of two quadratic

integers m and n respectively can be factorized as

Bm = Q−1PmQ and Bn = Q−1PnQ (15)

where

Q =

(
1 q
1 q̂

)

,Pm =

(
m 0
0 m̂

)

and Pn =

(
n 0
0 n̂

)

(16)

Therefore, by Lemma 1 we can write

BmBn = Q−1PmQQ−1PnQ = Q−1PmPnQ

= Q−1PnPmQ = (Q−1PnQ)(Q−1PmQ) = BnBm.

�

In other words, the commutativity of algebraic integers

implies the commutativity of the corresponding matrices.

Next, we will relate the coprimality of quadratic integers

with the coprimality of their corresponding matrix represen-

tations and provide an alternative way of generating coprime

lattices from algebraic conjugate pairs.

D. Connection with coprime algebraic integers

In general, the left coprimality of integers matrices is

defined by Bezout’s identity [16]–[18]:
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Definition 2: Two integer matrices Bm and Bn are left

coprime if and only if there exist integer matrices C and D

such that

BmC+BnD = I. (17)

Likewise, Bm and Bn are right coprime if and only if there

exist C′ and D′ such that C′Bm +D′Bn = I.

Theorem 1: In PIDs, two algebraic integers are coprime

if and only if their corresponding matrix representations

obtained from canonical embeddings are left coprime.

Proof: See Appendix A �

Corollary 1: Two integers matrices generated from em-

beddings are right coprime if and only if they are left

coprime.

Proof: See Appendix B �

From Theorem 1 and Proposition 1, the coprimality of

two quadratic integers indicates the right and left coprimality

of their corresponding matrix representations obtained from

embeddings and vice versa. Henceforth, we say two lattices

are coprime lattices if their matrix representations are (left

and right) coprime. Exploiting this theorem, we will provide

conditions on the coprimality of adjugate matrix pairs next.

E. Adjugate Matrix Pairs

Since the notion of greatest common divisor (GCD) can

be generalized to an arbitrary commutative ring, it can be

defined in the rings of integers of quadratic fields as well

[34], [35]. Herein, the concept of GCD is generalized to

quadratic integers in PIDs, i.e., if d = GCD(m,n) is a GCD

of m and n, then all the common divisors of m and n divide

d [34, Definition 6.1.3]. Similarly, the Bezout’s identity can

also be generalized as if two integers m,n ∈ Z[q] are not

both equal to 0 then there exist α, β ∈ Z[q] such that

GCD(m,n) = αm+ βn.

Given GCD(m,n) = u where u is the unit in Z[q] and

N(u) = 1, m and n are defined as coprime quadratic

integers [34, Definition 6.1.4]. In other words, two quadratic

integers m and n are coprime if and only if there exist α′

and β′ such that mα′ + nβ′ = u. Because u is a unit, u−1

always exists. Then Bezout’s identity becomes mα+nβ = 1
where α = α′u−1 and β = β′u−1. Recall that the following

facts of GCD hold for a, b, c ∈ Z[q]:

1) GCD(a, b) = GCD(a+ αb, b), ∀α ∈ Z[q];
2) GCD(a, b) = 1 if and only if GCD(aα, bβ) = 1,

∀α, β ∈ Z+.

3) GCD(a, bc) = 1 if and only if GCD(a, b) = 1 and

GCD(a, c) = 1.

These facts can be proved straightforward and will be

employed in the following proofs of coprimality.

As mentioned in Section II-A, the algebraic conjugate of

m denoted by m̂ is also in Z[q] and can be written as m1+
m2q̂. The matrix generated by m̂ is the same as the adjugate

of Bm, which is the transpose of the cofactor matrix of

Bm, i.e., adj(Bm)kj = (−1)k+jMjk where Mjk is the

determinant of the matrix that results from deleting row k

and column j of Bm. Therefore, in the dimension of two,

the adjugate of Bm is

Bm̂ =

(
m1 −Bm2 Cm2

−m2 m1

)

. (18)

Theorem 2: Using the notations above, two adjugate 2-

by-2 matrices Bm and Bm̂ are coprime if and only if

(a) GCD(m1,m2) = 1 and GCD(2m1+m2, 4C−1) = 1,

for B = −1,

(b) GCD(m1,m2) = 1 and GCD(m1, C) = 1, for B = 0
and C is even,

(c) GCD(m1 +m2,m1 −m2) = 1 and GCD(m1, C) = 1
for B = 0 and C is odd.

Proof : See Appendix C �

It is worth to notice that according to Theorem 1, Theorem

2 also provides the coprime conditions of two algebraic

conjugates m = m1 + m2q and m̂ = m1 + m2q̂ where

q and q̂ are given in (3) and (4) respectively. For illustration

purposes, two examples of algebraic conjugate integers are

given, providing two classes of coprime matrices.

Corollary 2: A Gaussian integer m and its conjugate are

relatively prime if and only if GCD(m1+m2,m1−m2) = 1.

Proof : The minimum polynomial of the ring of Gaussian

integers is X2+1 = 0 with the basis {1, i}. By Theorem 2,

B = 0 and C = 1 match the assumptions of case (c), thus the

coprimality condition becomes GCD(m1+m2,m1−m2) =
1 and GCD(m1, 1) = 1. Note that GCD(m1, 1) = 1 holds

for all m1 ∈ Z. �

Corollary 3: An Eisenstein integer and its conjugate are

relatively prime if and only if GCD(m1,m2) = 1 and

GCD(m1 −m2, 3) = 1.

Proof : Likewise, in the case of Z[ω], the coefficients

become C = 1 and B = −1, which can be addressed

to case (a) in Theorem 2. The coprime conditions are

GCD(m1,m2) = 1 and GCD(2m1 + m2, 3) = 1. By

Fact (1), GCD(m1,m2) = 1 is equivalent to GCD(2m1 +
m2,m1) = 1, which can be combined with the second

condition by Fact (3), i.e., GCD(2m1 + m2, 3m1) = 1.

Applying Fact (1) again results in GCD(3m1 − (2m1 +
m2), 3m1) = GCD(m1 − m2, 3) = 1, which holds if and

only if both GCD(m1,m2) = 1 and GCD(m1 −m2, 3) = 1
hold. �

Remark: By Theorem 2, the class of coprime matrix pairs

is enriched to any matrices obtained from quadratic integers.

By exploiting the bijective mappings between algebraic

integers and integer matrices, [17, Theorem 2] can be viewed

as the coprimality of two algebraic conjugates and proved

by the generalized GCD, i.e.,

GCD(m1 +m2q, m1 +m2q̂)

= GCD
(
(m1 +m2q)(m1 +m2q̂), 2m1 +m2(q + q̂)

)

= GCD(N(m), 2m1 −Bm2).

According to the coprimality relation between quadratic

integers and matrices stated in Theorem 1, some useful

classes of coprime matrices such as skew-circulant adjugates
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derived in [18] can be viewed as a case of Corollary 2 with

canonical embedding, i.e., the following two integer matrices

Bm =

(
m1 −m2

m2 m1

)

and Bm̂ =

(
m1 m2

−m2 m1

)

are coprime if and only if GCD(m1 +m2, m1 −m2) = 1.

Similarly, an alternative way of describing Corollary 3 would

be as follows:

Two integer matrices

Bm =

(
m1 −m2

m2 m1 +m2

)

and

Bm̂ =

(
m1 +m2 m2

−m2 m1

)

are coprime if and only if GCD(m1, m2) = 1 and

GCD(m1−m2, 3) = 1, i.e., m1 and m2 are relatively prime

with their difference being not divisible by 3.

IV. DESIGN OF CRT-BASED SPARSE ARRAYS

We have proved that the coprimality of quadratic integers

in PIDs is a necessary and sufficient condition of the

coprimality of the corresponding matrices obtained from

canonical embeddings. In this section, we will briefly review

the generalized CRT based on [14, Appendix 1], and then

propose a design method for coprime arrays based on

CRT over rings of quadratic integers where the sensors are

deployed by the use of coprime lattices generated by coprime

ideals. For illustrative purposes, CRT is employed over the

ring of Gaussian integers and the ring of Eisenstein integers

respectively as examples.

To begin with, we extend the modulo operation to ideals,

and define the sum and the product of ideals as follows:

Definition 3: Let I be an ideal of a ring R. Given x, y ∈
R, x is congruent to y modulo I, i.e., x ≡ y mod I if and

only if

x− y ∈ I. (19)

Definition 4: Let I and J be two ideals of the ring R.

The sum of I and J is the ideal

I + J = {x+ y, x ∈ I, y ∈ J },
and their product is the ideal

IJ = {
∑

xkyj , xk ∈ I, yj ∈ J }.
The quotient ring is defined as the set that contains all

the cosets of the ideal I, i.e., R/I = {r + I, r ∈ R}. Let

ideals I and J be relatively prime in a commutative ring

R, then I + J = R. For example, given I = 〈 3 〉 and

J = 〈 5 〉 as two coprime ideals of Z, I + J = 〈 3 〉 +
〈 5 〉 = 〈 3 · 2 + 5 · (−1) 〉 = 〈 1 〉 = Z, IJ = 〈 15 〉, and

R/I = Z/3Z = {0, 1, 2} which is an equivalence class

with [x] = [y] if and only if x− y ∈ 〈 3 〉.
The Chinese Remaindering Theorem [14] asserts that

there is a ring isomorphism

R/IJ ≃ R/I ×R/J . (20)

This implies that for all ak ∈ R/I and bj ∈ R/J there

exists z ∈ R/IJ such that

z ≡ ak (mod I) and

z ≡ bj (mod J ),
(21)

which can also be proved as follows: from coprimality that

I + J = R, there exist xk ∈ I and yj ∈ J such that

xk + yj = 1. For all ak ∈ R/I and bj ∈ R/J , it can be

readily verified that every pair (ak, bj) forms the solution

z ≡ xkbj + yjak (mod IJ ). (22)

We may check that

z ≡ yjak ≡ xkak + yjak = (xk + yj)ak ≡ ak (mod I)
z ≡ xkbj ≡ xkbj + yjbj = (xk + yj)bj ≡ bj (mod J ).

The pair (xk, yj) serves as a “CRT basis” which can be

chosen as the basis of prime ideals in Z[q]. With this basis,

the mapping from R/I⊗R/J to R/IJ is bijective, i.e., all

solutions of z are identical given the different pairs (ak, bj),
which leads to the definition of CRT arrays and its cross-

difference and sum coarrays:

Definition 5 (CRT arrays): Given two coprime ideals I
and J in ring R, a CRT-based array is defined as:

Z = σ(I)/σ(IJ ) ∪ σ(J )/σ(IJ ), (23)

where σ(I) denotes the canonical embedding of I and same

with J .

Definition 6 (Cross-difference coarrays of CRT arrays):

The cross-difference coarray D generated by an CRT array

is given by:

D = {z1 − z2 | z1 ∈ σ(I)/σ(IJ ), z2 ∈ σ(J )/σ(IJ )}.
Definition 7 (Sum coarray of CRT arrays): The sum

coarray S generated by an CRT array can be expressed as:

S = {z1 + z2 | z1 ∈ σ(I)/σ(IJ ), z2 ∈ σ(J )/σ(IJ )}.
Note that because of the symmetry of the ideal lattices, D is

identical to S. From the point of view that regards lattices

as sets of points, σ(I)/σ(IJ ) corresponds to I/(IJ ) in

number fields.

According to [14], the ring isomorphism (20) holds over

any commutative ring, therefore over all PIDs where the

ideals can be obtained from the prime decomposition (12).

Given I = p1 = 〈m 〉 and J = p2 = 〈n 〉 where

m,n ∈ Z[q], the canonical embedding σ(p1) of p1 is given in

(13) and similar with σ(p2). The product of these two ideals

forms a principal ideal as well, i.e., IJ = 〈mn 〉 = 〈 p 〉.
With the notations above, expressions for the number of

sensors and the achievable DOF can be derived as follows:

Proposition 1: If I and J that are used to allocate sensors

are decomposed from 〈 p 〉, the total number of physical

sensors is 2p− 1 and its maximum DOF is p2.

Proof : By assumption IJ = 〈 p 〉 = pR, the number of

elements in I/pR is p which is the same as J /pR [28,

Definition 3.12]. Since the only identical element that they

share is 0, the total number of nonidentical elements in

(I/pR) ∪ (J /pR) is 2p− 1.

Define the maximum DOF as the maximum number of

degrees of freedom that the array can achieve, i.e., the total
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number of identical elements in the coarray. According to

the ring isomorphism of the generalized CRT given in (20),

all the difference/sum vectors generated by coprime lattices

are nonidentical, thus the total number of elements in (I +
J )/pR can be written as:

|I/pR| · |J /pR| = p2, (24)

where | · | is the cardinality of a set. Note that as canonical

embedding σ(·) is bijective, the number of lattice points

in σ(J )/σ(IJ ) is the same as the number of elements in

J /IJ �

The rest of this section will demonstrate the proposed

design method by Chinese Remaindering over PIDs in

quadratic fields, namely over Z[i] and Z[ω].

A. Chinese Remaindering over Z[i]

In the ring of Gaussian integers, we look for the p such

that D = −1 is a quadratic residue:

x2 ≡ −1 (mod p)

for some x ∈ Z. The first few solutions are 22 ≡ −1
(mod 5), 52 ≡ −1 (mod 13), and so forth. By performing

the prime decomposition (12), these rational primes can be

decomposed into prime ideals as 〈 5 〉 = 〈 2 + i 〉〈 2 − i 〉,
and 〈 13 〉 = 〈 3 + 2i 〉〈 3 − 2i 〉. Here all the quadratic

integers are Gaussian primes as stated in the criteria given

in Section III-A. Alternatively, it can be checked that all

pairs are relatively prime according to Corollary 2. Let

us take the example of p = 5 to demonstrate the design

procedure. p = 5 yields two prime ideals p1 = 〈 2 + i 〉 and

p2 = 〈 2− i 〉, whose corresponding matrices are coprime as

well by Theorem 1. As {1, i} is the integral basis of Z[i],
an integral basis of 〈 2 + i 〉 can be calculated as

(2 + i){1, i} = {2 + i,−1 + 2i}.
Since the minimum polynomial over Z[i] is X2 +1 (B = 0
and C = 1), by canonical embedding given as (13) and (14),

the generator matrix of 〈 2 + i 〉 is

G(2+i) =

(
2 −1
1 2

)

. (25)

Notice that because G = I, the generator matrix of 〈 2+i 〉 is

identical to its matrix representation, i.e., G(2+i) = B(2+i).

Analogously, an integral basis of 〈 2− i 〉 is given by

(2− i){1, i} = {2− i, 1 + 2i},
whose generator matrix is

G(2−i) =

(
2 1
−1 2

)

. (26)

The determinant of G(2+i) is equivalent to the norm of 〈 2+
i 〉 and same with G(2−i) and 〈 2−i 〉 [28]. By the definition

of the norm (10), it can be proved straightforward that if

〈 p 〉 = 〈 2 + i 〉〈 2 − i 〉, N(〈 2 + i 〉)N(〈 2 − i 〉) = N(p)
and since p is a prime number, N(p) = p2 has and only

has three divisors, namely 1, p, and p2. According to the

decomposition shown in (12), both 〈 2+ i 〉 and 〈 2− i 〉 are

not units. This implies | det(G(2+i))| = | det(G(2−i))| =
N(〈 2 + i 〉) = N(〈 2 − i 〉) = p = 5.
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Figure 3. Z2 arrays in the Voronoi cells (black polygons) constructed from
decomposition over Gaussian integers of p = 5 (a) and p = 13 (b) with the
first subarray (G(2+i)g1) in red stars and the second subarray (G(2−i)g2)
in blue dots.

Using the matrix representation, the cross-difference coar-

ray consisting of vectors can be defined by

DG = {dg : dg = G(2−i)g1 −G(2+i)g2},
where g1 ∈ Z2/σ

(
〈 2+i 〉

)
and g2 ∈ Z2/σ

(
〈 2−i 〉

)
. G(2+i)

and G(2−i) are given by (25) and (26) respectively and they

are coprime because 2 + i and 2 − i are coprime integers

(Theorem 1). According to the ring isomorphism of the

generalized CRT, with R = Z, I = 〈 2+i 〉 and J = 〈 2−i 〉,
it can be readily calculated that IJ = 〈 5 〉 = 5Z and thus

dg ∈ Z2/5Z2, yielding an array of 52 = 25 degrees of

freedom according to Proposition 1. The locations of the

elements of the first subarray are given by

G(2−i)g1 ∈ σ
(
〈 2− i 〉

)
/5Z2,

while those of the second subarray are given by

G(2+i)g2 ∈ σ
(
〈 2 + i 〉

)
/5Z2.

Therefore, Z = σ
(
〈 2 − i 〉

)
/5Z2 ∪ σ

(
〈 2 + i 〉

)
/5Z2 and

only 9 elements are actually used in the sparse array by

Proposition 1.

Another example that comprises more sensors is p = 13,
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Figure 4. A2 arrays in the Voronoi cells (black polygons) constructed from
decomposition of p = 7 (a) and p = 13 (b) over Eisenstein integers.

where two coprime ideals 〈 3 + 2i 〉 and 〈 3 − 2i 〉 can be

obtained from (12). The generator matrices of the corre-

sponding ideal lattices are given by

G(3+2i) =

(
3 −2
2 3

)

, and G(3−2i) =

(
3 2
−2 3

)

.

This coprime array produces 132 = 169 DOFs from 13 ×
2− 1 = 25 physical sensors according to Proposition 1.

Since Z[i] is isomorphic to polynomial ring Z[x]/(x2+1)
that gives rise to skew-circulant matrices, the sensor arrays

obtained from skew-circulant matrices in [9] can be viewed

as CRT arrays over Z[i]. Symmetric Voronoi regions V(pZ2)
defined in (5) are used to modulo these sensors correspond-

ing to algebraic integers in Z[i], as depicted in Fig. 3(a) and

Fig. 3(b) for p = 5 and p = 13 respectively.

B. Chinese Remaindering over Z[ω]

To derive the prime ideals in the ring of Eisenstein

integers, we shall aim for p such that D = −3 is a quadratic

residue:

x2 ≡ −3 (mod p),

for some x ∈ Z. For example, solutions can be 22 ≡ −3
(mod 7), 62 ≡ −3 (mod 13), and so forth. By performing

ideal decomposition (12), these rational primes can be de-

composed into prime ideals as: 〈 7 〉 = 〈 2+
√
3i 〉〈 2−

√
3i 〉

and 〈13 〉 = 〈1 + 2
√
3i 〉〈 1 − 2

√
3i 〉. With p = 7, the two

prime ideals decomposed from 〈 7 〉 are p1 = 〈 2 +
√
3i 〉

and p2 = 〈 2 −
√
3i 〉, where 2 +

√
3i and 2 −

√
3i

are prime elements by the criteria given in Section III-A.

Because p1 and p2 are algebraic conjugate of each other

(2 +
√
3i = 1 + 2ω and 2 −

√
3i = 1 + 2ω̂), it can also

be checked that these two conjugate Eisenstein integers are

coprime according to Corollary 3 with m1 = 1 and m2 = 2.

Similar to Gaussian integers, 〈 2 +
√
3i 〉 in Z[ω] has an

integral basis represented by

(2 +
√
3i){1, ω} =

{

2 +
√
3i,

−1 + 3
√
3i

2

}

whose corresponding generator matrix is

G(2+
√
3i) =

(
2 − 1

2√
3 3

√
3

2

)

=

(
1 1

2

0
√
3
2

)(
1 −2
2 3

)

,

︸ ︷︷ ︸

B(2+
√

3i)

and the integral basis of 〈 2−
√
3i 〉 is given by

(2−
√
3i){1, ω} =

{

2−
√
3i,

5 +
√
3i

2

}

with the generator matrix:

G(2−
√
3i) =

(
1 1

2

0
√
3
2

)(
3 2
−2 1

)

.

︸ ︷︷ ︸

B(2−
√

3i)

Here the matrices B(2+
√
3i) and B(2−

√
3i) are the ma-

trix representations of ideals 〈 2 +
√
3i 〉 and 〈 2 −

√
3i 〉

respectively and they are coprime according to Theorem

1. Similar to the Gaussian case, it can be verified that

| det(B(2+
√
3i))| = | det(B(2−

√
3i))| = N(〈 2 +

√
3i 〉) =

N(〈 2 −
√
3i 〉) = p = 7. With the notations above, the

locations of the elements of the first subarray are given by

G(2−
√
3i)e1 ∈ σ

(
〈 2−

√
3i 〉

)
/7A2, while those positions of

the second subarray are G(2+
√
3i)e2 ∈ σ

(
〈 2+

√
3i 〉

)
/7A2,

where e1 ∈ A2/σ
(
〈 2+

√
3i 〉

)
, and e2 ∈ A2/σ

(
〈 2−

√
3i 〉

)
.

The elements in the cross-difference coarray are defined in

the same form as the Z2 array, i.e., de = G(2−
√
3i)e1 −

G(2+
√
3i)e2. By substituting R = A2, I = 〈 2 +

√
3i 〉 and

J = 〈 2 −
√
3i 〉 to (20), the generalized CRT guarantees

de ∈ A2/7A2, yielding an array of 49 degrees of freedom

with 13 sensors according to Proposition 1.

Similarly, with a larger array aperture such as p = 13, the

two prime ideals decomposed from 〈 13 〉 are 〈 1+2
√
3i 〉 =

〈−1+4ω 〉 and 〈 1−2
√
3i 〉 = 〈−1+4ω̂ 〉, which are coprime

according to Corollary 3 with m1 = −1 and m2 = 4. The

generator matrices of the corresponding ideal lattices are
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Table I
HOLE-FREE SYMMETRIC CRT ARRAY DESIGN

Require: A PID Q(
√
D).

Steps:

1: Calculate a rational integer p ∈ Z such that Legendre symbol
(
D
p

)
= 1.

2: Compute the integral basis {1, q} of Z[q] as q = − 1
2B+ 1

2

√
B2 − 4C where B = 0 and C = −D if D 6≡ 1 (mod 4),

and B = −1 and C = 1−D
4 if D ≡ 1 (mod 4).

3: Decompose 〈 p 〉 into two coprime ideals p1 = 〈m1 +m2q 〉 and p2 = 〈n1 + n2q 〉 of Q(
√
D).

4: Compute generator matrices as

G1 = G

(
m1 −Cm2

m2 m1 −Bm2

)

and G2 = G

(
n1 −Cn2

n2 n1 −Bn2

)

,

where G is defined in (6) for D > 0 and (7) for D < 0.

5: The sensors are allocated on a 2D space where the positions are given by G1x2 and G2x1 with x1 ∈ σ(Z[q])/2σ(p1)
and x2 ∈ σ(Z[q])/σ(p2).

given by

G(1+2
√
3i) =

(
1 − 5

2

2
√
3 3

√
3

2

)

and

G(1−2
√
3i) =

(
1 7

2

−2
√
3 −

√
3
2

)

.

Here the set of the difference coarray is A2/13A2 Thus this

array provides 169 DOF with 25 sensors. The subarrays are

allocated on the following two ideal lattices:

σ
(
〈 1− 2

√
3i 〉

)
/13A2, and σ

(
〈 1 + 2

√
3i 〉

)
/13A2.

Similar to the Gaussian cases, Voronoi regions V(pA2) are

employed to allocate sensors, yielding more compact arrays.

The examples of A2 array configurations are shown in Fig.

4(a) and Fig. 4(b) for p = 7 and p = 13 respectively. To

highlight the shape of hexagonal Voronoi cell for illustra-

tive purposes, all A2 based arrays are rotated 90 degrees

counterclockwise henceforth.

When all antennas act like receivers, the array configura-

tion given in Definition 5 can be redefined equivalently as a

set that consists of sensor locations given by vectors, i.e.,

Z ={z = G2x1 | x1 ∈ σ(Z[q])/σ(p1)}
∪ {z = G1x2 | x2 ∈ σ(Z[q])/σ(p2)},

where G1 and G2 defined as (13) are generator matrices of

p1 and p2 respectively.

V. HOLE-FREE SYMMETRIC CRT-BASED ARRAYS

In general, the elements in the coarrays may not be

contiguous, i.e., D (or equivalently S) may contain holes,

which cause ambiguities when subspace-based algorithms

are applied. In this section, we provide conditions for

hole-free and contiguous cross-difference and sum coarrays

by modifying the CRT arrays (Definition 5) under certain

restrictions on quotient rings. The definition of hole-free

symmetric CRT (HSCRT) arrays is given as follows:

Definition 8: [Hole-free Symmetric CRT arrays, HSCRT]

Assume the prime decomposition 〈 p 〉 = p1p2 in Z[q],
with G1 and G2 being the generator matrices of p1 and

p2 respectively. A hole-free Symmetric CRT array is an

extension of CRT array where x1 ∈ σ(Z[q]) / 2σ(p1) and

x2 ∈ σ(Z[q]) / σ(p2) and the two subarrays are G1x2 and

G1x2 respectively.

Note that the two subarrays can be rewritten by means

of Voronoi cells (Definition 1) as σ(p1) ∩ V(σ(p1p2)) =
σ(p1)∩V(pΛ) and σ(p2)∩V(2pΛ) where Λ = σ(Z[q]) is the

algebraic lattice that corresponds to Z[q] of a quadratic field.

The following proposition exploits the concept of Voronoi

cells to guarantee the ’hole-free’ property of HSCRT:

Proposition 2 (Generating All Lattice Points in Λ ∩
V(pΛ)): HSCRT can generate at least all lattice points in

Λ ∩ V(pΛ) by using the cross-difference coarray.

Proof : For simplicity, let us denote the two ideal lattices

by Λ1 = σ(p1) and Λ2 = σ(p2) respectively. The ideal is

to find a new range for x1 such that the difference vectors

can overspread Λ∩V(pΛ) which corresponds to Λ/pΛ from

quotient group point of view. According to CRT, for all d ∈
Λ∩V(pΛ), there exist x′

1 ∈ Λ∩V(Λ1) and x2 ∈ Λ∩V(Λ2)
such that

d ≡ G2x
′
1 −G1x2 (mod pΛ)

= G2x
′
1 −G1x2 − y, y ∈ pΛ ∩ V(2pΛ)

= G2x1 −G1x2, x1 = x′
1 −G−1

2 y.

Considering 〈 p 〉 = p1p2 and their corresponding matrices

G1 and G2, G−1
2 y is in Λ1 ∩ V(2Λ1). Note that Λ1 is a

sublattice of Λ and x′
1 −G−1

2 y is identical to x′
1 +G−1

2 y

because of the symmetry of Λ1. The proof is completed by

noting that x1 ∈ Λ ∩ V(2Λ1). In short, by selecting x1 ∈
Λ ∩ V(2Λ1) and x2 ∈ Λ ∩ V(Λ2) results in d = Λ ∩ V(pΛ).

�

Generally, the contiguous coarray can be defined as ele-

ments within a convex polygon, whereas in this paper, we

only consider convex regular polygons such as square and

hexagon. One remarkable advantage of HSCRT arrays is

that because of the symmetry of the algebraic lattices, their

cross-difference coarrays are identical to the corresponding

sum coarrays. As a result, Proposition 2 also applies to

the sum coarrays, implying that both passive and active
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sensing algorithms that require contiguous coarrays can

employ HSCRT arrays. The design procedure of HSCRT

is summarized in Table I. Next, we study the properties of

HSCRT and formulate the contiguous coarrays of hole-free

Z2 and hole-free A2, which are in the class of HSCRT.

A. Properties of HSCRT Arrays

1) Number of Physical Sensors: According to Proposition

1, the number of sensors in Λ1/pΛ and in Λ2/pΛ both

equal to p. After doubling the range of x1 to Λ ∩ V(2Λ1)
and removing the duplicated sensors at the origin, the total

sensor number in 2Λ1 becomes 4(p− 1). Thus the number

of physical sensors of HSCRT is

4(p− 1) + p = 5p− 4.

2) Perimeters and Areas of Physical Arrays: Given a

prime p, the perimeters of hole-free Z2 denoted as CG and

of hole-free A2 denoted as CE can be calculated as

CG = 8pd, CE = 6pd(sin
π

3
)−1 ≈ 6.928pd,

where d is the minimum inter-element spacing and the areas

acquired by the two array configurations are

AG = 4p2d2, AE = 3p2d2(sin
π

3
)−1 ≈ 3.464p2d2.

Therefore the perimeter and the area of A2 array are about

86% of those Z2 array, which implies that hole-free A2 is

more compact regarding the geometry.

3) Number of Virtual Sensors in Contiguous Coarrays:

According to Proposition 2, the cross-difference/sum coarray

of HSCRT can generate all lattice points in Λ ∩ V(pΛ),
which corresponds to Λ/pΛ from the quotient group of view.

Since Λ is a lattice with generator matrix G, pΛ is also a

lattice whose generator matrix is GBp where Bp = pI. The

cardinality of Λ ∩ V(pΛ) equals to the cardinality of Λ/pΛ
[28, Definition 3.12.]:

|Λ/pΛ| = | det(Bp)| = p2,

i.e., the number of sensors in Λ ∩ V(pΛ) is p2.

B. Examples of contiguous coarrays of HSCRT

1) Hole-free Z2: A hole-free Z2 array is an HSCRT over

the ring of Gaussian integers Z[i], i.e., p1, p2 ∈ Z[i] and

Λ = Z2. The consecutive set of hole-free Z2 is a uniform

rectangular array (URA) which can be expressed as DC,G =
Z2 ∩ V(pZ2), or equivalently

DC,G = {d = (xk, yj) | d ∈ D, −lG ≤ xk ≤ lG,

− lG ≤ yj ≤ lG, k, j = 1, 2, · · · lG},
where lG = 1

2p according to Proposition 2. It can be verified

that the cardinality of DC,G is p2. An example of hole-free

Z2 array is depicted in Fig. 5(a) corresponding to Fig. 3(b)

and the effect of filling the holes is illustrated in Fig. 5(b).

From this point of view, [9, Theorem 2] can be interpreted

as a particular case of Z2.
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0
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(a)
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0

5

10

15

(b)

Figure 5. Given the decomposition of p = 13, hole-free Z2 array (a) and
its contiguous cross-difference/sum coarray is within 13Z2 (b). The first
subarray G2x1 is in red stars and the second subarray G1x2 is in blue
dots. Voronoi cells of 13Z2 and 26Z2 are also shown.

2) Hole-free A2: Analogously, hole-free A2 is defined as

a type of HSCRT over the ring of Eisenstein integers Z[ω],
whose contiguous part of the coarray is also hexagonal with

basis given by (8). Let lr denote the inscribed radius of the

contiguous hexagonal cell V(pA2). Using Proposition 2 and

the geometry property of hexagonal lattices, it can be easily

verified that lr = 1
2p. The contiguous part of the cross-

difference/sum coarray of hole-free A2 can be described as

A2 ∩ V(pA2), or equivalently

DC,E = {d = (xk, yj) | d ∈ D, −lr ≤ yj ≤ lr,

− 2lr ≤ ±
√
3xk + yj ≤ 2lr}

where there are p2 elements in DC,E . Fig. 6(a) depicts

an example of hole-free A2 with p = 13 over Eisenstein

integers whose cross-difference/sum coarray is shown in Fig.

6(b).

VI. CONCLUSION

In this paper, it has been demonstrated that the problem

of designing planar coprime arrays can be solved through

Chinese remaindering over quadratic fields. Inspired by the

bijective mappings between the rings of integers and lattices,
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Figure 6. Given the decomposition of p = 13, hole-free A2 array (a) with
contiguous cross-difference/sum coarray within 13A2 (b). Voronoi cells of
13A2 and 26A2 are also shown.

a new class of array configurations based on coprime lattices

constructed from quadratic integers in PIDs is proposed,

which provides enhanced DOF and sparse array geometries,

and thus alleviates the mutual coupling effect. By exploiting

the properties of PID, a lattice can be represented by a

generator matrix calculated by its corresponding quadratic

integer, which significantly simplifies the notations of the

sensor locations and generalizes the discussions of copri-

mality issues. The correlation between coprime quadratic

integers and matrices have been investigated in great detail,

whereby the coprimality of skew-circulant adjugate pairs

can be interpreted as special cases of adjugate matrices in

Theorem 2. A modified configuration of CRT array is also

introduced for an enlarged contiguous coarray. Examples

over Z[i] and Z[ω] are provided for illustrative purposes

while in general all quadratic coprime integers can be

chosen for CRT array design since the generalized CRT only

requires the coprimality of ideals.

In the accompanying paper, a new approach of obtaining

coprime matrices will be demonstrated, after which the

multi-sublattice CRT arrays will be introduced, where the

subarrays are built from three or more pairwise coprime

quadratic integers. The feasibility of the proposed arrays will

be employed for both passive and active sensing, which puts

forward the algorithms of angle estimations to sparser and

more compact hexagonal arrays.

APPENDIX A

PROOF OF THEOREM 1

By the assumption on the coprimality of m and n, there

must exist α and β such that mα+nβ = 1 with m,n, α, β ∈
Z[q]. Without loss of generality, let {1, q} be an integral basis

of Z[q] where q2+Bq+C = 0 according to (2). Taking the

algebraic conjugation of both sides of mα+ nβ = 1 yields

m̂α̂+ n̂β̂ = 1 where m̂ is the algebraic conjugate of m and

same with other elements. q̂ is the other root of f(X) = 0
expressed (4). By expending all quadratic integers using the

basis, it can be easily proved that mα+nβ = 1 if and only

if m̂α̂ + n̂β̂ = 1. Let us write these two equations by the

matrix form:
(

m 0
0 m̂

)(
α 0
0 α̂

)

+

(
n 0
0 n̂

)(
β 0

0 β̂

)

= I.

(27)

Define Pα and Pβ as eigenvalue matrices as Pm given in

(16). Then (27) can be rewritten as PmPα + PnPβ = I.

According to Lemma 1, Q consists the eigenvectors of

matrix representations and is expressed in (16), then left

and right multiplying Q−1 and Q respectively yields

BmBα +BnBβ = I, (28)

i.e., Bm and Bn are left coprime.

Next, we prove the sufficiency of the theorem. If Bm and

Bn are assumed to be coprime, there exist B′
α and B′

β where

B′
α =

(
α′
1 α′

2

α′
3 α′

4

)

and B′
β =

(
β′
1 β′

2

β′
3 β′

4

)

such that BmB′
α+BnB

′
β = I, which results the following:

m1α
′
1 − Cm2α

′
3 + n1β

′
1 − Cn2β

′
3 = 1, and (29)

m1α
′
3+m2α

′
1+n1β

′
3+n2β

′
1−Bm2α

′
3−Bn2β

′
3 = 0. (30)

Let α′ = α′
1 + α′

3q and β′ = β′
1 + β′

3q be two quadratic

integers in Z[q]. Then replacing q2 with −Bq − C yields

mα′ + nβ′ = (m1α
′
1 − Cm2α

′
3 + n1β

′
1 − Cn2β

′
3)

+ (m1α
′
3 +m2α

′
1 + n1β

′
3 + n2β

′
1 −Bm2α

′
3 −Bn2β

′
3)q
(31)

Substituting (29) and (30) to (31), it can be verified that

mα′ + nβ′ = 1.

APPENDIX B

PROOF OF COROLLARY 1

Assume Bm and Bn are left coprime. From Theorem

1, this assumption is equivalent to that their corresponding

quadratic integers m and n in Z[q] are coprime, i.e., there

exist α and β such that mα+ nβ = 1, which is equivalent

to (28). By Lemma 2, (28) is equivalent to

BαBm +BβBn = I,

i.e., Bm and Bn are right coprime.
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APPENDIX C

PROOF OF THEOREM 2

Since the canonical embedding is bijective, the inverse

mapping realizes the corresponding algebraic integers of Bm

and Bm̂ by m = m1+m2q and m̂ = (m1−Bm2)−m2q =
m1 +m2q̂ respectively. According to Theorem 1, Theorem

2 is equivalent to the coprime conditions of two algebraic

conjugates in Z[q]. Suppose two conjugate quadratic integers

m and m̂ are coprime, i.e., GCD(m1+m2q, m1+m2q̂) = 1.

Then GCD(m1+m2q, m2(q− q̂)) = 1 by applying Fact (1).

This is equivalent to the following two conditions according

to Fact (3):

GCD(m1 +m2q, m2) = 1, and (32)

GCD(m1 +m2q, q̂ − q) = 1. (33)

By Fact (1), (32) can be simplified to

GCD(m1, m2) = 1, (34)

which needs to be held for all cases from (a) to (c).

According to (3) and (4), q̂ can be replaced by q̂ = −B− q,

then (33) can be rewritten as GCD(m1 +m2q, 1− 2q) = 1
or GCD(m1 +m2q, 2q) = 1 corresponding to B = −1 or

B = 0 respectively depending on the minimum polynomial

of the quadratic field Q(
√
D) given in (1).

(a) In the first case (B = −1), GCD((2m1 + m2)q, 1 −
2q) = 1 is obtained by subtracting m1(1 − 2q) to the

first entry, which is equivalent to

GCD(2m1 +m2, 1− 2q) = 1,

since GCD(q, 1− 2q) = GCD(1, q) = 1 (1 and q must

be coprime as {1, q} is an integral basis). Substituting

B = −1 to f(X), (2) becomes q2−q+C = 0. Thus (a)

is obtained by enforcing a square on the second entry,

i.e., (1− 2q)2 = 1− 4C. Recall (34) shall hold.

(b) With B = 0 (the GCD of m1 + m2q and 2q is 1),

enforcing a square on m1+m2q and applying Fact (1)

result in GCD(m2
1+m2

2q
2, 2q) = 1, which is equivalent

to GCD(m2
1+m2

2q
2, q) = 1 and GCD(m2

1+m2
2q

2, 2) =
1 by Fact (3). Note that q2 = C given B = 0 (3). Thus

by Fact (1)-(3), the former can be simplified to

GCD(m2
1, q) = GCD(m1, C) = 1, (35)

and the latter becomes GCD(m2
1+m2

2C, 2) = 1, which

can be simplified depending on the parity of C as

follows:

If C is an even number, 2 divides Cm2
2 and thus it can

be eliminated, resulting in GCD(m2
1, 2) = 1, which is

equivalent to

GCD(m1, 2) = 1 (36)

by Fact (2), i.e., m1 is odd, which coincides with (35)

with even C. Recall (34) shall hold.

(c) Likewise, when C is odd, C can be viewed as a sum of

a even number C′ and the unit, i.e., GCD(m2
1+(2C′+

1)m2
2, 2) = 1. Therefore C′m2

2 can be eliminated as

the previous case, after which Fact (1) and Fact (3) can

be applied, i.e.,

GCD((m1+m2)
2, 2) = GCD(m1+m2, 2) = 1. (37)

Recall (34) and (35) shall hold. By repeatedly ap-

plying Fact (1) and Fact (3), (34) and (37) can be

incorporated together since (34) can be rewritten as

GCD(m1+m2, m2) = 1 and GCD(m1+m2, 2m2) =
GCD(m1 +m2, m1 +m2 − 2m2).
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