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Sparse Sampling for Inverse Problems With Tensors
Guillermo Ortiz-Jiménez , Student Member, IEEE, Mario Coutino , Student Member, IEEE,

Sundeep Prabhakar Chepuri , Member, IEEE, and Geert Leus , Fellow, IEEE

Abstract—We consider the problem of designing sparse sam-
pling strategies for multidomain signals, which can be represented
using tensors that admit a known multilinear decomposition. We
leverage the multidomain structure of tensor signals and propose
to acquire samples using a Kronecker-structured sensing function,
thereby circumventing the curse of dimensionality. For designing
such sensing functions, we develop low-complexity greedy algo-
rithms based on submodular optimization methods to compute
near-optimal sampling sets. We present several numerical exam-
ples, ranging from multiantenna communications to graph signal
processing, to validate the developed theory.

Index Terms—Graph signal processing, multidimensional sam-
pling, sparse sampling, submodular optimization, tensors.

I. INTRODUCTION

IN MANY engineering and scientific applications, we fre-
quently encounter large volumes of multisensor data, defined

over multiple domains, which are complex in nature. For exam-
ple, in wireless communications, received data per user may
be indexed in space, time, and frequency [2]. Similarly, in hy-
perspectral imaging, a scene measured in different wavelengths
contains information from the three-dimensional spatial domain
as well as the spectral domain [3]. And also, when dealing with
graph data in a recommender system, information resides on
multiple domains (e.g., users, movies, music, and so on) [4].
To process such multisensor datasets, higher-order tensors or
multiway arrays have been proven to be extremely useful [5].
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Fig. 1. Different sparse sensing schemes. Black (white) dots represent selected
(unselected) measurement locations. Blue and red lines determine different do-
main directions, and a purple line means that data has a single-domain structure.

In practice, however, due to limited access to sensing re-
sources, economic or physical space limitations, it is often not
possible to measure such multidomain signals using every com-
bination of sensors related to different domains. To cope with
such issues, in this work, we propose sparse sampling techniques
to acquire multisensor tensor data.

Sparse samplers can be designed to select a subset of measure-
ments (e.g., spatial or temporal samples as illustrated in Fig. 1a)
such that the desired inference performance is achieved. This
subset selection problem is referred to as sparse sampling [6].
An example of this is field estimation, in which the measured
field is related to the source signal of interest through a lin-
ear model. To infer the source signal, a linear inverse problem
is solved. In a resource-constrained environment, since many
measurements cannot be taken, it is crucial to carefully select
the best subset of samples from a large pool of measurements.
This problem is combinatorial in nature and extremely hard to
solve in general, even for small-sized problems. Thus, most of
the research efforts on this topic focus on finding suboptimal
sampling strategies that yield good approximations of the opti-
mal solution [6]–[16].

For signals defined over multiple domains, the dimensionality
of the measurements grows much faster. An illustration of this
“curse of dimensionality” is provided in Fig. 1b, wherein the
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measurements now have to be systematically selected from an
even larger pool of measurements. Typically used suboptimal
sensor selection strategies are not useful anymore as their com-
plexity is too high; or simply because they need to store very
large matrices that do not fit in memory (see Section III for a
more detailed discussion). Usually, selecting samples arbitrar-
ily from a multidomain signal, requires that sensors are placed
densely in every domain, which greatly increases the infrastruc-
ture costs. Hence, we propose an efficient Kronecker-structured
sparse sampling strategy for gathering multidomain signals that
overcomes these issues. In Kronecker-structured sparse sam-
pling, instead of choosing a subset of measurements from all
possible combined domain locations (as in Fig. 1b), we propose
to choose a subset of sensing locations from each domain and
then combine them to obtain multidimensional observations (as
illustrated in Fig 1c). We will see later that taking this approach
will allow us to define computationally efficient design algo-
rithms that are useful in big data scenarios. In essence, the main
question addressed in this paper is, how to choose a subset of
sampling locations from each domain to sample a multidomain
signal so that its reconstruction has the minimum error?

II. PRELIMINARIES

In this section, we introduce the notation that will be used
throughout the rest of the paper as well as some preliminary
notions of tensor algebra and multilinear systems.

A. Notation

We use calligraphic letters such asL to denote sets, and |L| to
represent its cardinality. Upper (lower) case boldface letters such
as X (x) are used to denote matrices (vectors). Bold calligraphic
letters such as X denote tensors. (·)T represents transposition,
(·)H conjugate transposition, and (·)† the Moore-Penrose pseu-
doinverse. The trace and determinant operations on matrices are
represented by tr{·} and det{·}, respectively. λmin{A} denotes
the minimum eigenvalue of matrix A. We use⊗ to represent the
Kronecker product, � to represent the Khatri-Rao or column-
wise Kronecker product; and ◦ to represent the Hadamard or
element-wise product between matrices. We write the �2-norm
of a vector as ‖ · ‖2 and the Frobenius norm of a matrix or ten-
sor as ‖ · ‖F . We denote the inner product between two ele-
ments of a Euclidean space as 〈·, ·〉. The expectation operator is
denoted by E{·}. All logarithms are considered natural. In gen-
eral, we will denote the product of variables/sets using a tilde,
i.e., Ñ =

∏R
i=1 Ni, or Ñ = N1 × · · · × NR; and drop the tilde

to denote sums (unions), i.e., N =
∑R

i=1 Ni, orN =
⋃R

i=1Ni.
Some important properties of the Kronecker and the Khatri-

Rao products that will appear throughout the paper are [17]:
(A⊗B)(C⊗D) = AC⊗BD; (A⊗B)(C�D) = AC�
BD; (A�B)H(A�B) = AHA ◦BHB; (A⊗B)† =
A† ⊗B†; and (A�B)† = (AHA ◦BHB)†(A�B)H .

B. Tensors

A tensor X ∈ C
N1×···×NR of order R can be viewed as a

discretized multidomain signal, with each of its entries indexed
over R different domains.

Fig. 2. Graphic representation of a multilinear system of equations forR = 3.
Colors represent arbitrary values.

Using multilinear algebra two tensors X ∈ C
N1×···×NR and

G ∈ C
K1×···×KR may be related by a multilinear system of

equations as

X = G •1 U1 •2 · · · •R UR, (1)

where {Ui ∈ C
Ni×Ki}Ri=1 represents a set of matrices that re-

lates the ith domain ofX and the so-called core tensorG , and •i
represents the ith mode product between a tensor and a matrix
[5]; see Fig. 2a. Alternatively, vectorizing (1), we have

x = (U1 ⊗ · · · ⊗UR)g, (2)

with x = vec(X ) ∈ C
Ñ ; Ñ =

∏R
i=1 Ni, and g = vec(G ) ∈

C
K̃ ; K̃ =

∏R
i=1 Ki.

When the core tensor G ∈ C
Kc×···×Kc is hyperdiagonal (as

depicted in Fig. 2b), (2) simplifies to

x = (U1 � · · · �UR)g, (3)

with g collecting the main diagonal entries ofG . Note that g has
different meanings in (2) and (3), which can always be inferred
from the context.

Such a multilinear system is commonly seen with R = 2 and
X = G •1 U1 •2 U2 = U2G UT

1 , for instance, in image pro-
cessing when relating an image to its 2-dimensional Fourier
transform with G being the spatial Fourier transform ofX , and
U1 and U2 being inverse Fourier matrices related to the row
and column spaces of the image, respectively. When dealing
with Fourier matrices (more generally, Vandermonde matrices)
with U1 = U2 and a diagonal tensor core,X will be a Toeplitz
covariance matrix, for which the sampling sets may be designed
using sparse covariance sensing [18], [19].

III. PROBLEM MODELING

We are concerned with the design of optimal sampling
strategies for an Rth order tensor signal X ∈ C

N1×···×NR ,
which admits a multilinear parameterization in terms of a
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core tensor G ∈ C
K1×···×KR (dense or diagonal) of smaller

dimensionality. We assume that the set of system matrices
{Ui}Ri=1 are perfectly known, and that each of them is tall, i.e.,
Ni > Ki for i = 1, . . . , R, and has full column rank.

Sparse sampling a tensor X is equivalent to selecting en-
tries of x = vec(X ). Let Ñ denote the set of indices of x.
Then, a particular sample selection is determined by a subset
of selected indices Lun ⊆ Ñ such that |Lun| = Lun (subscript
“un” denotes unstructured). This way, we can denote the pro-
cess of samplingX as a multiplication ofx by a selection matrix
Θ(Lun) ∈ {0, 1}Lun×Ñ such that

y = Θ(Lun)x = Θ(Lun)(U1 ⊗ · · · ⊗UR)g, (4)

for a dense core [cf. (2)], and

y = Θ(Lun)x = Θ(Lun)(U1 � · · · �UR)g, (5)

for a diagonal core [cf. (3)]. Here, y is a vector containing the
Lun selected entries of x indexed by the set Lun.

For each case, if Θ(Lun)(U1 ⊗ · · · ⊗UR) and
Θ(Lun)(U1 � · · · �UR) have full column rank, then knowing
y allows to retrieve a unique least squares solution, ĝ, as

ĝ = [Θ(Lun)(U1 ⊗ · · · ⊗UR)]
† y, (6)

or

ĝ = [Θ(Lun)(U1 � · · · �UR)]
† y, (7)

depending on whether G is dense or hyperdiagonal. Next, we
estimate X using either (2) or (3).

In many applications, such as transmitter-receiver placement
in multiple input multiple output (MIMO) radar [20], it is not
possible to perform sparse sampling in an unstructured man-
ner by ignoring the underlying domains. For these applications,
some unstructured sparse sample selections generally require
using a dense sensor selection in each domain (as shown in
Fig. 1b), which produces a significant increase in hardware cost.
Also, there is no particular structure in (6) and (7) that may be
exploited to compute the pseudo-inverses, thus leading to a high
computational cost to estimate x. Finally, in the multidomain
case, the dimensionality grows rather fast making it difficult
to store the matrix (U1 ⊗ · · · ⊗UR) or (U1 � · · · �UR) to
perform row subset selection. For all these reasons, we will con-
strain ourselves to the case where the sampling matrix has a
compatible Kronecker structure. In particular, we define a new
sampling matrix

Φ(L) := Φ1(L1)⊗ · · · ⊗ΦR(LR), (8)

where each Φi(Li) represents a selection matrix for the ith fac-
tor of X , Li ⊆ Ni is the set of selected row indices from the
matrix Ui for i = 1, . . . , R, and L =

⋃R
i=1 Li and Li ∩ Lj =

∅ for i �= j.
We will use the notation |Li| = Li and |L| = ∑R

i=1 Li = L
to denote the number of selected sensors per domain and the
total number of selected sensors, respectively; whereas L̃ =
L1 × · · · × LR and L̃ = |L̃| = ∏R

i=1 Li denote the set of sam-
ple indices and the total number of samples acquired with the
above Kronecker-structured sampler. In order to simplify the

notation, whenever it will be clear, we will drop the explicit de-
pendency of Φi(Li) on the set of selected rows Li, from now
on, and simply use Φi.

Imposing a Kronecker structure on the sampling scheme
means that sampling can be performed independently for each
domain. In the dense core tensor case [cf. (2)], we have

y = (Φ1 ⊗ · · · ⊗ΦR) (U1 ⊗ · · · ⊗UR)g

= (Φ1U1 ⊗ · · · ⊗ΦRUR)g = Ψ(L)g, (9)

whereas in the diagonal core tensor case [cf. (3)], we have

y = (Φ1 ⊗ · · · ⊗ΦR) (U1 � · · · �UR)g

= (Φ1U1 � · · · �ΦRUR)g = Ψ(L)g. (10)

As in the unstructured case, whenever (9) or (10) are overde-
termined, using least squares, we can estimate the core ĝ =
Ψ†(L)y as

ĝ =
[
(Φ1U1)

† ⊗ · · · ⊗ (ΦRUR)
†
]
y, (11)

or

ĝ =
[
(Φ1U1)

H (Φ1U1) ◦ · · · ◦ (ΦRUR)
H (ΦRUR)

]†

×
[
(Φ1U1)

H � · · · � (ΦRUR)
H
]
y, (12)

and then reconstruct x̂ using (2) or (3), respectively. Compar-
ing (11) and (12) to (6) and (7) we can see that leveraging the
Kronecker structure of the proposed sampling scheme allows to
greatly reduce the computational complexity of the least-squares
problem, as the pseudoinverses in (11) and (12) are taken on ma-
trices of a much smaller dimensionality than in (6) and (7). An
illustration of the comparison between unstructured sparse sens-
ing and Kronecker-structured sparse sensing is shown in Fig. 3
for R = 2.

Suppose the measurements collected in y are perturbed
by zero-mean white Gaussian noise with unit variance, then
the least-squares solution has the inverse error covariance or
the Fisher information matrixT(L) = E{(g − ĝ)(g − ĝ)H} =
ΨH(L)Ψ(L) that determines the quality of the estimators ĝ.
Therefore, we can use scalar functions of T(L) as a figure of
merit to propose the sparse tensor sampling problem

optimize
L1,...,LR

f {T(L)} s. to
R∑

i=1

|Li| = L, L =
R⋃

i=1

Li, (13)

where with “optimize” we mean either “maximize” or “min-
imize” depending on the choice of the scalar function f{·}.
Solving (13) is not trivial due to the cardinality constraints.
Therefore, in the following, we will propose tight surrogates
for typically used scalar performance metrics f{·} in design of
experiments with which the above discrete optimization prob-
lem can be solved efficiently and near optimally.

Note that the cardinality constraint in (13) restricts the total
number of selected sensors to L, without imposing any con-
straint on the total number of gathered samples L̃. Although
the maximum number of samples can be constrained using the
constraint

∑R
i=1 log |Li| ≤ L̃, the resulting near-optimal solvers
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Fig. 3. Comparison between unstructured sampling and structured sampling (R = 2). Black (white) cells represent zero (one) entries, and colored cells represent
arbitrary numbers.

are computationally intense with a complexity of about O(N5)
[21], [22]. Such heuristics are not suitable for the large-scale
scenarios of interest.

Remark: For a given system model such as the ones in (2) or
(3) designing an unstructured sampling set Θ(Lun) would have
a computational complexity of O(g(Ñ , L̃, K̃)), where g is a
complexity measure function that would depend on the specific
optimization method that is used to select the samples. On the
other hand, as we will see later on, for the formulation in (13) and
for certain performance measures the complexity of selecting
a near-optimal sampling set becomes O(g′(N,L,K)) with g′

being another complexity measure function that would again
depend on the sampling set design algorithm. For this reason, as
long as g and g′ scale similarly, as happens with our algorithms,
we will achieve a major computational complexity reduction
since Ñ � N , L̃� L, and K̃ � K.

A. Prior Art

Choosing the best subset of measurements from a large set
of candidate sensing locations has received a lot of attention,
particularly for R = 1, usually under the name of sensor se-
lection/placement, which also is more generally referred to as
sparse sensing [6]. Typically sparse sensing design is posed as a
discrete optimization problem that finds the best sampling subset
by optimizing a scalar function of the error covariance matrix.
Some of the popular choices are, to minimize the mean squared
error (MSE): f{T(L)} := tr{T−1} or the frame potential:
f{T(L)} := tr{THT}, or to maximize f{T(L)} := λmin{T}
or f{T(L)} := log det{T}. In this work, we will focus on the
frame potential criterium as we will show later that this metric
leads to very efficient sampler designs.

Depending on the strategy used to solve the optimization prob-
lem (13) we can classify the prior art in two categories: solvers

based on convex optimization, and greedy methods that lever-
age submodularity. In the former category, [7] and [14] present
several convex relaxations of the sparse sensing problem for
different optimality criteria for inverse problems with linear and
non-linear models, respectively. In particular, due to the Boolean
nature of the sensor selection problem (i.e., a sensor is either se-
lected or not), its related optimization problem is not convex.
However, these constraints and the constraint on the number
of selected sensors can be relaxed, and once the relaxed con-
vex problem is solved, a thresholding heuristic (deterministic or
randomized) can be used to recover a Boolean solution. Despite
its good performance, the complexity of convex optimization
solvers is rather high (cubic with the dimensionality of the sig-
nal). Therefore, the use of convex optimization approaches to
solve the sparse sensing problem in large-scale scenarios, such
as the sparse tensor sampling problem, gets even more compu-
tationally intense.

For high-dimensional scenarios, greedy methods (algorithms
that select one sensor at a time) are more useful. The number
of function evaluations performed by a greedy algorithm scales
linearly with the number of sensors, and if one can prove
submodularity of the objective function, its solution has a
multiplicative near-optimality guarantee [23]. Several authors
have followed this strategy and have proved submodularity of
different optimality criteria such as D-optimality [9], mutual
information [8], and frame potential [10], for the case R = 1.
Later works illustrated a good performance of greedy methods
on some easy to compute surrogate functions that have a pos-
itive correlation with some of the aforementioned performance
measures (e.g. λmin) [11]. However, they fail to show theoretical
near-optimality guarantees.

Besides parameter estimation, sparse sensing has also been
studied for other common signal processing tasks, like detection
[12], [15], [24] and filtering [13], [16], and has been expanded
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to more general scenarios through the use of convex and matroid
constraints that allow to robustify the sensing mechanisms by
accounting for uncertainties in the system model [25] or some
sensor functional constraints [20], [26]. Extensions to nonlinear
system models have also been introduced in [27]. In [28], the
authors propose an extension of the sparse sensing framework
to a particular case of R = 2 (space-time signals): They sug-
gest learning a spatio-temporal sampling pattern using different
temporal selection matrices for every spatial node location. To
obtain the sampling positions they use the model in [10] and
optimize greedily the frame potential of every spatial location
using a system model that was learnt using the aggregated data
from previous iterations. However, although their methodology
allows for the design of overall sparse space-time samplers, they
do not impose individual domain sparsity in any of the domains,
thus requiring a general dense deployment of space-time sensing
resources (cf. Fig. 1b). In this sense, to the best of our knowl-
edge, we are the first to extend the sparse sensing paradigm to
the general case of R ≥ 1 while enforcing sensor sparsity in all
domains.

In a different context, the extension of compressed sensing
(CS) to multidomain signals has been extensively studied [29]–
[32]. CS is many times seen as a complementary sampling frame-
work to sparse sensing [6], wherein CS the focus is on recovering
a sparse signal rather than on designing a sparse measurement
space.

B. Our Contributions

In this paper, we extend the sparse sampling framework to
multilinear inverse problems. We refer to it as “sparse tensor
sampling”. We focus on two particular cases, depending on the
structure of the core tensor G :
� Dense core: Whenever the core tensor is non-diagonal,

sampling is performed based on (9). We will see that to
ensure identifiability of the system, we need to select more
entries in each domain than the rank of its corresponding
system matrix, i.e., as a necessary condition we require
L ≥∑R

i=1 Ki = K sensors, where {Ki}Ri=1 are the di-
mensions of the core tensor G .

� Diagonal core: Whenever the core tensor is diagonal, sam-
pling is performed based on (10). The use of the Khatri-Rao
product allows for higher compression. In particular, un-
der mild conditions on the entries of the factor matrices,
we can guarantee identifiability of the sampled equations
using L ≥ Kc +R− 1 sensors, where Kc is the length of
the edges of the hypercubic core G .

For both the cases, we propose efficient greedy algorithms to
compute a near-optimal sampling set.

C. Paper Outline

The remainder of the paper is organized as follows. In
Sections IV and V, we develop solvers for the sparse tensor
sampling problem with dense and diagonal core tensors, respec-
tively. In Section VI, we provide a few examples to illustrate
the developed framework. Finally, we conclude this paper by
summarizing the results in Section VII.

IV. DENSE CORE SAMPLING

In this section, we focus on the most general situation when
G is an unstructured dense tensor. Our objective is to design
the sampling sets {Li}Ri=1 by solving the discrete optimization
problem (13).

We formulate the sparse tensor sampling problem using the
frame potential as a performance measure. Following the same
rationale as in [10], but for multidomain signals, we will argue
that the frame potential is a tight surrogate of the MSE. By doing
so, we will see that when we impose a Kronecker structure on
the sampling scheme, as in (8), the frame potential of Ψ can be
factorized in terms of the frame potential of the different domain
factors. This allows us to propose a low complexity algorithm
for sampling tensor data.

Throughout this section, we will use tools from submodular
optimization theory. Hence, we will start by introducing the main
concepts related to submodularity in the next subsection.

A. Submodular Optimization

Submodularity is a notion based on the law of diminishing
returns [33] that is useful to obtain heuristic algorithms with
near-optimality guarantees for cardinality-constrained discrete
optimization problems. More precisely, submodularity is for-
mally defined as follows.

Definition 1 (Submodular function [33]): A set function f :
2N → R defined over the subsets of N is submodular if, for
every X ⊆ N and x, y ∈ N \ X , we have

f(X ∪ {x})− f(X ) ≥ f(X ∪ {x, y})− f(X ∪ {y}).
A function f is said to be supermodular if −f is submodular.

Besides submodularity, many near-optimality theorems in
discrete optimization require functions to be also monotone non-
decreasing, and normalized.

Definition 2 (Monotonicity): A set function f : 2N → R is
monotone non-decreasing if, for every X ⊆ N ,

f(X ∪ {x}) ≥ f(X ) ∀x ∈ N \ X
Definition 3 (Normalization): A set function f : 2N → R is

normalized if f(∅) = 0.
In submodular optimization, matroids are generally used to

impose constraints on an optimization, such as the ones in (13).
A matroid generalizes the concept of linear independence in
algebra to sets. Formally, a matroid is defined as follows.

Definition 4 (Matroid [34]): A finite matroid M is a pair
(N , I), where N is a finite set and I is a family of subsets
ofN that satisfies: 1) The empty set is independent, i.e., ∅ ∈ I;
2) For every X ⊆ Y ⊆ N , if Y ∈ I, then X ∈ I; and 3) For
every X ,Y ⊆ N with |Y| > |X | and X ,Y ∈ I there exists one
x ∈ Y \ X such that X ∪ {x} ∈ I.

In this paper we will deal with the following types of matroids.
Example 1 (Uniform matroid [34]): The subsets of N with

at most K elements form a uniform matroid Mu = (N , Iu)
with Iu = {X ⊆ N : |X | ≤ K}.

Example 2 (Partition matroid [34]): If {Ni}Ri=1 form a par-
tition of N =

⋃R
i=1Ni then Mp = (N , Ip) with Ip = {X ⊆

N : |X ∩ Ni| ≤ Ki i = 1, . . . , R} defines a partition matroid.
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Algorithm 1: Greedy Maximization Subject to T Matroid
Constraints.
Require: X = ∅, K, {Ii}Ti=1

1: for k ← 1 to K do
2: s� = argmax

s/∈X
{f(X ∪ {s}) : X ∪ {s} ∈ ⋂T

i=1 Ii}
3: X ← X ∪ {s�}
4: end
5: return X

Example 3 (Truncated partition matroid [34]): The inter-
section of a uniform matroid Mu = (N , Iu) and a partition
matroid Mp = (N , Ip) defines a truncated partition matroid
Mt = (N , Ip ∩ Iu).

The matroid-constrained submodular optimization problem

maximize
X⊆N

f(X ) subject to X ∈
T⋂

i=1

Ii (14)

can be solved near optimally using Algorithm 1. This result is
formally stated in the following theorem.

Theorem 1 (Matroid-constrained submodular maximization
[35]): Let f : 2N → R be a monotone non-decreasing, normal-
ized, submodular set function, and {Mi = (N , Ii)}Ti=1 be a
set of matroids defined overN . Furthermore, let X � denote the
optimal solution of (14), and let Xgreedy be the solution obtained
by Algorithm 1. Then

f(Xgreedy) ≥
1

T + 1
f(X �).

B. Greedy Method

The frame potential [36] of the matrix Ψ is defined as
the trace of the Grammian matrix FP(Ψ) := tr{THT} with
T = ΨHΨ. The frame potential can be related to the MSE,
MSE(Ψ(L)) = tr{T−1(L)}, using [10]

c1
FP (Ψ(L))
λ2
max{T(L)} ≤ MSE(Ψ(L)) ≤ c2

FP (Ψ(L))
λ2
min{T(L)}, (15)

where c1, and c2 are constants that depend on the data model.
From the above bound, it is clear that by minimizing the frame

potential of Ψ one can minimize the MSE, which is otherwise
difficult to minimize as it is neither convex, nor submodular.

The frame potential of Ψ(L) := Ψ1(L1)⊗ · · · ⊗ΨR(LR)
can be expressed as the frame potential of its factors Ψi(Li) :=
Φi(Li)Ui. To show this, recall the definition of the frame po-
tential as

FP (Ψ(L)) = tr
{
TH(L)T(L)}

= tr
{
TH

1 T1 ⊗ · · · ⊗TH
RTR

}
, (16)

where Ti = ΨH
i Ψi. Now, using the fact that for any two matri-

ces A ∈ C
KA×KA and B ∈ C

KB×KB we have tr {A⊗B} =
tr{A}tr{B}, we can expand (16) as

FP (Ψ(L)) =
R∏

i=1

tr
{
TH

i Ti

}
=

R∏

i=1

FP (Ψi(Li)) .

For brevity, we will write the above expression alternatively as
an explicit function of the selection sets Li:

F (L) := FP (Ψ(L)) =
R∏

i=1

Fi(Li) :=

R∏

i=1

FP (Ψi(Li)) .

(17)

Expression (17) shows again the advantage of working with
a Kronecker-structured sampler: instead of computing every
cross-product between the columns of Ψ to compute the frame
potential, we can arrive to the same value using the frame po-
tential of {Ψi}Ri=1.

1) Submodularity ofF (L): FunctionF (L) as defined in (17)
does not directly meet the conditions for the guarantees provided
by Theorem 1, but it can be modified slightly to satisfy them. In
this sense, we define the function G : 2N → R on the subsets of
N as

G(S) := F (N )− F (N \S), (18)

where F (N ) =
∏R

i=1 Fi(Ni), F (N \S) = ∏R
i=1 Fi(Ni\Si),

andS =
⋃R

i=1 Si, Si ∩ Sj = ∅ for i �= j. Therefore, {Si}Ri=1

form a partition of S .
It is clear that if we make the change of variables from L to S

maximizingG overS is the same as minimizing the frame poten-
tial overL. However, working with the complement set results in
a set function that is submodular and monotone non-decreasing,
as shown in the next theorem. Consequently, G satisfies the con-
ditions for the results in Theorem 1.

Theorem 2: The set function G(S) defined in (18) is a nor-
malized, monotone non-decreasing, submodular function for all
subsets of N =

⋃R
i=1Ni.

Proof: See Appendix A. �
With this result we can now claim near-optimality of the

greedy algorithm that solves the cardinality constrained max-
imization of G(S). However, as we said, minimizing the frame
potential only makes sense as long as (15) is tight. In particular,
whenever T(L) is singular we know that the MSE is infinity,
and hence (15) is meaningless. For this reason, next to the cardi-
nality constraint in (13) that limits the total number of sensors,
we need to ensure that Ψ(L) has full column rank, i.e., Li ≥ Ki

for i = 1, . . . , R. In terms of S , this is equivalent to

|Si| = |Ni \ Li| ≤ Ni −Ki i = 1, . . . , R, (19)

where this set of constraints forms a partition matroid Mp =
(N , Ip) [cf. Example 2 from Definition 4]. Hence, we can in-
troduce the following submodular optimization problem as sur-
rogate for the minimization of the frame potential

maximize
S⊆N

G(S) s. to S ∈ Iu ∩ Ip, (20)

withIu = {A ⊆ N : |A| ≤ N − L} andIp = {A ⊆ N : |A ∩
Ni| ≤ Ni −Ki i = 1, . . . , R}. Theorem 1 gives, therefore, all
the ingredients to assess the near-optimality of Algorithm 1 ap-
plied on (20), for which the results are particularized in the fol-
lowing corollary.

Corollary 1: The greedy solution Sgreedy to (20) obtained
from Algorithm 1) is 1/2 near optimal, i.e., G(Sgreedy) ≥
1
2G(S�).
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Proof: Follows from Theorem 1, and since (20) has T = 1
(truncated-partition) matroid constraint. �

Remark: Note that the alternative formulation of (20) that
maximizes the number of removed sensors subject to some per-
formance guarantee, i.e.,

maximizeS⊆N |S| s. to. F (N \S) ≤ γ and S ∈ Ip, (21)

can also be solved by the same greedy algorithm by stopping
the iterations whenever F (N \ L) ≤ γ instead of when |S| =
N − L.

Next, we compute an explicit bound with respect to the frame
potential of Ψ, which is the objective function we initially
wanted to minimize. This bound is given in the following theo-
rem.

Theorem 3: The greedy solution Lgreedy to (20) obtained
from Algorithm 1 is near optimal with respect to the frame poten-
tial as F (Lgreedy) ≤ γF (L�) with γ = 1

2 (
K
L2

min

∏R
i=1 Fi(Ni) +

1), and Lmin = mini∈L ‖ui‖22, being ui the ith row of (U1 ⊗
· · · ⊗UR).

Proof: Obtained similar to the bound in [10], but specialized
for (17) and 1/2-near-optimality; see [37] for details. �

As with the R = 1 case in [10], γ is heavily influenced by
the frame potential of (U1 ⊗ · · · ⊗UR). Specifically, the ap-
proximation gets tighter when F (N ) is small or the core tensor
dimensionality decreases.

2) Computational Complexity: The running time of Algo-
rithm 1 applied to solve (20) can greatly be reduced by pre-
computing the inner products between the rows of every Ui be-
fore starting the iterations. This has a complexity of O(N2

i Ki)
for each domain. Once these inner products are computed, in
each iteration we need to find R times the maximum over
O(Ni) elements. Since we run N − L iterations, the complex-
ity of all iterations is O(N2

max), with Nmax = maxi Ni. There-
fore, the total computational complexity of the greedy method is
O(N2

maxKmax) with Kmax = maxi Ki, whereas performing the
sample selection in an unstructured manner requires O(Ñ2K̃)
computations, as described in [10], where we now need to find a
subset of rows of a matrix of size Ñ × K̃. In light of this result,
and considering that Nmax � Ñ and Kmax � K̃, we highlight
once more the computational advantage of the structured ap-
proach which effectively puts a cap on the exponential increase
in complexity with the tensor order.

3) Practical Considerations: Due to the characteristics of the
greedy iterations, the algorithm tends to give solutions with a
very unbalanced cardinality. In particular, for most situations, the
algorithm chooses one of the domains in the first few iterations
and empties that set till it hits the identifiability constraint of
that domain. Then, it proceeds to another domain and empties it
as well, and so on. This is due to the objective function, which
is a product of smaller objectives. Indeed, if we are asked to
minimize a product of two elements by subtracting a value from
them, it is generally better to subtract from the smallest element.
Hence, if this minimization is performed multiple times we will
tend to remove always from the same element.

The consequences of this behavior are twofold. On the one
hand, this greedy method tends to give a sensor placement that
yields a very small number of samples L̃, as we will also see in
the simulations. Therefore, when comparing this method to other
sensor selection schemes that produce solutions with a larger L̃
it generally ranks worse in MSE for a given L. On the other
hand, the solution of this scheme tends to be tight on the identi-
fiability constraints for most of the domains, thus hampering the
performance on those domains. This implication, however, has
a simple solution. By introducing a small slack variable αi > 0
to the constraints, we can obtain a sensor selection which is not
tight on the constraints. This amounts to solving the problem

maximize
S⊆N

G(S)

s. to |S| = N − L, |S ∩ Ni| ≤ Ni −Ki − αi, i = 1, . . . , R.
(22)

Tuning {αi}Ri=1 allows to regularize the tradeoff between com-
pression and accuracy of the greedy solution.

On the other hand, as explained in [10] the greedy minimiza-
tion of the frame potential tends to select the rows with the
highest energy first regardless of their direction. For this reason,
we follow the advice in [10] and normalize all rows of {Ui}Ri=1

before starting the algorithm iterations.
We conclude this section with a remark on an alternative per-

formance measure.
Remark: As a alternative performance measure, one can

think on maximizing the set function log det{T(L)}. Although
this set function can be shown to be submodular over all subsets
ofN [37], the related greedy algorithm cannot be constrained to
always result in an identifiable system after subsampling. Thus,
its applicability is more limited than the frame potential formu-
lation; see [37] for a more detailed discussion.

V. DIAGONAL CORE SAMPLING

So far, we have focused on the case when G is dense and has
no particular structure. In that case, we have seen that we require
at least

∑R
i=1 Ki sensors to recover our signal with a finite MSE.

In many cases of interest, G admits a structure. In particular, in
this section, we investigate the case whenG is a diagonal tensor.
Under some mild conditions on the entries of {U}Ri=1, we can
leverage the structure of G to further increase the compression.
As before, we develop an efficient and near-optimal greedy al-
gorithm based on minimizing the frame potential to design the
sampling set.

A. Identifiability Conditions

In contrast to the dense core case, the number of unknowns
in a multilinear system of equations with a diagonal core does
not increase with the tensor order, whereas for a dense core it
grows exponentially. This means that when sampling signals
with a diagonal core decomposition, one can expect a stronger
compression.

To derive the identifiability conditions for (10), we present
the result from [38] as the following theorem.
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Theorem 4 (Rank of Khatri-Rao product [38]): Let A ∈
C

N×K and B ∈ C
M×K be two matrices with no all-zero col-

umn. Then,

rank(A�B) ≥ max{rank(A), rank(B)}.
Based on the above theorem, we can give the following suf-

ficient conditions for identifiability of the system (10).
Corollary 2: Let zi denote the maximum number of zero en-

tries in any column ofUi. If for everyΨi(Li)we have |Li| > zi,
and there is at least one Ψj with rank(Ψj) = Kc, then Ψ(L)
has full column rank.

Proof: Selecting Li > zi rows from each Ui ensures that no
Ψi will have an all-zero column. Then, if for at least one Ψj we
have rank(Ψj) = Kc, then due to Theorem 4 we have

rank(Ψ(L)) ≥ max
i=1,...,R

{rank(Ψi)}

= max

{

rank(Ψj),max
i�=j
{rank(Ψj)}

}

= Kc.

�
Therefore, in order to guarantee identifiability we need to

select Lj ≥ max{Kc, zj + 1} rows from any factor matrix j,
and Li ≥ max{1, zi + 1} from the other factors with i �= j. In
many scenarios, we usually have {zi = 0}Ri=1 since no entry in
{Ui}Ri=1 will exactly be zero. In those situations we will require
to select at least L =

∑R
i=1 Li ≥ Kc +R− 1 elements.

B. Greedy Method

As we did for the case with a dense core, we start by finding
an expression for the frame potential of a Khatri-Rao product in
terms of its factors. The Grammian matrix T(L) of a diagonal
core tensor decomposition has the form

T = ΨHΨ = (Ψ1 � · · · �ΨR)
H (Ψ1 � · · · �ΨR)

= ΨH
1 Ψ1 ◦ · · · ◦ΨH

RΨR = T1 ◦ · · · ◦TR.

Using this expression, the frame potential of a Khatri-Rao prod-
uct becomes

FP (Ψ) = tr
{
THT

}
= ‖T‖2F = ‖T1 ◦ · · · ◦TR‖2F . (23)

For brevity, we will denote the frame potential as an explicit
function of the selected set as

P (L) := FP (Ψ(L)) = ‖T1(L1) ◦ · · · ◦TR(LR)‖2F . (24)

Unlike in the dense core case, the frame potential of a Khatri-
Rao product cannot be separated in terms of the frame potential
of its factors. Instead, (23) decomposes the frame potential using
the Hadamard product of the Grammian of the factors.

1) Submodularity ofP (L): SinceP (L) does not directly sat-
isfy the conditions for the guarantees provided by Theorem 1,
we propose using the following set function Q : 2N → R as a
surrogate for the frame potential

Q(S) := P (N )− P (N \S), (25)

with P (N ) = ‖T1(N1) ◦ · · · ◦Tr(Nr)‖2F and P (N \S) =
‖T1(N1\S1) ◦ · · · ◦TR(NR \ SR)‖2F .

Theorem 5: The set function Q(S) defined in (25) is a nor-
malized, monotone non-decreasing, submodular function for all
subsets of N =

⋃R
i=1Ni.

Proof: See Appendix B. �
Using Q and imposing the identifiability constraints defined

in Section V-A, we can write the related optimization problem
for the minimization of the frame potential as

maximize
S⊆N

Q(S) s. to S ∈ Iu ∩ Ip, (26)

where Iu = {A ⊆ N : |S| ≤ N − L} and Ip = {A ⊆ N :
|A ∩ Ni| ≤ βi i = 1, . . . , R} with βj = Nj −max{Kc, zj}
and βi = Ni −max{1, zi + 1} for i �= j. Here, the choice of
the index j is arbitrary, and can be set depending on the appli-
cation. For example, with some space-time signals it is more
costly to sample space than time, and, in those cases, j is gen-
erally chosen for the temporal domain.

As a result, (26) is a submodular maximization problem with a
truncated partition matroid constraint [cf. Example 2 from Def-
inition 4]. Thus, from Theorem 1, we know that greedy max-
imization of (26) using Algorithm 1 has a multiplicative near-
optimal guarantee. This result is made precise in the following
corollary.

Corollary 3: The greedy solution Sgreedy to (26) obtained us-
ing Algorithm 1 is 1/2 near optimal, i.e.,Q(Sgreedy) ≥ 1

2Q(S�).
Here, S� denotes the optimal solution of (26).

Similar to the dense core case, we can also provide a bound
on the near-optimality of of the greedy solution with respect to
the frame potential.

Theorem 6: The solution set Lgreedy = N \ Sgreedy obtained
from Algorithm 1 is near optimal with respect to the frame po-
tential as P (Lgreedy) ≤ γP (L�), with γ = 0.5(‖T1(N1) ◦ · · · ◦
TR(NR)‖2FKL−2min + 1) and L� = N \ S�.

Proof: Based on the proof of Theorem 3. The bound is ob-
tained using (23) instead of (17) in the derivation. �

2) Computational Complexity: The computational complex-
ity of the greedy method is now governed by the complexity
of computing the Grammian matrices Ti. This can greatly be
improved if before starting the iterations, one precomputes all
the outer products in {Ti}Ri=1. Doing this has a computational
complexity of O(NmaxK

2
c ). Then, in every iteration, the eval-

uation of P (L) would only cost O(RK2
c ) operations. Further,

because in every iteration we need to query O(Ni) elements
on each domain, and we run the algorithm for N − L iterations,
the total time complexity of the iterations isO(RN2

maxK
2
c ). This

term dominates over the complexity of the precomputations, and
thus can be treated as the worst case complexity of the greedy
method. On the other hand, the unstructured sample selection re-
quiresO(Ñ2K) computations, corresponding to the complexity
of selecting rows from a matrix of size Ñ ×K. Again, although
more moderate than in the dense core case, the gain in computa-
tional complexity between the structured and unstructured case
is very substantial.

3) Practical Considerations: The proposed scheme suffers
from the same issues as in the dense core case. Namely, it tends to
empty the domains sequentially, thus producing solutions which
are tight on the identifiability constraints. Nevertheless, as we
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Fig. 4. Dense core with R = 3, N1 = 50,N2 = 60,N3 = 70, K1 = 10,K2 = 20,K3 = 15, and α1 = α2 = α3 = 2.

indicated for the dense core, the drop in performance associ-
ated with the proximity of the solutions to the constraints can be
reduced by giving some slack to the constraints. We also nor-
malize all rows of the system matrices before performing the
sensor selection.

VI. NUMERICAL RESULTS

In this section1, we will illustrate the developed framework
through several examples. First, we will show some results ob-
tained on synthetic datasets to compare the performance of the
different near-optimal algorithms. Then, we will focus on large-
scale real-world examples related to (i) graph signal processing:
sampling product graphs for active learning in recommender
systems, and (ii) array processing for wireless communications:
multiuser source separation, to show the benefits of the devel-
oped framework.

A. Synthetic Example

1) Dense Core: We compare the performance in terms of
the theoretical MSE of our proposed greedy algorithm (hence-
forth referred to as greedy-FP) to a random sampling scheme
based on randomly selecting rows of Ui such that the resulting
subset of samples also have a Kronecker structure. Only those
selections that satisfy the identifiability constraints in (19) are
considered valid. We note that the time complexity of evalu-
ating M times the MSE for a Kronecker-structured sampler is
O(MN2

maxKmax). For this reason, using many realizations (say,
a large number M ) of random sampling to obtain a good sparse
sampler is computationally intense.

To perform this comparison, we perform 100 Monte-Carlo
experiments, and in each experiment, random matrices with di-
mensionsN1 = 50,N2 = 60, andN3 = 70, as well asK1 = 10,
K2 = 20, and K3 = 15 are drawn with normal Gaussian dis-
tributed entries. For each Monte-Carlo trial, we solve (20) for a
different number of sensors L using greedy-FP and compare its
performance in terms of MSE to M = 100 random structured
sparse samplers2 obtained for each value of L. Fig. 4 shows the

1The code to reproduce these experiments can be found at https://gitlab.
com/gortizji/sparse_tensor_sensing

2The programmatic generation of structured random samplers from a uniform
distribution that meet the identifiability constraints is not a trivial problem. In
this work, we use a stars-and-bars algorithm [39] for the selection of the random
{Li} set dimensions where we discard any sample that does not satisfyLi > Ki

for all i ∈ {1, . . . , R}.

results of these experiments. The plot on the left shows the per-
formance averaged over the different models against the number
of sensors, wherein the blue shaded area represents the 10–90
percentile average interval of the random sampling scheme. The
performance values, in dB scale, are normalized by the value
of the unsampled MSE. Because the estimation performance is
heavily influenced by its related number of samples L̃, and not-
ing the fact that a value of L may lead to different L̃, we also
present, in the plot on the right side of Fig. 4, the performance
comparison for one model realization against the relative num-
ber of samples L̃/Ñ so that differences in the informative quality
of the selections are highlighted.

The plots in Fig. 4 illustrate some important features of the
proposed sparse sampling method. When comparing the per-
formance against the number of sensors, we see that there
are areas where greedy-FP performs as well as random sam-
pling. However, when comparing the same results against
the number of samples we see that greedy-FP consistently
performs better than random sampling. The reason for this
disparity is due to characteristics of greedy-FP that we in-
troduced in Section IV-B. Namely, the tendency of greedy-
FP to produce sampling sets with the minimum number of
samples.

On the other hand, the performance curve of greedy-FP shows
three bumps (recall that we use R = 3). Again, this is a conse-
quence of greedy-FP trying to meet the identifiability constraints
in (20) with equality. As we increase L, the solutions of greedy-
FP increase in cardinality by adding more elements to a single
domain until the constraints are met, and then proceed to the
next domain. The bumps in Fig. 4 correspond precisely to these
instances. Furthermore, as seen from the exponential decay after
every plateau in Fig. 4, slightly increasing the number of ele-
ments in one domain beyond its identifiability value (on every
plateau only one domain is being filled) induces a significant
improvement on the reconstruction performance. This suggests
that in practical applications αi can be set to a very small value
(e.g. αi = 0.05Ni) and still achieve a good balance between
compression and accuracy.

2) Diagonal Core: We perform the same experiment for
the diagonal core case, this time with dimensions N1 = 50,
N2 = 60, N3 = 70, and Kc = 20. The results are shown in
Fig. 5. Again we see that the proposed algorithm outperforms
random sampling, especially when collecting just a few sam-
ples. Furthermore, as happened in the dense core case, the per-
formance curve of greedy-FP follows a stairway shape.
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Fig. 5. Diagonal core with R = 3 with N1 = 50,N2 = 60,N3 = 70, Kc = 20, β1 = β2 = 1, and β3 = 20.

Fig. 6. User and movie networks. The red (black) dots represent the observed
(unobserved) vertices. Visualization obtained using Gephi [45].

B. Active Learning For Recommender Systems

Current recommendation algorithms seek solving an estima-
tion problem of the form: given the past recorded preferences of
a set of users, what is the rating that these would give to a set of
products? In this paper, in contrast, we focus on the data acqui-
sition phase of the recommender system, which is also referred
to as active learning/sampling. In particular, we claim that by
carefully designing which users to poll and on which items, we
can obtain an estimation performance on par with the state-of-
the-art methods, but using only a fraction of the data that current
methods require, and using a simple least-squares estimator.

We showcase this idea on the MovieLens 100k dataset [40]
that contains partial ratings of N1 = 943 users over N2 = 1682
movies which are stored in a second-order tensorX ∈ R

N1×N2 .
At this point, we emphasize the need for our proposed frame-
work, since it is obvious that designing an unstructured sampling
set with about 1.5 million candidate locations is unfeasible with
current computing resources.

A model ofX in the form of (1) can be obtained by viewingX
as a signal that lives on a graph. In particular, the first two modes
ofX can be viewed as a signal defined on the Cartesian product
of a user and movie graph, respectively. These two graphs, shown
in Fig. 6, are provided in the dataset and are two 10-nearest-
neighbors graphs created based on the user and movie features.

Based on the recent advances in graph signal processing
(GSP) [41], [42], X can be decomposed as X = X f •1 V1 •2
V2. Here, V1 ∈ R

N1×N1 and V2 ∈ R
N2×N2 are the eigenbases

of the Laplacians of the user and movie graphs, respectively, and
X f ∈ CN1×N2 is the so-called graph spectrum ofX [41], [42].
Suppose the energy of the spectrum ofX is concentrated in the
first few K1 and K2 columns of V1 and V2, respectively, then
X admits a low-dimensional representation, or X is said to be
smooth or bandlimited with respect to the underlying graph [42].
This property has been exploited in [43], [44] to impute the miss-
ing entries inX . In contrast, we propose a scheme for sampling
and reconstruction of signals defined on product graphs.

In our experiments, we setK1 = K2 = 20, and obtain the de-
composition X = G •1 U1 •2 U2, where U1 ∈ C

N1×K1 and
U2 ∈ C

N2×K1 consist of the first K1 and K2 columns of V1

and V2, respectively; and G = X f(1 : K1, 1 : K2).
For the greedy algorithm we use L = 100 and α1 = α2 = 5,

resulting in a selection of L1 = 25 users and L2 = 75 movies,
i.e., a total of 1875 vertices in the product graph. Fig. 6, shows
the sampled users and movies, i.e., users to be probed for movie
ratings. The user graph [cf. Fig. 6a] is made out of small clus-
ters connected in a chain-like structure, resulting in a uniformly
spread distribution of observed vertices. On the other hand, the
movies graph [cf. Fig. 6b] is made out of a few big and small
clusters. Hence, the proposed active querying scheme assigns
more observations to the bigger clusters and fewer observations
to the smaller ones.

To evaluate the performance of our algorithm, we compute
the RMSE of the estimated data using the test mask provided by
the dataset. Nevertheless, since our active query method requires
access to ground truth data (i.e., we need access to the samples
at locations suggested by the greedy algorithm) which is not
provided in the dataset, we use GRALS [4] to complete the
matrix, and use its estimates when required. A comparison of
our algorithm to the performance of the state-of-the-art methods
run on the same dataset is shown in Table I. In light of these
results, it is clear that a proper design of the sampling set allows
to obtain top performance with significantly fewer ratings, i.e.,
about an order of magnitude, and using a much simpler non-
iterative estimator.

C. Multiuser Source Separation

In multiple-input multiple-output (MIMO) communications
[2], the use of rectangular arrays [48] allows to separate sig-
nals coming from different azimuth and elevation angles, and
it is common that users transmit data using different spreading
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TABLE I
PERFORMANCE ON MOVIELENS 100 K. BASELINE SCORES ARE

TAKEN FROM [47]

codes to reduce the interference from other sources. Reducing
hardware complexity by minimizing the number of antennas and
samples to be processed is an important concern in the design of
MIMO receivers. This design can be seen as a particular instance
of sparse tensor sampling.

We consider a scenario with Kc users located at different
angles of azimuth (φ) and elevation (θ) transmitting using unique
spreading sequences of length N3. The receiver consists of a
uniform rectangular array (URA) with antennas located on a
N1 ×N2 grid. Each time instant, every antenna receives [48]

x(r, l,m, n) =

Kc∑

k=1

sk(r)ck(l)e
j2πnΔx sin θkej2πmΔy sinφk

+ w(r, l,m, n),

where sk(r) the symbol transmitted by user k in the rth symbol
period; ck(l) the lth sample of the spreading sequence of the kth
user; Δx and Δy the antenna separations in wavelengths of the
URA in the x and y dimensions, respectively; and φk and θk
the azimuth and elevation coordinates of user k, respectively;
and where w(r, l,m, n) represents an additive white Gaussian
noise term with zero mean and variance σ2. For the r-th symbol
period, all these signals can be collected in a 3rd-order tensor
X (r) ∈ C

N1×N2×N3 that can be decomposed as

X (r) = S (r) •1 U1 •2 U2 •3 U3 +W (r),

whereU1 ∈ C
N1×Kc andU2 ∈ C

N2×Kc are the array responses
for the x and y directions, respectively; U3 ∈ C

N3×Kc contains
the spreading sequences of all users in its columns; and S (r) ∈
C

Kc×Kc×Kc is a diagonal tensor that stores the symbols of all
users for the rth symbol period on its diagonal.

We simulate this setup using Kc = 10 users that transmit
BPSK symbols with different random powers and that are eq-
uispaced in azimuth and elevation. We use a rectangular ar-
ray with N1 = 50 and N2 = 60 for the ground set locations of
the antennas, and binary random spreading sequences of length
N3 = 100. With these parameters, each X (r) has 300,000 en-
tries. We generate many realizations of these signals for dif-
ferent levels of signal-to-noise ratio (SNR) and sample the re-
sulting tensors using the greedy algorithm for the diagonal core
case with L = 15, resulting in a relative number of samples of
0.048%. The results are depicted in Fig. 7, where the blue shaded
area represents the MSE obtained with the best and worst random
samplers. As expected, the MSE of the reconstruction decreases

Fig. 7. MSE of symbol reconstruction. N1 = 50, N2 = 60, N3 = 100, and
L = 15.

exponentially with the SNR. For a given MSE, achieving max-
imum compression requires transmitting with a higher SNR of
about 30 dB than the one needed for no compression. Besides,
we see that our proposed greedy algorithm consistently performs
as well as the best random sampling scheme.

VII. CONCLUSIONS

In this paper, we presented the design of sparse samplers for
inverse problems with tensors. We have seen that by using sam-
plers with a Kronecker structure we can overcome the curse of
dimensionality, and design efficient subsampling schemes that
guarantee a good performance for the reconstruction of mul-
tidomain tensor signals. We presented sparse sampling design
methods for cases in which the multidomain signals can be de-
composed using a multilinear model with a dense core or a di-
agonal core. For both cases, we have provided a near-optimal
greedy algorithm based on submodular optimization methods to
compute the sampling sets.

APPENDIX

A. Proof of Theorem 2

In order to simplify the derivations, let us introduce the nota-
tion F̄i(Si) = Fi(Ni\Si), so that G(S) can also be written

G(S) :=
R∏

i=1

Fi(Ni)−
R∏

i=1

F̄i(Si). (27)

From (27) it is evident that G(∅) = 0. Thus, proving that G
is normalized. To prove monotonicity, recall that the single do-
main frame potential terms Fi(Li) are all non-negative, mono-
tone non-decreasing functions for all Li ⊆ Ni [10]. Therefore,
F̄i(Si) = Fi(N \ Si) will be non-negative, but monotone non-
increasing. Let S ⊆ N and x ∈ N \ S . Without loss of gener-
ality, let us assume x ∈ Ni. Then, we have

G(S ∪ {x}) =
R∏

i=1

Fi(Ni)− F̄i(Si ∪ {x})
∏

j �=i

F̄j(Sj),

G(S) =
R∏

i=1

Fi(Ni)− F̄i(Si)
∏

j �=i

F̄j(Sj).
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Now, since F̄i(Si) ≥ F̄i(Si ∪ {x}), we know that G(S ∪
{x}) ≥ G(S). Hence, G(S) is monotone non-decreasing.

To prove submodularity, recall that every Fi(Li) is su-
permodular [10]. As taking the complement preserves (su-
per)submodularity, F̄i(Li) = Fi(Ni \ Li) is also supermodu-
lar. Let S =

⋃R
i=1Ai, withAi ⊆ Ni for i = 1, . . . , R, such that

{Ai}Ri=1 forms a partition of S . Now, recall from Definition 1
that for G to be submodular we require that ∀x, y ∈ N \ S
G(S ∪ {x})−G(S) ≥ G(S ∪ {x, y})−G(S ∪ {y}). (28)

As the ground set is now partitioned into the union of several
ground sets, there are two possible ways the elements x and y
can be selected. Either they both belong to the same domain,
or they belong to different domains. We next prove that (28) is
satisfied for the aforementioned both cases.

Suppose x, y ∈ Ni, then (28) can be developed as

F̄i(Ai)
∏

j �=i

F̄j(Aj)− F̄i(Ai ∪ {x})
∏

j �=i

F̄j(Aj)

≥ F̄i(Ai ∪ {y})
∏

j �=i

F̄j(Aj)− F̄i(Ai ∪ {i, j})
∏

j �=i

F̄j(Aj),

which can be further simplified to

F̄i(Ai ∪ {x})− F̄i(Ai) ≤ F̄i(Ai ∪ {x, y})− F̄i(Ai ∪ {y}).
The above inequality is true since F̄i is supermodular.

Next, suppose x ∈ Ni and y ∈ Nj with i �= j, then (28) can
be expanded as

∏

k �=i,j

F̄k(Ak)
[
F̄i(Ai)F̄j(Aj)− F̄i(Ai ∪ {x})F̄j(Aj)

]

≥
∏

k �=i,j

F̄k(Ak)
[
F̄i(Ai)F̄j(Aj ∪ {y})

−F̄i(Ai ∪ {x})F̄j(Aj ∪ {y})
]
.

Extracting the common factors
[
F̄i(Ai)− F̄i(Ai ∪ {x})

] [
F̄j(Aj)− F̄j(Aj ∪ {y})

] ≥ 0.
(29)

Since F̄i and F̄j are non-increasing

F̄i(Ai)− F̄i(Ai ∪ {x}) ≥ 0; F̄j(Aj)− F̄j(A ∪ {y}) ≥ 0.

Thus, (29) is always satisfied, thus proving that (28) is satisfied
for anyS ⊆ N andx, y ∈ N \ S and thereforeG is submodular.

B. Proof of Theorem 5

We divide the proof in two parts. First, we derive some prop-
erties of the involved operations that are useful to simplify the
proof. Then, we use this to derive the proof.

1) Preliminaries: First, note that the single-domain Gram-
mian matrices satisfy the following lemma.

Lemma 1 (Grammian of disjoint union): Let X ,Y ⊆ Ni

with X ∩ Y = ∅. Then, the Grammian of X ∪ Y satisfies

Ti(X ∪ Y) = Ti(X ) +Ti(Y).

Proof: Let ui,j denote the jth row of Ti. Then,

Ti(X ∪ Y) =
∑

j∈X∪Y
‖ui,j‖22 =

∑

j∈X
‖ui,j‖22 +

∑

j∈Y
‖ui,j‖22 .

�
Let us introduce the complement Grammian matrix

T̄i(Si) := Ti(Ni\Si) = Ti(Ni)−Ti(Si), (30)

which satisfies the following lemma.
Lemma 2 (Complement Grammian of disjoint union): Let

X ,Y ⊆ Ni with X ∩ Y = ∅. Then, T̄i(X ∪ Y) = T̄i(X )−
Ti(Y).

Proof: From (30) and Lemma 1, we have

T̄i(X ∪ Y) = Ti(Ni)− [Ti(X ) +Ti(Y)] = T̄i(X)−Ti(Y).
�

Now, let us introduce an operator to compress the writing of
the multidomain Hadamard product

T(L) := T1(L1) ◦ · · · ◦TR(LR),

or alternatively for the complement Grammian

T̄(S) := T̄1(S1) ◦ · · · ◦ T̄R(SR).
Furthermore, we write the Hadamard multiplication of all Ti

with i = 1, . . . , R, but j as

T−j(L) := T1(L1) ◦ · · · ◦Tj−1(Lj−1)

◦Tj+1(Lj+1) ◦ · · · ◦TR(LR).

Similarly, for the complement Grammians, we will use T̄−j(S).
We also make use of the following properties of the Hadamard
product.

Property 1: The Hadamard product of two positive semidef-
inite matrices is always positive semidefinite.

Property 2: Let A,B ∈ C
N×N . Then,

‖A ◦B‖2F = tr
{
A◦2

(
B◦2

)T
}
=

〈
A◦2,B◦2

〉
,

where A◦n denotes the element-wise nth power of A.
Let us introduce the notation

Hi(S) := T◦2i (S) and H̄i(S) := T̄◦2i (S), (31)

which satisfies the following lemma.
Lemma 3: Let X ,Y ⊆ Ni with X ∩ Y = ∅. Then,

Hi(X ∪ Y) = T◦2i (X ∪ Y) = (Ti(X ) +Ti(Y))◦2

= Hi(X ) +Hi(Y) + 2Ti(X ) ◦Ti(Y).
and

H̄i(X ∪ Y) = T̄◦2i (X ∪ Y) = (
T̄i(X )−Ti(Y)

)◦2

= H̄i(X ) +Hi(Y)− 2T̄i(X ) ◦Ti(Y).
Moreover, as we did with the Grammian matrices, we intro-

duce the notation

H(L) := H1(L1) ◦ · · · ◦HR(LR),

Authorized licensed use limited to: TU Delft Library. Downloaded on August 30,2021 at 11:15:00 UTC from IEEE Xplore.  Restrictions apply. 



3284 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 12, JUNE 15, 2019

and

H−j(L) := H1(L1) ◦ · · · ◦Hj−1(Lj−1) ◦Hj+1(Lj+1)

◦ · · · ◦HR(LR),

with its analogue H̄, and H̄−j . Due to Property 1, all these ma-
trices are also positive semidefinite.

Finally, note that with the new notation we can simplify the
definition of Q to

Q(S) := ‖T(N )‖2F −
∥
∥T̄(S)∥∥2

F
. (32)

2) Derivation: Normalization is derived from the fact that
T̄i(∅) = Ti(N ). To prove monotonicity, let S ⊆ N and x ∈
N \ S . Without loss of generality, assume x ∈ Ni. We have

Q(S ∪ {x}) = ‖T(N )‖2F −
∥
∥T̄i(Si ∪ {x}) ◦ T̄−i(S)

∥
∥2
F
,

Q(S) = ‖T(N )‖2F −
∥
∥T̄i(Si) ◦ T̄−i(S)

∥
∥2
F
.

Monotonicity requires that Q(S) ≤ Q(S ∪ {x}), or

− ∥
∥T̄i(Si) ◦ T̄−i(S)

∥
∥2
F
≤ − ∥

∥T̄i(Si ∪ {x}) ◦ T̄−i(S)
∥
∥2
F
.

Using Property 2, we have
〈
T̄i(Si), T̄−i(S)

〉 ≥ 〈
T̄i(Si ∪ {x}), T̄−i(S)

〉
.

Expanding the unions using Lemma 2, and due to the linearity
of the inner product this becomes

0 ≤ 〈
Ti(Si ∪ {x}), T̄−i(S)

〉
,

which is always satisfied because the inner product between two
positive semidefinite matrices is always greater or equal than
zero.

To prove submodularity, let S =
⋃R

i=1Ai, withAi ⊆ Ni for
i = 1, . . . , R such that {Ai}Ri=1, forms a partition of S . For Q
to be submodular we require that ∀x, y ∈ N \ S
Q(S ∪ {x})−Q(S) ≥ Q(S ∪ {x, y})−Q(S ∪ {y}). (33)

As before, we have two different cases. Suppose x, y ∈ Ni,
then (33) can be developed as

∥
∥T̄(A)∥∥2

F
− ∥
∥T̄i(Ai ∪ {x}) ◦ T̄−i(A)

∥
∥2
F

≥ ∥
∥T̄i(Ai ∪ {y}) ◦ T̄−i(A)

∥
∥2
F

− ∥
∥T̄i(Ai ∪ {x, y}) ◦ T̄−i(A)

∥
∥2
F
.

Rewriting this expression using Property 2, we can express the
left hand side as

〈
H̄i(Ai), H̄−i(A)

〉− 〈
H̄i(Ai ∪ {x}), H̄−i(A)

〉
,

and the right hand side as
〈
H̄i(Ai ∪ {y}), H̄−i(A)

〉− 〈
H̄i(Ai ∪ {x, y}), H̄−i(A)

〉
.

Leveraging the linearity of the inner product we arrive at

〈H̄i(Ai)− H̄i(Ai ∪ {x}), H̄−i(A)〉
≥ 〈

H̄i(Ai ∪ {y})− H̄i(Ai ∪ {x, y}), H̄−i(A)
〉
. (34)

Developing the matrices using Lemma 3, we can operate on both
sides of this expression giving, for the left hand side

〈−Hi({x}) + 2T̄i(Ai) ◦Ti({x}), H̄−i(A)
〉
,

and for the right hand side
〈−Hi({x}) + 2T̄i(Ai ∪ {y}) ◦Ti({x}), H̄−i(A)

〉
.

Substituting in (34), we get
〈
T̄i(Ai) ◦Ti({x}), H̄−i(A)

〉

≥ 〈
T̄i(Ai ∪ {y}) ◦Ti({x}), H̄−i(A)

〉
,

and using Lemma 2 we finally arrive at
〈
Ti({y}) ◦Ti({x}), H̄−i(A)

〉 ≥ 0, (35)

which is always satisfied because the inner product of positive
semidefinite matrices is always non-negative.

Next, suppose x ∈ Ni and y ∈ Nj with i �= j, then (33) can
be rewritten as
〈
H̄i(Ai)− H̄i(Ai ∪ {x}), H̄−i(A)

〉

≥ 〈
H̄i(Ai)− H̄i(Ai ∪ {x}), H̄j(Aj ∪ {y}) ◦ H̄−(i,j)(A)

〉
.

Using Lemma 3, we can further develop this expression into
〈−Hi({x}) + 2T̄i(Ai) ◦Ti({x}), H̄−i(A)

〉

≥ 〈−Hi({x}) + 2T̄i(Ai) ◦Ti({x}),
H̄j(Aj ∪ {y}) ◦ H̄−(i,j)(A)

〉
.

Leveraging the linearity of the inner product this can be simpli-
fied as

〈−Hi({x}) + 2T̄i(Ai) ◦Ti({x}),
H̄−i(A)− H̄j(Aj ∪ {y}) ◦ H̄−(i,j)(A)

〉 ≥ 0. (36)

Here, we can factorize the left entry of the inner product as

−Hi({x}) + 2T̄i(Ai) ◦Ti({x})
= Ti({x}) ◦

[
2T̄i(Ai)−Ti({x})

]

= Ti({x}) ◦
[
T̄i(Ai) + T̄i(Ai ∪ {x})

]
, (37)

which is positive semidefinite due to Property 1, and the fact that
the set of positive semidefinite matrices is closed under matrix
addition.

Similarly, the right entry of the inner product in (36) can be
factorized as

H̄−i(A)−
(
H̄j(Aj) +Hj({y})− 2T̄j(Aj) ◦Tj({y})

)

◦ H̄−(i,j)(A)
=

(−Hj({y}) + 2T̄j(Aj) ◦Tj({y})
) ◦ H̄−(i,j)(A).

The expression inside the parenthesis is analagous to that in
(37). Hence, the resulting matrix is positive semidefinite, and
thus (36) is always satisfied, proving submodularity of Q for all
cases.
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