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New Designs on MVDR Robust Adaptive Beamforming
Based on Optimal Steering Vector Estimation

Yongwei Huang, Mingkang Zhou, Sergiy A. Vorobyov

Abstract
estimation of the signal of interest steering vector is considered in the
paper. In this case, the optimal beamformer is obtained by computing
the sample matrix inverse and an optimal estimate of the signal of

t estimate
of the steering vector are the beamformer output signal-to-noise-plus-
interference ratio (SINR) and output power, while the constraints assume
as little as possible prior inaccurate knowledge about the signal of
interest, the propagation media, and the antenna array. Herein, in order

nterest,
a new beamformer output power maximization problem is formulated
and solved subject to a double-sided norm perturbation constraint, a
similarity constraint, and a quadratic constraint that guarantees that
the direction-of-arrival (DOA) of the signal of interest is away from
the DOA region of all linear combinations of the interference steering
vectors. In the new robust design, the prior information required consists
of some allowable error norm bounds, the approximate knowledge of the
antenna array geometry, and the angular sector of the signal of interest.
It turns out that the array output power maximization problem is a
non-convex quadratically constrained quadratic programming problem
with inhomogeneous constraints. However, we show that the problem

ng globally
optimal estimate of the signal of interest steering vector. The results
are generalized to the case where an ellipsoidal constraint (rather than

nditions for the
global optimality are derived. In addition, a new quadratic constraint
on the actual signal steering vector is proposed in order to improve
the array performance. To validate our results, simulation examples are
presented, and they demonstrate the improved performance of the new
robust beamformers in terms of the output SINR as well as the output
power.

I. INTRODUCTION

For decades array signal processing has been wildly employed
in many applications to radar, sonar, communications, microphone
array speech/audio processing [1] to mention just a few best known.
In array processing, robust adaptive beamforming has particularly
been recognized as a fundamental problem and drawn much research
interest. It is because the traditional techniques of adaptive beam-
forming such as Capon beamforming method have weak immunity
against small or modest differences between the presumed and actual
signal steering vectors [2], pointing and antenna calibration errors,
and others mismatches [3], [4]. Therefore, to meet the robustness
demands, a number of robust adaptive beamforming techniques have
been established, and substantial progress in the areas has been made
especially in the last two decades, partially supported by s
developments in convex and robust optimization [5].

developments in robust adaptive beamforming that this work will
continue on. We start with introducing the notations that will be used
throughout the paper. We adopt the notation of using boldface for
vectors (lower case), and matrices (upper case). The transpose
operator and the conjugate transpose operator are denoted by the
symbols and respectively. The notation tr stands for the
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trace of the square matrix argument; and denote respectively the
identity matrix and the matrix (or the row vector or the column vector)
with zero entries (their size is determined from the context). The
letter represents the imaginary unit (i.e. ), while the letter
often serves as index in this paper. For any complex number , we

use and to denote respectively the real and the imaginary
parts of , and arg represent the modulus and the argument of
, and ( or ) stands for the (component-wise) conjugate of
( or ). The Euclidean norm (the Frobenius norm) of the vector
(the matrix ) is denoted by ( ). The curled inequality

symbol (and its strict form ) is used to denote generalized
inequality: means that is an Hermitian positive

of Hermitian matrices (the space of real-valued symmetric
matrices) is denoted by ( ), and the set of all positive

( ) by ( ). represents the
statistical expectation. Finally, represents the optimal value of
an optimization problem.
Let us consider a receive narrowband beamformer applied to an

output of a linear array of antenna elements. The output signal of
the beamformer at the time instant can be written as

(1)

where is the
the beamvector, and is the complex vector of the antenna array
measurements. The array observation vector in (1) is given by

(2)

where , , and are statistically independent vectors
corresponding, respectively, to the signal of interest, interference
and sensor noise. The signal of interest can be written under the
point source assumption as , where is the signal
waveform and is the steering vector.
The optimal weight vector can be found from the optimal so-

lution of the following signal-to-interference-plus-noise ratio (SINR)
maximization problem

SINR (3)

where is the signal of interest power and
is the interference-plus-noise covariance ma-

trix. Since the exact covariance matrix is unknown in practice,
the following sample data covariance matrix computed based on
available snapshots

(4)

often is employed instead of in the SINR maximization
problem (3). It is evident that the SINR maximization problem is
tantamount to the following optimization problem

(5)
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with the optimal solution

(6)

referred to as minimum variance distortionless response (MVDR)
sampling matrix invert (SMI) beamformer [1] or Capon beamformer
[2]. Let us also note here that the corresponding array output power

is given by

(7)

In practice, the desired signal steering vector is usually known
imprecisely, while only some presumed steering vector can be
estimated based on the knowledge of antenna array geometry, param-
eters of the signal of interest, and also some additional assumptions
about propagation media and antenna array calibration. As a result,
in many practical scenarios, the performance of the beamformer (6)
degrades dramatically because of the mismatch between the actual
steering vector and the presumed steering vector , as well as
the inaccurate estimate . To mitigate the degradation, a number of
robust adaptive beamforming techniques based on the modeling of the
steering vector mismatch as an additive deterministic norm bounded
vector have been proposed in the last two decades (see [2], [3], [4],
[6], [7], [8], [9] and references therein). If the presumed steering
vector and especially the bound on the mismatch norm are hard
to estimate in practice, the alternative robust adaptive beamforming
design has been obtained based on stochastic model for the steering
vector mismatch by requesting the distortionless response constraint

ity [10].
With respect of the estimate , the worst-case approach results
in the diagonal loading of the data covariance matrix sample es-
timate. Besides, many approaches to robust estimation of the data
covariance matrix have been developed as well. The most notable
are the random matrix theory-based techniques, subspace techniques,
Bayesian techniques, shrinkage techniques, and covariance matrix
reconstruction techniques [11], [12], [13], [14], [15], [16], [17].
However, the typical theme in these developments is to assume more
prior information for obtaining better robust adaptive beamforming
designs. It goes partially against the motivation for robust designs,
which is to guarantee a reliable performance (acceptably high output
SINR) with as little as possible prior information as it is extensively
argued and studied in [18], [19], [20]. The only prior information
used in [18] is the imprecise knowledge of the angular sector of the
signal of interest and antenna array geometry, while the knowledge

ied in
[21].
Summarizing, in the aforementioned approach, the MVDR robust

adaptive beamformer adopts the beamvector (6) with therein
replaced by an estimate that is optimized via a certain method,
while assuming that . In
[18], the optimal steering vector is picked up by maximizing the
beamformer output power (7) subject to a constraint separating the
direction of arrival (DOA) of the signal of interest from the directions
given by linear combinations of the interference steering vectors, as
well as a norm constraint of the steering vector. Mathematically, using
(7) as an objective, the array output power maximization problem of

is cast as

(8)

where
(9)

and is the steering vector associated with that has the structure
is the complement

of the angular sector , in which the direction of
the signal of interest lies, and it is assumed to be separated from
general locations of the interfering signals. Also, the parameter
is obtained by

(10)

In fact, is a boundary line to distinguish approximately whether
or not the direction of is in the actual signal angular sector .

(11)

the direction of is treated as being inside , which means that the
direction of never converges to the direction of any steering vector
associated with a linear combination of the interferers (cf. [18, (23)-
(25)]), and see also Fig. 2 in [18] or Fig. 1(b) below for reference.

requires only the knowledge
about the antenna array geometry (relating to ) and the angular
sector and can be easily found based on (10). No other prior
knowledge is required.
As for how to solve (8), observe that problem (8) is a homogeneous

quadratically-constrained quadratic programming (QCQP) problem
with two constraints only, and thus its optimal solution can be found

SDP)
relaxed problem followed by a procedure of retrieving a rank-one
solution from a general rank relaxed solution when necessary (see

8), thanks
ank-one
orem 1].

The computational burden is dominated by solving the SDP relaxation
problem, the worst-case complexity of which is (cf. [26],
[27]).
In this paper, we aim to provide an optimal design with improved

performance for MVDR robust adaptive beamforming based on signal
steering vector estimation to that of the state-of-the-art design (8). The
performance is evaluated based on the beamformer output SINR and
the beamformer output power. The higher they are, the better. On
the other hand, the requirement of a prior information for the robust
design are the less, the better, since the prior knowledge often is
imprecise and incomplete, which affects the performance of the robust
beamformer. In particular, we propose here a new robust adaptive
beamforming design with improved performance by introducing more
practical constraints to power maximization problem (8), beyond the
quadratic constraint setting the DOA of the signal of interest steering
vector apart from the DOA interval of all interference sources and
their combinations.
First, we extend the steering vector norm equality constraint to a

double-sided constraint, allowing a certain range of the error norm
perturbations. The new constraint is to account for the steering
vector gain perturbations caused, e.g., by the sensor amplitude
errors, phase errors as well as the sensor position errors (cf. [6,
pp. 2408 and 2414]).
Second, we add a similarity constraint, making sure that the

ciently
close to at least one steering vector with its DOA inside the angular
sector of the signal of interest. The relaxed norm constraint together
with the additional similarity constraint in the new problem permits
possible enlargement of the feasible set of the problem, and thus,
allows to search for a better estimate of the true steering vector. In
the new robust design, the only possibly additional prior information
includes three allowable error norm bounds.
The formulated optimization problem for the MVDR robust adap-

tive beamforming is a non-convex QCQP problem with three inho-
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mogeneous constraints. In general, it may not be solvable, and the
scenario is similar to that of some hard QCQP subproblems in a
trust-region algorithm in nonlinear programming. However, by some
manipulations including a proof of the equivalence between a linear
constraint and a quadratic constraint, we show that this non-convex
QCQP problem is still solvable and equivalent to its SDP relaxed
problem.
Third, we generalize the above results to the case where an

ellipsoidal constraint on the signal of interest steering vector, instead
of the similarity constraint, is considered. However, the formulated
new QCQP problem is a hard problem, and there is no global
optimality guaranteed. As a compromise, we thus establish s

lthough one
observes that more prior information about parameters of the ellipsoid
is required for the ellipsoidal constraint, better performance of the
corresponding robust beamformer can be expected, as a trade-off.
Fourth, a new quadratic constraint is proposed in the optimal

estimation problem of the actual signal steering vector. In addition
to (11), the constraint provides a new benchmark line setting the
direction of the signal of interest steering vector apart from the
direction set of linear combinations of all interference steering vec-
tors. With the constraint in hand, the corresponding optimal steering
vector estimation problems are built, aiming to provide a new optimal
estimate of the signal of interest steering vector, which leads to
improvement of the array output performance.
This paper is organized as follows. In Section II, we give several

new formulations for robust adaptive beamforming based on maxi-
solve the

problems in Section III. A new quadratic constraint for the signal of
interest steering vector and the corresponding optimization problems
of robust adaptive beamforming design are studied in Section IV.
Numerical examples showing the improved performance of the new
robust adaptive beamformers are given in Section V. Our conclusions
are made in Section VI. Some proofs which are not directly used for
developments in the paper are given in Appendix.

II. NEW IMPROVED ROBUST ADAPTIVE BEAMFORMING DESIGNS

In this section, we formulate a new robust adaptive beamforming
problem with the objective to improve the performance of the robust
adaptive beamformers from the class considered in this paper, which
has been previously shown to be best performing.
In order to ameliorate the array output SINR and output power of

the robust adaptive beamformer of (8), a practical way of compromise
between sensitivity and robustness is to acquire a bit of more prior
information than that required by (8), and formulate new optimal
estimation problems of the signal of interest steering vector. There
are a number of works addressing such compromise, e.g., doubly con-
strained beamformer [6], [28], quadratically constrained beamformer
[8], beamformer with a general convex uncertainty set of the signal
of interest directions [9], and some others mentioned in the survey
paper [3].
Herein, we consider the following general steering vector estima-

tion problem:

(12)

where stands for the uncertainty set of steering vector . The most
common includes norm constraint and others whenever
necessary. In particular, when

(13)

problem (12) corresponds to problem (8).

following two conditions:

(14)

where and is the middle value
of the region
for (12) with
norm constraint accounts for gain perturbations of the array response
vector (see e.g. [2, Sec. 3.2]). The generalized similarity condition
in (14) implies that imperfect knowledge of the desired vector is
described as in a convex set (in particular, an ellipsoidal set when
is of full row rank, in other words, is invertible).
It follows that problem (12) can be formulated as the following

QCQP:

(15)

Note that we assume throughout that ; otherwise,
vanishes in the generalized similarity constraint and the con-

straint becomes , which makes the similarity constraint
meaningless. QCQP problem (15) has one double-sided constraint,
one homogeneous and one more inhomogeneous inequality con-
straints. Although it follows from [22], [23] that only conditional
optimality1 can be achieved for the problems of type (15), our
purpose herein is to identify such instances for the double-sided
QCQP problem (15) when it can be solved up to the global optimality.
Particularly, when is the identity matrix, namely, ,

the third condition in (15) becomes a sphere constraint, or just a
traditional similarity constraint. Problem (15) can be then rewritten
into:

(16)

Comparing problem (16) with problem (8), it can be seen that the
additional prior knowledge required in (16) includes the parameter
. However, is set by default to with being the middle

point of the desired sector
knowledge of and in order to know . We thus highlight that
the prior knowledge required in (16) includes those in (8) (namely
the angular sector of interest and the approximate knowledge of
antenna array geometry), and , and , which are user parameters
and are just allowable norm error bounds.

III. SOLVING PROBLEMS (15) AND (16)

A. Solving problem (16), in (15)

In this subsection, we show that the global optimality for (15) can
be achieved when , and consequently, a solution procedure of
polynomial time is devised. In (16), the ellipsoid constraint of (15)
reduces to a ball (centered at
problem and allows for the global optimality as it is summarised in
the follow theorem. We give the theorem with its proof here because
the solution method follows from the proof.

1It means that the global optimal value can be attained only under some
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ll
be employed soon.

Lemma III.1 (Theorem 2.1 in [23]) Suppose that is an
, and

are two given Hermitian matrices. Then, there exists a rank-
one decomposition such that

tr
and

tr

The rank-one decomposition synthetically is denoted as
.

The global optimality for (16) is given as follows.

Theorem III.2 QCQP problem (16) is solvable and its globally
optimal solution can be returned tractably within polynomial time.

Proof: Let us consider the following SDP relaxation problem:

tr

tr
tr

tr
(17)

Clearly it is solvable since the objective is continuous and the feasible
set is compact. Suppose that is an optimal solution which
can be computed via an interior-point method (see e.g. [27]), and let

tr and tr . Therefore, (17) is equivalent to

tr

tr
tr

tr
(18)

which is a conventional SDP relaxation problem for the QCQP
problem:

(19)

(20)

which always amounts to the constraint

(21)

Indeed, suppose that complies with (20), it is evident that
(21) too. Conversely, if :

(22)

(23)

namely, conforms to (20), but does not alter all other
constraints and the objective function values.

Accordingly, one claims that QCQP problem (19) is equivalent to
the following QCQP problem:

(24)

Again the SDP relaxation problem of the QCQP is expressed as:

tr

tr
tr
tr

(25)

It follows from [22], [23], [29] that SDP problem (25) has always a
rank-one solution (since it is solvable), and that the rank-one solution
can be returned by the matrix decomposition described in Lemma
III.1. Therefore, we have (24) (25) . In fact, suppose that

is optimal for (25), and let tr . We conduct the
rank-one matrix decomposition, getting a vector:

(26)

and set

(27)

is feasible and optimal for (25) (since
Range , cf. [29, Theorem 6.6]).
Observe that

(17) (18) (19) (24) (25) (28)

Note further that for any optimal solution for (17) (as well
as (18)), the component is feasible for (25), since

tr tr

, and the last
inequality is due to the third constraints in (18). Therefore,
is optimal for (25) since tr (25) (On one hand,

(17) tr (25) ; on the other hand, (25)
tr because is feasible for (25)). Thereby, we have

(17) (25) , and it follows from (28) that all optimal values
in (28) are equal to each other :

(17) (18) (19) (24) (25) (29)

It follows from the equality chain (29) that the facts below are
implied in order.

1) First, suppose is optimal for (17), then is optimal
for (25). Perform the matrix decomposition as in (26) and
obtain as in (27). Then is optimal for (25) and

is also the optimal solution for (24).
2) Second, conduct the phase rotation . It

follows that is optimal for (19) and

is a rank-one optimal solution for (18), as well as for (17).
3) Finally, is optimal for (16).
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It completes the proof.
Based on the constructive procedure in the proof of Theorem III.2

ding the
optimal solution of (16) as in Algorithm 1.

Algorithm 1 Procedure for Solving QCQP Problem (16)

, , , , , ;
An optimal solution of problem (16);

1: ;
2: perform the rank-one matrix decomposition and obtain

, where tr ,

tr , and tr ;
3: set ;

4: output .

Since the rank-one matrix decomposition has computational
complexity of , which is smaller than that of solving the SDP
problem, hence the computational cost for Algorithm 1 is dominated
by solving the SDP problem (cf. [26]).

B. Solving problem (15), general

In the case of general , the additional prior information including
in the matrix (it is an ellipsoidal parameter if is of full
row rank) is required. The reason for considering this more general
case is to show the possibility of performance improvement due to
the additional prior information in by numerical simulations in
Section V.
In this subsection, we aim to develop a polynomial algorithm

cient
conditions under which non-convex problem (15) can be solved up
to the global optimality. Toward this end, let us recast (15) into the
following equivalent homogeneous QCQP problem:

tr

tr
tr

tr
tr

(30)

where is the vector augmented with , that is, ,

(31)

(32)

and

(33)

ame
optimal value:

(15) (30) (34)

and if is the optimal solution of (30), then is
the optimal solution of (15). Therefore, we only need to focus on
problem (30) in order to solve (15). Accordingly, we study the SDP

relaxation for (30):

tr

tr
tr

tr
tr

(35)

The dual problem of (35) is the following SDP problem:

(36)
It is known (cf. [27]) that the optimality conditions for the primal

and dual SDP problems (termed also complementary conditions) are:

tr (37)

tr (38)

tr (39)

tr (40)

tr (41)

ch SDP
problem (35) possesses a rank-one solution. With this objective in
mind, suppose that both primal SDP problem (35) and dual SDP
problem (36) are solvable, and let denote the optimal
primal-dual pair. The solution is assumed to have the form:

(42)

Then the following theorem tells when the solution of the form (42)
is rank-one solution of SDP problem (35). The proof of the theorem
is also given because the constructions introduced in the proof will
be used in the algorithm for solving (15).

Theorem III.3 Suppose that is the optimal solution for SDP
problem (35), and one of the following two inequality conditions

tr tr (43)

and

tr tr
(44)

(35) has rank-one solution that can
be found in polynomial time.

Proof: Let tr , which lies in the interval
. Hence, SDP problem (35) is equivalent to the

following SDP problem:

tr

tr
tr
tr
tr

(45)

Further, SDP problem (45) can be recast equivalently into:

tr

tr
tr
tr
tr

(46)
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where

(47)

and

(48)

Note that
(35) (45) (46) (49)

and that is optimal for (45) and (46). Condition (43) implies the
following inequality tr , while inequality (44) means that
tr . In other words, one of the inequality constraints in
(46) evaluated at is strict. Therefore, it follows from [29, Theorem
6.5] that the following QCQP problem:

tr

tr
tr
tr
tr

(50)

is solvable in polynomial time through solving the relaxed SDP
problem (46). Accordingly, the optimal values satisfy

(45) (46) (50) (51)

and (46) or (45) has a rank-one solution, say (where is
optimal for (50)). It follows from (49) and (51) that

(35) (45) (46) (50) (52)

Since

tr (35) (45) (46) tr
(53)

the rank-one solution is optimal for the SDP problem (35).
This implies that the SDP relaxation is tight, that is,

(30) (35) (54)

and is the optimal solution for problem (30).
Note additionally that (34), (52) and (54) yield

(15) (30) (35) (45) (46) (50)
(55)

Also, problems (35), (45) and (46) share the optimal solutions
and , and problems (30) and (50) share the optimal solution
.
Now we present how to construct the rank-one optimal solution

for relaxed SDP problem (46) (or equivalently problem (45)).
Suppose that condition (43) is true (i.e. tr ). Employ-

ing the rank-one matrix decomposition lemma (Lemma (III.1)), we
obtain ( is the rank of ) such that

tr tr (56)

i.e., we perform .
Due to conditions (56), we can conclude that there exists at least

one vector , , such that

tr (57)

and (cf. the third paragraph in the proof
of [29, Theorem 6.5]).
Let is not

only feasible, but also optimal for problem (46) (cf. complementary
condition (37)). Then it follows from (53) that is optimal for
SDP problem (35), and from (55) that is optimal for problem (30)
and is optimal for original problem (15).

Suppose that condition (44) holds (i.e. tr ). In a
similar way, we can conduct the decomposition ,
returning such that

tr tr (58)

Select with from such
that tr . Then is optimal for SDP problem (35)
with . Therefore, the vector is optimal
for problem (30) and is optimal for original problem (15). The
proof is thus complete.
Using Theorem III.3, Algorithm 2 summarizes the procedure (as

n of
problem (15), under condition (43) or (44) or both.

Algorithm 2 Procedure for Solving QCQP Problem (15)

, , , , , , , ;
An optimal solution of problem (15);

1: as in (42),
as in (47)-(48);

2: if tr , then implement the matrix decomposition
and pick up with nonzero

such that tr ; go to step 4;
3: if tr , then perform the decomposition

and select with nonzero such
that tr ;

4: output .

The computational cost in Algorithm 2 is dominated by the cost
of solving SDP problem (35).
Remark that the proof of Theorem III.3 indeed shows how [29,

Theorem 6.5] is applied to SDP problem (35) with the double-sided
constraint. It also implies the key that the double-sided constraint
is accounted as an equality constraint (as in (45)); otherwise, if the
double-sided constraint is treated as two inequality constraints, then
[29, Theorem 6.5] is not applicable.
In the following analysis, we only focus on the scenario that

tr tr
(59)
ient

condition under which SDP problem (35) has a rank-one solution.
The following theorem establishes such conditions.

Theorem III.4 Suppose that (42)) is optimal
for SDP problem (35). Suppose that condition (59) holds true. If
the number , which is in general a complex number, is
neither a positive number nor zero (i.e., ), then SDP
problem (35) has a rank-one solution.

Proof: Let . Then it follows that ,
and

(60)

due to the assumption about .

(61)

It can be immediately seen that

tr tr (62)
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However, considering (59) and (60), we can also see that

tr tr (63)

This implies that is a new optimal solution for (35), with
tr . It then follows from Theorem III.3 that SDP (35)
has a rank-one solution. The proof is complete.
From the proof of Theorem III.4, it can be seen that if

, then we still can apply Algorithm 2 with
ginal

problem (15).
The following stronger rank-one matrix decomposition lemma can

also be used for the purpose of obtaining a rank-one solution for the
considered SDP problems.

Lemma III.5 (Theorem 2.3 in [30]) Let be a non-zero
(
, and , be Hermitian matrices. Suppose that
tr , tr , tr , tr for any

. Then
the following two statements are true.
1) If

vector Range such that

tr

synthetically denoted as .
2) If , then for any Range , there exists

in the linear subspace spanned by and Range , such that
tr .

olution
of SDP problem (35) is of rank one can be derived based on
Lemma III.5. This condition is given by the following theorem.

Theorem III.6 Suppose that (42)) is optimal for
SDP problem (35). If the rank of is three or above, then there is
a rank-one solution for SDP problem (35).

Proof: See Appendix A
Remark that if the rank of happens to be one, then in fact

with is the solution for problem (30). However, if
is of rank three or above, one can apply the procedure described in
the proof of Theorem III.6 to solve problem (30).
We remark that the case where is of rank two rarely occurs in

extensive numerical simulations. However if it occurs, SDP problem
(35) may not have a rank-one solution. Nonetheless, it is possible

approximate solution for SDP problem (35). In other words, we
can randomly pick up a vector outside Range (so that the
dimension of Span Range is three), and perform

in the span , in order to obtain such
vector that , , ,
and . This implies that is feasible for problem
(35), but the global optimality is not guaranteed. Therefore, is a
suboptimal/approximate solution for problem (30).
Finally, let us summarize the solvable cases for problem (30), i.e.,

the cases when the globally optimal solution for (35) is guaranteed
to be rank-one. Suppose
solution for SDP problem (35). If one of the following conditions is

35) can
be found in polynomial time:
1) Rank =1 or Rank 3;
2) Rank and tr ;
3) Rank and tr ;
4) Rank , tr , and .

IV. A NEW QUADRATIC CONSTRAINT FOR THE DESIRED

STEERING VECTOR

Aiming to further improve the performance of the robust adaptive
beamformer, we herein propose a new quadratic constraint, which
forces the signal of interest steering vector to separate itself from
those vectors with DOAs in the complement of , including the
linear combinations of all interference steering vectors.
Rather than exploiting matrix in (9), we analyze the following

matrix

(64)

Here the difference lies in the integral interval, which is for the
matrix and the complement of for the matrix . Then, let us
consider the following constraint

(65)

where

(66)

Through the benchmark line , it is expected that if
for , then is a possible

direction of the signal of interest steering vector. Otherwise, is
a direction of steering vector of no interest (or a possible interference
direction). In order to illustrate the effectiveness of and

d
sector : one for with and the other
for with
in [18, Fig. 2]).

-80 -60 -40 -20 0 20 40 60 80
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(b)

0

20

40

60

80

100
=[0o,10o]

1

0

Fig. 1. Two benchmark lines and with the angular sector
; (a) for , (b) for ,

Capitalizing on the quadratic constraint, we can formulate several
robust adaptive beamforming problems based on signal of interest
steering vector estimation, which can be viewed as alternative designs
to the designs introduced above, aiming to improve the output SINR
and/or the output power. First, consider the following steering vector
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estimation problem:

(67)

where the prior knowledge required is as little as in (8); namely
the desired angular sector and the antenna array geometry. It is a
two-constraint homogenous QCQP problem, which is known to be
solvable, by the same method developed for solving (8) (again, for
example see [29]). Thus, it is possible to modify the approach in [18]
to solve problem (67).
We also consider the following steering vector estimation problem:

(68)

When , new beamforming problem is the following QCQP
(similar completely to (16)):

(69)

(70)

and Algorithms 1 and 2 can be applied to solve (68) for
and for general , respectively, with and .
However, often is PSD and is a positive number. For the ease of
understanding the physical meaning, we present the new algorithms
to (68) in a short way while keeping the form of .

in (68). We have the
following theorem that states the guaranty of the global optimality
for problem (69):

Theorem IV.1 QCQP problem (69) is solvable and an optimal solu-
tion can be constructed tractably within polynomial time complexity.

The proof is similar to that of Theorem III.2. The procedure to
output an optimal solution also includes solving its SDP relaxation
problem

tr

tr
tr

tr
(71)

ding
the optimal solution for (69) is summarized into Algorithm 3. The
computational complexity of the algorithm is dominated by solving
SDP problem (71).
Now we solve problem (68) with general . For beamforming

problem (68), the SDP relaxation problem is similar to (35), and it

Algorithm 3 Procedure for Solving QCQP Problem (69)

, , , , , ;
An optimal solution of problem (69);

1: ;
2: perform the rank-one matrix decomposition

, where tr , tr and
tr ;

3: set ;

4: output .

is given as:

tr

tr
tr

tr
tr

(72)

where

(73)

eorem
similar to Theorem III.3 can be established.

Theorem IV.2 Suppose that (42)) is an optimal
solution for (72), and one of the following inequalities

tr tr (74)

and (44) (72) has a rank-one
solution and the solution can be constructed within polynomial time
complexity.

Furthermore, in order to guarantee that SDP problem (72) has a
rank-one solution, the results similar to Theorems III.4 and III.6 can
be shown to remain true, since they are sensitive only to the number
of constraints. Similar to Algorithm 2, we summarize the procedure
for solving (68) into Algorithm 4.

Algorithm 4 Procedure for Solving QCQP Problem (68)

, , , , , , , ;
An optimal solution of problem (68);

1: as in
and as in (47) and (48), respectively;

2: if tr , then implement the matrix decomposition
and pick up with nonzero

such that tr ; go to step 4;
3: if tr , then perform the decomposition

and select with nonzero such
that tr ;

4: output .

V. NUMERICAL EXAMPLES

In this section, we present several numerical examples aiming to
evaluate the performance of the proposed MVDR robust adaptive
beamformers.
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A. Example 1: Signal Look Direction Mismatch

Consider a uniform linear array with omni-directional
antenna elements spaced half a wavelength apart of each other.
The array noise is a spatially and temporally white Gaussian vector
with zero mean and covariance . Two interferers with the same
interference-to-noise ratio (INR) of 30 dB are assumed to impinge
upon the array from the angles and with respect
to the array broadside, and the desired signal is always present in the
training data cell. The training sample size is preset to . The
angular sector of interest is , and the presumed direction
is assumed to be ( is the middle point of , and thus

is given by default). The actual signal impinges upon
the array from direction .

The norm perturbation parameters and for the proposed
beamformers are both set to , and the similarity constraint pa-
rameter in both (16) and (69). All results are averaged
over 200 simulation runs. In each run, three problems (8), (16), and
(69) are solved for different SNR dB. The beamformers
resulted from problems (8), (16), and (69) are respectively termed

ray
output SINR as well as array output power.

Fig. 2 demonstrates the beamformer output SINR versus the SNR.
As we can see, the beamformer output SINR obtained through (69)
is higher than that through (16), especially at moderate and high
SNR. This means that the new quadratic constraint (65) leads to
some performance gain, comparing with the quadratic constraint (11).
Observe that the both new beamformers have higher SINR than the
KVH Beamformer has, especially moderate SNR. This implies that
additionally considering the similarity constraint in the beamformer
designs does yield some gain.

In Fig. 3, assuming an SNR of 30dB, we plot the array output SINR
versus the number of snapshots. We observe that the performance
gap between the KVH beamformer and any one of the two new
beamformers is clear, which means the new designs do have some
gains in terms of the output SINR. It is also seen that the output SINR
by New Beamformer 2 is higher than that by New Beamformer 1,
especially when increases.

Fig. 4 shows the output power versus SNR for the beamformers
tested. As can be seen, the output power of the three beamformers
increases as the SNR increases. Also, the performance of the two new
beamformers is better than that of the KVH beamformer, especially
in high SNR region.
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Fig. 2. Average beamformer output SINR versus SNR, with .
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Fig. 4. Average array output power versus SNR, with

B. Example 2: Waveform Distortion in Inhomogeneous Medium

In this example, we take into account mismatch caused also by
wavefront distortion in an inhomogeneous medium [18], with no
signal look direction mismatch (i.e. setting the nominal direction

and the actual direction
the signal steering vector is distorted by wave propagation effects in
the way that independent-increment phase distortions are accumulated
by the components of the steering vector, and assume that the phase
increments are independent Gaussian variables each with zero mean
and standard deviation 0.01, and they are randomly generated and
remain unaltered in each simulation run. All other settings are the
same as those in Example 1.
Fig. 5 shows the array output SINR versus the SNR for the three

beamformers tested in the previous numerical example. We again can
observe that the output SINR by (69) (New Beamformer 2) is bigger
than that by (16) (New Beamformer 1), which clearly is larger than
the beamformer based on (8) (the KVH Beamformer), especially at
moderate SNR.

C. Example 3: Beamforming Based on An Ellipsoid Constraint
(Beyond the Similarity Constraint)

In this example, we study the performance of Algorithms 2 and 4
proposed for the beamforming problems with an ellipsoidal constraint
(beyond the similarity constraint). We adopt the method in [7] to
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Fig. 5. Average beamformer output SINR versus SNR, with .

generate an ellipsoid

(75)

where the actual steering vector is located. In other words,
. We collect equally spaced samples at the angle sector

, to which the direction of the signal of interest belongs.
Then the center and the matrix are, respectively, the sample
mean and the sample covariance matrix of different steering vectors
with angles in the sector. In other words,

and

where

In order to guarantee that

The parameter of the ellipsoid takes value of in both (15)
and (68).
We test the performance of beamformers associated with (15) and

(68) both including the ellipsoidal constraint, as well as with (16)
and (69) both containing the similarity constraint. In this example,
for the all proposed beamformers, is the sample mean, rather
than (as in Examples 1 and 2). All other parameters

nd
(68) both with an ellipsoidal constraint, respectively, an

th
a similarity constraint, respectively.
Fig. 6 depicts the average output SINR versus the SNR. It can

4
is slightly better than that of New Beamformer 3. Observe that the
performance of New Beamformer 2 is better than that of New Beam-
former 1, which in turn is better than the KVH Beamformer. The
two observations mean again that the new quadratic constraint (65)
is better than the quadratic constraint (11) in terms of the SINR per-
formance. We further observe that at SNR=30 dB, New Beamformer
2 has the best performance over the four new beamformers, however,
in the higher SNR region, the output SINR by New Beamformer 2 is

slightly worse than those by New Beamformers 4 and 3. This means
that the performance of New Beamformer 2 is more or less equal to
that of New Beamformer 4, and New Beamformer 3 is clearly better
than the performance of New Beamformer 1, which implies that the
replacement of the similarity constraint by the ellipsoidal constraint
leads to some SINR gain.
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Fig. 6. Average beamformer output SINR versus SNRs, with .

D. Example 4: The Sector of Interest Directional Dependence (Sector
of Interest is Far Away from the Broadside)

In this example, the angular sector of interest is ,
i.e., it is far enough from the broadside of the antenna array. Thus, the
presumed direction is (the middle point of ), while the
actual signal direction is also , i.e., no signal look direction
mismatch is assumed. Two interferers impinge on the array from
angles and . The mismatch caused by wavefront
distortion is considered, and every phase increment is an independent
Gaussian variable with zero mean and standard deviation 0.02. All
other setups are the same as in Example 2. Moreover, in order to
generate the ellipsoidal constraint (see (75)), we set . All other
parameters set for the ellipsoid are the same as the corresponding ones
in Example 3. The KVH and all four proposed new beamformers are
tested.

It can be seen from Fig. 7 that the four proposed beamformers
e KVH

beamformer in the SNR region of dB. Thus, it can be
concluded that the response for the KVH beamformer is severely
dependent on the direction of the sector of interest. If the sector
of interest is far enough from the antenna array broadside and is

nt in the
est

former
is not invariant to the sector of interest directions, and initial
presteering of the antenna array has to be done before applying it
to guarantee high performance. For the new proposed beamformers,
however, the similarity constraint ensures that the optimal estimate of

e steering
vectors with their DOAs inside of the angular sector of interest. It
prevents the signal of interest cancellation independent on the sector
direction. Thus, all proposed beamformers are invariant to the sector
of interest direction, which can be concluded by comparing the results
of Examples 3 and 4, in both of which the behaviors of the four
proposed beamformers are similar.
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Fig. 7. Average beamformer output SINR versus SNRs, with
and .

VI. CONCLUSION

We have considered the MVDR robust adaptive beamforming prob-
lem based on optimal steering vector estimation with limited prior
knowledge. A new beamformer design problem has been studied,
by considering the beamformer output power maximization problem,
subject to a relaxed double-sided norm constraint, an additional simi-
larity constraint, and the constraint enforcing the desired signal DOA
to be far away from the DOA interval of all linear combinations of the
interference steering vectors. It has turned out that the maximization
problem is a non-convex QCQP with three constraints, one of which
is inhomogeneous and another of which is double-sided. We have
shown that the QCQP problem is equivalent to its SDP relaxation

tion.
Furthermore, we have generalized the similarity constraint to an
ellipsoidal constraint, and the new formulated problem is hard with
no global optimality guaranteed. In that case, we have established

constraint
on the actual signal steering vectors has been proposed, aiming to
ameliorate the array performance. The improved performance of the
proposed robust beamformer has been demonstrated by simulations
in terms of the output SINR and the output power.

APPENDIX A
PROOF OF THEOREM III.6

Proof: Let tr , . Therefore,
is optimal for (45) as well. Capitalizing on the rank-

one decomposition Lemma III.5, we perform the decomposition
, returning a vector such that

, , and Range . Notice that Range
Null due to the complementary condition (37) for problem (45),
where for some
dual optimal solution. This means that is not only a feasible
solution, but an optimal solution for (45), and then for (35).
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