
1

Dead Time Compensation for High-Flux Ranging
Joshua Rapp, Yanting Ma, Robin M. A. Dawson, and Vivek K Goyal

Abstract—Dead time effects have been considered a major
limitation for fast data acquisition in various time-correlated
single photon counting applications, since a commonly adopted
approach for dead time mitigation is to operate in the low-flux
regime where dead time effects can be ignored. Through the
application of lidar ranging, this work explores the empirical
distribution of detection times in the presence of dead time and
demonstrates that an accurate statistical model can result in
reduced ranging error with shorter data acquisition time when
operating in the high-flux regime. Specifically, we show that
the empirical distribution of detection times converges to the
stationary distribution of a Markov chain. Depth estimation can
then be performed by passing the empirical distribution through
a filter matched to the stationary distribution. Moreover, based on
the Markov chain model, we formulate the recovery of arrival
distribution from detection distribution as a nonlinear inverse
problem and solve it via provably convergent mathematical
optimization. By comparing per-detection Fisher information for
depth estimation from high- and low-flux detection time distribu-
tions, we provide an analytical basis for possible improvement of
ranging performance resulting from the presence of dead time.
Finally, we demonstrate the effectiveness of our formulation and
algorithm via simulations of lidar ranging.

Index Terms—Dead time, high-flux ranging, lidar, Markov
chain, nonlinear inverse, single-photon detection.

I. INTRODUCTION

Time-correlated single photon counting (TCSPC) is a pow-
erful technique for measuring the fast, time-dependent re-
sponses of actively illuminated systems. Commonly used for
fluorescence lifetime imaging (FLIM) [1], TCSPC has also
been applied to optical quantum information applications [2],
light detection and ranging (lidar) [3], and non-line-of-sight
(NLOS) imaging [4], [5], among others [6]. TCSPC is par-
ticularly useful for lidar because the single-photon sensitivity
allows for lower-intensity signal returns, either from weaker
illuminations or from distant, oblique-angled, or otherwise
non-cooperative targets [7]. As a result, TCSPC lidar is one
of the competing technologies currently being developed for
commercial autonomous vehicles.

One of the main hardware limitations of photon counting
is that the instrumentation has a dead time, a period of
insensitivity after a photon detection during which arriving
photons cannot be registered. Typical TCSPC applications
use a laser repeatedly pulsed with period tr and build up
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a histogram of detection times relative to the most recent
illumination. Without compensation for the effects of dead
time, detection time histograms appear as distorted versions
of the incident light intensity waveform, leading to erroneous
depth estimates. The usual approach to dealing with dead time
is to limit the acquisition flux so that photons are detected in at
most 5% of illumination periods; this reduces the probability
of photons arriving during the dead time, thus limiting the
number of arrivals that are “lost.” However, attenuating the flux
incident on a detector is an inefficient use of the light reflected
from a scene and slows down the acquisition of sufficient
photons for accurate ranging. Allowing for higher incident flux
and compensating for the resulting distortions due to dead time
would enable faster acquisition without loss of accuracy and
has been the subject of several recent works [8], [9], although
their models of dead time assume a single detection can be
recorded per illumination period, an assumption which does
not necessarily hold for modern timing electronics. Our aim
is to accurately model the effects of dead time on the photon
detection process so that photons can be detected at a much
higher rate and distortions introduced due to dead time can be
predicted and corrected. Eventually, this approach should lead
to the possibility of higher laser powers, shorter acquisition
time, and more accurate depth estimation.

A. Dead Time Characterization

The source of the dead time and resulting behavior of the
system may vary greatly depending on the implementation.
Our work studies dead time correction for modern TCSPC
systems with asynchronous electronics (such as the HydraHarp
400 [10] or TimeHarp 260 [11] from PicoQuant) and a
nonparalyzable detector (e.g., PDM-series [12] or Fast-gated
SPADs [13] from Micro Photon Devices, operated in free-
running mode). In the following, we formally define paralyz-
ability, the sources of the dead time, and synchronization so
as to clarify the dead time model we consider.

Paralyzability. The dead times of event-counting detectors
have been studied since at least the 1940s [14]–[17], with
Feller first classifying detectors in terms of their paralyzabil-
ity [18]. Nonparalyzable (Type I) detectors are dead for a
fixed time td after a detection, regardless of whether additional
photons arrive during the dead time. On the other hand, when
photons arrive during the dead time of a paralyzable (Type II)
detector, the dead time restarts and extends for at least another
td. We consider only nonparalyzable detectors in our work.

Source. TCSPC systems suffer dead times from various
components, each with different behavior. The timing elec-
tronics in classical TCSPC systems (in both nonreversed and
reversed start-stop modes) are only able to record a single
detection time per illumination period [1]. Modern TCSPC
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electronics allow for multiple detections per period, but the
duration of the signal recording process still forces the timing
electronics to be insensitive to additional photon arrivals [19].
In addition, the detectors themselves suffer from dead times.
For instance, the commonly used Single Photon Avalanche
Diode (SPAD) detectors are reverse-biased photodiodes that
are single-photon sensitive because they are operated above
the breakdown voltage. Incident photons cause an avalanche
of carriers that is directly detectable as a precise digital
signal, but which must be quenched in order to The time
during which the SPAD is “held-off” is further extended
to prevent afterpulses, which are avalanches caused by the
release of trapped carriers from previous avalanches [20]. The
total hold-off time for active quenching circuits is thus a
trade-off between shorter dead times versus lower afterpulsing
probabilities; this parameter is often fixed in the detection
circuitry design but may be left variable in some devices for
tuning at the user’s discretion (e.g., [13]). In this work, we
assume that the hold-off time is sufficiently long such that any
afterpulses can be considered indistinguishable from ambient
detections and dark counts.1

Synchronization. The different sources of dead time further
suggest two modes of TCSPC system operation. We call
systems synchronous if they ensure that the end of a dead
time is synchronized with the start of an illumination period.
Synchronous operation is often built into the hardware, such
as in classical TCSPC systems or in the gated mode of fast-
gated SPADs [9], [13]. In reversed start-stop mode, classical
timing electronics may become active in the middle of an
illumination period, but that recovery time is consistent, as
the dead time is synchronized to the stop signal (either a
delayed version of the current pulse or the next pulse). Modern
TCSPC electronics enable asynchronous operation, in which
there is no enforced synchronization between the dead time
and the timing electronics. If a photon is detected towards
the end of a cycle and the dead time continues after the next
laser excitation, there is no mechanism preventing the detector
from becoming active in the middle of that cycle. In other
words, the end of the dead time is no longer dependent on
the cycle synchronization, but on the arrival time of the most
recently detected photon. The synchronous and asynchronous
architectures correspond to the “clock-driven” and “event-
driven” SPAD recharge mechanisms, which were explored
in [22], [23]. While most existing work on the effect of
dead time assumes synchronous operation, we consider only
asynchronous systems in this work.

B. Dead Time Compensation Approaches

Yu and Fessler outline a number of general strategies for
handling the effects of dead time [24], with the simplest ap-
proach being to simply ignore the dead time. Most commonly,
the total photon flux at the detector is changed such that the
dead time effects are actually negligible and can be ignored.
Since the effect of dead time is that photon arrivals within

1If the quenching time is too short, afterpulses can no longer be considered
an independent Poisson process, as their occurrence is correlated with the
previous detection time [21].

td of a detection are missed, a straightforward approach is to
reduce the total photon flux, either by lowering the laser power
and ambient light if possible, or by attenuating with a filter
at the detector. The suggestion of O’Connor and Phillips is to
keep the fraction of excitations causing a detection to be at
most 5% to avoid dead time effects [25], a recommendation
that electronics manufacturers have adopted. Reducing the flux
inevitably leads to longer time needed to acquire the same
number of photons. As a result, several recent works have
focused on reducing the number of photons per pixel needed
for accurate depth imaging by incorporating parameterized
probability models of detection times and priors on the spatial
structure of natural scenes [26]–[29]. Other approaches have
tried to ignore dead time by changing the hardware setup, such
as using multiple detectors so that there is more likely to be
a detector not in the reset state when a photon arrives [1].

Rather than attenuate the flux at the detector to avoid dead
time effects, another strategy is to correct the distortions in the
high-flux data after acquisition. Most algorithm-based attempts
at dead time compensation consider synchronous systems due
not only to the systems that have historically been available,
but also for the convenient property that detection times are
statistically independent of each other in different cycles [27].
One of the first methods for dealing with dead time in syn-
chronous systems is that of Coates [30]. Coates’s basic algo-
rithm was designed for lifetime measurement, with later work
adapting the algorithm to include background subtraction [31].
The basic principle of Coates’s algorithm is that for any bin i
in a histogram, the detections in the preceding bins spanning
td represent excitation cycles when no photon could have been
detected in bin i because the detector was dead. The number
of cycles in which the detector thus must have been dead is
used to adjust computation of the photon arrival probability
in each bin. Recent work has rederived Coates’s expression,
which is the ML estimator for the number of photon arrivals in
each bin of a histogram in a synchronous system, in order to
include priors for maximum a posteriori (MAP) estimation [9].
A few models [32], [33] consider histogram corrections for
a hybrid of synchronous and asynchronous systems, which
do allow for multiple statistically dependent detections per
illumination cycle but without the dependency carrying over
into different cycles. A handful of papers address special cases
of dead time effects in asynchronous systems: Antolovic et
al. consider detection rate estimation for homogeneous arrival
processes in [22], [23], whereas Cominelli et al. explore
the special case when td equals an integer multiple of tr
and no correction is needed [34]. However, these approaches
are insufficient to address the typical lidar acquisition mode
with inhomogenous arrivals and in which td and tr cannot
necessarily be arbitrarily adjusted. The only work the authors
are aware of that addresses asynchronous systems generally
is that of Isbaner et al. [35], which effectively treats the
detection process as a time-dependent attenuation of the arrival
process intensity. Although they model both the electronics
and detector dead times te and td, respectively, they note that
such a system simplifies to having only one source of dead
time when te < td. They use an iterative procedure to estimate
the attenuation, which is then used to correct the detection
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histogram.
The last strategy for dealing with dead time is to use the

data as acquired but to incorporate dead time into the detection
model. In this vein, Heide et al. adjust their parameter estima-
tion procedure to include dead time effects [8]. However, the
synchronous system assumption they use is technically only
valid for their asynchronous timing electronics (PicoQuant
PicoHarp 300, [36]) if zero ambient light is present, which
guarantees that the detector will be reset for the next signal
pulse.

C. Other Related Work
In addition to missing photons that arrive during a dead

time, events can fail to be registered in the recording of
point processes through other forms of “counting loss,” which
depends on the measurement system design [1]. A well-
documented form of counting loss is “pile-up,” referring to
the problem of the rising edge of a pulse overlapping with
the tail of a previous pulse, such that the later pulse is not
registered by a discriminator. Each piled-up pulse prolongs
the duration in which new events cannot be detected, making
the discriminator a Type II detector. Pile-up is present in
some TCSPC system designs, such as those using passively-
recharged SPADs [23] or hybrid photodetectors with negligible
dead time [37]. Several approaches correcting for pile-up have
recently been proposed for nuclear spectrometry, in which
both the pulse times and energies are of interest [38]–[40].
Confusingly, the term “pile-up” is also sometimes used to
describe the effect of dead time in synchronous TCSPC
systems (e.g., [8], [9]) because the effect of earlier detections
preventing later detections is similar. Another form of counting
loss, named Type III in [24], may also occur in some systems
(e.g., [41]) when two pulses occur close together and neither
one gets recorded.

In lidar applications, the dead time-affected acquisition
results in closer apparent distances, which has a similar effect
to the intensity-dependent change in perceived depth known
as “range walk error” [42]–[44]. Range walk is the result of
using a discriminator to trigger in the leading edge of a signal
pulse; a stronger signal with a steeper rising edge will be
detected earlier than a weaker signal with a smaller slope. Due
to the similarity with high-flux ranging, approaches correcting
for range walk error could be adapted to compensate for dead
time. Several optics-based methods aimed at range walk error
correction attempt to experimentally measure and then correct
for the bias in depth estimation. He et al. first calibrate the
amount of range walk incurred as a function of the detection
rate [45]. Then the conventional depth estimation procedure
is performed with the dead time-distorted data, and the range
walk bias is subtracted off to correct the depth estimate. Ye
et al. use a similar method, except they first split the incident
light with a 90:10 beamsplitter to two SPADs, using the lower-
flux channel for simultaneous bias estimation to subtract off
from the lower-variance high-flux estimate [46].

D. Main Contributions
1) Markov Chain Detection Time Model: We rigorously

construct a Markov chain model to characterize the empir-

ical distribution of detection times in asynchronous TCSPC
systems. Analyzing the stationary distribution of the Markov
chain directly leads to a simple log-matched filter estimator
for depth estimation.

2) Arrival Intensity Reconstruction: We derive a nonlinear
inverse formulation for arrival intensity estimation from the
detection distribution, where the formulation is based on the
stationary condition of the Markov chain and the nonlinear in-
verse problem is solved by a provably convergent optimization
algorithm; the estimated arrival intensity can then be used for
depth estimation and other tasks.

3) Accurate High-Flux Ranging: Using our Markov chain-
based methods, we show that depth estimation from high-flux
detection data can achieve lower error than using low-flux data
for the same acquisition time or can alternatively achieve the
same error from much faster acquisitions. Furthermore, our
methods outperform the method of [35] applied to high-flux
detection data.

4) Demonstration of Dead Time Benefits: By comparing the
Fisher information per detected photon for depth estimation
from the high- and low-flux detection time distributions, we
show that when the background rate is low and the signal
rate is sufficiently high, the presence of dead time may lead
to improvement in ranging accuracy for a fixed number of
detections. Moreover, when the dead time td is only slightly
smaller than the illumination period tr, such improvement can
extend to higher background rate scenarios, since the dead
time acts as a signal-triggered gate in this case.

II. EMPIRICAL DISTRIBUTION OF DETECTION TIMES

The challenge of studying the detection time distribution for
the asynchronous dead time model is that the detection times
are statistically dependent. In this section, we show that the
dependency is Markovian and provide the explicit transition
probability density function (PDF). From the transition PDF,
we can analyze the stationary condition and obtain the station-
ary distribution, from which our high-flux ranging algorithms
are derived.

A. Photon Arrival Process

It is well known that photon arrival times at a detector
are described by a Poisson process [47]. For TCSPC, the
repeated illumination with period tr makes the arrival process
an inhomogeneous Poisson process with periodic intensity
function λ(t). In general, λ(t) is composed of two parts:

λ(t) = λs(t) + λb(t), (1)

where λs(t) is the time-varying intensity of a signal process
and λb(t) is the intensity due to background (ambient light),
which is assumed to be constant λb in this work. For the
application of ranging, λs(t) is often described parametrically
in one period as the scaled and time-shifted illumination pulse
λs(t) = αβs(t− 2z/c), where α is the target reflectivity, z is
the target depth, β is a gain factor corresponding to the illumi-
nation power, s(t) = exp(−t2/2σ2)/

∫ tr
0

exp(−τ2/2σ2)dτ is
the Gaussian pulse shape approximation with half pulse width
σ, and c is the speed of light. Within one period, the signal
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photon arrival rate S and background photon arrival rate B
are defined as S :=

∫ tr
0
λs(τ) dτ and B := λbtr, respectively.

The total flux is given by Λ := S + B, and the signal to
background ratio is defined as SBR := S/B.

B. Markov Chain Model for Detection Times

If there were no dead time effects, the detection process
would be equivalent to the arrival process, which is Poisson
with intensity λ(t); conditioned on the total number of detec-
tions, the absolute detection times would be order statistics
of i.i.d. random variables with common probability density
function ∝ λ(t) [47, Section 2.3.3].2 However, in the presence
of dead time effects, the detection process is no longer Poisson,
since the detection intensity, denoted by µ(t), is now a random
process depending on the history of the detection process; such
a detection process is referred to as a self-exciting process [47].
Specifically, let {N(t) : t ≥ 0} denote the detection process
with (random) intensity µ(t), where {N(t) : t ≥ 0} is
characterized by the number of detections N(t) at time t
and a sequence of absolute detection times T1, . . . , TN(t). The
conditional PDF of Ti+1 given T1, . . . , Ti is [47, (6.15) (6.16)]

fTi+1|T1,...,Ti
(t|t1, . . . , ti) = µ(t) exp

(
−
∫ t

ti

µ(τ) dτ

)
. (2)

For a general self-exciting process, µ(t) can depend on the
entire history of the process {N(τ) : 0 ≤ τ < t}. For the
specific detection process considered in this work, we have

µ(t) =

{
λ(t), if t > TN(t) + td;

0, if TN(t) < t ≤ TN(t) + td,
(3)

where we introduce the notation T0 := −∞. We can see that
µ(t) only depends on the latest detection time. Therefore, for
the µ(t) defined in (3), the RHS of (2) depends on ti but not
on t1, . . . , ti−1. That is, the absolute detection times form a
Markov chain with transition PDF

fTi+1|Ti
(t|ti) = λ(t) exp

(
−
∫ t

ti+td

λ(τ) dτ

)
I{t > ti+td}, (4)

where I is the indicator function. An illustration of a realiza-
tion of the detection process is shown in Fig. 1.

Define two sequences of random variables, {Ki}i∈N and
{Xi}i∈N, such that Ki := bTi/trc, where bac is the integer
part of a ∈ R, and Xi := Ti mod tr, hence Ti = Kitr + Xi.
That is, Ki is the number of illumination periods before Ti
and Xi is the location of absolute detection time Ti within
illumination period Ki + 1, which is referred to as detection
time in this paper. Note that if there were no dead time effects,
the empirical distribution of Xi’s would be identical to the
arrival time PDF, given by

fXA
(x) = λ(x)/Λ, for x ∈ [0, tr). (5)

2Throughout the paper, absolute detection time refers to the time when
periodicity is not taken into consideration (i.e., with nr illumination cycles,
we have 0 < t1 ≤ t2, . . . ,≤ tN(t) ≤ nrtr), whereas detection time refers
to the time of detection relative to the most recent illumination pulse, which
is the absolute detection time modulo tr. Therefore, the limiting empirical
distribution of detection times would be ∝ λ(t).

50 100 150 200 250 300 350 400 450 500
0

0.05

0.1
Arrival Intensity 6(t)

50 100 150 200 250 300 350 400 450 500

Photon Arrivals

50 100 150 200 250 300 350 400 450 500
0
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0.1
Detection Intensity 7(t)

Time [ns]
50 100 150 200 250 300 350 400 450 500

Photon Detections

Fig. 1: Illustration of the effect of dead times on the detection
process for tr = 100 ns, td = 75 ns, σ = 5 ns, S = 0.5,
and B = 1. Photon arrival times are generated according to
the arrival intensity λ(t). The detection intensity µ(t) is equal
to the arrival intensity λ(t) except immediately following a
photon detection when µ(t) = 0, so the detection times are
a subset of the arrival times and detection is not a Poisson
process.

The following proposition provides statistical characterization
of {Xi}i∈N in the presence of dead time.

Proposition 1. Suppose that the photon arrival process is
an inhomogeneous Poisson process with periodic intensity
function λ(t), whose period is tr, and the detector has dead
time td. Define xd := td mod tr. Let the random sequence
{Ti}i∈N denote absolute detection times and define detection
times as Xi := Ti mod tr, for all i ∈ N. Then the random
sequence {Xi}i∈N forms a Markov chain with state space
[0, tr) and transition PDF

fXi+1|Xi
(xi+1|xi) =

λ(xi+1)

1− exp(−Λ)

exp

(
−
∫ ⌈xi + xd − xi+1

tr

⌉
tr + xi+1

xi+xd

λ(τ) dτ

)
, (6)

where dae := bac+ 1 and Λ :=
∫ tr

0
λ(τ) dτ .

Proof. See Appendix A.

We can check that {Xi}i∈N is ψ-irreducible, recurrent, and
aperiodic, and hence it has a unique stationary PDF [48,
Proposition 10.4.2]. Denoting the stationary PDF by fXD

, then
for all x ∈ [0, tr), fXD

satisfies

fXD(x) =

∫ tr

0

fXD(y)fXi+1|Xi
(x|y) dy. (7)

That is, fXD is the eigenfunction corresponding to eigenvalue
1 of the linear operator P defined as

Pf(x) :=

∫ tr

0

f(y)fXi+1|Xi
(x|y) dy. (8)
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For the special case where xd = 0, we show in the fol-
lowing that the arrival PDF fXA defined in (5) satisfies the
stationary condition, meaning that dead time does not cause
any distortion in detection time distribution; this result has
also been noted in [34] with a different derivation. With
fXD

(x) = λ(x)/Λ and xd = 0, the RHS of (7) is∫ tr

0

λ(y)

Λ
fXi+1|Xi

(x|y)dy

=

∫ x

0

λ(y)

Λ

λ(x)

1− exp(−Λ)
exp

(
−
∫ x

y

λ(τ)dτ

)
+

∫ tr

x

λ(y)

Λ

λ(x)

1− exp(−Λ)
exp

(
−
∫ tr+x

y

λ(τ)dτ

)

=
λ(x)

Λ

[∫ x
0
λ(y) exp

(
−
∫ x
y
λ(τ)dτ

)
dy

1− exp(−Λ)

+

∫ tr
x
λ(y) exp

(
−
∫ tr+x

y
λ(τ)dτ

)
dy

1− exp(−Λ)

]
.

Label the two terms in the square brackets as A1 and A2.
Using the chain rule and the Leibniz rule for differentiation,
for any constant a that does not depend on y, we have that

d

dy
exp

(
−
∫ a

y

λ(τ)dτ

)
= λ(y) exp

(
−
∫ a

y

λ(τ)dτ

)
.

Letting a = x, we have

A1 =
exp

(
−
∫ x
y
λ(τ)dτ

) ∣∣∣x
0

1− exp(−Λ)
=

1− exp
(
−
∫ x

0
λ(τ)dτ

)
1− exp(−Λ)

.

Similarly, let a = tr + x, then

A2 =
exp

(
−
∫ x

0
λ(τ)dτ

)
− exp(−Λ)

1− exp(−Λ)
.

It follows that A1 +A2 = 1, and so λ(x)/Λ is the stationary
distribution of the Markov chain when xd = 0.

To numerically demonstrate the correctness of (6) for gen-
eral xd, we partition the state space [0, tr) into nb equally
spaced time bins with bin centers {bn}nbn=1 and approximate
the linear operator P defined in (8) with an nb × nb matrix
P, where Pm,n := fXi+1|Xi

(bn|bm) with fXi+1|Xi
defined

in (6). The matrix P is then normalized to have row sum
equal to 1 so that it becomes a probability transition matrix
P̃. A discrete approximation of fXD , denoted by a length-
nb row vector fXD , is then obtained as the leading left
eigenvector of P̃, since fXD should satisfy the Markov chain
stationary condition fXD = fXDP̃. Moreover, if the second
largest (in terms of magnitude) eigenvalue of P̃ is strictly
less than one, in other words, P̃ admits a spectral gap, then
the corresponding Markov chain converges to its stationary
distribution geometrically fast. We have verified that in all
parameter settings considered in this paper, P̃ admits a spectral
gap, thus confirming the convergence of the chain. Finally,
fXD is compared with the histogram of a set of simulated
detection times, where we expect a close match between the
simulated histogram and fXD

. Detection times are simulated
by first generating arrival times according to (1). Then starting

with detection of the first arrival time generated, subsequent
arrivals are culled from the sequence if they are within td
of the previous absolute detection time, as in [49]. Note that
unlike in [49], both background photons and dark counts are
considered to trigger dead times in the same manner as signal
detections.

Comparisons between a histogram of detection times col-
lected from simulation and the corresponding fXD are shown
in Fig. 2. In each simulation, the number of illuminations is
nr = 50000 and the half pulse width is σ = 2 ns. The close
matches between predicted detection PDFs and the simulated
histogram results validate the effectiveness of the Markov
chain model in deriving the limiting distribution. The figure
further illustrates the effect that dead time has on TCSPC. The
first column of Fig. 2 shows results with S = B = 0.1, so the
total flux Λ is low enough that few photons arrive during the
detector dead time, and the arrival and detection densities are
almost identical. If just the signal flux is increased, e.g., by
increasing the illumination laser power (second column), the
photon detection density narrows and shifts slightly toward
earlier detection times (similar to the phenomenon of range
walk error), due to early arrivals from the pulse blocking
later photons from being detected. When the background flux
increases, the distortions in the density due to dead time
become more apparent. However, these distortions also depend
on the particular values of tr and td. When tr is slightly larger
than td (such as for tr = 80 in the top row of Fig. 2),
the dead time triggered after a signal detection will reset
just before signal photons from the next pulse arrive at the
detector. The dead time thus behaves as a signal-triggered
gate, blocking detection of many background photons while
allowing detection of additional signal. On the other hand,
increasing tr by just 20 ns (bottom row) causes a significant
ripple in detection PDF a duration td after the main signal
peak (modulo tr). The dead time is again often triggered by
signal photons when S is large, but the reset of the detector
in the next cycle allows incident background photons to be
detected, amplifying the apparent background intensity at that
part of the cycle. Note that this pre-pulse ripple could easily be
mistaken for optical system inter-reflections or poor electronics
thresholding if detector dead time were not taken into account.

C. Comparison of Fisher Information

High-flux acquisition enables detection of more photons
than low-flux acquisition for a fixed number of illuminations.
Although the detection time distribution is distorted in the
sense that it is different from the arrival time distribution,
our Markov chain model allows us to accurately predict the
distortion. Therefore, it is expected that for a fixed number
of illuminations, high-flux acquisition with our probabilistic
model for detection times can improve ranging performance
over the 5% low-flux acquisition rule. Another interesting
aspect is to compare estimates from low-flux and high-flux
acquisitions for a fixed number of detections. By comparing
the arrival PDF, which is equivalent to the low-flux detection
PDF, and the high-flux detection PDF in Fig. 2, we notice that
dead time results in a “narrowing” of the pulse, especially for
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Fig. 2: Comparisons between histograms of simulated detection times, predicted detection time PDFs, and arrival time PDFs
illustrate how dead time affects the detection process. In addition to a shift in the mode toward earlier detection times, the
dead time may also cause a ripple in the detection PDF relative to the arrival PDF. Plots are shown for σ = 2 ns, tbin = 50
ps, nr = 50000, and td = 75 ns. The vertical axis scale is constant for each row. An inset with a different vertical scale is
included for each plot in the third column to emphasize the ripple that is not easily seen in the original scale.
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Fig. 3: The Fisher information ratio FID/FIA indicates the performance improvement that may be gained for the same number
of detections when high-flux data is used instead of low-flux data. The plots show for various signal rate S and background
rate B and for σ = 0.2 ns, tbin = 10 ps, and td = 75 ns that when SBR is sufficiently high and B is not too large, the effect
of dead time is beneficial for range estimation.

large S. Thus, we speculate that the distortion may in fact be
favorable for depth estimation in some cases.

To verify this somewhat counter-intuitive speculation, we
compare the Fisher information per detection for estimating
the depth z from the low-flux PDF fXA

(5) and high-flux
PDF fXD

(stationary distribution of the Markov chain defined
in Proposition 1),3 which are denoted by FIA and FID,
respectively, and are computed as (derivation is provided in
Appendix B)

FIA =

∫ tr

0

(
∂

∂z
fXA

(x; z)

)2
1

fXA
(x; z)

dx,

FID =

∫ tr

0

(
∂

∂z
fXD

(x; z)

)2
1

fXD
(x; z)

dx,

3The reciprocal of the Fisher information is a lower bound for the mean
squared error (MSE) of any unbiased estimator; this is also known as the
Cramér-Rao inequality [50, Theorem 3.1].

where the derivative of fXD
is computed numerically. Note

that while realizations of detection times are not i.i.d. samples
of fXA or fXD , most ranging algorithms only use the empirical
distribution of detection times for depth estimation. Therefore,
it is reasonable to consider Fisher information of the limiting
empirical distributions fXA

and fXD
rather than that of the

joint distributions. Fig. 3 presents the Fisher information ratio
FID/FIA for td = 75 ns and with tr varying from 50 to
500 ns. By (6), we notice that only xd := td mod tr affects
the detection time distribution. Hence, for the case where
tr = 50 ns, the effective dead time in terms of detection time
distribution is 25 ns. In the regions where the ratio is greater
than one, fXD

is more informative about the depth z than fXA

(i.e., the dead time effect is beneficial) in the sense that the
per-detection Fisher information is higher. We notice that such
a region usually appears when B is not too large and SBR is
sufficiently high. A potential reduction in depth error variance
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was likewise noted by Heide et al. [8], but that analysis
assumed zero background, which is a naı̈ve assumption for
most applications and which our analysis shows is not a
necessary condition for dead time to be beneficial. When
tr is slightly larger than td (as for tr = 80 in Fig. 3), the
signal-triggered gating extends the region in which dead time
is beneficial to larger B compared to the cases where tr is
much larger than td. Together with the plots in Fig. 2, this
suggests that the most photon-efficient benefit from dead time
is achieved when tr is slightly larger than td.4 This condition
may be difficult to achieve in practice as the dead time is not
tunable in many devices and adjustment of the illumination
period is limited by the required maximum unambiguous
range.

III. ARRIVAL INTENSITY ESTIMATION ALGORITHM

In this section, we first derive a maximum likelihood
(ML) estimator for estimating the total flux Λ from absolute
detection times. Then we derive an algorithm for estimating
the arrival intensity λ(x) for x ∈ [0, tr) from a histogram of
detection times assuming that Λ is known; one may implement
our algorithm with a calibrated Λ when available or with a Λ
estimated by, for example, our ML estimator.

A. Maximum Likelihood Estimator for Λ

In [35], Isbaner et al. note the necessity of estimating Λ in
order to correctly reconstruct the histogram of photon arrival
times. Define the interdetection period Ri as the number of
completed periods after the detector reset at Ti + td before
another photon is detected at time Ti+1:

Ri :=

⌊
Ti+1 − (Ti + td)

tr

⌋
, (9)

where Ti’s are absolute detection times. Isbaner et al. claim
that P (Ri = r) ∝ exp(−rΛ) and use weighted least squares
to fit an exponential function. In the following proposition, we
verify the claim using properties of Poisson processes and the
Markov nature of detections with dead time. Moreover, we
show that Ri’s are independent, and so an ML estimator for
Λ can be easily computed from a realization of Ri’s.

Proposition 2. The random variables Ri’s defined in (9) are
i.i.d. with the same probability distribution as R, where

P (R = r) = (1− exp(−Λ)) exp(−rΛ), r ∈ {0} ∪ N. (10)

Proof. See Appendix C.

By Proposition 2, given a realization of interdetection peri-
ods {ri}1≤i≤n, the log-likelihood function is

L({ri}ni=1; Λ) = −Λ

n∑
i=1

ri + n ln (1− exp(−Λ)) .

Setting the derivative of L({ri}ni=1; Λ) with respect to Λ to
zero, we obtain the ML estimator for Λ as

Λ̂ML = − ln

( ∑n
i=1 ri

n+
∑n
i=1 ri

)
. (11)

4Note that more photons would be detected with shorter td, but each
detection would likely be less informative of the depth.

Note that the distribution of R can be understood as follows.
The number of photon arrivals per period is Poisson with
parameter Λ, so p = 1 − exp(−Λ) is the probability of at
least one photon arriving in a period. Then R has a geometric
distribution P (R = r) = (1− p)rp, which matches (10).

In what follows, we consider estimating the arrival intensity
λ from a detection time histogram assuming that Λ is known.

B. Relationship between Arrival and Detection Distributions

Plugging (6) into (7), we have

fXD
(x) = λ(x)

[∫ x−xd

0

fXD
(y)

exp
(
−
∫ x
y+xd

λ(τ) dτ
)

1− exp(−Λ)
dy

+

∫ tr

x−xd
fXD(y)

exp
(
−
∫ tr+x

y+xd
λ(τ) dτ

)
1− exp(−Λ)

dy

]
(12)

for x > xd, and

fXD
(x) = λ(x)

[∫ tr+x−xd

0

fXD
(y)

exp
(
−
∫ tr+x

y+xd
λ(τ) dτ

)
1− exp(−Λ)

dy

+

∫ tr

tr+x−xd
fXD(y)

exp
(
−
∫ 2tr+x

y+xd
λ(τ) dτ

)
1− exp(−Λ)

dy

]
(13)

for x ≤ xd. In (12) and (13), denote the factors in the brackets
as a(x) and we can then write fXD

(x) = λ(x)a(x), where
a(x) can be interpreted as the attenuation effect on the arrival
intensity due to dead time. It is worth mentioning that similar
factorization of fXD was also used in Isbaner et al. [35] for the
derivation of their dead time correction algorithm. However,
such a factorization is assumed at the beginning of their
derivation, whereas we arrive at this factorization naturally
from the stationary condition of a Markov chain.

Plugging fXD
(x) = λ(x)a(x) into (12), we have

a(x) =

∫ x−xd

0

λ(y)a(y)
exp
(
−
∫ x
y+xd

λ(τ) dτ
)

1− exp(−Λ)
dy

+

∫ tr

x−xd
λ(y)a(y)

exp
(
−
∫ tr+x

y+xd
λ(τ) dτ

)
1− exp(−Λ)

dy. (14)

Differentiating both sides of the above equation with respect
to x:

a′(x)
(a)
=

1

1− exp(−Λ)

[
λ(x− xd)a(x− xd) (1− exp(−Λ))

− λ(x)

(∫ x−xd

0

λ(y)a(y) exp

(
−
∫ x

y+xd

λ(τ) dτ

)
dy

+

∫ tr

x−xd
λ(y)a(y) exp

(
−
∫ tr+x

y+xd

λ(τ) dτ

)
dy

)]
(b)
=λ(x− xd)a(x− xd)− λ(x)a(x), (15)

where step (a) uses the Leibniz rule and the fact that λ(tr +
x) = λ(x) and step (b) follows by noticing from (14) that the
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sum of the two integrals equals (1−exp(−Λ))a(x). Similarly,
we can obtain from (13) that

a′(x) = λ(tr + x− xd)a(tr + x− xd)− λ(x)a(x). (16)

Note that if we consider periodic extensions of a(x) and
fXD(x), then (15) and (16) are identical. In the following,
a(x) and fXD

(x) are considered as their periodic extensions.
Integrating both sides of (15), we have that

a(x) = −
∫ x

x−xd
λ(τ)a(τ) dτ + C, (17)

where C is a constant. Multiplying both sides of (17) by λ(x),
we have that

fXD(x) = −λ(x)

∫ x

x−xd
fXD(τ) dτ + Cλ(x). (18)

Define
g(x) :=

∫ x

x−xd
fXD(τ) dτ. (19)

Since fXD
(x) is a proper probability density function on the

interval [0, tr), it satisfies

1 =

∫ tr

0

fXD
(x) dx = −

∫ tr

0

λ(x)g(x) dx+ C

∫ tr

0

λ(x)dx.

It follows that

C =
1 +

∫ tr
0
λ(x)g(x) dx∫ tr

0
λ(x) dx

=
1 +

∫ tr
0
λ(x)g(x) dx

Λ
. (20)

Plugging (19) and (20) into (18), we have the following
relationship between the arrival intensity function λ(x) and
the limiting distribution of the detection times fXD

(x):

fXD
(x) = −λ(x)g(x) +

1 +
∫ tr

0
λ(x)g(x) dx

Λ
λ(x). (21)

C. Nonlinear Inverse Formulation and Algorithm

Suppose that the time interval [0, tr) is partitioned into nb
equally spaced time bins with bin size tbin, which is the case in
TCSPC.5 Define nd := xd/tbin. Let the normalized histogram
of detection times be denoted by h = (h1, . . . , hnb), where∑nb
i=1 hi = 1. A discrete model for (21) is then

h = −diag(g)λ + Λ−1λ + Λ−1(gTλ)λ + ∆,

where λ = (λ1, . . . , λnb) is a discretization of λ(t); Λ is the
total flux and is assumed to be known; gi =

∑i−1
k=i−nd hk for

i > nd and gi =
∑nb
k=i−nd+nb

hk+
∑i−1
k=1 hk for i ≤ nd, which

follows from (19); diag(g) is a diagonal matrix with g on its
diagonal; and ∆ represents the error due to discretization and
the difference between the finite-sample empirical distribution
and the limiting distribution. For any fixed h (hence fixed g),
define an operator T ( · ;h) : Rnb → Rnb as

λ 7→ T (λ;h) := −diag(g)λ + Λ−1λ + Λ−1(gTλ)λ. (22)

5TCSPC systems digitize photon detection times using time-to-amplitude
converters (TACs) or time-to-digital converters TDCs [1]. The number of bits
allocated for an event record is usually fixed, so there is an inherent tradeoff
between the acquisition resolution and repetition period. For instance, the
HydraHarp 400 dedicates 15 bits per record (32 768 bins) and has a base bin
resolution of 1 ps, which can be multiplied by powers of 2 [10].

The inverse problem that we need to solve is then to estimate
λ from the nonlinear system h = T (λ;h) + ∆ given a
measurement vector h. Define the optimization problem:

min
λ

{
F (λ) := D(λ) + δ[0,M ]nb (λ)

}
, (23)

where D(λ) := 1
2‖h−T (λ;h)‖2 with ‖·‖ being the Euclidean

norm and δ[0,M ]nb the indicator function of the bounded
hypercube [0,M ]nb for some constant M . Note that while one
may include stronger regularizers to reflect prior knowledge
about λ, our goal here is to demonstrate that the proposed
method can reconstruct the arrival intensity without any prior
knowledge other than the intensity being non-negative; the
method is thus applicable to a broader class of applications
where the arrival intensity is less predictable such as in NLOS
imaging. We use a monotone accelerated proximal gradient
(APG) algorithm [51] to solve (23). Note that the proximal
operator for δ[0,M ]nb is the orthogonal projector onto [0,M ]nb ,
denoted by Π[0,M ]nb (·), and the gradient of D(λ) is computed
as follows:

∇D(λ) = JTT (T (λ;h)− h)

=

(
gλT

Λ
+

1 + gTλ

Λ
I− diag(g)

)
(T (λ;h)− h) , (24)

where JT is the Jacobian matrix of T and I is the identity
matrix. We emphasize that h, g, and Λ are fixed throughout
the algorithm, thus they are treated as constant instead of
functions of λ when computing the gradient ∇D(λ) in (24).
The convergence of the monotone APG algorithm relies on
an appropriate choice of the step size γ, which should satisfy
γ < 1/L, where L is the Lipschitz constant of ∇D(·) [51].
The following proposition provides an upper-bound Lu for L.

Proposition 3. The Lipschitz constant L of the function∇D(·)
defined in (24) is upper-bounded by Lu on [0,M ]nb , where Lu
is defined as

Lu := 2Λ−2nbM
2 +
(
2Λ−2 + 2 + 6Λ−1

)√
nbM + 4Λ−1 + 2.

Proof. See Appendix D.

Setting the step size γ = 1/Lu, starting with some ini-
tialization λ0 = λ1 = z1 ∈ [0,M ]nb and q0 = 0, q1 = 1, for
k ≥ 1, the monotone APG algorithm for solving (23) proceeds
as follows:

yk =λk+
qk−1

qk

(
zk − λk

)
+
qk−1 − 1

qk

(
λk − λk−1

)
,

zk+1 = Π[0,M ]nb

(
yk − γ∇D(yk)

)
,

xk+1 = Π[0,M ]nb

(
λk − γ∇D(λk)

)
,

qk+1 =

√
4q2
k + 1 + 1

2
,

λk+1 =

{
zk+1, if F (zk+1) ≤ F (xk+1);

xk+1, otherwise.

(25)

Since (23) is a nonconvex optimization problem, a good
initialization is important to avoid converging to local minima
that are not global minima. We now introduce an initialization
scheme. Let Cλ be a scalar that depends on λ through



9

0 50 100D
e

te
c
ti
o

n
 H

is
to

g
ra

m
n

r
 = 5000

0 50 100

Time [ns]

A
rr

iv
a
l 
In

te
n

s
it
y

0 50 100

n
r
 = 10000

0 50 100

Time [ns]

0 50 100

n
r
 = 50000

0 50 100

Time [ns]

0 50 100

n
r
 = 

Measurements

Theoretical PDF

0 50 100

Time [ns]

Estimates

Ground truth

Fig. 4: Estimation of arrival intensity (bottom) from detection histogram (top) when S = B = 3.16, σ = 2 ns, tbin = 50 ps,
tr = 100 ns, and td = 75 ns. From left to right: increased number of illuminations (nr), where in the last column, theoretical
detection histogram is used as measurement.

Cλ =
∫ tr

0
λ(x)g(x) dx. Then (21) can be written as fXD

(x) =
−λ(x)g(x) + (1 + Cλ)λ(x)/Λ, which implies

λ(x) =
fXD

(x)

(1 + Cλ)/Λ− g(x)
. (26)

Plugging (26) back into the definition of Cλ, we obtain a fixed
point equation for Cλ:

Cλ =

∫ tr

0

fXD(x)g(x)

(1 + Cλ)/Λ− g(x)
dx. (27)

Notice that by (26) the feasible set for Cλ is C = {C ∈
R : (1 + C)/Λ − g(x) > 0,∀x ∈ [0, tr)}. It follows that the
RHS of (27) is positive on C and monotone decreasing to
zero as Cλ goes to infinity. Since the LHS of (27) is linearly
increasing, a graph will easily show that (27) has a unique
fixed point on C. Therefore, if fXD

is known perfectly, then
one can solve (27) for Cλ and plug Cλ into (26) to have
a perfect reconstruction of λ. However, in practice, we only
have a histogram formed by a limited number of measured
detection times. Nevertheless, it is plausible to estimate Cλ as
the fixed point of

Ĉλ =

nb∑
i=1

hi gi

(1 + Ĉλ)/Λ− gi
. (28)

We can then use λ0 with the ith entry being defined as

λ0
i =

hi

(1 + Ĉλ)/Λ− gi
(29)

as the initialization of the nonconvex optimization problem.
While we do not have a theoretical guarantee for convergence
to the global minimum, in our simulation, both h plus random
perturbation and the more principled initialization (29) lead
to good estimates. Because solving (28) is easy and the
initial estimate (29) is usually close to the solution, using the
principled initialization allows the algorithm to converge faster.

Fig. 4 presents simulated detection histograms and the
corresponding arrival intensity estimates using (25), where
S = B = 3.16 and σ = 2 ns. We notice that as nr increases,
the detection histogram approaches fXD . Our estimated arrival
intensity likewise approaches the true arrival intensity as nr
increases. It is interesting to note that while the error in
the detection histogram resembles Poisson noise in that the
variance increases as the mean increases, the error in the arrival
intensity estimate is signal-dependent in a different way. We
observe that the error variance is roughly proportional to the
pointwise ratio of fXD

and λ. Although we have no theoretical
results supporting this hypothesis, the observation suggests
that the portions of the arrival intensity easiest to reconstruct
are those least attenuated by the dead time effects, and vice
versa.

IV. APPLICATION TO RANGING

We now explore how the theory and algorithm developed in
Sections II and III can be used for depth estimation. In Sec-
tion IV-A, we assume that the acquisition parameters S,B,Λ
are known from accurate calibration and compare different
methods using the true parameter values. In Section IV-B,
we provide estimators for B and S, and together with the
estimator for Λ introduced in Section III-A, we test our
proposed methods using the estimated parameters.

A. Ranging with True Acquisition Parameters

The ML depth estimator for the Poisson arrival process
passes the set of arrivals through a log-matched filter that is
matched to the arrival intensity λ(t), where the log-matched
filter is defined as v(t) := log(λ(t)) = log (fXA

(t)) + log(Λ)
[52, (33)]. Given a set of low-flux detection times {ti}ni=1,
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where photon loss due to dead time is negligible, the log-
matched filter for estimating the depth z is defined as

ẑ ({ti}ni=1; fXA
) := arg max

z

n∑
i=1

∫ tr

0

δ(t− ti)v (t+ 2z/c) dt

= arg max
z

n∑
i=1

log (fXA
(ti + 2z/c)) .

For practical implementation, {ti}ni=1 may be quantized
into nb equally spaced time bins over [0, tr) with bin centers
{bk}nbk=1. A histogram h = (h1, . . . , hnb) for the low-flux
detection times can then be obtained from the quantized data
{t̄k}nk=1. Moreover, instead of estimating the depth z, we can
estimate the time delay τ := 2z/c, since the mapping from z
to τ is one-to-one. The estimator for τ is then

τ̂ (h; fXA
) := arg max

τ∈Γ

{
nb∑
k=1

hk log (fXA
(bk + τ))

}
+ bnb/2,

where Γ := {−bnb/2, . . . ,−b1, 0, b1, . . . , bnb/2} is a set of on-
grid relative time delays, and fXA

is the arrival PDF assuming
bnb/2 is the true delay.

In Section II, we have derived the limit of the empirical
distribution of high-flux detection times fXD

. Hence, we can
similarly define a log-matched filter matched to fXD and
define an estimator as

τ̂ (h; fXD) := arg max
τ∈Γ

{
nb∑
k=1

hk log (fXD (bk + τ))

}
+ bnb/2,

which is preferable if h is obtained via high-flux acquisition
with non-negligible photon loss due to dead time. Note how-
ever that τ̂ (h; fXD) is not the ML estimator with dead time
effects (even without quantization error), because in this case
the joint PDF does not factorize as product of the marginals.
While one can obtain the exact joint PDF from the transition
PDF (6) and the marginal PDF fXD

, the true ML estimator is
inconvenient to implement. Therefore, τ̂ (h; fXD

) is used in
our simulations.

In Section III, we have derived an algorithm for estimating
the arrival time distribution from the detection time distribu-
tion. Hence, given a detection histogram, our algorithm can
compute an estimate for the arrival histogram ĥA, and then
τ(ĥA; fXA

) can be used for depth estimation.
Based on the above discussion, letting hLF and hHF denote

the detection time histograms obtained via low-flux and high-
flux acquisitions, respectively, we compare six depth estima-
tion methods applicable to asynchronous TCSPC systems. The
methods are as follows:

1) LF: The low-flux approach first attenuates the incident
flux (in practice by applying a neutral density filter) to
limit the total flux arriving at the detector to 5% so
that dead time effects can be ignored. Since the low-
flux detection histogram hLF can then be considered
to be the same as the arrival histogram, it then uses
τ̂(hLF; fXA) as the estimator.

2) HF: The high-flux method naı̈vely assumes that dead
time has no effect on the acquisition and uses the

estimator τ̂(hHF; fXA), even when hHF is not a good
approximation to the arrival histogram.

3) SC: Shift correction assumes that the dead time only
adds a bias to the estimate and that the bias can be
computed and subsequently subtracted away. In practice,
this is equivalent to the optical calibration procedure
in [45]; for our simulations, we compute the shift in
the mode of fXD compared to that of fXA and subtract
the shift correction from the HF estimate.

4) Isbaner: This method, based on the work of Isbaner
et al., first estimates the arrival histogram ĥA from hHF

using the algorithm in [35], which has publicly available
code,6 and then applies the estimator τ̂(ĥA; fXA). While
[35] can estimate Λ from data, we provide the algorithm
with the true Λ for fair comparison.

5) Proposed method 1 – MCPDF: Our first method
computes the Markov chain-based PDF fXD

to directly
apply τ̂(hHF; fXD).

6) Proposed method 2 – MCHC: Our second method is
similar to that of Isbaner et al., except it first estimates
the arrival histogram ĥA from hHF using the Markov
chain-based histogram correction algorithm introduced
in Section III and then uses τ̂(ĥA; fXA

) as the estimator.
We perform Monte Carlo simulations with tr = 100 ns,

td = 75 ns, σ = 0.2 ns, and bin duration tbin = 5 ps, which
are reasonable experimental parameters for some laboratory
settings. For each combination of S and B, we generate 600
realizations of the arrival process with nr = 104 illuminations.
Starting with the first arrival, the high-flux detection sequence
is generated by removing subsequent arrivals if they occur
within td of the previous detection. Generation of the corre-
sponding low-flux detection sequence proceeds in the same
manner, but the arrival process is first attenuated via Bernoulli
thinning, so photons arrive in only 5% of illumination periods
on average. For each method, the log-matched filtering is
performed via circular cross-correlation (circular convolution
of the histogram with the time-reversed PDF). This is due to
the asynchronous dead time preserving the shift invariance of
the arrival process.

Fig. 5 compares the MSE for time delay estimation achieved
by the six compared methods as a function of the number
of illuminations. We observe that MCPDF usually achieves
the lowest MSE, since it directly performs parameter estima-
tion with the updated detection model. Equivalently, MCPDF
needs the fewest illuminations to achieve a given MSE,
hence enabling the fastest acquisition. The MSE of MCHC
is comparable to that of MCPDF, limited only in that it
must first invert the histogram before estimating the depth.
Compared to the LF approach, both MCPDF and MCHC
require fewer illuminations to achieve the same MSE, and that
time efficiency increases as S and B increase and dead time
has a more significant impact. Regarding the other approaches,
HF is more effective only for low numbers of illuminations
but the estimate quickly becomes biased and is therefore not
suited to precise depth measurement. Correcting for this bias
with SC is quite effective for extending to somewhat higher

6http://projects.gwdg.de/projects/deadtimecorrectiontcspc
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and B values. Our proposed methods (MCPDF and MCHC) take advantage of the increased detection rate to perform more
accurate ranging than with the low-flux acquisition for all values of S, B, and nr.

nr, although eventually, more accurate modeling is necessary
for more precise estimates. The state-of-the-art method for
dealing with asynchronous dead-time models by Isbaner et
al. [35] achieves low MSE when the total flux is low or
moderate, while the accuracy degrades in high-flux scenarios.
The performance degradation is due to their approximation of
the detection time distribution being less accurate in high-flux
settings (S. Isbaner, personal communication, May 14, 2018).

In addition to enabling faster acquisition, we explored
whether dead time could lead to more accurate ranging for
an equal number of detected photons. The Fisher information
analysis in Section II-C has provided a theoretical prediction
that for sufficiently high SBR, estimating depth from the
dead time-distorted detection time distribution can yield lower
MSE than that from the arrival time distribution. Although the
estimators in our Monte Carlo simulation are not guaranteed
to achieve the Cramér-Rao lower bound (i.e., the reciprocal of
Fisher information), we would like to see whether the reduc-
tion of ranging error due to dead time also exists with simple
and commonly used estimators. Fig. 6 compares the MSE for
time delay estimation by the six methods as a function of the
number of detections. We notice that for the high SBR cases
where S = 3.16, B = 0.1 and S = 3.16, B = 0.562, MCPDF
outperforms LF, which provides numerical evidence that dead
time can be beneficial when properly modeled.

B. Ranging with Estimated Acquisition Parameters
The results in Section IV-A use methods that compute fXD

,
fXA

, and ĥA assuming the true values of B, S, and Λ are
known. However, in most practical scenarios, this information

will not be available a priori. We describe here some strategies
that can be used for determining those parameters.

1) Maximum Likelihood Estimator for B: We begin by
assuming that background calibration measurements can oc-
casionally be made within the ranging process, for which
photons are detected while the laser is turned off. For se-
quences of ranging measurements such as in 3D imaging, such
background-only acquisitions could be made for each laser
position or for sets of laser points (e.g., once per row or once
per image). Since the background process is homogeneous
with λ(t) = λb, we can rewrite (4) as

fTi+1|Ti
(t|ti) = λb exp

(
− λb

(
t− (ti + td)

))
I{t > ti + td}.

Then the conditional distribution of Ti’s given T1 = t1 is

fT2,...,Tn|T1
(t2, . . . , tn|t1) =

n−1∏
i=1

fTi+1|Ti
(ti+1|ti)

= λn−1
b exp(−λb(tn − t1) + (n− 1)λbtd).

Given a set of absolute detection times {ti}ni=1, the (condi-
tional) log-likelihood function ln

(
fT2,...,Tn|T1

)
is

L({ti}ni=1;λb) = (n− 1) ln(λb)−λb(tn− t1) + (n− 1)λbtd.

Setting the derivative of L({ti}ni=1;λb) with respect to λb to
zero, we obtain the (conditional) ML estimator for λb as

λ̂ML
b =

n− 1

(tn − t1)− (n− 1)td
.

It follows that B̂ML = λ̂ML
b tr.
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Fig. 7: Plots of the parameter estimates as a function of nr
for S = B = 0.562, tr = 100 ns, td = 75 ns, σ = 0.2 ns,
and tbin = 10 ps. In (a), the estimates B̂, Λ̂, and Ŝ improve
as nr increases. The ranging results in (b) using estimated
parameters show no degradation in performance compared to
the methods with parameters known a priori.

2) Estimating S: From Λ̂ML and B̂ML, we could also
compute Ŝ = max(Λ̂ML − B̂ML, 0) to ensure non-negativity.
However, setting Ŝ = 0 whenever B̂ML > Λ̂ML is not
informative for depth estimation with the log-matched filter,
since fXD

and fXA
would be uniform PDFs. Instead, one can

assume that there is always at least some small amount of
signal and background in the ranging process, so we choose
to set minimum values of Smin = Bmin = 0.01. Then
B̂ = max(B̂ML, Bmin), Λ̂ = max(Λ̂ML, B̂ + Smin), and
Ŝ = Λ̂− B̂.

Fig. 7 shows one example of estimates using this strategy

for 500 Monte Carlo trials with S = B = 0.562, tr = 100
ns, td = 75 ns, σ = 0.2 ns, and tbin = 10 ps. In Fig. 7a, the
B̂, Λ̂, and Ŝ estimates consistently improve as nr increases
beyond a very small number of detections. The resulting depth
estimates shown in Fig. 7b are virtually indistinguishable from
the methods using the known parameter values. It is worth
noting that, while B̂ML applies for any value of B, Λ̂ML

becomes less reliable for large Λ since P (R = 0) in (10)
approaches unity. If the number of illuminations was not fixed
in advance, one could pursue an adaptive acquisition strategy
as in [53]. Alternatively, for 3D imaging, one could take
advantage of spatial correlations to estimate Λ, for example,
to borrow measurements from neighboring pixels.

V. CONCLUSION

This work studied dead time compensation for a modern,
asynchronous, nonparalyzable detector. By using a Markov
chain model for detection times, we obtained the limit of
the empirical distribution of detection times as the stationary
distribution of the Markov chain. We found that the Fisher
information per detection can be higher for this limiting
distribution than for the arrival distribution, which suggests
that the distortion due to dead time can be beneficial for
depth estimation if used properly. Indeed, simulation results
showed that our first proposed method MCPDF, which is a log-
matched filter matched to the limiting distribution, achieved
lower error than the low-flux method for a fixed number of
detections when the SBR is sufficiently high. By exploiting
the stationary condition for the Markov chain, we derived our
second proposed method MCHC, which estimates the arrival
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distribution from the detection distribution by solving a nonlin-
ear inverse problem with a provably convergent optimization
algorithm, and then the corrected histogram is used in a log-
matched filter estimator. Although we only tested MCHC in
the context of ranging, it makes no assumptions about the
arrival intensity and should thus be applicable to other dead-
time-limited TCSPC applications, including FLIM and NLOS
imaging; we leave such extensions as future work.

APPENDIX A
PROOF OF PROPOSITION 1

First, we show that {Xi}i∈N is a Markov chain. Define
Bi := {Xi ≤ xi},∀i ∈ N. We need to establish that

P (Bi+1|Xk = xk,∀k ≤ i) = P (Bi+1|Xi = xi) . (30)

The following equivalence of events will be useful in the proof,
as it relates the sets defined by elements of {Xi}i∈N to those
of {Ti}i∈N, which has a known transition density (4):

{Xi+1 ≤ xi+1} = ∪∞k=0{ktr < Ti+1 ≤ ktr + xi+1},
{Ti = kitr + xi} = {Ki = ki} ∩ {Xi = xi}.

(31)

Let td = kdtr + xd, where kd = btd/trc and xd = td mod tr.
Moreover, define Ak := {ktr < Ti+1 ≤ ktr + xi+1},∀k ∈
N ∪ {0}. Then we have

P (Bi+1|Xj = xj ,∀j ≤ i)

=
∑

k1,...,ki

(
P (Bi+1|Xj = xj ,Kj = kj ,∀j ≤ i)

· P (Kj = kj ,∀j ≤ i|Xj = xj ,∀j ≤ i)

)

=
∑

k1,...,ki

(
P (∪∞k=0Ak|Tj = kjtr + xj ,∀j ≤ i)

· P (Kj = kj ,∀j ≤ i|Xj = xj ,∀j ≤ i)

)
(32)

where the summation is over all 0 ≤ k1 ≤ · · · ≤ ki <∞ and
the last equality follows by (31). In the following, we show
that the first probability in (32) only depends on xi and xd.

P (∪∞k=0Ak|Tj = kjtr + xj ,∀j ≤ i)
(a)
=

∞∑
k=0

P (Ak|Ti = kitr + xi)

(b)
=

∫ (ki+kd)tr+xi+1

(ki+kd)tr+xi+xd

λ(t) exp

(
−
∫ t

(ki+kd)tr+xi+xd

λ(τ)dτ

)
dt

+

∞∑
k=ki+kd+1

∫ ktr+xi+1

ktr

λ(t) exp

(
−
∫ t

(ki+kd)tr+xi+xd

λ(τ)dτ

)
dt,

(33)

where step (a) follows by the Markov property of {Ti}∞i=1

and {Ak} being disjoint and in step (b), we have plugged in
(4) and assumed that xi + xd ≤ xi+1 ≤ tr. Note that other
relationships between xi, xi+1, xd, tr may lead to slightly
different expression, but the derivation follows similarly. (We

will see that the expression does not depend on kd.) Label the
two terms in (33) as S1 and S2. First, consider S1:

S1 =

∫ xi+1

xi+xd

λ(t) exp

(
−
∫ kitr+t

kitr+xi+xd

λ(τ)dτ

)
dt

=

∫ xi+1

xi+xd

λ(t) exp

(
−
∫ t

xi+xd

λ(τ)dτ

)
dt,

which follows by change of variable and λ(t + kitr) = λ(t).
Next consider S2:

S2 =

∞∑
k=ki+kd+1

∫ xi+1

0

λ(t) exp

(
−
∫ ktr+t

(ki+kd)tr+xi+xd

λ(τ)dτ

)
dt

=

∞∑
k=0

∫ xi+1

0

λ(t) exp

(
−
∫ (k+ki+kd+1)tr+t

(ki+kd)tr+xi+xd

λ(τ) dτ

)
dt

=

∞∑
k=0

(exp(−Λ))
k
∫ xi+1

0

λ(t) exp

(
−
∫ tr+t

xi+xd

λ(τ) dτ

)
dt

=

∫ xi+1

0
λ(t) exp

(
−
∫ tr+t

xi+xd
λ(τ) dτ

)
dt

1− exp(−Λ)
.

Notice that neither S1 nor S2 depends on kd, {Kj}j≤i, or
{Xj}j<i. Plugging S1 and S2 back into (32), we have that

P (Bi+1|Xj = xj ,∀j ≤ i)

=
∑

k1,...,ki

(S1 + S2)P (Kj = kj ,∀j ≤ i|Xj = xj ,∀j ≤ i)

= S1 + S2,

where the last equality holds since P (·|Xj = xj ,∀j ≤ i) is a
probability measure and that the summation

∑
k1,...,ki

is over
all 0 ≤ k1 ≤ . . . ≤ ki <∞. Hence, we have established (30),
and therefore proved that {Xi}i∈N is a Markov chain.

Next, we compute the transition PDF to justify (6):

fXi+1|Xi
(xi+1|xi) =

d

dxi+1
P (Xi+1 ≤ xi+1|Xi = xi)

=
d

dxi+1
S1 +

d

dxi+1
S2 =

λ(xi+1) exp
(
−
∫ xi+1

xi+xd
λ(τ) dτ

)
1− exp(−Λ)

.

Recall that we have assumed xi + xd ≤ xi+1 ≤ tr in the
derivation above, and we can check that it matches (6) for
this case. Other cases can be derived similarly.

APPENDIX B
DERIVATION OF FISHER INFORMATION

We present the derivation for FID; the derivation for FIA
follows similarly. By definition of Fisher information:

FID =

∫ tr

0

(
− ∂2

∂z2
log (fXD(x; z))

)
fXD(x; z) dx

=

∫ tr

0

(
∂
∂z fXD

(x; z)
)2

fXD
(x; z)

dx−
∫ tr

0

∂2

∂z2
fXD

(x; z) dx

(a)
=

∫ tr

0

(
∂
∂z fXD

(x; z)
)2

fXD(x; z)
dx− ∂2

∂z2

(∫ tr

0

fXD(x; z) dx

)
=

∫ tr

0

(
∂
∂z fXD

(x; z)
)2

fXD
(x; z)

dx,
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where the interchange of derivative and integral in step (a)
holds trivially, since the range of the integral is finite.

APPENDIX C
PROOF OF PROPOSITION 2

In the following, we will show that

P
(
Ri = ri, Ri−1 = ri−1

)
=
(

1−exp(−Λ)
)2 i∏
j=i−1

exp(−rjΛ),

which would imply that Proposition 2 is valid for Ri and Ri−1;
the proof for more than two Ri’s follows similarly.

Define event Ej for j = i− 1, i as

Ej :=
{
rjtr + Tj + td ≤ Tj+1 < (rj + 1)tr + Tj + td

}
.

By definition of Ri in (9),

P
(
Ri = ri, Ri−1 = ri−1

)
= P

(
Ei ∩ Ei−1

)
= E

[
P
(
Ei ∩ Ei−1

∣∣∣Ti−1

)]
.

Note that by the Markov property of absolute detection times
as discussed in Section II-B, the joint PDF of Ti+1, Ti given
Ti−1 = ti−1 is

fTi+1,Ti|Ti−1
(ti+1, ti|ti−1) = fTi+1|Ti

(ti+1|ti)fTi|Ti−1
(tt|ti−1).

Let aj := rjtr + tj + td for j = i− 1, i. Then

P
(
E1, E2

∣∣∣Ti−1 = ti−1

)
=

∫ tr+ai−1

ai−1

∫ tr+ai

ai

fTi+1|Ti
(ti+1|ti)fTi|Ti−1

(ti|ti−1) dti+1 dti.

First consider the inner integral:∫ tr+ai

ai

fTi+1|Ti
(ti+1|ti) dti+1

=

∫ tr+ai

ai

λ(ti+1) exp
(
−
∫ ti+1

ti+td

λ(τ) dτ
)
dti+1

= − exp
(
−
∫ ti+1

ti+td

λ(τ) dτ
) ∣∣∣ti+1=tr+ai

ti+1=ai

= (1− exp(−Λ)) exp(−riΛ).

Note that the inner integral does not depend on ti. Using
similar calculation, we have that the outer integral does not
depend on ti−1. Hence,

P
(
E1 ∩ E2

∣∣∣Ti−1 = ti−1

)
= P

(
E1 ∩ E2

)
=
(

1− exp(−Λ)
)2 i∏

j=i−1

exp(−rjΛ),

which is the desired result.

APPENDIX D
PROOF OF PROPOSITION 3

In the following, we will find an upper bound for the
Lipschitz constant L of ∇D(·) defined in (24). For brevity,
we omit the dependence on h in the notation for T . By (24),
we have

Λ∇D(λ) = gλTT (λ) + T (λ) + gTλT (λ)− Λ diag(g)T (λ)

− gλTh− h− gTλh + Λ diag(g)h.

It follows that for any u,v ∈ [0,M ]nb , we have by triangle
inequality that

Λ‖∇D(u)−∇D(v)‖
≤ ‖guTT (u)− gvTT (v)‖+ ‖T (u)− T (v)‖
+ ‖gTuT (u)− gTvT (v)‖
+ Λ‖diag(g)T (u)− diag(g)T (v)‖
+ ‖guTh− gvTh‖+ ‖gTuh− gTvh‖.

Label the six terms on the right hand side as T1, . . . , T6. We
will show that there exist constants L1, . . . , L6 <∞ such that
Ti ≤ Li‖u − v‖,∀i = 1, . . . , 6. Then the Lipschitz constant
L of the gradient ∇D is upper bounded by Λ−1

∑6
i=1 Li.

First consider T2. Let ĝ := maxi∈[nb] gi. Then

T2

(a)

≤ ‖gTuu− gTvv‖+ ‖u− v‖+ ‖diag(g)(u− v)‖
(b)

≤ ‖gTuu− gTuv‖+ ‖gTuv − gTvv‖+ (1 + ĝ)‖u− v‖
(c)

≤ ‖g‖‖u‖‖u− v‖+ ‖g‖‖v‖‖u− v‖+ (1 + ĝ)‖u− v‖
(d)

≤ 2
√
nbM‖u− v‖+ 2‖u− v‖ = 2(

√
nbM + 1)‖u− v‖,

where step (a) follows by triangle inequality, step (b) follows
by triangle inequality and the fact that the largest eigenvalue of
a diagonal matrix equals to the largest entry on its diagonal,
and step (c) follows by Cauchy–Schwarz. To see step (d),
notice that ‖u‖, ‖v‖ ≤ √nbM , since u,v ∈ [0,M ]nb and
maxi∈[nb] gi ≤ ‖g‖ ≤ ‖g‖1 ≤ ‖h‖1 = 1 (the second
inequality follows by the fact that g is non-negative and
so ‖g‖ =

√∑nd
i=1 g

2
i ≤

√
(
∑nd
i=1 gi)

2 = ‖g‖1, the third
inequality assumed td ≤ tr and the last equality follows by
h being a proper probability density function). Similarly, we
can show that T4 ≤ 2Λ(

√
nbM + 1)‖u− v‖, T5 ≤ ‖u− v‖,

and T6 ≤ ‖u− v‖.
Next consider T1:

T1

(a)

≤
∣∣uTT (u)− vTT (v)

∣∣
(b)

≤
∣∣uTT (u)− vTT (u)

∣∣+
∣∣vTT (u)− vTT (v)

∣∣
(c)

≤ ‖T (u)‖‖u− v‖+ ‖v‖‖T (u)− T (v)‖
(d)

≤
(
Λ−1nB2 +

(
Λ−1 + 2

)√
ndM

)
‖u− v‖,
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where step (a) follows by ‖g‖ ≤ 1 as established before, step
(b) follows by triangle inequality, step (c) follows by Cauchy–
Schwarz, and step (d) follows by

‖T (u)‖ = ‖Λ−1gTuu + Λ−1u− diag(g)u‖
≤ Λ−1‖g‖‖u‖2 + Λ−1‖u‖+ ĝ‖u‖
≤ Λ−1nbM

2 + Λ−1√nbM +
√
nbM.

Similarly, we can show that

T3 ≤
(
Λ−1nbM

2 +
(
Λ−1 + 2

)√
nbM

)
‖u− v‖.

Proposition 3 is then obtained by combining the upper bounds
for T1 through T6.
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