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Estimation from Quantized Gaussian Measurements:
When and How to Use Dither

Joshua Rapp, Robin M. A. Dawson, and Vivek K Goyal

Abstract—Subtractive dither is a powerful method for remov-
ing the signal dependence of quantization noise for coarsely-
quantized signals. However, estimation from dithered measure-
ments often naively applies the sample mean or midrange, even
when the total noise is not well described with a Gaussian or
uniform distribution. We show that the generalized Gaussian dis-
tribution approximately describes subtractively-dithered, quan-
tized samples of a Gaussian signal. Furthermore, a generalized
Gaussian fit leads to simple estimators based on order statistics
that match the performance of more complicated maximum like-
lihood estimators requiring iterative solvers. The order statistics-
based estimators outperform both the sample mean and midrange
for nontrivial sums of Gaussian and uniform noise. Additional
analysis of the generalized Gaussian approximation yields rules
of thumb for determining when and how to apply dither to
quantized measurements. Specifically, we find subtractive dither
to be beneficial when the ratio between the Gaussian standard
deviation and quantization interval length is roughly less than
1/3. If that ratio is also greater than 0.822/K0.930 for the number
of measurements K > 20, we present estimators more efficient
than the midrange.

Keywords—Quantization, subtractive dither, generalized Gaus-
sian distribution, order statistics, L-estimator, alpha-trimmed mean,
midrange

I. INTRODUCTION

Estimation of the mean of a Gaussian distribution from
independent and identically distributed (i.i.d.) samples is a
canonical problem in statistics, yet it has important subtleties
when the samples are quantized. Without quantization, the
sample mean is an unbiased, efficient, and consistent estimator.
With uniformly quantized samples, the situation is immediately
more complicated: The sample mean is an unbiased estimate
only when the true mean falls on the quantizer’s reproduction
grid or asymptotically in the limit of fine quantization [1]; and
in the opposite extreme of very coarse quantization, all the
samples are identical, so the estimates do not even improve
with increasing numbers of data samples.

The use of subtractive dither changes the situation sub-
stantially. The sample mean is then an unbiased and con-
sistent estimator—like in the unquantized case—but it may
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be arbitrarily far from minimizing the mean-squared error
(MSE). For example, when the population variance vanishes,
the sample mean estimator has MSE inversely proportional
to the number of samples, whereas the MSE achieved by the
midrange estimator is inversely proportional to the square of
the number of samples [2].

In this paper, we develop estimators for cases where the
quantization is neither extremely fine nor extremely coarse.
The motivation for this work stemmed from a series of
experiments performed by the authors and colleagues with
single-photon lidar. In [3], temporally spreading a narrow
laser pulse, equivalent to adding non-subtractive Gaussian
dither, was found to reduce the effects of the detector’s coarse
temporal resolution on ranging accuracy. Later work on a
similar system showed that implementing subtractive dither
could likewise reduce the effects of coarse quantization [4],
[5]. Our aim was then to compare the two approaches by
determining performance limits, optimal estimators, and when
one method might be preferable over the other. The estimators
we develop in this work are based on a generalized Gaussian
(GG) approximation for the combination of sample variation
and quantization noise, which the authors first proposed in [5].
While the benefit of the GG approximation did not yield
improved results for the lidar data due to model mismatch,
our framework is valid for a more general set of problems
in which quantization of a Gaussian scalar signal occurs. We
propose a number of estimators for additive GG noise and
find a clear computational advantage with negligible loss in
accuracy for simple estimators based on order statistics.

A. Main Contributions
This paper makes the following contributions:
1) Estimation Efficiency: We demonstrate the inefficiency of

the mean and midrange estimators for subtractively-dithered
measurements of a Gaussian signal by deriving the maximum
likelihood estimator and Cramér-Rao bound.

2) Generalized Gaussian Approximation: We expand upon
the generalized Gaussian approximation introduced in [5] for
the sum of Gaussian and uniform random variables that arises
from subtractively dithered quantization of a Gaussian signal,
using the approximation to determine three distinct regimes of
estimator behavior.

3) Estimator Proposal: We consider a family of location
estimators based on the GG approximation, in particular linear
combinations of the measurement order statistics. We introduce
a version of the trimmed mean estimator with trimming deter-
mined by the GG approximation that is simple, computation-
ally efficient, and performs as well as the ML estimator. Monte
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Carlo estimator comparisons are shown versus the number of
measurements K and versus σZ/∆, the ratio of the Gaussian
standard deviation to the quantization bin size.

4) Rules of Thumb: We determine several key rules of
thumb for deciding when and how to use subtractive dither.
For instance, we find dither is not beneficial roughly for
σZ/∆ > 1/3; below this value, however, applying subtractive
dither and a GG-based estimator lowers the MSE. Moreover,
if the quantization is coarser than σZ/∆ = 0.822/K0.930 and
K > 20, then the midrange is a good estimator.

B. Outline

This paper is organized as follows. Section II sets up the
problem of measuring a Gaussian signal with a subtractively-
dithered quantizer and explores the fact that the mean and
midrange are inefficient estimators. Section III motivates the
use of the generalized Gaussian distribution and estimators
based on order statistics. Section IV discusses several estimator
implementations for our noise model. Section V introduces
mean-squared error expressions as a guide to better under-
standing the results of numerical simulation presented in Sec-
tion VI, which tests several estimators and compares the use of
quantized data with and without dithering. Finally, Section VII
presents our conclusions regarding which estimators to use and
when to apply dither.

II. FORMULATION, BACKGROUND, AND MOTIVATION

A. Quantized Measurement

We begin by presenting and expanding upon the signal
acquisition model introduced in [5]. Suppose we have an
unknown constant signal µX corrupted by additive, zero-mean
Gaussian noise Z ∼ N (0, σZ). Then estimation of µX from
K independent samples

Xi = µX + Zi, i = 1, 2, . . . ,K,

is straightforward, as the sample mean µ = (1/K)
∑K
i=1Xi

can easily be shown to be an efficient estimator of the mean of
a Gaussian distribution. However, all measurement instruments
perform some quantization. For instance, consider a uniform
midtread quantizer q(·) with bin size ∆ applied to Xi when
σZ � ∆. Except when µX is close to a quantizer threshold, it
will be the case that Ui = q(Xi) is identical for all i, so that
the “quantized-sample mean” given as

µ̂Q =
1

K

K∑

i=1

Ui, (1)

is no more informative an estimate of µX than any single
measurement. For σZ not too small compared to ∆, estimation
error can be reduced by properly accounting for the quantiza-
tion and the underlying distribution, e.g., via the maximum
likelihood estimator for quantized samples of a Gaussian

signal [6], [7]:

µ̂QML = arg max
µX

K∑

i=1

log

[
Φ

(
ui − µX + ∆

2

σZ

)
−

Φ

(
ui − µX − ∆

2

σZ

)]
, (2)

where Φ(·) is the cumulative distribution function (CDF) of
a standard normal random variable. Still, µ̂QML is no more
accurate than µ̂Q when all of the samples have the same value.
Because of the coarse quantization mapping every value in
[j∆−∆/2, j∆ + ∆/2] to j∆ for j ∈ Z, the resolution of an
estimate µ̂X is limited by the bin size ∆ and the quantization
error is signal-dependent.

Statisticians have long recognized that working with
rounded data is not the same as working with underlying
continuous-valued data. Let Xhist be the continuous random
variable with density constant on intervals ((j − 1

2 )∆, (j +
1
2 )∆) with P(Xhist ∈ ((j − 1

2 )∆, (j + 1
2 )∆)) = P(U = k∆),

for all j ∈ Z. Because of the piecewise-constant form,
Xhist is said to have a histogram density [8]. The widely
known Sheppard’s corrections introduced in [9], [10] relate
the moments of U and the moments of Xhist [11]. From the
construction of Xhist, it is immediate that these corrections are
zero for odd moments. See [12] for a review of Sheppard’s
corrections and [13] for results for autoregressive and moving
average processes and more recent references.

The moments of Xhist being close to the moments of
X depends on continuity arguments and ∆ being small. In
contrast, our interest here is in situations where the quantiza-
tion is coarse relative to the desired precision in estimating
µX . Quantization may be coarse because of limitation of
instruments, such as the fundamental trade-offs in analog-to-
digital converters [14] or the time resolution in time-correlated
single photon counting [15], which may be coarse relative to
the resolution desired for time-of-flight ranging.

When quantizing Xhist, the quantization error Ehist =
q(Xhist) − Xhist is uniformly distributed on [−∆/2, ∆/2]
and independent of Xhist. In general, however, quantization
error being uniformly distributed and independent of the input
does not extend to the quantization of X; approximating
quantization error as such—without regard to whether the input
has a histogram density—is often called the “additive-noise
model,” “quantization-noise model,” or “white-noise model.”
A substantial literature is devoted to understanding the validity
of this approximation, e.g. [16]–[20].

One approach to improving the precision of estimates from
quantization-limited measurements is the use of dither, a small
signal introduced before the discretization to produce enough
variation in the input such that it spans multiple quantization
levels. By combining multiple dithered measurements, esti-
mates can achieve resolution below the least-significant bit
and the result may also have desirable statistical and per-
ceptual properties, such as whitened noise. Early applications
empirically demonstrating the benefits of dither include control
systems [21], [22], image display [23], [24], and audio [25],
with numerous contributions to the statistical theory developed
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in [16], [17], [26]–[30], among others. More recent work has
focused on varying the quantizer thresholds primarily for 1-bit
measurements in wireless sensing networks, including [31]–
[37]. While these works consider various methods for optimiz-
ing or adapting thresholds, they are restricted to considering
only nonsubtractively-dithered quantization.

B. Subtractively-Dithered Quantization
If it is possible to know the dither signal exactly,

subtractively-dithered quantization with the proper dither sig-
nal makes the quantization error uniformly distributed and
independent of the input. Define the dither signal Di, i =
1, . . . ,K as a sequence of i.i.d. random variables, independent
of the noisy quantizer input Xi. The output of a subtractively-
dithered quantizer is

Yi = q(Xi +Di)−Di, (3)

with the quantization error defined as

Wi = Yi −Xi. (4)

Define the characteristic function of the dither signal proba-
bility density function (PDF) as

MD(ju) = E[ejuD]. (5)

Then Schuchman’s condition [28] is the property of the dither
PDF that

MD (j2π`/∆) = 0, ` ∈ Z \ 0. (6)

As long as the quantizer has a sufficient number of levels so
that it does not overload, by [17], [29] the Schuchman condi-
tion is necessary and sufficient for Xi to be independent of Wj

for all i, j, with i.i.d. Wi ∼ U [−∆/2,∆/2]. Subtractive dither
often uses a uniform dither signal with D ∼ U [−∆/2,∆/2]
because its characteristic function

MD(ju) =
sin(u∆/2)

u∆/2

meets Schuchman’s condition (6).
The rest of this paper considers only when Schuchman’s

condition is met, with an i.i.d. input signal of the form
Xi = µX + Zi, Z ∼ N (0, σ2

Z), an i.i.d. dither signal Di ∼
U [−∆/2,∆/2] independent of the input signal, and a non-
overloading uniform quantizer. Then the dithered measure-
ments take the form

Yi = µX + Zi +Wi, (7)

and the problem of estimating µX simply becomes one of mit-
igating independent additive noise. The sum of the Gaussian
and uniform terms can be combined into a single total noise
term to obtain

Yi = µX + Vi, (8)

where Vi = Zi + Wi are i.i.d. Then the means and variances
simply add so that µV = 0 and σ2

V = σ2
Z + ∆2/12.

For convenient shorthand, we refer to measurements from
a quantizer without dither as “quantized” and measurements
from a subtractively-dithered quantizer as “dithered.” The usual

approach to estimating µX from K dithered measurements Yi,
i = 1, 2, . . . , K, is via the sample mean

µ̂mean =
1

K

K∑

i=1

Yi. (9)

The MSE of the sample mean is

MSE(mean) = σ2
V /K, (10)

which is O(K−1). Although using the sample mean is logical
when σZ � ∆ so that the contribution of the uniform noise
component is negligible, the sample mean is not in general an
efficient estimator. For example, in an alternative case of σZ =
0, a maximum likelihood (ML) estimator is the midrange1

µ̂mid =
1

2

(
Y(1) + Y(K)

)
, (11)

where Y(1) ≤ Y(2) ≤ · · · ≤ Y(K) are the order statistics of the
K measured samples. Whereas the MSE of the sample mean
for σZ = 0 is ∆2/(12K), the MSE of the midrange is

MSE(mid) = ∆2/[2(K + 1)(K + 2)], (12)

which is O(K−2) and hence better than the sample mean by
an unbounded factor [39]. Nevertheless, the midrange is not
a good estimator in the general case of σZ > 0, as it relies
on the finite support of the uniform distribution. If instead
σZ is much larger than ∆, rendering the uniform component
negligible, then the MSE of the midrange would only improve
as O(1/ log(K)) [40]. As others have noted for quantization
of a Gaussian signal without dither [6], [7], the key figure of
merit for determining estimator performance is then σZ/∆,
a measure of the relative sizes of the noise components. We
observe that normalizing the MSE by ∆2 removes the separate
dependence on σZ and ∆, resulting in

NMSE(mean) = [(σZ/∆)2 + 1/12]/K, (13)

and
NMSE(mid) = 1/[2(K + 1)(K + 2)]. (14)

Except in trivial cases (σZ � ∆ or σZ � ∆), V has neither
Gaussian nor uniform distribution, so the conventional mean
and midrange estimators are expected to be suboptimal. Fur-
thermore, existing nonlinear processing schemes for dithered
measurements do not adapt to best suit the noise statistics [41].
A first approach to finding a better estimator for arbitrary
σZ/∆ is to derive the maximum likelihood (ML) estimator for
the dithered noise model. From the definitions of the random
variables, the PDF of W is

fW (w) =

{
1/∆, w ∈ [−∆/2,∆/2]

0, otherwise,

1Any statistic in [Y(n) − ∆/2, Y(1) + ∆/2] is an ML estimator for
the mean of a uniform distribution with known variance [38, p. 282]. The
midrange is commonly used because it is unbiased and the minimum-
variance estimator among linear functions of order statistics [39]. However,
no uniformly minimum-variance unbiased estimator exists [38, p. 331].
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and the PDF of Z is fZ(z) = φ(z/σZ)/σZ , where φ(x) is
the standard normal PDF. Since the total noise is the sum of
independent noise terms, the PDF of the samples is given by
the convolution

fV (v) = fZ(z) ∗ fW (w)

=
1

∆

∫ ∆
2

−∆
2

fZ(v − τ)dτ

=
1

∆

[
Φ

(
v + ∆

2

σZ

)
− Φ

(
v − ∆

2

σZ

)]
. (15)

For i.i.d. samples from a dithered quantizer, the likelihood
function is then

L
(
{yi}Ki=1;µX

)
=

K∏

i=1

fV (yi − µX)

=

K∏

i=1

1

∆

[
Φ

(
yi − µX + ∆

2

σZ

)
− Φ

(
yi − µX − ∆

2

σZ

)]
.

(16)

From the log-likelihood, the dithered-sample ML estimator of
µX is

µ̂DML = arg max
µX

K∑

i=1

log

[
Φ

(
yi − µX + ∆

2

σZ

)
−

Φ

(
yi − µX − ∆

2

σZ

)]
. (17)

The ML estimator is notably identical to (2), except the
dithered measurements are not discrete-valued as are the
samples used for µ̂QML.

To determine the efficiency of the mean, midrange, and
DML estimators, we derive the Cramér-Rao bound (CRB),
which is a limit on the MSE that an unbiased estimator can
achieve [42, Chapter 4.2.2]. The normalized CRB is derived
in Appendix A for one dithered measurement to be

NCRB(µX) =
(σZ/∆)2

∫
[
φ
(
u−1/2
σZ/∆

)
− φ

(
u+1/2
σZ/∆

)]2

Φ
(
u+1/2
σZ/∆

)
− Φ

(
u−1/2
σZ/∆

) du

, (18)

which can be evaluated via numerical integration. Note that the
uniform PDF does not meet the regularity condition required
for the CRB to apply, so (18) is not expected to be meaningful
for σZ/∆ = 0.

Fig. 1 illustrates the suboptimality of the mean and midrange
estimators compared to µ̂DML for intermediate values of
σZ/∆. In a Monte Carlo simulation with T = 20000 trials,
K = 125 measurements were generated according to (3),
where both µX and D were selected uniformly at random over
[−∆/2,∆/2]. Computing the normalized MSE of the µ̂mean,
µ̂mid, and µ̂DML estimates as

NMSE(µ̂X) =
1

T

T∑

t=1

(
µX − µ̂X

∆

)2

(19)

K = 125

<Z="
10-3 10-2 10-1 100

N
M

S
E

10-4

10-3

10-2

10-1 mean
midrange
ML
NCRB

Fig. 1: Applied to subtractively-dithered measurements, the midrange
is approximately optimal only for small σZ/∆ (Regime I, red), and
the sample mean is approximately optimal only for large σZ/∆
(Regime III, blue). For confirmation, in Regime I the midrange
approaches NMSE = 1/[2(K + 1)(K + 2)] ≈ 3.12 × 10−5 and
the mean approaches NMSE = (1/12)/K ≈ 6.67 × 10−4, and in
Regime III the mean approaches NMSE = (σZ/∆)2/K, which is
8.00 × 10−3 at σZ/∆ = 1. We seek an estimator simpler than the
dithered-sample maximum likelihood that performs at least as well as
the mean and midrange for intermediate values of σZ/∆ (Regime II,
green).

reveals how the performance of each estimator changes as a
function of σZ/∆.

Fig. 1 highlights three distinct regimes of estimator behavior.
In Regime I (red), the Gaussian noise component is negligible,
so the ML estimator and the midrange are nearly identical and
outperform the mean. In Regime III (blue), the uniform noise
component is negligible, so the ML estimator and the mean
are nearly identical and outperform the midrange. In Regime II
(green), neither the uniform nor the Gaussian component
dominates, and the DML estimator performs significantly
better than both the mean and midrange. Still, µ̂DML does not
achieve the CRB for small σZ/∆, indicating that an efficient
estimator of µX does not exist; however, all ML estimators
are asymptotically efficient in K [42].

From the results in Fig. 1, it may seem obvious that µ̂DML

is a better choice than µ̂mean or µ̂mid for any value of σZ/∆.
However, µ̂DML requires iterative solution, thus making it far
more computationally complex than the mean and midrange. In
this work, one of our primary aims is to find a computationally
simple estimator that can likewise outperform the mean and
midrange in Regime II. We show that a generalized Gaussian
approximation to the total noise of a dithered quantizer gives
rise to order statistics-based estimators that approach the
performance of µ̂DML. In addition, we compare their results
to those from quantized measurements without dither, leading
to design rules for when to use dither and which estimator to
apply.
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C. Mixed Measurements of Vector Signals

Whereas this paper is focused on the estimation of a single
scalar value from multiple direct noisy measurements, many
other estimation problems involving quantized data have been
studied extensively. In particular, interest in linear inverse
problems—both undersampled and oversampled—has resulted
in work on estimating vectors from quantized linearly mixed
measurements, with and without subtractive dither.

Quantized, mixed, noisy measurements of a vector x can
be represented as y = Q(Ax + z), where A ∈ CK×N is
a linear operator, z is additive noise, and Q(·) represents
scalar quantization. Theoretical results on how well x can be
estimated generally depend on the structure of A, such as
being an oversampled inverse discrete Fourier transform—thus
modeling oversampled analog-to-digital conversion (OADC)—
or being large and random.

For noiseless (z = 0) OADC, O(K−2) upper- and lower-
bounds on MSE using deterministic analyses [43], [44] are
reminiscent of (12) and similarly rooted in quantized values
providing hard constraints on x. For general A, such constraints
can be expressed with a linear program [45], and introduction
of subtractive dither makes the optimal O(K−2) rate provably
achievable by a very simple algorithm [46]. The compressive
case of K < N is addressed, for example, in [47].

For Gaussian z, [48] provides a method applicable with
nonuniform quantization to provide an `1-regularized estimate
of x. More general priors and quantizers (potentially non-
regular as well as nonuniform) can be incorporated in the
method of [49]. Like these earlier works, this paper also
addresses the case of Gaussian z, but A being a K×1 matrix of
1s makes it qualitatively different, in part because the estimate
of a single scalar from K � 1 measurements need not be
regularized.

III. GENERALIZED GAUSSIAN APPROXIMATION AND
ESTIMATION

In order to find a simple estimator for Regime II, we begin
by examining the other two regimes and the simple forms
of the ML estimator there. We notice that the uniform and
Gaussian noise distributions in Regimes I and III are special
cases of the generalized Gaussian distribution (GGD), which
has PDF [50]

fṼ (v;µ, σ, p) =
1

2Γ(1 + 1/p)A(p)
exp

{
−
( |v − µ|
A(p)

)p}
,

(20)
where A(p) =

√
σ2Γ(1/p)/Γ(3/p) and Γ(·) is the Gamma

function. In addition to mean and variance parameters µ and
σ2, the GG density has a third parameter p that controls the
exponential decay of its tails. When p = 2 or p → ∞,
the GGD simplifies to the Gaussian or uniform distributions,
respectively. Another special case of the GGD is the Laplace
distribution for p = 1.

For each of the special cases, we further notice that the ML
estimator (median, mean, and midrange for p = 1, 2, ∞)
is a linear combination of order statistics. When p = 1,
only the middle order statistic has nonzero weight, whereas

<Z="
10-3 10-2 10-1 100 101

bp

100

101

102

103
GG shape approximation versus <Z="

Fig. 2: The value of p̂Ṽ goes to infinity as σZ/∆ decreases and
converges to p̂Ṽ = 2 as σZ/∆ increases, with convergence beginning
around σZ/∆ = 1/3 matching the anticipated behavior.

the reverse is true for p → ∞, with all weight on the two
extreme samples. For p = 2, all of the order statistics are
equally weighted. With these two observations in mind, we
hypothesize that, if there is a value of p that approximates
intermediate combinations of uniform and Gaussian noise, then
there may be a corresponding order statistics-based estimator
that approaches the performance of µ̂DML.

A. Approximation

For our stated purpose, it would be ideal if proper selection
of p exactly represented nontrivial sums of Gaussian and
uniform terms. Unfortunately the sum of any two independent
GG random variables (GGRVs) is another GGRV only when
p = 2 for each addend2 [51]. Nevertheless, the sum of
independent GGRVs has many of the same properties as a
GGRV, and can be well-approximated as a GGRV through
a number of approximation methods. A simple approach
from [52] matches the mean, variance, and kurtosis of the GG
approximation to the corresponding moments of the true noise
distribution as follows. Defining Ṽ as the GG approximation
to V = Z + W , then since the uniform and Gaussian noise
components are independent random variables, the mean and
variance parameters of the GG noise approximation are simply
given as µṼ = µW +µZ and σ2

Ṽ
= σ2

Z +σ2
W . To compute the

shape parameter for the special case of uniform and Gaussian
addends, the approximation of p is then the unique solution to

Γ(1/p̂Ṽ )Γ(5/p̂Ṽ )

Γ(3/p̂Ṽ )2
= 3− 6

5

1
[
12
(
σZ

∆

)2
+ 1
]2 (21)

(see derivation in Appendix B). We thus see that p̂Ṽ depends
on σZ/∆, with the relationship plotted in Fig. 2. Solving (21)
is fast, and the values of p̂Ṽ for a range of σZ/∆ values could
be precomputed and stored in a table if necessary. A rough
approximation and good initial value for a solver is p̂(0)

Ṽ
=

max{2,∆/σZ}.
2The limiting distribution of the sum of i.i.d. GGRVs is Gaussian by the

Central Limit Theorem [38, Chapter 5.4.2], but the sum of any finite number
of GGRVs will only be approximately Gaussian unless each term is Gaussian.
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−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
v

0

1

f V
(v
)

σZ/∆=0.004, p̂=158

True noise
GG approx.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
v

0

1

f V
(v
)

σZ/∆=0.04, p̂=14.3

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
v

0.0

0.5

f V
(v
)

σZ/∆=0.4, p̂=2.16

Fig. 3: The three plots show the noise PDF calculated numerically
from the true density (15) (solid red) and via the GG approxima-
tion (20) (dashed black). The close agreement suggests the GGD is
a good approximation for the noise.

To verify the quality of the generalized Gaussian approxima-
tion to the output noise distribution using the kurtosis match,
Fig. 3 shows comparisons between the true density, computed
numerically according to (15), and its GG approximation
from (20). We test σZ/∆ = 0.004, 0.04, and 0.4, maintaining
∆ = 1 for consistency. For σZ � ∆, the distribution is close
to uniform, and at σZ ≈ ∆, the distribution is almost Gaussian.
In the intermediate regime, however, the distribution combines
attributes of each component, with the flat top of the uniform
distribution and exponential tails of the Gaussian distribution.
The GGD appears to be a good approximation of the true noise
distribution, almost perfectly matching the shape behavior.

B. Estimation
For i.i.d. samples of a GG distribution, the likelihood

function is

L({vi}Ki=1;µ, σ, p) =

K∏

i=1

fṼ (v;µ, σ, p). (22)

By differentiating the log of (22) with respect to µ, the ML
estimator µ̂GGML for the mean of a GGRV is given in [50] as
the solution to

K∑

i=1

sgn(yi − µ̂GGML)|yi − µ̂GGML|p−1 = 0, (23)

and is shown to be asymptotically normal and efficient in K
for p ≥ 2, which is the regime of interest. The asymptotic
variance of µ̂GGML normalized by ∆2 is given by

NVar(GGML) =
β(p)[(σZ/∆)2 + 1/12]

K
, (24)

p
2 10 100

-
(p

)

10-2

10-1

100
Relationship between -(p) and p

Fig. 4: As p increases beyond p = 2, β(p) becomes much less than
1, implying that MSE(µ̂GGML) is much lower than MSE(µ̂mean).

where

β(p) =
Γ2(1/p)

p2Γ
(

2p−1
p

)
Γ(3/p)

. (25)

We notice that (24) decreases as O(K−1), but the coefficient
β(p), which is plotted in Fig. 4, is much less than 1 for
large p, suggesting that µ̂GGML should outperform µ̂mean

for p̂Ṽ > 2. Since the GGD closely approximates the total
noise distribution, it would be ideal if µ̂GGML reduced to a
computationally simple estimator such as one based on order
statistics for all p. Unfortunately, the ML estimator does not
generally have a closed-form expression, except in special
cases such as p = 1, 2,∞ (an explicit expression has also
recently been derived for p = 4 [53]), so iterative solution
would again be necessary.

We have already observed that the ML estimators for p =
1, 2,∞ all belong to a class of linear combinations of order
statistics called L-estimates [54], which are attractive because
they have closed-form definitions of the form

µ̂X =

K∑

i=1

aiY(i). (26)

We thus consider how to obtain the coefficients ai for L-
estimates that perform well for GG noise when p is not one
of the special cases.

An effective L-estimate should weight the order statistics
in accordance with the noise distribution. Notable past ap-
proaches include that of Lloyd, who derived the minimum-
variance unbiased estimator among linear functions of the
order statistics in [39]. This formulation is impractical, how-
ever, as it requires the correlations of the order statistics for
a given distribution, which are often not known even for
common special cases like the Gaussian distribution. Bovik et
al. [55], [56] further specified the minimum variance unbiased
L-estimate and then numerically computed results for several
values of p from samples of a GGD with K = 3.

A number of approximations to Lloyd’s formulation exist
to more simply compute near-optimal coefficients for linear
combinations of order statistics, including [57], [58]. Öten and
de Figueiredo introduced one such method using Taylor expan-
sion approximations to get around the difficulties of knowing
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distributions of order statistics [59]. This method does still
require knowledge of the inverse CDF of the noise distribution,
and while there is no closed form expression for the GGD, the
necessary values can be pre-computed numerically.

Simpler L-estimates have much longer histories, with con-
sideration of trimming extreme or middle order statistics at
least as old as [60] (credited to Gergonne in [61]), with the
first known mathematical analysis by Daniell, who called such
an estimate the “discard-average” [62], [63]. The method now
known as the α-trimmed mean and popularized by Tukey [64],
[65] avoids extensive computation of the weights by trimming
a fixed fraction α from the extremes of the order statistics. Re-
strepo and Bovik defined a complementary α-“outer” trimmed-
mean [66], which retains a fraction α of the data by trimming
the middle order statistics and is suitable for distributions
with short tails within the range from Gaussian to uniform
distributions. They tabulated several instances of the trimmed
mean for GGDs with multiple combinations of K and p.

Lastly, Beaulieu and Guo introduced an estimator specifi-
cally for the GGD but using nonlinear combinations of the
order statistics [67]. The weighting of the order statistics
depends on p via a heuristically-justified function and is shown
to perform almost identically to µ̂GGML. This estimator is
unbiased and exactly matches the ML estimator for the special
cases of p = 2 and ∞.

In the following section, we consider three of the most
computationally-efficient order statistics-based estimators to
use for the GG approximation: the nearly-best L-estimate µ̂NB

of [59], the trimmed-mean estimator µ̂α modeled on [66],
and the non-linear estimator µ̂NL of [67]. Each estimator
takes the form of (26) with different computations of the
coefficients ai. While µ̂NL is specifically designed for use with
GG noise, we modify the more general µ̂NB and µ̂α to match
the GG approximation. For µ̂NB, we use the PDF and inverse
CDF (computed numerically) of the GG approximation to
determine the coefficients. One could alternatively compute the
coefficients for µ̂NB directly from the true noise distribution
in (15); however, additional numerical evaluation would be
required for the inverse CDF, which we eschew in our search
for computationally efficient estimators. There is no explicit
distribution assumed by µ̂α, but we propose a choice of
the trimmed fraction α based on the estimated p̂Ṽ value to
implicitly link the estimator to the GGD.

IV. ESTIMATOR IMPLEMENTATIONS

A. ML Estimators

An EM algorithm for obtaining the quantized-sample ML
estimate µ̂QML was introduced by Papadopoulos et al. [31,
Appendix E]:

µ̂
(j+1)
QML = µ̂

(j)
QML +

σZ

K
√

2π

K∑

i=1

m(ui), (27)

where

m(ui) =

exp

(
−

[
ui−∆

2 −µ̂
(j)
QML

]2

2σ2
Z

)
− exp

(
−

[
ui+

∆
2 −µ̂

(j)
QML

]2

2σ2
Z

)

Φ

(
ui+

∆
2 −µ̂

(j)
QML

σZ

)
− Φ

(
ui−∆

2 −µ̂
(j)
QML

σZ

) .

(28)

A good initialization is µ̂(0)
QML = µ̂Q, since the estimators are

equal for σZ = 0,∞. A similar algorithm, derived in [48] for
quantized, linearly-mixed vector measurements, is equivalent
to that in (27) for the special case of a repeated scalar input and
no mixing (i.e., the mixing matrix is a column of 1s). Since
µ̂DML has the same formulation as µ̂QML, the same algorithm
also works for continuous-valued dithered measurements:

µ̂
(j+1)
DML = µ̂

(j)
DML +

σZ

K
√

2π

K∑

i=1

m(yi). (29)

We initialize with µ̂(0)
DML = µ̂mid, since the midrange is known

to be the ML estimator for σZ = 0. A solver for µ̂GGML was
likewise initialized with µ̂(0)

GGML = µ̂mid.

B. Order Statistics-Based Estimators
To evaluate the GG noise approximation and find the best

non-iterative estimator, we compared the three simplest esti-
mators based on the order statistics: the nearly-best L-estimate,
the α-outer mean, and the nonlinear combination from [67].
Since the GGD is symmetric, the coefficients of an unbiased
order statistics-based estimator are defined symmetrically and
only half must be uniquely computed. It is thus useful to define
M = bK/2c and N = dK/2e using the floor and ceiling
functions, respectively.

To derive the nearly-best L-estimate of [59]

µ̂NB =

K∑

i=1

aNB
i Y(i), (30)

we first compute

b1 = fV (c1)[−2fV (c1) + fV (c2)], (31a)
bi = fV (ci)[fV (ci−1 − 2fV (c1) + fV (ci+1)], (31b)

i = 2, . . . , N − 1,

bN = fV (cN )[fV (cN−1)− fV (cN )], (31c)

where ci = F−1
V (i/(K + 1)), and F−1

V is the inverse of the
GG CDF. From this, the weights are derived for i = 1, . . . , N
as

aNB
i = aNB

K−i+1 =





bi/
(

2
∑N
i=1 bi

)
, K even;

bi/
(
bN + 2

∑M
i=1 bi

)
, K odd.

(32)
For the simulations in Python, the inverse CDF was nu-
merically computed with the stats.gennorm.ppf GGD
percentile function in scipy, as no closed-form expression
exists.
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For the α-outer mean estimate

µ̂α =

K∑

i=1

aαi Y(i), (33)

the order statistics’ weights aαi are only given in [66] for a
symmetric filter applied to an odd number of samples:

aαi = aαK−i+1 =





1

Kα
, i ≤ b 1

2Kαc
1
2Kα− b 1

2Kαc
Kα

, i = b 1
2Kαc+ 1,

α ∈ [0, 1− 1/K];
Kα− 2b 1

2Kαc
Kα

, i = b 1
2Kαc+ 1,

α ∈ [1− 1/K, 1];
0, otherwise.

(34)
Since an even number of measurements is also possible, we
similarly define, for all α ∈ [0, 1],

aαi = aαK−i+1 =





1

Kα
, i ≤ b 1

2Kαc;
1
2Kα− b 1

2Kαc
Kα

, i = b 1
2Kαc+ 1;

0, otherwise.
(35)

Note that the outer mean is equivalent to µ̂mean when α = 1
and reduces to µ̂mid for α = 0. To match the GGD behavior,
we thus propose to define α = 2/p̂Ṽ , which yields the ML
estimate for both p̂Ṽ = 2 and p̂Ṽ =∞. Finally, the nonlinear
estimator of [67] is given as

µ̂NL =

K∑

i=1

aNL
i Y(i), (36)

where the data-dependent coefficients are given for i =
1, . . . ,M by

aNL
i = aNL

K−i+1 =
1

2

[Y(K−i+1) − Y(i)]
p−2

∑M
j=1[Y(K−j+1) − Y(j)]p−2

. (37)

Note that if K is odd, the median term (i = N ) is ignored, as
it would correspond to a numerator of zero.

V. DITHER NOISE REGIMES

To better understand the dither noise behavior, we have
previously described three regimes of the dither noise distribu-
tion, with Regimes I and III corresponding to approximately
uniform and Gaussian noise, respectively. We have furthermore
proposed the GGD with p ∈ (2,∞) as an approximation for
the noise distribution in Regime II. However, the boundaries
of these regions are imprecise, and we aim to more rigorously
define them in this section. We first define ξ1 and ξ2 as the
values of the ratio σZ/∆ separating the regimes such that the
noise distribution is approximately uniform for σZ/∆ < ξ1,
GG for ξ1 ≤ σZ/∆ < ξ2, and Gaussian for σZ/∆ ≤ ξ2.
In each regime, we have an expression for the expected MSE
or asymptotic variance of the ML estimator, so we use the
intersection or approximate point of convergence of these
expressions to define ξ1 and ξ2.

K
100 101 102 103

9 1

10-2

10-1

Regime I/II Boundary vs. K

exact
log-log-cubic fit
log-log-linear fit

(a)
K

100 101 102 103

9 2

0.1

0.2

0.3

0.4

0.5

Regime II/III Boundary vs. K

exact
fit

(b)

Fig. 5: The value of ξ1 substantially decreases and ξ2 slowly increases
as K increases, expanding Regime II. (a) A log-log-cubic fit can
be used to compute a close approximation to ξ1 for all K, while
a log-log-linear fit suffices for K > 20. (b) The square root of a
log-quadratic fit closely approximates ξ2.

A. Defining ξ1
We define ξ1 as the value of σZ/∆ where NMSE(mid)

and NVar(GGML) intersect, which from (14) and (24) is the
solution to

β(p̂Ṽ )[(σZ/∆)2 + 1/12] =
K/2

K2 + 3K + 2
(38)

for a given K. We remind the reader that p̂Ṽ is also dependent
on σZ/∆ as shown in (21). Fig. 5a shows that ξ1 decreases
as K increases, since the probability of observing an “outlier”
measurement due to the exponential tails increases with K,
so a lower σZ/∆ value (i.e., with shorter tails) is needed for
the midrange estimator to achieve nearly-optimal performance.
The figure shows the exact values of ξ1 computed by solv-
ing (38) as well as a log-log-cubic least-squares fit

log ξ1 ≈ 0.0104(logK)3 − 0.1760(logK)2

+ 0.0274(logK)− 1.8511, (39)

which can be used quickly to calculate an approximation for a
desired value of K. Since the relationship appears fairly linear
for K > 20, the simple log-log-linear fit

log ξ1 ≈ −0.9301(logK)− 0.1963, (40)

which can be rewritten as ξ1 ≈ 0.8217/K0.9301, is also useful
for quick computation. The natural logarithm is used in each
case.

B. Defining ξ2
Since NMSE(mean) and NVar(GGML) both have 1/K

factors, they converge where β(p̂Ṽ ) = 1, which is only the case
for p̂Ṽ = 2. This suggests that equality requires the noise to be
exactly Gaussian, which only occurs for σZ/∆→∞. Instead,
we can look for a point where NVar(GGML) and NMSE(mean)
can reasonably be considered to have converged (i.e., the GG
is close enough to a Gaussian).

We propose that a reasonable definition of ξ2 is the value
of σZ/∆ that minimizes NMSE(Q), the expected normal-
ized MSE of µ̂Q. Intuitively, as σZ/∆ increases from ξ2,
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the Gaussian variance will dominate for both quantized and
dithered measurements, so that the effect of the quantization
error is negligible, whether signal-independent for dithered
measurements or signal-dependent without dither. Thus the
point at which NMSE(Q) is minimized indicates where the
Gaussian variance begins to dominate and is a reasonable place
to consider a GG approximation to be sufficiently Gaussian.
We derive in Appendix C that NMSE(Q) is given as

NMSE(Q) = E[(µ̂Q − µX)2]/∆2

=
1

12
+

1

K

∫ 1/2

−1/2

M∑

m=−M
m2Ψ(m,µX)dµX

+
K − 1

K

∫ 1/2

−1/2

(
M∑

m=−M
mΨ(m,µX)

)2

dµX

− 2

∫ 1/2

−1/2

µX

M∑

m=−M
mΨ(m,µX)dµX , (41)

where

Ψ(m,µX) = Φ

(
m+ 1/2− µX

σZ/∆

)
− Φ

(
m− 1/2− µX

σZ/∆

)
.

(42)
Defining

ξ2 = arg min
σZ/∆

E[(µ̂Q − µX)2]/∆2 (43)

and solving via a Nelder-Mead algorithm [68] and numerical
integration, we show in Fig. 5b that the value of ξ2 changes
only slightly as a function of K.

This range of values is notably very close to the value
σZ/∆ = 1/2 recommended by Vardeman and Lee [6], or
the value σZ/∆ = 1/3 at which Moschitta et al. suggest that
the loss of information from quantizing samples of a Gaussian
distribution becomes negligible in estimation of the mean [7].
For quick computation, ξ2 can be approximated by the square
root of a log-quadratic fit:

ξ2 ≈
√
−0.000756(logK)2 + 0.328 logK. (44)

We notice that the Regime boundary definitions are incon-
sistent for K < 3, as ξ1 > ξ2; however, the Regimes are
meaningless for K = 1 or 2 anyway, as symmetric order
statistics-based estimators (e.g., mean, median, midrange) are
all equivalent for such small numbers of measurements, so
there is no advantage to distinguishing between noise distri-
butions. We notice also that since ξ1 decreases monotonically
and ξ2 increases monotonically with K, Regime II grows as
K increases, since small mismatches between the assumed and
true PDFs become easier to observe. Intuitively, ξ1 decreases
much faster than ξ2 increases because the difference between
a PDF with finite support (σZ/∆ = 0) and one with infinite
support (σZ/∆ > 0) is more significant for large K than the
difference between finite σZ/∆ (e.g., GG approximation with
p̂Ṽ > 2 and σZ/∆→∞ (p̂Ṽ = 2).

VI. NUMERICAL RESULTS

Monte Carlo simulations were performed to compare the
NMSE performance of the generalized Gaussian and order
statistics-based estimators (µ̂NB, µ̂NL, µ̂α) against the ML
estimators (µ̂DML, µ̂GGML) and the conventional sample mean
(µ̂mean) and midrange (µ̂mid). Estimates were also computed
applying the sample mean (µ̂Q) and ML estimator (µ̂QML)
to the quantized data to determine under which conditions
subtractive dithering actually provides an advantage. As in
the motivating example in Section II, for each Monte Carlo
trial, µX was chosen uniformly at random from [−∆/2,∆/2],
and K samples of signal noise Z ∼ N (0, σ2

Z) and dither
D ∼ U(−∆/2,∆/2) were generated for (3). The quantization
bin size was maintained at ∆ = 1 throughout. The normalized
MSE was computed for T = 20,000 trials.

A. Normalized MSE vs. σZ/∆
We begin by discussing the plots in Fig. 6 of NMSE as

a function of σZ/∆ for K = 5, 25, and 125. Because nine
separate estimators and four NMSE bounds are displayed in
each plot, we acknowledge that the figures can be difficult to
follow due to the overlapping curves. A flowchart is included
in Fig. 7 that summarizes the results and provides a decision-
making process for whether to use dither and which estimator
to choose.

1) Generalized Gaussian Estimators: The GG-based esti-
mators (µ̂NB, µ̂NL, µ̂α, µ̂GGML) have effectively identical
performance and match that of µ̂DML. The actual differences
in performance vary on the order of a few percent over large
ranges of K and σZ/∆, compared to the orders of magnitude
differences for the mean and midrange. The negligible per-
formance difference further validates approximating the total
noise with the GGD. For this same reason, we collectively
discuss µ̂DML and the GG-based estimators in the following
sections.

The GG-based estimators meet or exceed the performance
of all other estimators for all σZ/∆ and for all K. More
specifically, the GG estimators converge to and match the per-
formance of the midrange in Regime I and likewise converge
to and match the performance of the mean in Regime III.
In Regime II, the GG estimators outperform both the mean
and the midrange. Thus, a GG estimator should be the default
estimator choice for any σZ/∆.

Given the approximate equivalence of the GG estimators, we
argue that the trimmed-mean µ̂α is the best choice of general-
purpose estimator for dithered data. The other estimators either
require iterative solvers (µ̂DML, µ̂GGML), rely on numerical
computation for the GG inverse CDF (µ̂NB), or are data-
dependent (µ̂NL). On the other hand, µ̂α has a simple closed-
form solution that can be tabulated if needed.

2) Performance by Regime—Dithered Measurements: The
plots in Fig. 6 validate the concept of three distinct regimes of
noise behavior. In the plots, the approximate regime boundaries
are computed to be ξ1 = {0.1098, 3.85× 10−2, 9.56× 10−3}
and ξ2 = {0.2296, 0.3132, 0.3737} for K = {5, 25, 125}, re-
spectively, confirming that Regime II expands as K increases.
In Regime I, the NMSE performance of all estimators on
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Fig. 6: The performance of the estimators is evaluated for K = (a) 5, (b) 25, and (c) 125 to show the range of behavior as σZ/∆ varies.
The ML estimator for dithered measurements µ̂DML and the estimators based on the GGD (µ̂GGML, µ̂NB, µ̂NL, and µ̂α) achieve the lowest
NMSE for each σZ/∆ regime (curves are overlapping). Results are shown for 20000 Monte Carlo trials.
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Fig. 7: The results of our Monte Carlo simulations lead to a simplified
decision process for when and how to use dither. If σZ/∆ > ξ2 (≈
1/3), there is no benefit to using anything but µ̂Q applied to the
quantized measurements, whereas dither leads to reduce estimation
error when σZ/∆ ≤ 1/3. If subtractive dithering is not possible,
the best performance can be achieved by adding Gaussian noise to
set σZ/∆ ≈ 1/3 and applying µ̂QML (although µ̂Q can be used if
simplicity is required). However, larger performance improvements
can be achieved with a subtractively-dithered quantizer. For K
subtractively-dithered measurements, compute ξ1 from either (39)
or (40) to determine whether to use µ̂mid (in Regime I) or µ̂α (in
Regime II).

the dithered data is basically flat and equal to NMSE(mid).
This suggests that for a practical system where σZ/∆ can be
tuned, once the system is operating in Regime I (dependent
on a fixed K), there is no benefit from further decreasing
σZ/∆; performance can only be improved by increasing K.
In Regime II, the GG-based estimators approach NCRB(µX ),
especially for large K. We note that while NVar(GGML) and

NCRB(µX ) are close in Regime II, NCRB(µX ) is a tighter
bound, as it is based on the true noise distribution, although
NVar(GGML) may be easier to compute for a rough estimate
of performance. In Regime III, the NMSE performance of
all estimators on the dithered data is equal to NMSE(mean).
In both Regimes II and III, the NMSE decreases as σZ/∆
decreases. Performance likewise improves with increasing K.

3) Performance by Regime—Quantized Measurements:
While the three Regimes were technically defined for dithered
measurements in particular, they are also informative of the
behavior of estimators applied to quantized measurements.
In Regime I, σZ/∆ is so small that, unless µX lies on the
boundary between quantization bins, all measurements are
quantized to the same value. As a result, the NMSE of both
µ̂Q and µ̂QML is dominated by the squared bias term, which
is 1/12 (the variance is zero). Further decreasing σZ/∆ or
increasing K provides no benefit.

In Regime II, σZ/∆ is large enough that there is often some
variation in the measurements due to signal even without the
addition of dither. This phenomenon is sometimes referred
to in the literature as self-dithering, equivalent to adding
nonsubtractive Gaussian dither to a constant signal µX [69].
Within Regime II, both µ̂Q and µ̂QML improve as σZ/∆
increases because the increased signal variation reduces the
bias term of the NMSE faster than the variance increases.
The NMSE is minimized for µ̂Q by definition at ξ2, and then
the NMSE increases as σZ/∆ increases in Regime III. This
suggests that if σZ/∆ is small and subtractive dither cannot
be used, then quantized measurements benefit from adding
nonsubtractive Gaussian dither such that σZ/∆ = ξ2, which
is approximately 1/3. It is in Regime II that µ̂QML shows the
largest improvement in performance over µ̂Q, with the ML
estimator accounting for the form of the signal variation for
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p̂Ṽ = 2.16

5 10 15 20
i

0.000

0.025

0.050

0.075

a
i

(f)
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Fig. 8: Example dithered measurements are shown in (a-c) for σZ/∆ = 0.004, 0.04, and 0.4 with K = 20. Plots (d-f) show the resulting
coefficient values for the GG estimators given the estimated value of p̂Ṽ above. In (g), σZ/∆ = 0.04 and K = 100, highlighting how the
coefficients change as K increases. Note that the coefficients of the order statistics for the NL estimator depend on the measured data sequence
shown above.

quantized measurements.
In Regime III, the NMSE of µ̂Q and µ̂QML matches that

of the best estimators applied to dithered data. Clearly, σZ/∆
is large enough that even the quantized measurements contain
sufficient information about the signal variation. This suggests
that dither provides no benefit in Regime III, since equal
performance can be achieved without dither. Again for both
Regimes II and III, the NMSE decreases as K is increased.

B. Order Statistics-Based Estimator Coefficients

To better understand why the order statistics-based esti-
mators have essentially identical performance, in Fig. 8 we
plot the coefficients ai from (26) for each estimator. The top
row shows example measurements for K = 20, ∆ = 1, and
σZ/∆ = 0.004, 0.04, and 0.4, respectively, with the samples
spreading out as the Gaussian variance increases. The second
row of plots depicts the resulting coefficients for µ̂NB, µ̂NL,
and µ̂α using the estimated value p̂Ṽ . Fig. 8d shows the
coefficients are equivalent to those of µ̂mid for small σZ/∆.
In Figs. 8e and 8f, the coefficients of the various estimators
are no longer identical. However, the coefficients follow the
same trends for each estimator, with zero weight on the middle
order statistics for small σZ/∆ and more evenly-distributed
weights as the noise model approaches a Gaussian. We note
that the coefficients for µ̂NL vary depending on the particular

set of measurements shown in the top row, and that different
sample realizations can result in coefficients more or less
similar to those of µ̂NB and µ̂α. To show the behavior of
the coefficients as K increases, we also plot {ai}Ki=1 for K =
100 and σZ/∆ = 0.04 in Fig. 8g. This plot underscores that
the coefficients for µ̂α are basically indicators of the most
significant non-zero coefficients of µ̂NB and µ̂NL. Using the
simple formulation of µ̂α as a guide, in the limit as K →∞,
only Kα coefficients would have nonzero weight. Since the
performance of all three order statistics-based estimators is
similar, this further suggests that the selection of which order
statistics are used is more important than exactly how much
they are weighted.

C. Normalized MSE vs. K

To better understand how the number of measurements
affects the estimators’ performance, we plot results for three
fixed values of σZ/∆ in each regime (0.004, 0.04, 0.4) while
varying K in Fig. 9.

In Fig. 9a, µ̂mid follows NMSE(mid) as expected for
Regime I until K ≈ 200. At that point, the NMSE of the
midrange begins to diverge, with slower improvement as K
increases. Similarly, the GG estimators follow NMSE(mid)
until K ≈ 200 and then switch to NCRB(µX ). This suggests
that σZ/∆ = 0.004 is in Regime I for K < 200 and in
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Fig. 9: The performance of the order statistics estimators is evaluated for σZ/∆ = (a) 0.004, (b) 0.04, and (c) 0.4 to show the full range of
behavior as the number of measurements K increases. The plots show the MSE normalized to ∆ = 1 from 20000 trials per data point. Dashed
lines show the theoretical NMSE of the mean and midrange, and the asymptotic variance of the ML estimator of the GGD mean. The ML
estimator for dithered measurements µ̂DML and the estimators based on the GGD (µ̂GGML, µ̂NB, µ̂NL, and µ̂α) achieve the lowest NMSE for
all K (curves are overlapping).

Regime II for K > 200. This switch between regimes occurs
near the intersection of NMSE(mid) and NVar(GGML) as
a function of K, further validating these bounds as useful
demarcations of estimator performance. For all K in the
plotted range, the midrange and GG estimators outperform the
mean. The quantized estimators show almost no improvement
as K increases.

In Fig. 9b, the midrange performance is similar to that in
Fig. 9a, with µ̂mid following NMSE(mid) until the intersec-
tion of NMSE(mid) and NVar(GGML) and then improving
more slowly as a function of the number of measurements,
eventually being outperformed by µ̂mean for large K. The GG
estimators likewise follow NMSE(mid) for small K and switch
to following NCRB(µX ) after the intersection. For large K, the
NMSE of the GG estimators is a constant factor lower than
that of µ̂mean, with this factor approximately given by β(p̂Ṽ ).
The NMSE of the quantized estimators decreases slowly as K
increases, with marginally better performance for µ̂QML than
µ̂Q.

Figures 9a and 9b help answer the question of how the
order statistics-based estimators “between” the midrange and
the mean would perform as a function of K. The results
suggest that these estimators ultimately have O(K−1) NMSE
reduction, although this reduction is faster for small values of
K.

In Fig. 9c, the noise can be sufficiently described as Gaus-
sian for K < 359; however, for larger K, ξ2 > 0.4 as shown in
Fig. 5b. The midrange has poor performance for all K, while
the other dithered estimators and the quantized estimators have
essentially identical performance for K < 359. Those esti-

mators follow NMSE(mean), NVar(GGML), and NCRB(µX ),
which have converged. In this regime, it is clear that there is
no benefit to using dither, as there is minimal improvement
in performance even for large K. In fact, implementing a
dithered quantizer is likely more complicated in practice and
is discouraged for Regime III.

VII. CONCLUSION

This work studied the task of estimating the mean of a Gaus-
sian signal from quantized measurements. By applying sub-
tractive dither to the measurement process, the noise becomes
signal-independent but no longer has a Gaussian distribution.
We showed that the generalized Gaussian distribution is a close
and useful approximation for the Gaussian plus uniform total
noise distribution. Estimators using the generalized Gaussian
approximation effectively match the performance of the ML
estimator for the total noise, which is a significant improve-
ment over the conventional mean and midrange estimators in
Regime II. Due to its computational simplicity and efficient
performance, we recommend the trimmed mean µ̂α. From
further comparison against estimators for quantized measure-
ments, we determined simple design rules for deciding whether
and how to use quantized measurements. In short, there is value
in using dither in Regimes I and II, and a GG-based estima-
tor should be used in Regime II. Future work will address
variations on the measurement model, including non-Gaussian
signal distributions and different dither implementations.
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APPENDIX A
CRAMÉR-RAO BOUND

The Cramér-Rao Bound is a lower bound on the variance
of an unbiased estimator [42], given by

CRB(µX) = 1/I(µX),

where I(µX) is the Fisher information computed as

I(µX) = E

[(
∂ log fY (y;µX , σZ ,∆)

∂µX

)2
]

(a)
=

∫
(

∂
∂µX

fY (y;µX , σZ ,∆)
)2

fY (y;µX , σZ ,∆)
dy

(b)
=

1

σ2
Z∆

∫
[
φ
(
v−∆/2
σZ

)
− φ

(
v+∆/2
σZ

)]2

Φ
(
v+∆/2
σZ

)
− Φ

(
v−∆/2
σZ

) dv

(c)
=

1

σ2
Z

∫
[
φ
(
u−1/2
σZ/∆

)
− φ

(
u+1/2
σZ/∆

)]2

Φ
(
u+1/2
σZ/∆

)
− Φ

(
u−1/2
σZ/∆

) du, (45)

where step (a) uses the definition of expectation and the chain
rule, (b) differentiates (15) with respect to µX for v = y−µX ,
and (c) changes variables to u = v/∆. Normalizing by ∆2

removes the separate dependence on σZ or ∆, so we define
the normalized CRB as

NCRB(µX) = CRB(µX)/∆2

=
(σZ/∆)2

∫
[
φ
(
u−1/2
σZ/∆

)
− φ

(
u+1/2
σZ/∆

)]2

Φ
(
u+1/2
σZ/∆

)
− Φ

(
u−1/2
σZ/∆

) du

. (46)

Finally, Fisher information is additive for independent obser-
vations, so for K independent samples, the lower bound on
the NCRB is 1/K times that for one observation.

APPENDIX B
KURTOSIS MATCHING

The kurtosis of a random variable B is the standardized
fourth central moment [70], defined as

κ(B) =
E[(B − µB)4]

{E[(B − µB)2]}2 =
µ4(B)

σ4
B

. (47)

The excess kurtosis γ(B) = κ(B)−3 is often used to simplify
computations. Define A = B + C, where B and C are
independent random variables. The kurtosis of the sum can
be computed by expanding (47) as follows:

κ(A) =
E[(A− µA)4]

{E[(A− µA)2]}2 =
E{[(B − µB) + (C − µC)]4}
{E[((B − µB) + (C − µC))2]}2

=
µ4(B) + µ4(C) + 6σ2

Bσ
2
C

(σ2
B + σ2

C)2
,

where independence eliminates the odd cross terms. Then the
excess kurtosis is

γ(A) =
σ4
Bγ(B) + σ4

Cγ(C)

σ4
A

. (48)

The kurtosis of Gaussian and uniform random variables is
well-known and straightforward to compute from the defini-
tion; the excess kurtosis is 0 for a Gaussian and −6/5 for
a uniform distribution. From [52], we have that the excess
kurtosis3 of a GGRV V with shape parameter pv is

γ(V ) =
Γ(1/pv)Γ(5/pv)

[Γ(3/pv)]2
− 3. (49)

To fit the GGD to the sum of uniform and Gaussian random
variables, we set the kurtosis of the approximation to match
the kurtosis of the sum using (48)

Γ(1/pv)Γ(5/pv)

[Γ(3/pv)]2
= 3 +

σ4
Z · 0 + σ4

W (−6/5)

(σ2
W + σ2

Z)2

= 3− 6

5

1
[
1 + 12

(
σZ

∆

)2]2 , (50)

where σ2
W = ∆2/12.

APPENDIX C
MEAN SQUARED ERROR OF µ̂Q

We use iterated expectation to compute the MSE of µ̂Q as

E[(µ̂Q − µX)2] = E
[
E[(µ̂Q − µX)2|µX ]

]
, (51)

with no prior knowledge on the true value so that we assume
µX ∼ U [−∆/2,∆/2] within a bin. Define a function g : R→
R as g(x) := E[(µ̂Q − µX)2|µX = x], then

g(x) = E



(

1

K

K∑

i=1

q(x+ Zi)− x
)2



= x2 +
1

K2

(
K∑

i=i

E
[
(q(x+ Zi))

2
]

+

K∑

i=1

∑

j 6=i

E [q(x+ Zi)]E [q(x+ Zj)]




− 2x

K

K∑

i=1

E [q(x+ Zi)]

= x2 +
1

K
E
[
(q(x+ Z))

2
]

+
K − 1

K
(E [q(x+ Z)])

2

− 2xE [q(x+ Z)] . (52)

Using the definition

Ψ(m,x) = Φ

(
m+ 1/2− x

σZ/∆

)
− Φ

(
m− 1/2− x

σZ/∆

)
, (53)

3Note that the definition of kurtosis in [52] corresponds to the excess
kurtosis in this work.
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note that

E [q(x+ Z)]

= lim
M→∞

M∑

m=−M
m∆

∫ m∆+∆/2

m∆−∆/2

1

σZ
φ

(
z − x
σZ

)
dz

≈ ∆

M∑

m=−M
mΨ(m,x)

for some large number M . Similarly,

E
[
(q(x+ Z))

2
]
≈ ∆2

M∑

m=−M
m2Ψ(m,x).

The MSE normalized by ∆2 then follows as

E[(µ̂Q − µX)2]/∆2 =

1

12
+

1

K

∫ 1/2

−1/2

M∑

m=−M
m2Ψ(m,x)dx

+
K − 1

K

∫ 1/2

−1/2

(
M∑

m=−M
mΨ(m,x)

)2

dx

− 2

∫ 1/2

−1/2

x

M∑

m=−M
mΨ(m,x)dx. (54)
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