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Abstract—In this paper, we aim at designing sets of binary se-
quences with good aperiodic/periodic auto- and cross-correlation
functions for Multiple-Input-Multiple-Output (MIMO) radar
systems. We show such a set of sequences can be obtained
by minimizing a weighted sum of Peak Sidelobe Level (PSL)
and Integrated Sidelobe Level (ISL) with the binary element
constraint at the design stage. The sets of designed sequences
are neighboring the lower bound on ISL and have a better
PSL than the best known structured sets of binary sequences.
To formulate the problem, we introduce a Pareto-objective of
weighted auto- and cross-correlation functions by establishing a
multi-objective NP-hard constrained optimization problem. Then,
by using the block coordinate descent (BCD) framework, we
propose an efficient monotonic algorithm based on Fast Fourier
Transform (FFT), to minimize the multi-dimensional objective
function. Numerical results illustrate the superior performance
of the proposed algorithm in comparison with the state-of-the-art
methods.

Index Terms—Aperiodic/Periodic Auto- and Cross- Correla-
tion Functions, Binary Sets of Sequences, Block Coordinate
Descent (BCD), Code-Division-Multiplexing (CDM), Integrated
Sidelobe Level (ISL), Multiple-Input-Multiple-Output (MIMO),
Peak Sidelobe Level (PSL), Radar, Waveform Design.

I. INTRODUCTION

MIMO radar systems usually radiate orthogonal (or inco-
herent) waveforms by their transmit antennas [1], [2] to allow
matched filters separating them at receive side [3]. If the codes
(waveforms) have any non-zero cross-correlation sidelobes, the
energy will leak from one waveform to the other waveforms
in the matched filter output [4] and this affects improperly the
system performance. Hence, a successful design of orthogonal
sets of sequences from a family of constant modulus discrete
alphabet, with “good” auto- and cross-correlation properties
is crucial for MIMO radar systems [4]–[11]. In active sensing
and radar systems, due to the simplicity in waveform gen-
eration and consequently the matched filter implementation,
and also in order to control the spectrum sidelobe levels of
the phase changing points, sets of sequences whose entries
are +1 or −1, are typically preferred to the continuous phase
sequences (which have arbitrary phases in [0, 2π)) [12], [13].
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Such sets of sequences, provided that have small auto-and
cross-correlation sidelobes, are intrinsically suited for both
separation of signals from noise and discrimination of the
waveforms at output of the matched filter.

Let us consider a MIMO radar system with NT transmit
antennas. Each antenna transmits a code vector which is
composed of N sub-pulses (intra-pulse coding) and can be
written at the m-th transmit antenna as,

xm = [xm(1), xm(2), . . . , xm(N)]T ∈ CN , (1)

where xm(n) is the n-th sub-pulse of the transmit code vector
xm. Let {xm}NTm=1 be columns of the code matrix X , viz.,
X = [x1,x2, . . . ,xNT ] ∈ CN×NT . The aperiodic cross-
correlation [7] of {xm(n)}Nn=1 and {xl(n)}Nn=1 at lag k is
defined as,

rAPml (k) =

N−k∑
n=1

xm(n)x∗l (n+ k) = rAP∗lm (−k), (2)

where m, l = 1, . . . , NT , −N + 1 ≤ k ≤ N − 1. Assuming
m = l, equation (2) becomes the aperiodic auto-correlation of
{xm(n)}Nn=1. Similarly, we define periodic cross-correlation
of {xm(n)}Nn=1 and {xl(n)}Nn=1 at lag k as,

rPml(k) =

N∑
n=1

xm(n)x∗l (n+ k)mod(N) = rP∗lm (−k), (3)

where m, l = 1, . . . , NT , −N + 1 ≤ k ≤ N − 1 and (.)∗

denotes complex conjugate. Again, when m = l, rPml(k) be-
comes the periodic auto-correlation function of {xm(n)}Nn=1.
Notice that, the in-phase lag (i.e., k = 0) of periodic/aperiodic
auto-correlation functions represents the energy component
of the sequence whereas the out-of-phase lags (i.e., k 6= 0)
represent the sidelobes.

Two commonly metrics used to evaluate the goodness of
the auto- and cross-correlation properties of the code vectors
{xm}NTm=1 are the PSL and the ISL which are defined as [5],
[7], [9],

PSL = max{max
m

max
k 6=0
|rmm(k)|,max

m,l
m6=l

max
k
|rml(k)|}, (4)

ISL =

NT∑
m=1

N−1∑
k=−N+1
k 6=0

|rmm(k)|2 +

NT∑
m,l=1
m 6=l

N−1∑
k=−N+1

|rml(k)|2,

(5)
where rmm(k) = rAPmm(k) and rml(k) = rAPml (k) address the
aperiodic auto- and cross- correlation functions, respectively,
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whereas rmm(k) = rPmm(k) and rml(k) = rPml(k) address the
periodic case1.

Note also that the correlation properties of sequences in
a set play a major part in the waveform design for code
division multiple access (CDMA) and wireless communica-
tion systems. In these systems, both the level of multiple
access interference and code acquisition properties can be
affected by the properties. In fact, the former is affected
by the cross-correlation properties between different codes
of the sets whereas the latter is influenced by the auto-
correlation properties, that is the correlation between time-
shifted versions of the same code [16]–[20]. In wireless
communication systems, orthogonal sequences have been used
to achieve communication among users and simultaneously
manage interference as well as multiple access [21]–[23]. In
this respect, structured binary sequences, like Legendre, Gold,
Kasami, m-sequences, Gong, Paterson and Weil have been
introduced and used in many CDMA/wireless communication
systems [24]–[32]. However, these families are not perfectly
matched with the MIMO radar requirements.

A. Background and Related Works

In order to achieve waveform orthogonality in MIMO radar
systems, several approaches, including frequency-division-
multiplexing (FDM) [33]–[35], Doppler-division multiplexing
(DDM) [34], [36], [37], time-division-multiplexing (TDM)
[38]–[41] and code-division-multiplexing (CDM) [4], [15]
have been developed in the literature. Among them, FDM,
DDM, and TDM can provide almost perfect orthogonal-
ity. However, comparing with CDM, they suffer from
strong azimuth-Doppler coupling, lower amount of maximum
Doppler frequency and shorter target detection range, respec-
tively [42].

In CDM-MIMO radar systems, the requirement is to design
sets of sequences with small PSL and ISL to be able to
separate the transmitted waveforms from any other members
of the sets at any time shift; and also to avoid masking
weak targets within the range sidelobes of a strong target
(see [4], [6], [9], [11], [30], [31], [43]–[47], and references
therein). Unfortunately, neither the well-known Barker codes
(known up to length 13) [48], nor minimum peak sidelobe
(MPS) codes [49] (known up to length 105), m-sequences,
Gold or Kasami sequences (defined for the specific lengths
of 2n − 1 when n is a natural number) [50], which are
prevalent in single-input-single-output (SISO) radar systems
[51], have good properties in terms of auto/cross-correlation
functions. Consequently, in recent years, a large number of
researches has been devoted to design sets of sequences for
MIMO radar systems, to enhance transmit beamforming [52]–
[56], improve target detection performance [57]–[60], promote
radar spatial resolution [6], [7], [24], [30], [61]–[66] and obtain
better target classification/recognition performance [67]–[69].
The constraint sets considered in the design stage typically

1Notice that the Periodic Total Squared Correlation (PTSC) [14] and the
Aperiodic Total Squared Correlation (ATSC) [15] are equivalent with the
periodic and aperiodic ISL above, respectively.

are the energy, Peak-to-Average-power ratio (PAR), constant
modulus and discrete/binary phase.

In this respect, Multi-CAN/Multi-PeCAN [4], [5], MM-Corr
[7], ISLNew [8], [9] and Iterative Direct Search [10] algo-
rithms are proposed to design orthogonal sets of sequences,
minimizing the ISL metric (see (5)). Interestingly, all the
above mentioned algorithms almost meet the lower bound on
ISL [70], [71], but when designing sets of sequences with
arbitrary(continuous) phases.

B. Contributions

In this paper, we consider designing sets of sequences with
good aperiodic/periodic correlation properties. We consider
a weighted sum of PSL and ISL as the design metric. The
resulting design problem is non-convex and we devise an
effective method based on BCD to tackle it. We numerically
show that the sets of binary sequences that are designed with
the algorithm proposed in this paper are neighborhood to
the available lower bounds [70], [71], indicating its superior
performance. Precisely, the major contributions of this paper
can be summarized as:
• To the best of our knowledge, no mathematical algorithm

with ensured convergence properties has been suggested
in the literature for the exact PSL minimization over sets
of sequences and so this paper is the pioneer in this
aspect.

• This paper fills the relevant gap of the design problem
for the set of sequences with good PSL/ISL with discrete
phase property, specifically for the binary and QPSK
cases. In fact, the current paper lays the ground to employ
the designed binary sets in MIMO radars and communica-
tion systems with an acceptable level of implementation
complexity.

Notice that, the problem of designing just one sequence with
good aperiodic auto-correlation function is addressed in [12]
for the case of SISO radar systems. However, the current paper
deals with sets of sequences for periodic as well as aperiodic
cases. Also, this paper takes into account cross-correlation
functions of the sequences for the various lags to be applicable
in MIMO radar systems.

C. Organization and Notation

The rest of this work is organized as follows. In Section II,
the design problem is formulated. In Section III, we develop
the BCD framework to deal with the problem. In Section IV,
the solution to the scalar sub-problem for each iteration of
BCD is derived. Section V provides several numerical exper-
iments to verify the effectiveness of the proposed algorithm.
Finally, Section VI concludes the paper.
The following notation is adopted in the paper. Bold lowercase
letters for vectors and bold uppercase letters for matrices. The
transpose, the conjugate, and the conjugate transpose operators
are denoted by the symbols (·)T , (·)∗ and (·)H respectively.
The letter  represents the imaginary unit (i.e.,  =

√
−1).

For any x ∈ C, |x| and arg(x) represent the modulus and the
argument of x, respectively. The n-th element of the vector x
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is denoted by x(n). The abbreviation “s.t.” stands for “subject
to” and FL(.) illustrates the L-points discrete-time Fourier
transform.

II. PROBLEM FORMULATION

In this section, we cast the code design problem
to obtain sets of sequences with small out-of-
phase auto-correlation and also cross-correlation
values. Let f̃1(X) = max

1≤m≤NT
max
k 6=0
|rmm(k)|,

f̃2(X) = max
m,l
m6=l

max
k
|rml(k)| be the maximum auto- and

cross-correlation sidelobes/values of all NT sequences,
respectively. Also f̃3(X) =

∑NT
m=1

∑N−1
k=−N+1
k 6=0

|rmm(k)|2,

and f̃4(X) =
∑NT
m,l=1
m6=l

∑N−1
k=−N+1 |rml(k)|2 be the summation

of the auto and cross-correlation sidelobes/values for all NT
sequences, respectively. We aim at designing good sets of
sequences X?, minimizing {f̃i(X)}4i=1. The design problem
is constrained to the families of constant modulus discrete
phase alphabet, i. e., the n-th subpulse at the m-th transmit
antenna is,

xm(n) = eφm(n), m = 1, . . . , NT and n = 1, . . . , N (6)

with φm(n) being the phase of the n-th subpulse of the
transmit code vector xm. The phase φm(n) can only be
selected from the following set:

φm(n) ∈
{

0,
2π

L
, . . . ,

(L− 1)2π

L

}
, φL (7)

where L is the number of distinct phase values (e. g., L = 2
shows the binary case and L = 4 is the QPSK). Let ω̄ = e

2π
L

and ΨL = {1, ω̄, . . . , ω̄L−1}, then, the feasibility region for
the constrained code design problem is given by,

ΩL = {xm|xm(n) ∈ ΨL, n = 1, . . . , N}. (8)

Therefore, the design problem can be cast as,

PX =

min
X

f̃1(X), f̃2(X), f̃3(X), f̃4(X)

s.t. xm,l ∈ ΩL, m, l = 1, . . . , NT

(9)

which is a multi-objective non-convex constrained optimiza-
tion problem.

In a multi-objective optimization problem, usually a feasible
solution that minimizes all the objective functions simul-
taneously does not exist [72]. A viable means to handle
these type of problems, is to use the scalarization technique2

which exploits as objective a specific weighted sum between
the objective functions (Pareto-optimization)3. Particularly, a
scalarization of (9) is,

f̃w(X) = w1 max
{
f̃1(X), f̃2(X)

}
+w2f̃3(X) +w3f̃4(X),

(10)

2Scalarizing a multi-objective problem involves the solution of conventional
optimization problems whose objective function is a specific convex combi-
nation of the original figures of merits [73].

3Notice that, for the Pareto-optimization, we can consider any strictly
increasing function of the original objectives.

where the weighting coefficients w1, w2, w3 ∈ [0, 1] and∑3
i=1 wi = 1. The scalarization leads to the following design

problem,

PwX =

min
X

f̃w(X)

s.t. xm,l ∈ ΩL, m, l = 1, . . . , NT

(11)

where the parameters wi, i = 1, 2, 3 trades-off ISL and PSL
values of the designed set of sequences. Precisely, w1 = 1,
w2 = w3 = 0 lead to the problem of PSL minimization,
whereas w1 = 0, w2 = w3 = 0.5 correspond to the ISL
minimization problem. In fact, the different values of wi can
lead to various sets of sequences with similar goodness, which
is an important property for the next-generation MIMO radar
systems. An example is automotive MIMO radar systems,
where the performance can be enhanced through a continuous
and coordinated feedback between the transmitter and receiver
which implies a dynamic adaptation of the sensor’s algorithms
to the operational context and environmental replies [74], [75].
In this case, this is possible to choose wi according to the
environment, whether we face with an extended target (low
ISL waveforms are desired) or we are in dense target scene
(low PSL waveforms are desired).

III. THE PROPOSED METHOD

This section introduces an iterative derivative-free optimiza-
tion algorithm, based on the BCD minimization procedure, by
updating just one or a few blocks of variables at a time, rather
than updating all the blocks together (the batch update) [76].
Indeed, to handle the minimization problem in (11), we need
to loop over all the coordinates and resort to the following
subproblems:
• Outer loop; Pick a coordinate t from 1, . . . , NT and

design a code vector xt keeping the other code vectors
fixed.

• Inner loop; Pick a coordinate d = 1, . . . , N in the
selected coordinate t to optimize each scalar variable
xt(d) of xt, keeping fixed the other entries of the code
vector xt.

Therefore, by solving a sequence of simpler optimization
problems, each subproblem will have a lower dimension in
the minimization procedure, and thus can typically be solved
easier than the original problem. The general idea to tackle
PwX is summarized below:

1) Pick coordinate t from 1, 2, . . . , NT .
2) Set x(i+1)

t = arg min
xt

f̃w(xt,X
(i)
−t).

where X(i)
−t represents all other coordinates which are kept

fixed during the iteration (i+ 1) of the outer loop, i.e.,

X
(i)
−t =

[
x
(i)
1 ,x

(i)
2 , . . . ,x

(i)
t−1,x

(i)
t+1, . . . ,x

(i)
NT

]
∈ CN×NT−1.

Accordingly, in the outer loop, the optimization Problem
PwX at iteration (i+ 1) boils down to,

Pw
t,X(i) =

min
xt

f̃w(xt,X
(i)
−t)

s.t. xt ∈ ΩL, n = 1, . . . , N
(12)
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where

f̃w(xt,X
(i)
−t) = f̃w

(
x
(i)
1 ,x

(i)
2 , . . . ,x

(i)
t−1,xt,x

(i)
t+1, . . . ,x

(i)
NT

)
.

(13)
Thus, denoting by X?(i+1)

t the optimal solution to Pw
t,X(i) ,

the optimized code matrix at iteration (i+ 1) becomes,

X
?(i+1)
t =

[
x
(i)
1 ,x

(i)
2 , . . . ,x

(i)
t−1,x

?
t ,x

(i)
t+1, . . . ,x

(i)
NT

]
. (14)

Further, to obtain the optimal code entry xt(d), we under-
take the following steps:
• Pick coordinate d from 1, 2, . . . , N .
• Set x(h+1)

t (d) = arg min
xt(d)

g
w,X(i)

−t
(xt(d),x

(h)
t,−d).

where x(h)
t,−d represents all other coordinates of the code vector

xt which are keeping fixed at iteration (h + 1) of the inner
loop4 and g

w,X(i)

−t
(xt(d),x

(h)
t,−d) is introduced shortly. Indeed,

in the inner loop, we go through the t-th selected block and
choose the scalar xt(d) as the variable to be optimized, put
the remaining code entries at iteration (h + 1) in the vector
x
(h)
t,−d ∈ CN−1 defined as,

x
(h)
t,−d = [x

(h)
t (1), . . . , x

(h)
t (d− 1), x

(h)
t (d+ 1), . . . , x

(h)
t (N)]T .

(15)
Now, the resulting optimization problem is given by,

Pw
d,x(h)

t

min
xt(d)

g
w,X(i)

−t
(xt(d);x

(h)
t,−d)

s.t. xt(d) ∈ ΩL

(16)

where5

g
w,X(i)

−t
(xt(d);x

(h)
t,−d) = w1g1 + w2g2 + w3g3 (17)

with6

g1 = max{max
k 6=0
|rtt(k)| ,max

l
l 6=t

max
k
|rtl(k)|},

and

g2 =

N−1∑
k=−N+1
k 6=0

|rtt(k)|2 , g3 =

NT∑
l=1
l 6=t

N−1∑
k=−N+1

|rtl(k)|2.

Therefore, the optimized code vector at the t-th transmit
antenna is,

x
(h+1)
t = [x

(h)
t (1), x

(h)
t (2), . . . , x?t (d), . . . , x

(h)
t (N)]T ,

where x?t (d) is the solution to (16). As a result, starting
from an initial code matrix X(0), the code matrices X(1),
X(2), X(3), . . . are obtained iteratively. A summary of the
proposed approach to obtain X? can be found in Algorithm
1. Since the proposed approach can effectively design binary

4The super scripts (i) and (i + 1) for xt and x?
t is implicit and omitted

for simplicity.
5In Appendix A, we provide an explicit dependency of

g
w,X(i)

−t
(xt(d);x

(h)
t,−d) on the optimization variable xt(d).

6Note that the dependency of gi, i = 1, 2, 3 on w, and X
(i)
−t is implicit

and omitted due to the simplicity. Also, the dependency of rtt(k) and rtl(k)
on xt(d) is implicit.

set of sequences, we name it Binary Sequences seTs (BiST)7

method. After initialization by X(0), various code vectors
{xt}NTt=1 are optimized sequentially in step (2) of Algorithm
1 till convergence. The superscript (i) shows iterations on the
mentioned code vector (outer loop) . When the code vector xt0
is selected, we resort to Algorithm 2, to obtain the optimized
vector x?t0 . In Algorithm 2, each entry of xt0 is optimized via
CD technique. Herein, the superscript (h) denotes iterations
for optimizing various entries in xt0 ; i. e., h varies from 0 to
N −1 (number of correlation lags) at every call to Algorithm
2 (inner loop). Finally, when an entry xt0(d0) of the code xt0
is selected, the associated scalar optimization Problem Pw

d,x(h)
t

is solved via Algorithm 3 to be discussed in the next section.
Note that Algorithm 2 terminates when all entries of xt0 are
optimized (h = N − 1), whereas Algorithm 1 is considered
to be converged when the iterative change in the objective of
Problem PwX is practically small.

Remark 1. The proposed method decreases the value of the
objective function in (11), i. e., f̃w(X), at each iteration, and
can ensure convergence to a stationary point provided that
the Maximum Block Improvement (MBI) [77], [78] rule is
adopted. However, we numerically observed similar perfor-
mances for Algorithm 1 and the case of applying a full CD,
using the MBI rule (ensuring the convergence to a stationary
point). Notice that, the convergence speed/run-time is more
when applying a full CD using the MBI rule.

Algorithm 1 BiST algorithm for MIMO radar systems

Input: Initial code matrix X(0) ∈ CN×NT , threshold ε > 0,
wi ∈ [0, 1], provided that

∑3
i=1 wi = 1;

Output: Optimized sequence set X?;
1) Initialization.

• Compute the initial objective value
f̃w(x

(0)
1 ,x

(0)
2 , . . . ,x

(0)
NT

);
• Set t := 1 and i := 0;

2) Improvement.
• Use Algorithm 2 to solve Pw

t,X(i) , and obtain x?t ;
• Set i := i+ 1 and
X

(i)
t =

[
x
(i−1)
1 ,x

(i−1)
2 , . . . ,x?t , . . . ,x

(i−1)
NT

]
;

3) Stopping Criterion.
• If |f̃w(X

(i)
t )− f̃w(X

(i−1)
t )| < ε, stop. Otherwise,

update t, i.e., if t < NT , t = t+1, otherwise t = 1,
and go to the step (2);

4) Output.
• Set X?

t = X
(i)
t .

IV. THE CODE ENTRY DESIGN

The devised method for dealing with the design Problem
PwX was presented in Section III. Now, we consider the
optimization (16), i. e., the problem associated with optimizing
the scalar entry xt(d) of the code vector xt.

7BiST means the number “20” in Persian language and also refers to
something that is perfect.
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Algorithm 2 Design of the selected sequence

Input: Sequence xt ∈ CN , the code matrix X(i)
−t, and wi

from Algorithm 1;
Output: Optimized sequence set X?;

a) Initialization.
• Set d := 1 and h := 0;

b) Improvement.
• Use Algorithm 3 to solve Pw

d,x(h)
t

, and obtain
x?t (d);

• Set h := h+ 1 and
x
(h)
t =

[
x
(h−1)
t (1), . . .,x?t (d), . . . , x

(h−1)
t (N)

]T
;

c) Stopping Criterion.
• If d = N , stop. Otherwise, update d, i.e., d = d+1,

and go to the step (b);
d) Output.

• Set x?t = x
(h)
t .

In terms of the phase variable φtd = arg(xt(d)), the
optimization Problem Pw

d,x(h)
t

can be expressed as Problem
Pw
d,φ

(h)
td

in (18) at top of the next page. In the sequel, we

propose an algorithm to globally find the solution to Problem
Pw
d,x(h)

t

.

A) The Binary Case (L = 2)
It can be shown that the aperiodic/periodic cross-
correlation lags in correspondence of the phase variable
φtd = arg(xt(d)) can be written as (see Appendix A),

rtl,φtd (k) = adkle
φtd + cdkl.

Also, the aperiodic/periodic auto-correlation lags are
given by (see Appendix A):

rtt,φtd (k) = adkte
φtd + cdkt. (19)

Note that φtd = π(q − 1), q = 1, 2. Hence. in
the following we use the notation φtd(q0) to show
φtd = π(q0 − 1). Next, inspired by Discrete-Time Fourier
Transform (DFT) definition, we devise an identity be-
tween DFT of the coefficients adkz , cdkz (z stands for
either t or l) and magnitude of correlation lags to be
used for efficient computing of the solution to Pw

d,x(h)
t

.
Let

νdkz =
[
|rtz,φtd (1)(k)|, |rtz,φtd (2)(k)|

]T
∈ R2,

and
ζdkz = [adkz, cdkz]

T ∈ R2,

observe that,

|FL(ζdkz)| = [|rtz,k (φtd(1))| , |rtz,k (φtd(2))|]T . (20)

Verifying above is straight forward; precisely by noting,

FL(ζdkz) =

[
adkz + cdkz
adkz − cdkz

]
,

and,

rtz,k(φtd)e−φtd (q) = adkz + cdkze
−φtd (q),

and equivalently,∣∣∣rtz,k(φtd)e−φtd (q)
∣∣∣ = |rtz,k(φtd)| .

which leads to (20). Hence,

νdkz = |DFT(ζdkz)|, (21)

where DFT(ζdkz) is the L-points DFT of the vector ζdkz .
Next, we define the matrix Uz ∈ R(2N−1)×2 whose k-th
row is νTdkz . In fact, the matrix U t contains modulus of
all auto-correlation lags (i. e., k), whereas all the modulus
values of cross-correlation lags are gathered in U l. Let
umz ∈ R2 be a vector containing the maximum values of
each columns of Uz . On the other hand, let ũsz ∈ R2 be
a vector containing the summation of the squared values
of each columns of the matrix Uz . Hence,

ωt(d) = w1 max

{
upt ,max

l
l 6=t

upl

}
+ w2ũ

s
t + w3

NT∑
l=1
l 6=t

ũsl ,

(22)
where ωt(d) ∈ R2 and the operation of maximum
between two vectors is defined element wise. Then, the
optimal solution to Pw

d,φ
(h)
t

is given by

φ?td = π(q? − 1), (23)

where
q? = arg min

q=1,2

{
ωt(d)

}
, (24)

and, the optimal phase code entry is, x?t (d) = eφ
?
td . �

B) General Discrete Phase (L ≥ 3). The proposed solution
for L ≥ 3 is similar to that of the binary case, but with
a minor modification. More precisely, in this case it can
be shown,

rtl,φtd (k) = adkle
φtd + cdkl,

and

rtt,φtd (k) = adkte
φtd + bdkte

−φtd + cdkt.

In a similar manner, let φtd(q) = 2π(q−1)
L , q = 1, . . . , L,

νdkz = [|rtz,φtd (1)(k)|, |rtz,φtd (2)(k)|, . . . , |rtz,φtd (L)(k)|]T ,

where z stands for either t or l, then,

ζdkt = [adkt, cdkt, bdkt,01×(L−3)]
T ∈ RL,

ζdkl = [adkl, cdkl,01×(L−2)]
T ∈ RL.

The definition of the matrix Uz and the vectors umz , ũsz
are similar but with an updated dimension; namely Uz ∈
R(2N−1)×L and umz , ũ

s
z ∈ RL. Finally, φ?td = 2π(q?−1)

L .
The method of designing the code entry is provided in Algo-
rithm 3.

Remark 2. In Algorithm 3, calculation of νdkt needs (2N−1)
L-points FFTs, whereas νdkl needs NT (2N − 1) L-points
FFTs. Also Algorithm 2, runs Algorithm 3 for N - times.
Therefore, for each selected sequence xt (i. e., each it-
eration in Algorithm 1), the computational complexity is
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Pw
d,φ

(h)
td


min
φtd

w1 max

max
k 6=0

∣∣∣rtt,φtd (k)
∣∣∣ ,max

l
l 6=t

max
k

∣∣∣rtl,φtd (k)
∣∣∣
+ w2

N−1∑
k=−N+1
k 6=0

∣∣∣rtt,φtd (k)
∣∣∣2 + w3

NT∑
l=1
l 6=t

N−1∑
k=−N+1

|rtl,φtd (k)|2

s.t. φtd ∈ φL ≡
{

0,
2π

L
, . . . ,

(L− 1)2π

L

}
(18)

Algorithm 3 Code Entry Design

Input: Initial code vector x(h)
t , the code matrix X(i)

−t, code
entry d, wi, from Algorithm 2, and L;
Output: Optimal solution x?t (d);

1) Set ∀k ∈ {−N + 1, . . . , N − 1}
• Set

ζdkt =

{
[adkt, cdkt, bdkt,01×(L−3)]

T L ≥ 3

[adkt, cdkt]
T L = 2

• Set ζdkl = [adkl, cdkl,01×(L−2)]
T ;

• Set νdkt = |FFT(ζdkt)| and νdkl = |FFT(ζdkl)|;
2) Define Uz , obtain umz , ũsz and calculate

ωt(d) = w1 max

{
umt ,max

l
l 6=t

uml

}
+w2ũ

s
t +w3

NT∑
l=1
l 6=t

ũsl ;

3) Find the index q? where ωt(d) is minimum;
4) Set x?t (d) = eφ

?
t (d) with φ?t (d) = 2π(q?−1)

L .

O(N2NTL log2 L). Consequently, in case of designing binary
sets of sequences (i. e., L = 2), the overall computational
complexity per iteration is O(N2NT ).

V. PERFORMANCE ANALYSIS

In this section, we provide several numerical examples to
illustrate the superior performance of the proposed method in
designing binary/discrete phase sets of sequences. In order to
evaluate of the performance of the proposed algorithm (BiST)
via a normalized metric, we use the definitions

ISLR (dB) = 10 log10

ISL
N2

,

which is the ratio of integrated energy of the sidelobes to the
peak energy of the mainlobe and

PSLR (dB) = 10 log10

PSL2

N2
,

which is the ratio of maximum energy of the sidelobes to
the peak energy of the mainlobe. Also, we set the threshold
ε = 10−5 and consequently the stopping criteria |f̃w(X(i))−
f̃w(X(i−1))| ≤ 10−5 is used to terminate Algorithm 1.

A. ISL Minimization

We set w1 = 0, and w2 = w3 = 0.5, number of transmit
antennas NT ∈ {3, 4} to perform ISL minimization, and adopt
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Fig. 1: Comparison between the averaged aperiodic ISLR
values of the obtained set of sequences via BiST and Multi-
CAN algorithms over 10 independent trails ; a) The number
of transmit antennas NT = 3, b) NT = 4.

Multi-CAN as the benchmark8. Notice that the lower bound
for the ISLR is 10 logNT (NT − 1) [7]. Thus considering
NT = 3, and NT = 4, the lower bounds of 7.78 dB, and
10.79 dB will be obtained, respectively. In Fig. 1, the averaged
aperiodic ISLR values for sets of sequences obtained via the
BiST for the code lengths N = {8, 16, 24, 32, 40, 48, 56, 64},
is depicted. The figure shows that, the obtained sets of binary
sequences are neighboring to around 0.2 dB of the lower
bound. According to this figure, BiST has provided sets of
binary sequences close to the sets obtained via Multi-CAN
(continuous phase-which meets the lower bound), but inter-
estingly with {±1} alphabets. The averaged results over 10
independent trials are reported for both Multi-CAN and BiST
algorithms. Meanwhile, the averaged ISLR values (over 10
independent trials) of the initializing random sets of sequences,
are also depicted in this figure. To observe the effectiveness
of BiST algorithm, we also have plotted the best set of
binary sequences, obtained via quantization of the Multi-CAN

8The Matlab codes for Multi-CAN algorithm are downloaded from the book
website http://www.sal.ufl.edu/book/.
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Fig. 2: Comparison between the averaged aperiodic PSLR
values of the obtained sets of sequences via BiST and Multi-
CAN algorithms over 10 independent trails. The bound 2

√
N

provided by the best known sets of structured binary sequences
is also depicted.

sequences. Of course the quantization cannot provide a good
set of sequences, particularly when the alphabet size is small.

B. PSL Minimization

Herein, we consider w1 = 1, and w2 = w3 = 0, with
code length N = {8, 16, 24, 32, 40, 48, 56, 64}, and number
of transmit antennas NT = 3, 4 to resort to the PSL mini-
mization. As to the best of our knowledge, there is no binary
set of sequences that meets the lower bound on PSL [70].
According to the literature, best PSL values for the families
of structured binary sequences9, like Legendre, Gold, Kasami,
m-Sequences, Gong, Paterson and Weil is 2

√
N (see [79]

and references therein). In the simulations herein, we consider
2
√
N as the PSL of the best known set of structured binary

sequences as the comparison benchmark.
Fig. 2 illustrates the averaged PSLR values for both BiST

and Multi-CAN, obtained over 10 independent trails. It can
be seen, sets of sequences obtained via BiST have better
PSLR values than the bound (i. e., 2

√
N ). Also, as mentioned

before, Multi-CAN designs sets of sequences with continuous
phases, minimizing the ISL metric. The best sets of sequences
obtained via quantization of Multi-CAN is also plotted in
this figure. It can be observed from the figure that BiST
has provided sets of binary sequences almost better than
the set obtained via continuous phase Multi-CAN, but with
{±1} alphabet. This can be explained using the fact that

9Notice that, the structured sets of sequences (e. g. Kasami, Gold, etc.,), are
constructed of specific lengths to obtain good periodic correlation functions
and there still is a gap between their aperiodic PSL/ISL, and the lower bound.
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Fig. 3: Comparison between the obtained aperiodic ISLR val-
ues when starting from different sets of sequences (NT = 4).

BiST directly minimizes the PSL. Also, the averaged PSLR
values (over 10 independent trials in each sequence length) of
the initializing random set of sequences and the best set of
binary sequences obtained via quantization of the Multi-CAN
sequences, are depicted in this figure.

C. The Effect of the Initialization

In order to asses the initialization effects on the perfor-
mance of the proposed algorithm, we provide the numerical
examples in the case of PSL minimization. Notice that, we
numerically observed that for the case of ISL minimization,
the proposed algorithm almost meets the lower bound and the
initialization has no significant effect (see Fig. 3 below as
an example). In Fig. 4, a comparison between the obtained
periodic PSLR values when initialized with random, Gold and
Kasami sequences is depicted. The bound 2

√
N provided by

the best known sets of structured binary sequences (i. e., Gold,
Kasami, m-sequences, etc.) is also illustrated in this figure.
According to Fig. 4, starting from Kasami/Gold, the obtained
sets of sequences have lower (better) PSLR values. It can be
due to the goodness of these sets when considering periodic
auto-correlation function.

Fig. 5 depicts a similar comparison but for the aperiodic
case. As this figure shows, the proposed algorithm has pro-
vided better PSLR values when it is initialized from a set of
random sequences. In essence, we numerically observed no
significant improvement in performance for various initializa-
tion in aperiodic PSL/ISL or periodic ISL. However, for the
periodic PSL minimization, a reduction usually occurs when
initializing by known sequences like Kasami.

D. Set Size and Alphabet Size

Next we consider the effect of the set and alphabet size. In
Fig. 6, we plot aperiodic PSLR and ISLR values of obtained
sets of sequences when code length N = 64, and number
of transmit antennas NT = [2, 3, 4, 5, 6, 7]. Notice that the
obtained PSLR/ISLR values are averaged over 10 independent
trials. The results indicate that in terms of aperiodic PSLR
(Fig. 6a), the designed sets of sequences are always better
than Multi-CAN (Binary) and they are better than Multi-CAN
(Continuous Phase) when NT ≥ 4. Also, in terms of aperiodic
ISL minimization, the obtained ISLR values in Fig. 6b are
close to those of Multi-CAN (Continuous Phase) which the
latter meets the ISL lower bound [7], [70], [71].
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Fig. 4: Comparison between the obtained periodic PSLR
values starting from different sets of sequences. The bound
2
√
N provided by the best known sets of structured binary

sequences is also included.

0 10 20 30 40 50 60 70

Sequence Length (N)

-15

-10

-5

0

P
S

L
R

 (
d
B

)

BiST (Random)

BiST (Gold)

BiST (Kasami)

Best Known Set of Structured Binary Sequences

(a) NT = 3.

0 10 20 30 40 50 60 70

Sequence Length (N)

-15

-10

-5

0

P
S

L
R

 (
d
B

)

BiST (Random)

BiST (Gold)

BiST (Kasami)

Best Known Set of Structured Binary Sequences

(b) NT = 4.

Fig. 5: Comparison between the obtained aperiodic PSLR
values starting from different sets of sequences. The bound
2
√
N provided by the best known sets of structured binary

sequences is also included.
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Fig. 6: The effect of the set size (NT ) on the performance
of the proposed algorithm: a) PSL minimization. b) ISL
minimization.

In Fig. 7, we asses the effect of alphabet size (L) on the
performance of the proposed algorithm for the both cases of
aperiodic PSL/ISL minimization. Precisely, in the aperiodic
case we consider the code length N = 64, number of
transmit antennas NT = 4, but the alphabet sizes L =
[2, 4, 8, 16, 32, 64]. Again, we use 10 independent trials and
report the averaged PSLR/ISLR values. The results indicate
that in terms of aperiodic PSLR (Fig. 7a), the designed sets of
sequences lead to significantly better values while the alphabet
size increases. On the other hand, the obtained ISLR values
in Fig. 6b depicts that the proposed algorithm converges to
the lower bound (provided by continuous phased Multi-CAN),
when the alphabet size increases. In fact, this figure clearly
depicts the superior performance of the proposed algorithm.

E. Comparison with the Other Methods

In order to compare with the other methods, first notice that
all the MM-WeCorr, MM-Corr [7], ISLNew [9], and Direct
Iterative Search [10] algorithms, minimize the ISL metric (5),
and design sets of sequences with arbitrary phases. These
methods, have very close performance to that of the Multi-
CAN algorithm (meet the lower bound), but with a lower
computational complexity which is reported in [7] (except
[10] which has a higher computational complexity). However,
none of them, meet the lower bound on PSL, specifically
when the alphabet size is binary. An example is shown in
Fig. 8a, where we have compared the PSLR values of the
obtained set of binary sequences with MM-Corr (binary and
continous phase) [7] when NT = 3. A similar comparsion
is illustrated in Fig. 8b, but with the ISLNew (binary and
continous phase) [9], when NT = 4. Notice that the binary
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Fig. 7: The effect of the alphabet size (L) on the performance
of the proposed algorithm: a) PSL minimization. b) ISL
minimization.

set of sequences for the MM-Corr and ISLNew are obtained
applying the quantization, as these methods cannot tackle the
ISL minimization problem with discrete phase constraint at the
design stage. As Fig. 8 illustrates, the set of binary sequences
obtained via BiST has better PSLR values in comparison with
the set of binary sequences obtained via MM-Corr/ISLNew
algorithms.

F. Computational Complexity

In the sequel, a comparison between the averaged run-time
(s) over 10 independent trails for BiST and Multi-CAN algo-
rithms, both designing sets of binary sequences in aperiodic
case is reported in TABLE I. The reported values are obtained
with a standard PC with Intel (R) Core(TM) i7-600U CPU@
2.80GHz with installed memory (RAM) 8.00 GB. According
to TABLE I, in thesee examples, the computational complexity
of the proposed method and Multi-CAN are relatively in a
same order. Notice that, even-though MM-Corr, MM-WeCorr
and ISLNew have lower computational complexity rather than
Multi-CAN (and consequently the proposed BiST algorithm),
they don’t impose the discrete-phase/binary constraint in the
design stage, as opposed to the devised BiST method.

G. The Effect of Designed Sets of Sequences on MIMO Radar
System Performance

Herein, we present performance of the proposed sets of
sequences in MIMO radar systems. To this end, we consider
a CDM-MIMO radar system with NT = 3 transmit antennas
(Tx), NR = 4 receive antennas (Rx) in which M = 32 pulses
will send via each transmitter. At receive side, the data cube
Lc × NT .NR ×M is available assuming Lc range-cells. Let
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Fig. 8: Comparison between the averaged aperiodic PSLR
values of the obtained set of sequences via BiST, MM-Corr
[7] and ISLNew [9] over 10 independent trails. The number
of transmit antennas: a) NT = 3, b) NT = 4.

TABLE I: Comparison between the averaged run-time (s) over
10 independent trials for BiST and Multi-CAN, both designing
sets of binary sequences.

N
Multi-CAN (Binary) BiST (ISL) BiST (PSL)
NT = 3 NT = 4 NT = 3 NT = 4 NT = 3 NT = 4

8 0.01 0.01 0.01 0.01 0.02 0.02
16 0.07 0.1 0.07 0.1 0.035 0.04
24 0.2 0.25 0.2 0.3 0.2 0.25
32 0.3 0.4 0.3 0.6 0.3 0.4
40 0.5 0.6 0.6 1.5 0.5 0.8
48 0.8 0.9 1.2 2.6 0.9 1.1
56 1.1 1.1 2.8 4.7 2.4 3.0
64 1.2 1.2 3.8 7.3 3.9 5.8

us consider a complete receiver processing unit (i. e., matched
filter, Doppler and angle processing) for the waveforms emit-
ted by a uniform linear array (ULA)-MIMO radar system
with 4 × 0.5-wavelength interelement space at Tx and 0.5-
wavelength interelement spacing at Rx (see [75] for details).
In Fig. 9, the range-Doppler plots of the two targets moving
toward the radar system is depicted when the code length
N = 64. Fig. 9a shows the case when MIMO radar employs
sets of random binary sequences, whereas Fig. 9b illustrates
similar situation but emitting sets of binary sequences designed
by proposed method (BiST) when minimizing the aperiodic
PSL. Two targets assumed to have similar velocities/Doppler
frequencies (assumed in Doppler bin 12), but different ranges.
The input signal to noise ratio received at the location of the
first target is 0 dB whereas it is +10 dB for the second target.
The two targets have a separation 10 range-cells, however, as
Fig. 9a depicts, just one of the two targets can be correctly
detected when the MIMO radar system employs the sets of
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Fig. 9: Comparison between range-Doppler separation in a
PCM-MIMO radar employing different sets of sequences
where a ULA with NT = 3 and NR = 4 is used: a) Random
set. b) The set obtained by BiST.

random sequences. In fact, the auto- and cross-correlations
of the sets of random sequences have led to masking of
the weaker target. In contrast, as Fig. 9b illustrates, the two
targets can perfectly be discriminated when the proposed sets
of sequences is employed. This figure illustrates that the
better auto- and cross-correlation properties lead to the better
detection.

VI. CONCLUSION

A computational approach to deal with the problem of sets
of sequences design with good aperiodic/periodic auto- and
cross-correlation functions for MIMO radar systems has been
addressed in this paper. A general framework (called BiST)
was devised to tackle the unimodular binary/discrete sets of
sequences design problem. The results can be summarized as
follows:
• The non-convex and, in general, NP-hard sets of se-

quences design problem is handled via a novel iterative
procedure based on the BCD method.

• Using the DFT technique in designing each code entry
of a block in BCD procedure, we minimized a weighted
sum of PSL and ISL to design sets of binary/discrete-
phase sequences.

• The provided numerical results confirm that the BiST
almost meets the lower bound on ISL while designing
binary sets of sequences. Also, the devised algorithm
provides sets of binary sequences with better PSL than
the structured sets of sequences (i. e., m-sequences, Gold,
Kasami, etc.).

As future research tracks, it might be interesting to account
for the behavior in the Doppler domain of the optimized codes,

i.e., tackling the design problem for sets of Doppler-tolerant
binary sequences.

APPENDIX A
RELIANCE OF Pw

d,x(h)
t

, ON THE OPTIMIZATION VARIABLE

Let IA(k) and IB(k) being the indicator functions of
sets A = {1, 2, . . . , N} and B = {−1,−2, . . . ,−N + 1}
respectively, i.e., IA(v) = 1 if v ∈ A, otherwise IA(v) = 0.

1) Aperiodic auto- and cross-correlation functions: The
cross-correlation function rAPtl (k) with explicit dependence on
xt(d) is,

rAPtl (k) = aAPdkl xt(d) + cAPdkl , k = −N + 1, . . . , N − 1.

with

aAPdkl , x
∗(h)
l (d+ k)IA(d+ k), k = −N + 1, . . . , N − 1.

and

cAPdkl ,
N−k∑

n=1,n6=d

x
(h)
t (n)x

∗(h)
l (n+ k)IA(k + 1)

+

N∑
n=−k+1,n6=d

x
(h)
t (n)x

∗(h)
l (n+ k)IB(k).

The aperiodic auto-correlation function rAPtt (k) is expressed
in two different cases:
• The Binary Case (L = 2)

rAPtt (k) = aAPdktxt(d) + cAPdkt , k = −N + 1, . . . , N − 1.

where

aAPdkt , x
(h)
t (d+ k)IA(d+ k) + x

(h)
t (d− k)IA(d− k),

and

cAPdkt ,
N−k∑

n=1,n6={d,d−k}

x
(h)
t (n)x

(h)
t (n+ k)IA(k + 1)

+

N∑
n=−k+1,n6={d,d−k}

x
(h)
t (n)x

(h)
t (n+ k)IB(k).

• General Discrete Phase (L ≥ 3)

rAPtt (k) = aAPdktxt(d) + bAPdktx
∗
t (d) + cAPdkt ,

k = −N + 1, . . . , N − 1

where10,

aAPdkt , x
∗(h)
t (d+ k)IA(d+ k),

bAPdkt , x
(h)
t (d− k)IA(d− k),

and

cAPdkt ,
N−k∑

n=1,n6={d,d−k}

x
(h)
t (n)x

∗(h)
t (n+ k)IA(k + 1)

+

N∑
n=−k+1,n6={d,d−k}

x
(h)
t (n)x

∗(h)
t (n+ k)IB(k).

10For notational simplicity, the dependency of auto- and cross-correlation
to the iteration index h is implicitly assumed and hence omitted.
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2) Periodic auto- and cross-correlation functions: The
periodic cross-correlation function with explicit dependence
on xt(d) is,

rPtl (k) = aPdklxt(d) + cPdkl, k = −N + 1, . . . , N − 1.

where

aPdkl , x
∗(h)
l (d+ k)IA(d+ k)

+ x
∗(h)
l (d+ k +N)IA(d+ k +N)

+ x
∗(h)
l (d+ k −N)IA(d+ k −N),

and

cPdkl ,
N∑

n=1,n6=d

[
x
(h)
t (n)x

∗(h)
l (n+ k)IA(n+ k)

+ x
(h)
t (n)x

∗(h)
l (n+ k +N)IA(n+ k +N)

+ x
(h)
t (n)x

∗(h)
l (n+ k −N)IA(n+ k −N)

]
.

The periodic auto-correlation function rPtt(k) is expressed
in two different cases:
• The Binary Case (L = 2)

rPtt(k) = aPdktxt(d) + cPdkt,

where k = −N + 1, . . . , N − 1,

aPdkt , x
(h)
t (d+ k)IA(d+ k)

+x
(h)
t (d+ k −N)IA(d+k−N)+x

(h)
t (d− k)IA(d−k)

+ x
(h)
t (d− k +N)IA(d− k +N)

with

cPdkt ,
N−k∑

n=1,n6={d,d−k}

x
(h)
t (n)x

(h)
t (n+ k)

+

N∑
n=N−k+1,n6={d,d−k+N}

x
(h)
t (n)x

(h)
t (n+ k −N).

• General Discrete Phase (L ≥ 3)

rPtt(k) = aPdktxt(d) + bPdktx
∗
t (d) + cPdkt,

where k = −N + 1, . . . , N − 1,

aPdkt , x
∗(h)
t (d+ k)IA(d+ k)

+ x
∗(h)
t (d+ k −N)IA(d+ k −N)

and

bPdkt , x
(h)
t (d− k)IA(d− k)

+ x
(h)
t (d− k +N)IA(d− k +N)

with

cPdkt ,
N−k∑

n=1,n6={d,d−k}

x
(h)
t (n)x

∗(h)
t (n+ k)

+

N∑
n=N−k+1,n6={d,d−k+N}

x
(h)
t (n)x

∗(h)
t (n+ k −N).
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