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Frequency Synchronization for OFDM-based
Massive MIMO Systems

Parna Sabeti, Arman Farhang, Nicola Marchetti, and Linda Doyle

Abstract—Massive multiple input multiple output (MIMO) is
a key technology in the fifth generation (5G) wireless networks.
However, its performance heavily relies on accurate synchro-
nization. Additionally, synchronization can impose an enormous
amount of computational complexity to the system. To deal
with this issue, in this paper, we propose a low complexity
frequency synchronization technique with a high accuracy for the
uplink of multi-user orthogonal frequency division multiplexing
(OFDM) based massive MIMO systems. First, we propose a
carrier frequency offset (CFO) estimation whose computational
complexity increases only linearly with respect to the number of
base station (BS) antennas. Second, we propose a CFO compen-
sation method that is performed after combining the received
signals at the BS antennas, and as a result, its computational
complexity is independent of the number of BS antennas. As
a third contribution, the effect of the CFO estimation error is
studied, and it is proven that by applying our proposed CFO
compensation technique, the CFO estimation error causes only a
constant phase shift. We then propose an algorithm to efficiently
calculate and remove the estimation error. Our simulation results
testify the efficacy of our proposed synchronization technique. As
it is demonstrated, our proposed synchronization technique leads
to a bit error rate (BER) performance that is very close to the
one for a fully synchronous system.

I. INTRODUCTION

Large scale multiple input multiple output (MIMO) or
massive MIMO is one of the key technologies for the fifth
generation (5G) wireless networks, [2], [3]. The main differ-
ence between massive MIMO and classical multi-user MIMO
systems is the large number of antennas at each base station
(BS) which brings significant advantages to these systems. It
can tremendously enhance network capacity by enabling users
to simultaneously utilize the entire available bandwidth even
in presence of pilot contamination [4]–[6]. This leads to an
improved spectral efficiency [7]. In addition, by increasing
the number of BS antennas (array gain), the required power
to achieve a desired information rate can be reduced [7].
Moreover, large-scale antenna arrays are crucial for achieving
highly directional beamforming. Hence, emergence of mil-
limeter wave (mmWave) systems, where beamforming plays
a vital role, has further highlighted the importance of massive
MIMO, [8].

All the above advantages of massive MIMO systems rely on
accurate synchronization. However, massive MIMO systems
heavily suffer from synchronization errors, such as, timing
offset (TO) and carrier frequency offset (CFO), [9], [10], [11].

Parts of the concepts based on which the contributions of this paper are
built have been presented in [1].
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In orthogonal frequency division multiplexing (OFDM), the
effects of TO can be absorbed into the cyclic prefix (CP)
provided that an adequately long CP is utilized, [12]. How-
ever, frequency synchronization is still a challenging problem.
Although, there exists a substantial amount of work reported
on the frequency synchronization for conventional multi-user
OFDM systems, [13]–[15], not all of them are applicable to
massive MIMO systems.

In the past decade, a number of studies have been con-
ducted to address the synchronization problem in OFDM-
based MIMO systems. The work in [16] derived a joint CFO
and channel estimator based on the maximum likelihood (ML)
criterion for small-scale MIMO OFDM system, whose compu-
tational complexity exponentially increases with the number of
users. A sub-optimal estimation algorithm using constant am-
plitude zero auto-correlation (CAZAC) training sequences was
proposed in [17]. Another ML-based estimator with iterative
interference cancellation was proposed in [18] for coordinated
multi-point (CoMP) MIMO OFDM systems. The authors in
[19] developed an algorithm for joint CFO compensation and
multi-user detection in small-scale multi-user MIMO systems.
In another work [20], the authors proposed a pilot-based two
stage CFO and phase noise (PN) compensation for point to
point high frequency MIMO OFDM, where both stages use a
conventional least squares (LS) method and need to calculate
the inverse of a full rank matrix. In [21], authors proposed
a joint ML-based CFO and channel estimation method which
requires a multidimensional grid search. To solve this issue,
the authors in [22] converted the ML CFO estimator into a set
of line search problems. However, this algorithm still requires
per antenna CFO estimation for all the users leading to a
substantial amount of computational burden.

To reduce the complexity of frequency synchronization for
massive MIMO systems, some works combine the received
signals at all the BS antennas and extract the users’ CFOs
from the resulting signal. The authors in [23] proposed a joint
spatial-frequency alignment technique in which users’ pilots
can be distinguished using their estimated angles of arrival.
However, when the users are not spatially separated, their
angles of arrival are very close, if not the same. As a result,
the users’ signals cannot be accurately distinguished from each
other. In [24], an improved user grouping scheme has been
designed to deal with this issue, where the CFO estimation and
data detection are jointly performed for the users that are close
to one another. Despite the imposed computational burden
due to the multi-user interference (MUI) cancellation, this
technique still cannot accurately compensate the CFO effects.
In [25], the authors proposed a scattered pilot-based frequency
synchronization technique which can estimate CFO for each
user individually by exploiting the spatial dimensions offered
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by the large number of BS antennas. The authors also designed
a beamforming matrix for MUI cancellation. The amount of
complexity of this technique is also large and goes up rapidly
by increasing the number of BS antennas. In [26], the authors
proposed a blind CFO estimation technique based on the
covariance matrix of the received signals over all BS antennas
in the frequency domain, where different null subcarriers are
assigned to different users. This approach is followed by
a blind MUI cancellation and channel estimation. A more
computationally efficient blind CFO estimation was proposed
in [27] which cancel the MUI by using the eigendecomposition
of the covariance matrix of the received signals over all the
BS antennas in frequency domain. After MUI cancellation,
the system is like a set of parallel single user signals, and the
conventional single user CFO estimation proposed in [28] is
performed. In addition, an iterative CFO estimation procedure
was proposed to enhance the MUI cancellation and CFO
estimation accuracy in [27]. In each iteration of the algorithm
proposed in [28], all received signals are taken to the frequency
domain and the eigendecomposition of their covariance matrix
is calculated which add a large amount of computational
complexity to the system.

A low complexity CFO estimation was proposed in [29],
where the authors used series of impulses for the users’
pilots to provide time-domain orthogonality among different
users. Hence, the received signals on each sample carry the
information of only one user. Therefore, CFO of a certain
user can be estimated from the combination of the received
signals on the respective samples over all the BS antennas.
The complexity of this approach increases only linearly with
the number of BS antennas and is also independent of the
number of users. However, long pilot sequences are required
for an accurate estimation, especially when we need to serve
many users. This technique is originally proposed for single
carrier systems, while it can straightforwardly extended to
multicarrier systems. The performance of this technique is
studied in [30]. Since the the proposed technique in [29]
suffers from high peak to average power ratio (PAPR), the
spatially averaged periodogram based CFO estimation was
proposed which uses a constant envelope pilot sequence to
preserves users’ orthogonality through different phases. This
technique still needs a long pilot sequence, and also its
computational complexity is higher than for our proposed
technique.

To address the drawbacks of the available solutions in the
literature, in this paper, we propose a frequency synchroniza-
tion technique that can provide a high estimation accuracy
while having a low computational complexity. This makes our
proposed technique attractive for implementation of practical
systems. The contributions of this paper are as follows:

• We propose a CFO estimation technique whose compu-
tational complexity increases only linearly with respect
to the number of BS antennas and is independent of the
number of users. We use a training sequence which is
orthogonal onto the space spanned by the desired user’s
pilot to extract its signal from the covariance matrix of the
received signals at BS antennas. Our proposed technique
does not need a long pilot sequence, and one pilot symbol

is sufficient. In addition, unlike the above mentioned
literature, our proposed technique is not limited to the
CFO range [−0.5, 0.5], and can estimate both integer and
fractional CFO values. It is worth to note that the local
oscillator accuracy is usually in the order of parts-per-
million (ppm) of the carrier frequency. Hence, it is crucial
to the systems operating at high frequencies such as
mmWave bands to deal with large CFO values containing
both integer and fractional parts.

• We propose a CFO compensation technique that is
performed after combining the received signals at the
BS antennas. As a result, the compensation process is
independent of the number of BS antennas. Moreover,
one combiner can be used for all the users, unlike the
conventional CFO compensation performed in the time
domain which requires separate receivers for different
users. Therefore, the computational complexity of the
receiver is substantially reduced.

• We study the effect of CFO estimation error on the
channel estimation and CFO compensation. We prove
that by applying our CFO compensation technique, the
estimation error is canceled through the compensation
process and only a constant phase shift remains. Based
on this result, we propose a CFO estimation error cor-
rection algorithm. As it is illustrated through simulation,
mean square error (MSE) performance is improved by 3
orders of magnitude after error correction. According to
the bit error rate (BER) curves in our simulations, we
demonstrate that an almost perfect synchronization can
be achieved.

The rest of the paper is organized as follows. The system
model for the uplink of OFDM-based multi-user massive
MIMO system is presented in Section II. The CFO estimation
technique is proposed in Section III, and the ML channel
estimation is briefly explained in Section IV. Then, in Section
V, we explain our proposed CFO compensation technique. In
Section VI, we study the effect of the CFO estimation error on
our synchronization technique. As a result of our analysis in
Section VI, in Section VII, we propose an error correction
algorithm to further improve the system performance. The
computational complexity of our proposed CFO synchroniza-
tion technique is studied in Section VIII. Then, our proposed
techniques are evaluated through simulations in Section IX.
Finally, the conclusions are drawn in Section X.

Notations : Matrices, vectors and scalar quantities are de-
noted by boldface uppercase, boldface lowercase and normal
letters, respectively. a[i] and A[i, j] denote the elements i and
(i, j) of the vector a and the matrix A, respectively. Super-
scripts (·)H, (·)T, (·)∗ and (·)−1 denote Hermitian, transpose,
conjugate operation and the inverse of a matrix, respectively.
IN is an N ×N identity matrix. E{·} denotes the expectation
operator. Symbols ⊗ and ⊙ stand for circular convolution
operation and element-wise multiplication, respectively. ∠a
indicates the angle of the complex number a, |a| denotes its
absolute value, and ||A|| is the Frobenius norm of the matrix
A. a := b replaces a with b. Finally, d = diag(D) is the vector
including the elements on the main diagonal of the matrix D,
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and C = circ(c) is a circulant matrix with the first column c.

II. SYSTEM MODEL

Consider the uplink of an OFDM-based massive MIMO
system where P single antenna users are communicating with
a BS equipped with M ≫ P antennas. We assume that
different users’ wireless channels are statistically independent
and time invariant during one OFDM packet. Hence, they
can simultaneously share all the available subcarriers as their
signals can be distinguished through their respective channel
gains. Having N active subcarriers, the N × 1 vector of the
κth OFDM symbol for user p can be obtained as

xκ
p = FH

Ndκ
p , (1)

where the N × 1 vector dκ
p contains the κth data symbol

of user p, which is normalized to have a power of unity.
Also, FN is the normalized N -point DFT matrix with the
elements FN [i, k] = 1√

N
e−j 2π

N ik for i, k = 0, · · · , N − 1.
The CP length, NCP, is considered to be longer than the
channel impulse response (CIR) length, L. Also, we consider
perfect time synchronization. In addition, we assume a BS with
co-located antennas where the BS is equipped with coherent
oscillators at all the antennas. Thus, the amount of each user’s
CFO is the same for all the BS antennas. After CP removal,
the OFDM symbol received at the mth BS antenna can be
written as

rκm =
P−1∑
p=0

Φκ
pX

κ
phm,p + nm, (2)

where Xκ
p is an N × L matrix including the first L columns

of the circulant matrix circ(xκ
p), nm ∼ CN (0, σ2

nIN ) is
the complex additive white Gaussian noise (AWGN) with
the variance of σ2

n at the mth BS antenna and hm,p is the
L × 1 CIR vector between user p and BS antenna m. We
assume the channel taps to be a set of independent and
identically distributed (i.i.d.) random variables that follow the
complex normal distribution CN (0,ρp), where ρp is an L×1
vector representing the pth user’s channel power delay profile
(PDP). Also, Φκ

p is an N × N diagonal CFO matrix with
the diagonal elements Φκ

p [l, l] = ej
2π
N ϵp(l+(N+NCP)κ+NCP) for

l = 0, · · · , N − 1, and ϵp is the CFO normalized to subcarrier
spacing.

III. CFO ESTIMATION

In this section, we propose a pilot-based CFO estimation
technique for OFDM-based massive MIMO systems. We con-
sider the first OFDM symbol within each data packet as users’
pilots. To keep the formulation simple, without any loss of
generality, we omit the symbol index in our derivations. If we
multiply the first received OFDM symbol at each antenna to

its Hermitian and average over all the BS antennas, we have
the covariance matrix as

R =
1

M

M−1∑
m=0

rmrHm

=

P−1∑
p=0

P−1∑
q=0

ΛpCp,qΛ
H
q +

1

M

M−1∑
m=0

nmnH
m

+
1

M

M−1∑
m=0

(

P−1∑
p=0

Λphm,p)n
H
m +

1

M

M−1∑
m=0

nm(

P−1∑
q=0

Λqhm,q)
H,

(3)

where Λp = ΦpXp and Cp,q , 1
M

∑M−1
m=0 hm,ph

H
m,q. In

the asymptotic regime, where M → ∞, the last two terms
in (3) tend to zero and the second one becomes a diagonal
matrix equal to σ2

nIN . Hence, for large values of M , R can
be approximated as

R =

P−1∑
p=0

P−1∑
q=0

ΛpCp,qΛ
H
q + σ2

nIN . (4)

Moreover, according to the law of large numbers, as M grows
large, Cp,q[i, j] → E

{
hm,p[i]h

∗
m,q[j]

}
.

We denote PXq = IN−Xq(X
H
q Xq)

−1XH
q as the orthogonal

projection onto the space spanned by the columns of Xq . Then,
if we consider the training sequence designed such that Λ⊥

q =

PXqΦ
H
q , then, Λ⊥

q Λp = 0 holds for q = p. Therefore, if we
estimate CFO, ϵ̂q , calculate Λ̂⊥

q , and multiply it to R, we have

Λ̂⊥
q R = Λ̂⊥

q ΛqCq,qΛ
H
q + Λ̂⊥

q Vq, (5)

where

Vq =
P−1∑
p=0
p ̸=q

ΛpCp,pΛ
H
p + σ2

nIN , (6)

denotes the noise plus multi-user interference with respect to
user q. Then, if ϵ̂q = ϵq , the first term in the right-hand side of
equation (5) is zero, and the Frobenius norm of the resulting
matrix gets its minimum value. Therefore,

ϵ̂q =argmin
ϵ

∥∥∥Λ̂⊥
q R

∥∥∥2 . (7)

The cost function of this optimization problem is a unimodal
function, i.e. it is monotonically decreasing for ϵ ≤ ϵq and
monotonically increasing for ϵ ≥ ϵq . The proof is provided
in the Appendix Section. Therefore, this optimization problem
can be solved by applying the Golden section search algorithm
[31]. This approach is generic, and therefore, there is no
restriction on choosing the pilot sequence.

IV. CHANNEL ESTIMATION

Since the focus of this paper is on CFO estimation, we
employ a simple ML channel estimation at each BS antenna.
To this end, we rearrange equation (2) as

rm = Λhm + nm, (8)
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where Λ = [Λ0,Λ1, · · · ,ΛP−1], and hm =
[hT

m,0,h
T
m,1, · · · ,hT

m,P−1]
T. Then, the logarithm of the

conditional probability density function (PDF) of rm given
hm and ϵq can be written as

ln p(rm |hm,p, ϵq) = Θ0 −Θ1 [rm −Λhm,p]
H (9)

× [rm −Λhm,p] ,

where Θ0 = −N ln(2πσ2
n)/2, and Θ1 = 1/2σ2

n. By taking
the derivative of equation (9) with respect to hm,p and setting
it equal to zero, the estimated channel can be obtained as

ĥm = (ΛHΛ)−1ΛHrm. (10)

V. CFO COMPENSATION

Unlike other CFO compensation techniques in the literature,
we suggest to compensate the users’ CFOs after combining
the received signals at BS antennas. In fact, if the CFO
compensation is performed before channel equalization, the
CFOs should be compensated separately for all the received
signals at M BS antennas. As the number of BS antennas
grows large, CFO compensation can impose a considerable
amount of complexity to the system, as we need a separate
OFDM receiver per antenna per user. In this section, we
propose a CFO compensation technique that can be performed
only once for each user, and consequently, its computational
complexity is independent of the number of BS antennas.

Representing the circular convolution of the transmit data
with the channel as Hm,pxp, the received signal at BS antenna
m in the frequency domain can be written as

r̄m =
P−1∑
p=0

FNΦpHm,pxp + FNnm, (11)

where Hm,p is a circulant matrix with the first column hm,p

which is zero-padded to have the length of N . Considering
FH

NFN = IN , equation (11) can be rewritten as

r̄m =
P−1∑
p=0

FNΦpF
H
NFNHm,pF

H
Ndp + n̄m, (12)

where n̄m = FNnm is the frequency domain noise vector. By
defining Ep , FNΦpF

H
N and H̃m,p , FNHm,pF

H
N , we have

r̄m =
P−1∑
p=0

EpH̃m,pdp + n̄m. (13)

It is worth noting that due to the circulant property of Hm,p,
H̃m,p becomes a diagonal matrix, [32].

Let us define the vector r̄[k] = [r̄0[k], r̄1[k], · · · , r̄M−1[k]]
T

which contains the kth samples of the received signals at
all the BS antennas in the frequency domain for k =
0, 1, · · · , N − 1. Then, the combiner output is given by

ȳ[k] = Z[k]r̄[k], (14)

where ȳ[k] = [ȳ0[k], ȳ1[k], · · · , ȳP−1[k]]
T is a P × 1 vector

containing the kth samples of the users’ signals, and Z[k] is

a P × M linear combiner on subcarrier k. If we deploy the
zero-forcing (ZF) combiner, Z[k] can be calculated as

Z[k] = (H[k]HH[k])−1HH[k], (15)

where H[k] = [h̄0[k], h̄1[k], · · · , h̄P−1[k]] is an
M × P matrix whose pth column is h̄p[k] =
[h̄0,p[k], h̄1,p[k], · · · , h̄M−1,p[k]]

T, and h̄m,p = FNhm,p.
Note that in the asymptotic regime, P × P normalization

matrix H[k]HH[k] becomes a diagonal matrix,

Dk = H[k]HH[k]

= diag
{∥∥h̄0[k]

∥∥2 , ∥∥h̄1[k]
∥∥2 , · · · ,∥∥h̄P−1[k]

∥∥2} , (16)

and when M tends to infinity, according to the law of large
numbers, Dk → NIP . Therefore, the combiner output for user
q can be written as

ȳq[k] =
1

N
h̄H
q [k]r̄[k], (17)

for k = 0, 1, · · · , N − 1. Substituting r̄ from (13) into (17),
we can rewrite the qth user’s signal at the combiner output as

ȳq =
1

N

M−1∑
m=0

H̃H
m,q

P−1∑
p=0

EpH̃m,pdp + ñ, (18)

where ñ = 1
N

∑M−1
m=0 H̃H

m,qn̄m. Then, defining an N × N
interference matrix as

Ωq,p =
1

N

M−1∑
m=0

H̃H
m,qEpH̃m,p, (19)

we have

ȳq = Ωq,qdq +

P−1∑
p=0
p̸=q

Ωq,pdp + ñ, (20)

It is worth noting that since different users’ channels are
uncorrelated, the elements of Ωq,p for p ̸= q tend to zero
as M increases to infinity, and multi-user interference as well
as the noise term will be averaged out. Moreover, while in the
absence of CFO, Ωq,q is the identity matrix, the presence of
CFO makes it non-diagonal and banded, with the off-diagonal
elements modeling the inter-carrier interference (ICI) effect.
Furthermore, with some manipulations, the interference matrix
in equation (19) can be represented as

Ωq,p = Ep ⊙Bq,p, (21)

where

Bq,p[l, k] =
1

N

M−1∑
m=0

H̃∗
m,q[l, l]H̃m,p[k, k], (22)

for l, k = 0, · · · , N − 1. Therefore, in the asymptotic regime
Bq,q can be obtained as

Bq,q[l, k] = E
{
H̃∗

m,q[l, l]H̃m,q[k, k]
}

= E
{
h̄∗
m,q[l]h̄m,q[k]

}
= E

{
N−1∑
i=0

N−1∑
i′=0

h∗
m,q[i]hm,q[i

′]e−j 2π
N (ki′−li)

}
.

(23)
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and E
{
h∗
m,q[i]hm,q[i

′]
}
= 0 for i ̸= i′ since hm,q is an i.i.d.

random vector, and we have

Bq,q[l, k] =
N−1∑
i=0

ρq[i]e
−j 2π

N (k−l)i = ρ̄q [k − l ], (24)

where ρ̄q = FNρq contains the N -point DFT samples of
the channel PDP of the qth user, ρq , and since the channel
PDPs are real-valued functions, ρ̄q[i] = ρ̄q[i − N ]. Hence,
we can conclude that Bq,q is a circulant matrix with the first
column ρ̄q[−l] for l = 0, · · · , N−1. Eq = FNΦqF

H
N is also a

circulant matrix as Φq is diagonal. Accordingly, Ωq,q derived
in equation (21), is a circulant matrix and can be written as
Ωq,q = FNQq,qF

H
N , where Qq,q is diagonal. Therefore, in

order to calculate the inverse of the interference matrix, Ωq,q ,
we only need to calculate the inverse of the diagonal matrix
Qq,q , and calculate, Ω−1

q,q = FNQ−1
q,qF

H
N . Moreover, due to

the circulant property of the matrix Ωq,q , calculating its first
column, which is the element-wise multiplication of the first
columns of the matrices Ep and Bq,p, is sufficient to form the
rest of this matrix. Since an element-wise multiplication in the
frequency domain is equivalent to a circular convolution in the
time domain, the diagonal elements of the matrix Qq,q can be
obtained as

diag(Qq,q) = diag(Φq)⊗ ρ̃q, (25)

where ρ̃q[i] = ρq[−i] = ρq[N − i]. Hence, the qth user’s
signal can be obtained as

d̂q = FNQ−1
q,qF

H
N ȳq. (26)

Considering the symbol indices, one realizes that Qq,q

varies for different symbols as

diag(Qκ
q,q) = diag(Φκ

q )⊗ ρ̃q. (27)

To deal with this issue, we suggest to calculate the matrix Qq,q

once for the first symbol, where Φ0
q[l, l] = ej

2π
N ϵp(l+NCP) for

l = 0, 1, · · · , N − 1, and for other symbols add a phase shift
correction step. Thus, the κth data symbol can be estimated
as

d̂κ
q = e−j 2π

N ϵq(N+NCP)κFNQ−1
q,qF

H
N ȳκ

q , (28)

It is worth to note that our proposed CFO compensation
technique is performed only once for each user, and as a result,
its computational complexity remains constant as the number
of BS antennas increases.

VI. CFO ESTIMATION ERROR ANALYSIS

In Section V, we have assumed that the CFO estimation
is accurate. In this section, we analyze the effect of CFO
estimation errors and investigate the efficacy of the proposed
technique. We consider the estimated CFO for user p as
ϵ̂p = ϵp + ϵ̃p where ϵ̃p is the estimation error. Thus, the
estimated CFO matrix can be written as

Φ̂p = Φ̃pΦp, (29)

where Φ̃p is a diagonal matrix with the elements Φ̃κ
p [l, l] =

ej
2π
N ϵ̃p(l+(N+NCP)κ+NCP) for l = 0, · · · , N−1. After dropping

the superscript κ for the sake of simplicity without loss of

generality, the estimated channel at the mth BS antenna can
be obtained from equation (10) as

ĥm =(Λ̂
H
Λ̂)−1Λ̂

H
rm

=(Λ̂
H
Λ̂)−1Λ̂

H
Λhm + (Λ̂

H
Λ̂)−1Λ̂

H
nm, (30)

where Λ̂ = [Λ̂0, Λ̂1, · · · , Λ̂P−1] and Λ̂p = Φ̂pXp. Let us
define NP ×NP matrices Γ1 , Λ̂

H
Λ̂ and Γ2 , Λ̂

H
Λ, with

the elements

Γ1[i, j] =

N−1∑
l=0

Λ̂∗
p[i, l]Λ̂q[l, j]

=
N−1∑
l=0

X∗
p [l, i− pN ]Φ∗

p[l, l]Φ̃
∗
p[l, l]Φ̃q[l, l]Φq[l, l]

×Xq[l, j − qN ], (31)

and

Γ2[i, j] =
N−1∑
l=0

Λ̂∗
p[i, l]Λq[l, j]

=

N−1∑
l=0

X∗
p [l, i− pN ]Φ∗

p[l, l]Φ̃
∗
p[l, l]Φq[l, l]Xq[l, j − qN ].

(32)

Here, p and q can be obtained as p =
⌊

i
N

⌋
and q =

⌊
j
N

⌋
.

Therefore, if |i− j| < N , q = p and we have

Γ1[i, j] =

{
1, i = j
0, i ̸= j,

(33)

and

Γ2[i, j] =
N−1∑
l=0

Φ̃∗
p[l, l]X

∗
p [l, i− pN ]Xp[l, j − pN ]. (34)

It is worth noting that when the estimation error, ϵ̃p, has a
small value, for i ̸= j, Γ2[i, j] ≈ 0, and for i = j, we have

Γ2[i, i] =
N−1∑
l=0

Φ̃∗
p[l, l]

∣∣∣Xp[l, i− pN ]
∣∣∣2. (35)

Then, according to the Parseval’s theorem, we can rewrite
equation (35) as

Γ2[i, i] =
1

N

N−1∑
k=0

Ẽ∗
p [k, 0]

∣∣∣dp[k]∣∣∣2, (36)

where |dp[k]| = 1, and Ẽp = FN Φ̃pF
H
N is a circulant matrix,

and its first column is the Fourier transform of diag(Φ̃p).
Moreover, with the assumption of small ϵ̃p, the first column
of Ẽp can be considered as an impulse, i.e., Ẽ∗

p [k, 0] ≈
Ẽ∗

p [0, 0]δ[k]. Hence, for |i− j| < N ,

Γ2[i, j] ≈
{

φ∗
p, i = j
0, i ̸= j,

(37)

where

φp =
1

N
Ẽp[0, 0] =

1

N

N−1∑
l=0

Φ̃p[l, l]. (38)
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Since the estimation is performed on the first symbol, i.e. κ =
0, which is the pilot, we can expand equation (38) as

φp =
1

N

N−1∑
l=0

ej
2π
N ϵ̃p(l+NCP)

=
1

N

N−1∑
l=0

{
cos

(2π
N

ϵ̃pl
)
+ j sin

(2π
N

ϵ̃pl
)}

ej
2π
N ϵ̃pNCP .

(39)

Due to the small value of ϵ̃p, we can replace cos
(
2π
N ϵ̃pl

)
= 1

and sin
(
2π
N ϵ̃pl

)
= 2π

N ϵ̃pl. Thus,

φp =
1

N

N−1∑
l=0

{
1 + j

2π

N
ϵ̃pl

}
ej

2π
N ϵ̃pNCP

=
(
1 + j

2π

N
ϵ̃p
N − 1

2

)
ej

2π
N ϵ̃pNCP

=

{
cos

(2π
N

ϵ̃p
N − 1

2

)
+ j sin

(2π
N

ϵ̃p
N − 1

2

)}
ej

2π
N ϵ̃pNCP

= ej
2π
N ϵ̃p(

N−1
2 +NCP)

= Φ̃p[l, l]
∣∣
l=N−1

2

. (40)

Therefore, with a similar argument, if we replace Φ̃p[l, l] for
l = 0, 1, · · · , N − 1 with Φ̃p[

N
2 ,

N
2 ] in equation (32), we can

also consider Γ2[i, j] ≈ φ∗
pΓ1[i, j] for |i− j| ≥ N . Note that

since N is set as an even number, and consequently, N−1
2

is not an integer, we have chosen N
2 =

⌈
N−1
2

⌉
. Then, we

can conclude Γ−1
1 Γ2 ≈ [φ∗

0IN , φ∗
1IN , · · · , φ∗

P IN ]. Hence, the
estimated channels that are used for the ZF combiner can be
written as

ĥm,p = φ∗
phm,p + n̆m, (41)

where n̆m = (Λ̂
H
Λ̂)−1Λ̂

H
nm. By ignoring the MUI and

the noise term in equation (20) due to their small values, the
combined signal of user q is given by

ȳq = Ω̃q,qdp, (42)

where Ω̃q,q = Eq ⊙ B̃q,q and the elements of B̃q,q can be
obtained as

B̃q,q[l, k] =E

{
N−1∑
i=0

ĥ∗
m,q[i]hm,q[i]e

−j 2π
N (k−l)i

}

=φq

N−1∑
i=0

E
{
h∗
m,q[i]hm,q[i]

}
e−j 2π

N (k−l)i

=φqρ̄q[k − l], (43)

With a similar argument as in Section V, one can prove that
Ω̃q,q is a circulant matrix and can be written as Ω̃q,q =

FNQ̃q,qF
H
N , where Q̃q,q is a diagonal matrix with the main

diagonal elements

Q̃q,q[i, i] =

N−1∑
n=0

φqρ̃q[i− n]Φq[n, n]

= φqQq,q[i, i]. (44)

Consequently, in the proposed CFO compensation, we need to
calculate the interference matrix using the estimated values of

the CFOs and channel impulse responses, i.e. Ω̂q,p = Êq ⊙
B̂q,p. Similarly, the elements of the matrix B̂q,p are calculated
as

B̂q,q[l, k] =E

{
N−1∑
i=0

ĥ∗
m,q[i]ĥm,q[i]e

−j 2π
N (k−l)i

}
=ρ̄q[k − l], (45)

which is equal to Bq,q[l, k] in the case of accurate CFO
estimation. Using the result in (40), it can be shown that

Êq = FNΦ̂pF
H
N = φqEq, (46)

and consequently, Q̂q,q = Q̃q,q = φqQq,q . As a result, the
calculated interference matrix from the estimated values, Ω̂q,q ,
is equal to the interference matrix in the case of inaccurate
CFO estimation, Ω̃q,q . Thus, by multiplying Ω̂

(−1)

q,q to equation
(42), the qth user’s signal, dq , can be extracted. As it is
mentioned in Section V, Q̂q,q is calculated only for the first
symbol, and the phase shift of other symbols are corrected
later. Thus, the data of the κth symbol can be obtained as

d̂κ
q = e−j 2π

N (ϵ̂q−ϵq)(N+NCP)κΩ̂
(−1)

q,q Ω̃q,qd
κ
q

= e−j 2π
N ϵ̃q(N+NCP)κdκ

q , (47)

Therefore, by applying the proposed CFO compensation
technique, the estimation error is absorbed into the interference
matrix, and after compensation only a phase shift remains.

It is worth mentioning that though the residual phase shift in
our proposed compensation technique is small, it progressively
increases symbol by symbol, and it can result in a large
rotation of the constellation. In the next section, a phase
correction technique is proposed to calculate and effectively
eliminate this error.

VII. CFO ESTIMATION ERROR CORRECTION

In this section, we suggest an approach to efficiently com-
pensate the phase shift due to CFO estimation error. As it was
discussed earlier, this error is zero for the first symbol and we
cannot use the pilot to calculate this shift. Thus, we need to
compare the users’ signals with the constellation points and
find the closest point as

ďκq [k] =argmin
c

|d̂κq [k]− c|.

s.t. c ∈ S (48)

where S is the set of all the possible constellation points. Then,
from equation (47), the estimation error can be calculated as

ϵ̃q =
1

2π(N +NCP)κ

N−1∑
k=0

∠ďκq [k]− ∠d̂κq [k]. (49)

where κ ̸= 0. After calculating the error, we can correct the
phase shift error for the current symbol as

d̂κ
p := ej

2π
N ϵ̃q(N+NCP)κd̂κ

q , (50)

and update the estimated CFO for the phase correction step of
the following symbols as ϵ̂q := ϵ̂q − ϵ̃q . In the asymptotic
regime, the error can be calculated precisely. Thus, after
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updating the estimated CFO, ϵ̂q , for one symbol, there will
be no phase shift error on the following symbols. However,
in practice when M is not very large, MUI and noise are
not completely averaged out, and the CFO estimation error in
general cannot be accurately calculated and corrected. To deal
with this issue, we can execute the correction loop for more
than one symbol. The CFO compensation process with error
correction for Ncor number of symbols from Nsym transmitted
symbols is presented in Algorithm 1.

Algorithm 1 CFO compensation with error correction
Calculate Q0

q,q from equation (27)
for κ = 0, 1, · · · , Nsym do

d̂κ
q = e−j 2π

N ϵ̂p(N+NCP)κFN (Q0
q,q)

−1FH
N ȳκ

q

if 1 ≤ κ ≤ Ncor + 1 then
Calculate ďκq from equation (48)
Calculate ϵ̃q from equation (49)
d̂κ
p := ej

2π
N ϵ̃q(N+NCP)κd̂κ

q

ϵ̂q := ϵ̂q − ϵ̃q
end

end

It should be noted that since ϵ̃q is small, most of the
elements in the received symbol fall in the correct decision
areas. However, for large constellation sizes, even a small
phase shift might cause some errors. We suggest to repeat
the process of error calculation and correction until we get
the error equal to zero. In fact, in each iteration, since we turn
the constellation, a larger number of points will fall in their
respective decision areas, and an improved phase shift error
calculation can be achieved. Algorithm 2 summarizes the CFO
compensation process with iterative error correction, where ξ
indicates the convergence tolerance.

Algorithm 2 CFO compensation with iterative error correction
Calculate Q0

q,q from equation (27)
for κ = 0, 1, · · · , Nsym do

d̂κ
q = e−j 2π

N ϵ̂p(N+NCP)κFN (Q0
q,q)

−1FH
N ȳκ

q

if 1 ≤ κ ≤ Ncor + 1 then
while ϵ̃q > ξ do

Calculate ďκq from equation (48)
Calculate ϵ̃q from equation (49)
d̂κ
p := ej

2π
N ϵ̃q(N+NCP)κd̂κ

q

ϵ̂q := ϵ̂q − ϵ̃q
end

end
end

VIII. COMPUTATIONAL COMPLEXITY

According to our proposed frequency synchronization tech-
nique, the CFO estimation is performed in the time domain,
and the CFO compensation takes place after combining the
received signals over all the BS antennas in the frequency
domain. It means that unlike the other existing synchronization
techniques, in our case, one set of DFT operations can be
used for all the user signals and the separate receivers are

not required. Therefore, ignoring the complexity of the chan-
nel estimation, the total number of complex multiplications
(CMs) done at the receiver with the proposed synchronization
technique can be denoted as

Cp = CEst
p +MCDFT + PCComb + PCComp

p , (51)

where CEst
p , CDFT, CComb, and CComp

p are the number of CMs
required for our proposed CFO estimation technique, DFT op-
eration, signal combiner, and our proposed CFO compensation
technique, respectively.

For our proposed CFO estimation, the matrix R in equation
(3) is calculated with MN2 CMs. Then, calculating the cost
function for each trial CFO requires N2 CMs for the matrix
in equation (5) and N CMs for the Frobenius norm of the
resulting matrix. Therefore, the total computational complexity
of our proposed estimation is given by

CEst
p = MN2 + icP (N2 +N), (52)

where ic is the number of trial CFO in the Golden search
algorithm. Afterward, the complexity of DFT operation is
CDFT = N

2 log2 N if FFT is exploited, and the complexity
of the utilized ZF combiner is CComb = 3NMP 2.

For our proposed CFO compensation, first, we need to
obtain the matrix Qq,q, which requires NL number of CMs
due to the circular convolution process introduced in equation
(25). Note that Bq,q and Eq are both circulant matrices with
the first column ρ̄∗ and the DFT of the main diagonal of
Φq , i.e., FNdiag(Φq), respectively. Thus, we only need two
DFT operations to calculate their first columns, and then we
can form the entire matrices. Since the multiplication of two
circulant matrices is also a circulant matrix, for the element-
wise multiplication in (21), only N number of CMs are
required to obtain the first column of Ωq,q , which is the DFT
of the main diagonal of Qq,q . Afterward, as it is indicated
in equation (28), we take ȳq to the time domain, divide it
element-wise by the elements on the main diagonal of Qq,q ,
and bring it back to the frequency domain. Therefore, two
N -point IDFT operations, N number of CMs and one N -
point DFT operation are needed to obtain the compensated
signal. At the end, ipNNcor number of CMs is required if
the phase correction algorithm performs over Ncor OFDM
symbols, where ip is the number of iterations. Therefore,
the number of required CMs for our proposed compensation
technique is

CComp
p = N(log2 N + L+ 1 + ipNcor). (53)

As a comparison, in all the other existing synchronization
techniques, the CFO compensation is performed in the time
domain by multiplying the compensation vector of the desired
user, i.e., diag(ΦH

q ) to the received signals at the BS antennas.
Thus, CComp

t = MN number of CMs are required for CFO
compensation, which increase linearly with the number of
BS antennas, M ; the computational complexity of our CFO
compensation technique is instead independent of the number
of BS antennas and stays constant if M grows. In addition,
each user needs a separate set of DFT operations. Hence, the
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total computational complexity of the receiver can be obtained
by

C = CEst + PMCDFT + PCComb + PCComp
t , (54)

where CDFT and CComb are the same as in equation (51).
Regarding the CFO estimation, the number of required

CMs of the lowest computationally complex technique in the
literature, [29], is given by

CEst
1 = 2M(N − PL) + P. (55)

However, the performance of the technique in [29] relies on
the long pilot sequences. As it is presented in Section IX,
with the same pilot length, our proposed technique can provide
a considerably better performance. Later, the work in [30],
proposed a rather low-complexity CFO estimation technique
in which the number of required CMs is obtained by

CEst
2 = PMN (5/2). (56)

Note that by increasing the number of BS antennas, the
computational complexity of the technique in [30] grows with
the slope of PN (5/2), while the slope in our case is only
N2 which is also independent of the number of users. More
recently a scattered pilot-based frequency synchronization was
proposed in [25] that uses Np out of N subcarriers as pilots. It
is also considered that the channels and CFOs of all users stay
constant over Lb OFDM blocks. Then, the number of required
CMs for the CFO estimation is obtained as

CEst
3 = icP (LbNM log2 N +M(Lb − 1)Np + 6P

× (LbNM log2 N + (Lb − 1)M2Np/2 +M3))

+ LbNM2/2 +M3. (57)

In addition, a computationally efficient blind CFO estimation
is proposed in [27] that considers N0 out of N subcarriers as
null subcarriers. Then, its total computational complexity is
equal to

CEst
4 = P (ic(LbMN log2 N +M3 +M2N0Lb/2)

+ 3(LbMN log2 N +M2N0Lb/2 + LbMeMN +M3)

+ 11(LbMeN log2 N +MeLbN +NM2
eLb/2)

+ 3(Me
2 )8N + 8NM3

e ), (58)

where Me = M − (P − 1)L.
As an illustration, a numerical comparison of all the afore-

mentioned CFO estimation techniques is provided in table I.
We consider P = 4 users, N = 256 subcarriers, and CIR
length of L = 8. According to the suggested values in [25] and
[27], we consider Lb = 2, Np = N/2 = 128, N0 = 8. For the
sake of fairness, we present the number of CMs as a function
of the required number of iteration, ic, for iterative algorithms.
However, in [25] and [27], ic = 120 is suggested, while in our
case, ic = 11 is sufficient. Furthermore, table II presents the
computational complexity of the receiver with different CFO
synchronization techniques. As it is justified in section IX, in
the case of 16-QAM modulation, we can consider Ncor = 4
and ip = 3 for our iterative error correction in Algorithm 2. As
it is shown, our proposed CFO estimation technique has lower
computational complexity than other techniques except for the
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M
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Without correction, M=200
Algorithm 1, M=200
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Figure 1. MSE of the proposed CFO estimation technique as a function of
CFO for N = 256 subcarriers, 16-QAM modulation, and SNR= −1.
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Figure 2. MSE of our proposed CFO estimation technique for M = 200 BS
antennas, P = 4 users, N = 256 subcarriers, and 4-QAM modulation.

one proposed in [29]. However, it is demonstrated in section
IX that our proposed technique provides a considerably higher
performance as compared to the technique in [29].

IX. NUMERICAL ANALYSIS

In this section, we confirm our theoretical developments
in the previous sections through numerical simulations. We
assume that P = 4 users are communicating over N = 256
subcarriers with a BS equipped with M = 200 antennas. In
our simulations, we consider the 3GPP Long Term Evolution
(LTE) channel model, extended typical urban (ETU) channel
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Table I
COMPUTATIONAL COMPLEXITY OF THE DIFFERENT CFO ESTIMATION TECHNIQUES

Techniques M=100 M=200 M=400

Proposed technique (0.2ic + 6.5)× 106 (0.2ic + 13)× 106 (0.2ic + 26)× 106

Low-complexity [29], CEst
1 4.5× 104 9× 104 1.8× 105

Constant-envelop pilot [30], CEst
2 4.2× 108 8.3× 108 1.7× 109

Scattered pilot [25], CEst
3 (20ic + 0.4)× 107 (10ic + 0.2)× 108 (7.3ic + 0.1)× 109

Efficient Blind [27], CEst
4 (0.6ic + 4000)× 107 (0.4ic + 5000)× 108 (0.3ic + 5000)× 109

Table II
COMPUTATIONAL COMPLEXITY OF THE RECEIVER WITH DIFFERENT CFO SYNCHRONIZATION TECHNIQUES

Techniques M=100 M=200 M=400

Proposed technique (0.2ic + 26)× 106 (0.2ic + 53)× 106 (0.2ic + 100)× 106

Low-complexity [29] 2× 107 4× 107 8× 107

Constant-envelop pilot [30] 4.4× 108 9×108 1.8× 109

Scattered pilot [25] (20ic + 2.3)× 107 (10ic + 0.6)× 108 (7.3ic + 0.2)× 109

Efficient Blind [27] (0.6ic + 4000)× 107 (0.4ic + 5000)× 108 (0.3ic + 5000)× 109
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Figure 3. BER performance for M = 200 BS antennas, P = 4 users,
N = 256 subcarriers, and 4-QAM modulation.

model, [33], and the CP length of N/8. We assume perfect
power control for all the users, 16-QAM modulation, and
Nsym = 10 OFDM symbols in each data packet. In Fig. 1,
we depict the MSE performance of our proposed estimation
technique for different CFO ranges for SNR= −1. In or-
der to obtain the curves in Fig. 1, the normalized CFO is
randomly generated from a uniform distribution within the
range [−ϵmax, ϵmax], where ϵmax is the maximum CFO. It is
shown that the performance of our proposed technique without
correction is the same for all CFO values. Our results in
Fig. 1 show that a substantial improvement can be achieved
through application of our proposed error correction loop.
Here, we have set Ncor = Nsym and ξ = 10−10. The
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Figure 4. MSE of the proposed CFO estimation technique for M = 200 BS
antennas, P = 4 users and N = 256 subcarriers with 16-QAM modulation.

MSE deterioration for large CFO values around 100 is due to
the residual interference from noise and MUI, which can be
reduced by deploying a larger number of BS antennas. Since
the integer part of CFO can be estimated correctly and the
error mainly comes from the fractional part of the CFO, we
consider ϵmax = 0.5 for the rest of our simulations.

In Fig. 2, the MSE performance of the system with 4-
QAM modulation is depicted. As a comparison, we also plot
the MSE of the CFO estimation method proposed in [29],
which has the lowest computational complexity among other
techniques. It is shown that while the performance of our
proposed CFO estimation technique without error correction
is close to the technique in [29], applying the estimation error
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Figure 5. BER performance for M = 200 BS antennas, P = 4 users,
N = 256 subcarriers and 16-QAM modulation.
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Figure 6. BER performance for M = 200 BS antennas, P = 4 users,
N = 256 subcarriers and 64-QAM modulation.

correction algorithms lead to around three orders of magnitude
improvement in the CFO estimation accuracy. Note that the
error correction algorithm only corrects the phase shift error
due to the CFO estimation error and does not change the CFO
compensation matrix. Therefore, this performance improve-
ment proves our claim that our proposed CFO compensation
technique can effectively eliminate the scattering error and the
phase shift is the only source of error. Note that this phase cor-
rection cannot enhance the performance of a system with the
conventional CFO compensation, because the constellation of
the received signal is scattered due to the CFO estimation error.
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Figure 7. MSE of the proposed CFO estimation technique versus number of
BS antennas for SNR = −1, P = 4 users and N = 256 subcarriers.
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Figure 8. MSE of the proposed CFO estimation technique respect to number
of users for N = 256 subcarriers, and SNR = −1.

In Fig. 3, we demonstrate the BER performance of the system
to evaluate our proposed CFO estimation and compensation
techniques. Without loss of generality, our simulation results
are obtained by transmission of raw data without application
of any error correction coding technique. We compare our
results with the perfect synchronization case as a benchmark.
This figure shows that the BER performance is significantly
improved through the proposed error correction algorithms,
and for Ncor = 3 iterations, it almost matches the curve of
the perfect CFO estimation, where ϵ̃ = 0.

The iterative correction in Algorithm 2 is more beneficial
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for larger constellation sizes, where the constellation points are
closer to one another. Thus, in order to highlight the difference
between the two proposed algorithms, Fig. 4 presents the MSE
performance for the system with 16-QAM modulation. As it is
shown, the iterative correction in Algorithm 2 seems necessary
to achieve an MSE of 10−7. Note that according to equation
(20), although the noise is negligible at higher SNRs, the MUI
remains. Therefore, by taking into account the residual MUI,
equation (28) can be updated as

d̂κ
q = e−j 2π

N ϵq(N+NCP)κΩ(−1)
q,q (dκ

q +
P−1∑
p=0
p ̸=q

Ωq,pdp). (59)

As the number of BS antennas grows large, the MUI term
will be almost averaged out. It is worth noting that even
a small amount of the residual MUI scatters the received
signal constellation. This prevent us from achieving a perfect
error calculation, and reflects as an error floor in the MSE
curves. Furthermore, the BER performance of the system with
16-QAM modulation is studied in Fig. 5. As one can see,
Algorithm 1 can improve the performance and outperform
the technique in [29]. However, by increasing Ncor in the
Algorithm 2, we can get the BER curve close to the perfect
synchronization case. In addition, Fig 6 demonstrates the BER
performance of the proposed synchronization technique for a
large constellation size, i.e. 64-QAM. From Fig 6, one can
realize that, the proposed synchronization technique is effec-
tive enough to work for large constellation sizes. However,
the scattering effect of the residual MUI is more problematic
than a smaller constellations, preventing us from achieving a
perfect synchronization.

Furthermore, Fig. 7 shows how increasing the number
of BS antennas can affect the MSE performance of our
proposed CFO estimation technique. Regarding the proposed
CFO estimation technique in Section III, a large number of
BS antennas is required to have the noise terms efficiently
averaged out and MUI diminished. As one can notice from
Fig. 7, after a point where these requirements are fulfilled, no
further enhancement can be achieved by increasing the number
of BS antennas. On the other hand, the number of BS antennas
should be large enough to provide an accurate equalization and
CFO compensation, and separate the users’ signals. Otherwise,
the input signal to the error correction algorithms would be
very scattered and lead to a poor phase shift error correction.
The iterative error calculation in Algorithm 2 can deal with
scattered data and provide the maximum MSE.

Finally, the MSE performance of our proposed CFO es-
timation technique with respect to the number of users is
presented in Fig. 8. This figure demonstrates that our proposed
synchronization technique can support a large number of users.
In fact, since in massive MIMO systems, users share the whole
available bandwidth, increasing the number of users affects the
system performance as if the noise level is increased. As it is
shown, larger number of BS antennas can average out the MUI
and improve the performance.

X. CONCLUSION

In this paper, we proposed a new frequency synchronization
technique for the uplink of multi-user OFDM-based massive
MIMO systems. First, we proposed a CFO estimation tech-
nique whose complexity increases only linearly with respect
to the number of BS antennas. Unlike the low-complexity tech-
nique proposed in [29], it does not require a long pilot. Second,
we proposed a CFO compensation technique that takes place
after combining the received signals at all the BS antennas.
Consequently, its computational complexity is independent
of the number of BS antennas. We also proved that after
performing our CFO compensation technique, only a constant
phase shift remains which is due to CFO estimation error.
Then, we proposed an algorithm to efficiently calculate and
remove this phase shift error. Numerical results were presented
to verify the performance of our proposed synchronization
technique. It was shown that the BER performance of our
proposed technique is very close to that of a fully synchronous
system. We also evaluated the CFO estimation accuracy and
showed that MSE enhancement of 3 orders of magnitude
can be achieved through application of our proposed error
correction technique.
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APPENDIX

PROOF OF UNIMODALITY OF THE COST FUNCTION

The objective function of our optimization problem is the
square of Frobenius norm of matrix Λ̌⊥

q R as it is shown in
equation (7). By substituting this matrix from (5), we have∥∥Λ̌⊥

q R
∥∥2 =

∥∥∥Λ̂⊥
q ΛqCq,qΛ

H
q + Λ̂⊥

q Vq

∥∥∥2 , (60)

where the first term corresponds to the desired user q, and
the second one is due to the noise plus multi-user interference
with respect to user q. Equation (60) can be expanded as∥∥Λ̌⊥

q R
∥∥2 =

∥∥Λ̌⊥
q ΛqWq

∥∥2 + ∥∥Λ̌⊥
q Vq

∥∥2
+ 2ℜ

{⟨
Λ̌⊥

q ΛqWq, Λ̌
⊥
q Vq

⟩}
, (61)

where Wq = Cq,qΛ
H
q , Λ̌⊥

q = PXqΦ̌
H

q for the trial CFO
matrix Φ̌q , and ⟨., .⟩ is the Frobenius inner product. In the
following, first we analyze these three terms separately, and
then, we argue the unimodality of our objective function.

For the sake of simplicity and without loss of generality, we
drop the index q from all of the vectors and matrices for the
rest of this section. In addition, let us define Ξ1 = Λ̌⊥ΛW
and Ξ2 = Λ̌⊥V, and rewrite the equation (61) as∥∥Λ̌⊥R

∥∥2 = ∥Ξ1∥2 + ∥Ξ2∥2

+ 2ℜ{⟨Ξ1,Ξ2⟩} . (62)
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The first term of the right hand side of equation (62) can
be calculated as

∥Ξ1∥2 =
N−1∑
i=0

N−1∑
j=0

|Ξ1[i, j]|2 . (63)

Then by defining G = Λ̌⊥Λ, we have

|Ξ1[i, j]|2 =

∣∣∣∣∣
N−1∑
l=0

G[i, l]W [l, j]

∣∣∣∣∣
2

=

N−1∑
l=0

N−1∑
k=0

G[i, l]W [l, j]G∗[i, k]W ∗[k, j]

=
N−1∑
l=0

N−1∑
k=0

|G[i, l]| |G∗[i, k]| ej(∠G[i,l]−∠G[i,k])

× |W [l, j]| |W ∗[k, j]| ej(∠W [i,l]−∠W [i,k]). (64)

The elements of the matrix W are independent of the trial
CFO values, and the ijth entry of G is given by

G[i, j] =

N−1∑
l=0

PX [i, l]Φ̌∗[l, l]Φ[l, l]X[l, j]

=
N−1∑
l=0

PX [i, l]Φ̃∗[l, l]X[l, j]

=
⟨
λ̃
⊥
i ,xj

⟩
=

∥∥∥λ̃⊥
i

∥∥∥ ∥xj∥ cos(θC(λ̃
⊥
i ,xj)), (65)

for 0 ≤ i, j ≤ N − 1 where Φ̃[l, l] = ej
2π
N ϵ̃(l+NCP), and ϵ̃

is the difference between the desired CFO, ϵ, and the trial
CFO value, ϵ̌. In addition, λ̃

⊥
i is the ith row of the matrix

Λ̃⊥ = PXΦ̃
H

, xj is the jth column of the matrix X, and
θC(λ̃

⊥
i ,xj) is the angle between the two complex vectors λ̃

⊥
i

and xj . Since PX is defined to be the orthogonal projection
onto the space spanned by the columns of the matrix X, the
ith row of the matrix PX , and the vector xj are orthogonal
for any i, j ∈ [0, N − 1]. Hence, if ϵ̌ = ϵ, Φ̃ = IN and we
have ⟨

λ̃
⊥
i ,xj

⟩
= 0, (66)

this means cos(θC(λ̃
⊥
i ,xj)) = 0 and θC(λ̃

⊥
i ,xj) = ±π/2 for

any i and j. Thus, G becomes a zero matrix, and ∥Ξ1∥2 = 0.
If ϵ̌ ̸= ϵ the orthogonality between the two vectors λ̃

⊥
i and

xj is destroyed. Consider the singular value decomposition
(SVD) of the matrix PX as PX = UΣVH. Then, by
multiplying PX to Φ̃, the right singular vectors of the matrix
PX , i.e. the columns of V, are multiplied to the matrix Φ̃.
This means that the orthogonal basis of the matrix PX are
rotated by ϵ̃, which is the difference between the desired CFO,
ϵ, and the trial CFO, ϵ̌. Therefore, the resulting matrix is not
orthogonal to X anymore, and the length of the projection
of λ̃

⊥
i on xj , i.e.

⟨
λ̃
⊥
i ,xj

⟩
, is a function of ϵ̃. Note that

cos(θC(a,b)) has a complex value which can be represented
as

cos(θC(a,b)) = γeiφ, (67)

where
γ = cos(θH(a,b)) = | cos(θC(a,b))|, (68)

0 ≤ θH ≤ π/2 is called the Hermitian angle between the
vectors a and b of the complex vector space, and −π ≤
φ ≤ π is called their (Kasner’s) pseudo-angle [34]. Since
θC(λ̃

⊥
i ,xj) = ±π/2 for ϵ̃ = 0, any rotation less than π/2 will

increase the value of cos(θH(λ̃
⊥
i ,xj)) = | cos(θC(λ̃

⊥
i ,xj))|,

and hence the larger the rotation, the larger the value of
cos(θH(λ̃

⊥
i ,xj)). If |ϵ̃| < 1, the rotation cannot be greater

than π/2. Therefore, as |ϵ̃| grows, the absolute value of the
elements in the matrix G increase.

Moreover, since all the orthogonal basis vectors of the
matrix PX are rotated by the value of ϵ̃, θC(λ̃

⊥
i ,xj) is

the same for every i, j ∈ [0, N − 1]. Hence, considering
∠G[i, j] = ∠ cos(θC(λ̃

⊥
i ,xj)), ∠G[i, l] = ∠G[i, k] for any

amount of ϵ̃, and we have

|Ξ1[i, j]|2 =
N−1∑
l=0

|G[i, l]|2 |W [l, j]|2

+ 2
N−2∑
l=0

N−1∑
k=l+1

|G[i, l]| |G∗[i, k]|

× |W [l, j]| |W ∗[k, j]| cos(∠W [i, l]− ∠W [i, k])).
(69)

Then, because |G[i, j]| increases as |ϵ̃| grows, |Ξ1[i, j]|2 will
also increase. Hence, if |ϵ̌2−ϵ| > |ϵ̌1−ϵ|, we have ∥Ξ1∥2 |ϵ̌2 >
∥Ξ1∥2 |ϵ̌1 for any ϵ̌, and ∥Ξ1∥2 = 0 for ϵ̌ = ϵ. As a result, the
first term of the right hand side of equation (62) is a unimodal
function with respect to the trial CFO value.

The second term of the right hand side of equation (62) can
be calculated as

∥Ξ2∥2 =
N−1∑
i=0

N−1∑
j=0

|Ξ2[i, j]|2 , (70)

where

|Ξ2[i, j]|2 =

∣∣∣∣∣
N−1∑
l=0

Λ̌⊥[i, l]V [l, j]

∣∣∣∣∣
2

=
N−1∑
l=0

N−1∑
k=0

Λ̌⊥[i, l]V [l, j](Λ̌⊥)∗[i, k]V ∗[k, j].

(71)

Then, by substituting Λ̌⊥ = PXΦ̌
H

in equation (71), we have

|Ξ2[i, j]|2 =
N−1∑
l=0

N−1∑
k=0

PX [i, l]P ∗
X [i, k]

× V [l, j]V ∗[k, j]ej
2π
N ϵ̌(k−l). (72)

By substituting (72) in (70), ∥Ξ2∥2 is given by

∥Ξ2∥2 = ζ +
N−1∑
l=0

N−1∑
k=0
k ̸=l

T [l, k]ej
2π
N ϵ̌(k−l), (73)
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where

ζ =
N−1∑
i=0

N−1∑
j=0

N−1∑
l=0

|PX [i, l]|2 |V [l, j]|2 , (74)

and

T [l, k] =
N−1∑
i=0

PX [i, l]P ∗
X [i, k]

N−1∑
j=0

V [l, j]V ∗[k, j]. (75)

Note that ζ is constant with respect to ϵ̌. Moreover, since
T [l, k] = T ∗[k, l], ∥Ξ2∥2 can be rewritten as

∥Ξ2∥2 = ζ + 2
N−2∑
l=0

N−1∑
k=l+1
k ̸=l

|T [l, k]|

× cos(∠T [l, k] + 2π

N
ϵ̌(k − l)). (76)

The second term in equation (76) is a sum of N(N − 1)/2
number of cosine functions of ϵ̌ with different periods in the
range of 1 < N/(k− l) ≤ N . Thus, the value of these cosine
functions vary slowly. In addition, since l ̸= k for T [l, k]
in equation (73), the elements of the matrices PX and V
in equation (75) are statistically independent. Consequently,
the elements T [l, k] are very small and tend to zero. Thus,
the second term in the right hand side of equation (62) can
be approximated to a constant value with respect to the trial
CFO.

Finally, considering the third term in the right hand side of
equation (62), we have

ℜ{⟨Ξ1,Ξ2⟩} =

N−1∑
i=0

N−1∑
j=0

|Ξ1[i, j]| |Ξ2[i, j]| cos(θΞ), (77)

where θΞ = ∠Ξ2[i, j] − ∠Ξ1[i, j]. Following similar line
of derivations as above, it can be shown that |Ξ1[i, j]| is
also unimodal with respect to the trial CFO values, and
|Ξ2[i, j]| remains constant as ϵ̌ changes. Since |Ξ2[i, j]| is
always positive, |Ξ1[i, j]| |Ξ2[i, j]| is just a scaled version of
|Ξ1[i, j]| which is unimodal with the same minimum point as
|Ξ1[i, j]| for any i, j ∈ [0, N − 1]. Then, for given i and j, if
cos(θΞ) > 0, it only multiplies to the scale of |Ξ1[i, j]|. Else
if cos(θΞ) < 0, beside changing the scale, it also turns it to a
downward unimodal function.

In addition, since adding a constant value does not disturb
the unimodality, the sum of the first two terms in equation
(62) is an upward unimodal function that gets its minimum
at the trial CFO value that minimize |Ξ1[i, j]|. Therefore, as
long as the value of the third term is smaller than the sum of
the two first terms for any i, j, and ϵ̌, the overall cost function
in (62) will be an upward unimodal function. To this end, the
following inequality should be fulfilled for any i and j value.

|Ξ1[i, j]|2 + |Ξ2[i, j]|2 > |Ξ1[i, j]| |Ξ2[i, j]| cos(θΞ). (78)

Since cos(θΞ) ∈ [−1, 1], the sufficient condition to guarantee
unimodality is

|Ξ1[i, j]|2 + |Ξ2[i, j]|2 > |Ξ1[i, j]| |Ξ2[i, j]| . (79)

We know that the inequality

(|Ξ1[i, j]| − |Ξ2[i, j]|)2 > 0, (80)

is always true. Hence,

|Ξ1[i, j]|2 + |Ξ2[i, j]|2 > 2 |Ξ1[i, j]| |Ξ2[i, j]|
> |Ξ1[i, j]| |Ξ2[i, j]| , (81)

is also true, and the sufficient condition for unimodality
is fulfilled. Therefore, even when cos(θΞ) < 0, the final
expression of the cost function for given i and j values is
an upward unimodal function with respect to the trial CFO
values.

As a conclusion, we have proved that the first term on the
right hand side of the equation (62) is unimodal, the second
term is constant which means the sum of the first two terms
is also unimodal. Moreover, it is argued that for any i, j and
ϵ, the third term of this equation preserves the unimodality of
the whole objective function. Therefore, our objective function
is an upward unimodal and its minimum can be found using
search algorithms such as Golden section search.
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