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Abstract—We investigate the adversarial bandit problem with
multiple plays under semi-bandit feedback. We introduce a highly
efficient algorithm that asymptotically achieves the performance
of the best switching m-arm strategy with minimax optimal regret
bounds. To construct our algorithm, we introduce a new expert
advice algorithm for the multiple-play setting. By using our
expert advice algorithm, we additionally improve the best-known
high-probability bound for the multi-play setting by O(

√
m). Our

results are guaranteed to hold in an individual sequence manner
since we have no statistical assumption on the bandit arm gains.
Through an extensive set of experiments involving synthetic and
real data, we demonstrate significant performance gains achieved
by the proposed algorithm with respect to the state-of-the-art
algorithms.

Index Terms—Adversarial multi-armed bandit, multiple plays,
switching bandit, minimax optimal, individual sequence manner

I. INTRODUCTION

A. Preliminaries

Multi-armed bandit problem is extensively investigated in
the online learning [1]–[6] and signal processing [7]–[11]
literatures, especially for the applications where feedback is
limited, and exploration-exploitation must be balanced op-
timally. In the classical framework, the multi-armed bandit
problem deals with choosing a single arm out of K arms at
each round so as to maximize the total reward. We study the
multiple-play version of this problem, where we choose an m
sized subset of K arms at each round. We assume that
• The size m is constant throughout the game and known

a priori by the learner.
• The order of arm selections does not have an effect on

the arm gains.
• The total gain of the selected m arms is the sum of the

gains of the selected individual arms.
• We can observe the gain of each one of the selected m

arms at the end of each round. Since we can observe the
gains of the individual arms in the selected subset, we
also obtain partial information about the other possible
subset selections with common individual arms (semi-
bandit feedback).
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We point out that this framework is extensively used to model
several real-life problems such as online shortest path and
online advertisement placement [12], [13].

We investigate the multi-armed bandit problem with multi-
ple plays (henceforth the MAB-MP problem) in an individual
sequence framework where we make no statistical assumptions
on the data in order to model chaotic, non-stationary or even
adversarial environments [5]. To this end, we evaluate our
algorithms from a competitive perspective and define our
performance with respect to a competing class of strategies. As
the competition class, we use the switching m-arm strategies,
where the term m-arm is used to denote any distinct m arms.
We define the class of the switching m-arm strategies as
the set of all deterministic m-arm selection sequences, where
there are a total of

(
K
m

)T
sequences in a T length game. We

evaluate our performance with respect to the best strategy
(maximum gain) in this class. We note that similar competing
classes are widely used in the control theory [14], [15], neural
networks [16], [17], universal source coding theory [18]–
[20] and computational learning theory [21]–[23], due to their
modelling power to construct competitive algorithms that also
work under practical conditions.

In the class of the switching m-arm strategies, the optimal
strategy is, by definition, the one whose m-arm selection
yields the maximum gain at each round of the game. If the
optimal strategy changes its m-arm selection S−1 times, i.e.,
S − 1 switches, we say the optimal strategy has S segments.
Each such segment constitutes a part of the game (with
possibly different lengths) where the optimum m-arm selection
stays the same. For this setting, which we will refer as the
tracking the best m-arm setting, we introduce a highly efficient
algorithm that asymptotically achieves the performance of the
best switching m-arm strategy with minimax optimal regret
bounds.

To construct our tracking algorithm, we follow the deran-
domizing approach [23]. We consider each m-arm strategy
as an expert with a predetermined m-arm selection sequence,
where the number of experts grows with

(
K
m

)T
, and com-

bine them in an expert advice algorithm under semi-bandit
feedback. Although we have exponentially many experts, we
derive an optimal regret bound with respect to the best m-
arm strategy with a specific choice of initial weights. We
then efficiently implement this algorithm with a weight-sharing
network, which requires O(K logK) time and O(K) space.
We note that our algorithm requires prior knowledge of the
number of segments in the optimal strategy, i.e., S. However,
it can be extended to a truly online form, i.e., without any
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knowledge S, by using the analysis in [3] with an additional
O(log T ) time complexity cost.

We point out that the state-of-the-art expert advice algo-
rithms [5], [24] cannot combine m-arm sequences optimally
due to the additional O(

√
m) term in their regret bounds.

Therefore, to construct an optimal algorithm, we introduce
an optimal expert advice algorithm for the MAB-MP setting.
In our expert advice algorithm, we utilize the structure of
the expert set in order to improve the regret bounds of the
existing expert advice algorithms [5], [24] up to O(

√
m). We

then combine m-arm sequences optimally in this algorithm
and obtain the minimax optimal regret bound. By using our
expert advice algorithm, we additionally improve the best-
known high-probability bound [25] by O(

√
m), hence, close

the gap between high-probability bounds [25] and the expected
regret bounds [24], [26]. In the end, we also demonstrate
significant performance gains achieved by our algorithms with
respect to the state-of-the-art algorithms [5], [24]–[27] through
an extensive set of experiments involving synthetic and real
data.

B. Prior Art and Comparison

The MAB-MP problem is mainly studied under three types
of feedback: The full-information [28], where the gains of
all arms are revealed to the learner, the semi-bandit feedback
[24]–[27], [29], where the gains of the selected m arms are
revealed, and the full bandit feedback [30]–[32], where only
the total gain of the selected m-arm is revealed. Since our
study lies in the semi-bandit scenario, we focus on the relevant
studies for the comparison.

The adversarial MAB-MP problem where the player com-
petes against the best fixed m-arm under semi-bandit feedback
has a regret lower bound of O(

√
mKT )1 for K arms in a

T round game [29]. On the other hand, a direct application
of Exp3 [5], i.e., the state-of-the-art for m = 1, achieves a
regret bound O(m3/2

√
KmT lnK) with O(Km) time and

space complexity. One of the earliest studies to close this
performance gap with an efficient algorithm is by Györgi
et al. [27]. They derived a regret bound O(m3/2

√
KT lnK)

with respect to the best fixed m-arm in hindsight with O(K)
time complexity. This result is improved by Kale et al. [24]
and Uchiya et al. [26] whose algorithms guarantee a regret
bound O(

√
mKT ln(K/m)) with O(K2) and O(K logK)

time complexities respectively. Later, Audibert et al. [29]
achieved the minimax optimal regret bound by the Online
Stochastic Mirror Descent (OSMD) algorithm. The efficient
implementation of OSMD is studied by Suehiro et al. [33]
whose algorithm has O(K6) time complexity.

We emphasize that although minimax optimal bound has
been achieved, all of these results have been proven to hold
only in expectation. In practical applications, these algorithms
suffer from the large variance of the unbiased estimator,
which leads O(T 3/4) regret in the worst case [5], [34]. This
problem is addressed by Györgi et al. [27] and Neu et al.
[25] for the MAB-MP problem. They respectively derived

1We use big-O notation, i.e., O(f(x)), to ignore constant factors and use
soft-O notation, i.e., Õ(f(x)), to ignore the logarithmic factors as well.

O(m3/2
√
KT log(K/δ)) and O(m

√
KT log(K/mδ)) regret

bounds holding with probability 1− δ.
In this paper, we introduce algorithms that achieve minimax

optimal regret (up to logarithmic terms) with high probability
for both the vanilla MAB-MP and the tracking the best m-
arm settings. In order to generalize both settings in an optimal
manner, we first introduce an optimal expert-mixture algorithm
for the MAB-MP problem in Section III. In our expert-mixture
algorithm, differing from the state-of-the-art [24], we exploit
the structure of the expert set, and introduce the notion of
underlying experts. By exploiting the structure of the expert
set, we improve the regret bound of the state-of-the-art expert
mixture algorithm for the MAB-MP setting [24] up to O(

√
m)

and obtain the optimal regret bound against to the best expert,
which can follow any arbitrary strategy. We then consider the
set of the deterministic m-arm in our expert-mixture algorithm
in Remark III.1 and close the gap between high-probability
bounds [25], [27] and the expected regret bounds [24], [26]
for the vanilla MAB-MP setting.

In addition to our improvement in high-probability bound,
we use our optimal expert mixture algorithm to develop a
tracking algorithm for the MAB-MP setting. We note that
when competing against the best switching m-arm strategy
(as opposed to the best-fixed m-arm), the minimax lower
bound can be derived as O(mSKT )2. However, similar to
the case of Exp3, the direct implementation of the traditional
multi-armed bandit algorithms into this problem suffers poor
performance guarantees. To the best of our knowledge, only
György et al. [27] studied competing against the switching
m-arm sequences and derived Õ(m3/2

√
SKT ) regret bound

holding with probability 1 − δ. In Section IV, by mixing the
sets of switching m-arm sequences optimally in our expert
mixture algorithm, we improve this result to Õ(

√
mSKT )

regret bound holding with probability 1 − S−1
e(T−1)δ. We note

that the computational complexity of our final algorithm is
O(K logK), whereas György et al.’s algorithm [27, Section
6] requires O(min(KT,

(
K
m

)
)) per round. Therefore, we also

provide a highly efficient counterpart of the state-of-the-art.

C. Contributions

Our main contributions are as follows:
• As the first time in the literature, we introduce an online

algorithm, i.e., Exp3.MSP, that truly achieves (with min-
imax optimal regret bounds) the performance of the best
multiple-arm selection strategy.

• We achieve this performance with computational com-
plexity only log-linear in the arm number, which is
significantly smaller than the computational complexity
of the state-of-the-art [27].

• In order to obtain the minimax optimal regret bound
with Exp3.MSP, we introduce an optimal expert mixture
algorithm for the MAB-MP setting, i.e., Exp4.MP. We

2When competing against the best switching bandit arm strategy (as
opposed to the best fixed arm strategy), we can apply O(

√
mKT ) bound

separately to each one of S segment (if we know the switching instants).
Hence, maximization of the total regret bound yields a minimax bound of
O(

√
mSKT ) since the square-root function is concave and the bound is

maximum when each segment is of equal length T/S.



derive a lower bound for the MAB-MP with expert advice
setting and mathematically show the optimality of the
Exp4.MP algorithm.

• By using Exp4.MP, we additionally improve the best-
known high-probability bound for the multiple-play set-
ting by O(

√
m), hence, close the gap between high-

probability bounds [25], [27] and the expected regret
bounds [24], [26].

D. Organization of the Paper
The organization of this paper is as follows: In Section II

we formally define the adversarial multi-armed bandit problem
with multiple plays. In Section III, we introduce an optimal
expert mixture algorithm for the MAB-MP setting. In Section
IV, by using our expert mixture algorithm , we construct
an algorithm that competes with the best switching m-arm
strategy in a computationally efficient way. In Section V,
we demonstrate the performance of our algorithms via an
extensive set of experiments. We conclude with final remarks
in Section VI.

II. PROBLEM DESCRIPTION

We use bracket notation [n] to denote the set of the first n
positive integers, i.e., [n] = {1, · · · , n}. We use C([n],m) to
denote the m-sized combinations of the set [n]. We use [K] to
denote the set of arms and C([K],m) to denote the set of all
possible m-arm selections. We use 1A to denote the column
vector, whose jth component is 1 if j ∈ A, and 0 otherwise.

We study the MAB-MP problem, where we have K arms,
and randomly select an m-arm at each round t. Based on
our m-arm selection U(t) ∈ C([K],m), we observe only the
gain of the selected arms, i.e., xi(t) ∈ [0, 1] for i ∈ U(t),
and receive their sum as the gain of our selection U(t). We
assume xi(t) ∈ [0, 1] for notational simplicity; however, our
derivations hold for any bounded gain after shifting and scaling
in magnitude. We work in the adversarial bandit setting such
that we do not assume any statistical model for the arm gains
xi(t). The output U(t) of our algorithm at each round t is
strictly online and randomized. It is a function of only the
past selections and observed gains.

In a T round game, we define the variable MT , which
represents a deterministic m-arm selection sequence of length
T , i.e., MT (t) ∈ C([K],m) for t = 1, · · · , T . In the rest of
the paper, we refer to each such deterministic m-arm selection
sequence, MT , as an m-arm strategy. The total gain of an
m-arm strategy and the total gain of our algorithm (for this
section, say the name of our algorithm is ALG) are respectively
defined as

GMT
,

T∑
t=1

∑
i∈MT (t)

xi(t), and GALG ,
T∑
t=1

∑
i∈U(t)

xi(t).

Since we assume no statistical assumptions on the gain se-
quence, we define our performance with respect to the opti-
mum strategy M∗T , which is given as M∗T = arg maxMT

GMT
.

In order to measure the performance of our algorithm, we use
the notion of regret such that

R(T ) , GM∗T −GALG.

Algorithm 1 Exp4.MP

1: Parameters: η, γ ∈ [0, 1] and c ∈ R+

2: Initialization: wi(1) ∈ R+ for i ∈ [Nr]
3: for t = 1 to T do
4: Get the actual advice vectors ξ1(t), · · · , ξN (t)
5: Find the underlying experts ζ1(t), · · · , ζNr (t)

6: vj(t) =
Nr∑
i=1

wi(t)ζ
i
j(t)∑Nr

l=1
wl(t)

for j ∈ [K]

7: if arg maxj∈[K] vj(t) ≥
(1/m)−(γ/K)

(1−γ) then
8: Decide αt as αt∑

vj(t)≥αt
αt+

∑
vj(t)<αt

vj(t)
= (1/m)−(γ/K)

(1−γ)

9: Set U0(t) = {j : vj(t) ≥ αt}
10: v′j(t) = αt for j ∈ U0(t)
11: else
12: Set U0(t) = ∅
13: end if
14: Set v′j(t) = vj(t) for j ∈ [K]− U0(t)

15: pj(t) = m
(

(1− γ)
v′j(t)
K∑
l=1

v′
l
(t)

+ γ
K

)
for j ∈ [K]

16: Set U(t) = DepRound(m, (p1(t), · · · , pK(t)))
17: Observe and receive xj(t) ∈ [0, 1] for each j ∈ U(t)
18: x̂j(t) = xj(t)/pj(t) for j ∈ U(t)
19: x̂j(t) = 0 for j ∈ [K]− U(t)
20: for i = 1 to Nr do
21: ŷi(t) =

∑
j∈[K]−U0(t)

ζij(t)x̂j(t)

22: ûi(t) =
∑
j∈[K]−U0(t)

ζij(t)/pj(t)

23: wi(t+ 1) = wi(t) exp
(
η(ŷi(t) + c√

KT
ûi(t))

)
24: end for
25: end for

There are two different regret definitions for the randomized
algorithms: the expected regret and high-probability regret.
Since the algorithms that guarantee high-probability regret
yield more reliable performance [5], [34], we provide high-
probability regret with our algorithms. High-probability regret
is defined as

Pr
[
R(T ) ≥ ε

]
≤ δ,

which means that the total gain of our selections up to T is
not much smaller than the total gain of the best strategy M∗T
with probability at least 1− δ.

The regret R(T ) depends on how hard it is to learn the
optimum m-arm strategy M∗T . Since at every switch we need
to learn the optimal m-arm from scratch, we quantify the
hardness of learning the optimum strategy by the number
of segments it has. We define the number of segments as
S = 1 +

∑T
t=2 1M∗T (t−1) 6=M∗T (t). Our goal is to achieve that

minimax optimal regret up to logarithmic factors with high
probability, i.e.,

Pr
[
R(T ) ≥ Õ(

√
mSKT )

]
≤ δ.

III. MAB-MP WITH EXPERT ADVICE

In this section, we consider selecting an m-arm with expert
advice and introduce an optimal expert-mixture algorithm for
the MAB-MP setting. We note that the primary aim of this
section is to provide an optimal expert advice framework
for the MAB-MP setting, on which we develop our optimal
tracking algorithm in Section IV. By using our expert mixture



Fig. 1: In Exp4.MP, instead of directly using the expert set, we use an under-
lying expert set, whose sum of m-combinations constitute a set containing the
expert advices. In the figure, the diamonds represent the underlying experts.
The squares represent the sum of m- combinations. The bold squares are the
expert advices presented to the algorithm. We note that in this figure, m = 2,
Nr = 4, N = 5.

algorithm, we additionally improve the best-known high-
probability regret bound for the MAB-MP setting by O(

√
m)

in the last remark of this section.
For this section, we define the phrase ”expert advice”

as the reference policies (or vectors) of the algorithm. The
setting is as follows: At each round, each expert presents its
m-arm selection advice as a K-dimensional vector, whose
entries represent the marginal probabilities for the individual
arms. The algorithm uses those vectors, along with the past
performance of the experts, to choose an m-arm. The goal
is to asymptotically achieve the performance of the best
expert with high probability. For this setting, we introduce
an optimal algorithm Exp4.MP, which is shown in Algorithm
1. In Exp4.MP, instead of directly using the expert set, we
use an underlying expert set to utilize the possible structure
of the expert set. An underlying expert set is defined as a non-
negative vector set, whose sum of m-combinations constitute
a set containing the expert advices (see Figure 1). By using
an underlying expert set, we replace the dependence of the
regret on the size of the expert set N with the size of the
underlying expert set Nr, thus, obtain the minimax lower
bound in the soft-Oh sense (proven in the following). In
the rest of the paper, we use the term underlying experts
to denote the elements of the underlying expert set, and the
term actual experts (respectively actual advice vectors) to
denote the experts (respectively expert advices) presented to
the algorithm.

In Exp4.MP, we first get the actual advice vectors ξk(t)
for k ∈ [N ] in line 4. Since the entries of the actual advice
vectors represent the marginal probabilities for the individual
arms, they satisfy

K∑
j=1

ξkj (t) = m, max
1≤j≤K

ξkj (t) ≤ 1, min
1≤j≤K

ξkj (t) ≥ 0.

Then we find the underlying experts, i.e., ζi(t) for i ∈ [Nr], in
line 5. We note that for the algorithms presented in this paper,
we derive the underlying expert sets a priori. Therefore, our
algorithms do not explicitly compute the underlying experts at
each round.

In the algorithm, we keep a weight for each underlying
expert, i.e., wi(t) for i ∈ [Nr]. We use those weights as

confidence measure to find the arm weights, i.e., vj(t), in line
6 as follows:

vj(t) =

Nr∑
i=1

wi(t)ζ
i
j(t)∑Nr

l=1 wl(t)
for j ∈ [K]. (1)

In order to select an m-arm, the expected total number of
selection should be m, i.e.,

∑K
j=1 pj(t) = m. To satisfy this,

we cap the arm weights so that the arm probabilities are kept
in the range [0, 1]. For the arm capping, we first check if
there is an arm weight larger than (1/m)−(γ/K)

(1−γ) in line 7. If
there is, we find the threshold αt, and define the set U0(t)
that includes the indices of the weights larger than αt, i.e.,
U0(t) = {j : vj(t) ≥ αt}. We set the temporal weights of
the arms in U0(t) to αt, i.e., v′j(t) = αt for j ∈ U0(t), and
leave the other weights unchanged, i.e., v′j(t) = vj(t) for j ∈
[K]−U0(t) (The implementation of this procedure is detailed
in Appendix A). We then calculate the arm probabilities with
the capped arm weights by

pj(t) = m
(

(1− γ)
v′j(t)

K∑
l=1

v′l(t)

+
γ

K

)
for j ∈ [K]. (2)

In order to efficiently select m distinct arms with the marginal
probabilities pj(t), we employ Dependent Rounding (De-
pRound) algorithm [35] in line 16 (For the description of
DepRound, see Appendix A). After selecting an m-arm, we
observe the gain of each one of the selected m arms and
receive their sum as the reward of the round.

To update the weights of the underlying experts, i.e., wi(t)
for i ∈ [Nr], we first find the estimated arm gains in lines
18-19:

x̂j(t) =

{
xj(t)
pj(t)

if j ∈ U(t)

0 otherwise.
(3)

Then by using the estimated arm gains x̂j(t) for j ∈
[K]− U0(t), we calculate the estimated expected gain of the
underlying experts by

ŷi(t) =
∑

j∈[K]−U0(t)

ζij(t)x̂j(t) for i ∈ [Nr]. (4)

In order to obtain high-probability bound, we use upper
confidence bounds. However, we note that we cannot directly
use the upper confidence bound of the single arm setting
[34] since Exp4.MP includes an additional non-linear weight
capping in lines 7-14. In the following, we show that we can
use a similar upper bounding technique by not including the
capped arm weights U0(t), i.e.,

ûi(t) =
∑

j∈[K]−U0(t)

ζij(t)

pj(t)
. (5)

Then by using ŷi(t) and ûi(t), we update the weights wi(t)
in line 23 by

wi(t+ 1) = wi(t) exp
(
η(ŷi(t) +

c√
KT

ûi(t))
)
, (6)

where η is the learning rate and c/
√
KT is the scaling factor,

which determines the range of the confidence bound.



For the following theorems, we respectively define the total
gain of the underlying expert with index i, and its estimation
as

Gi ,
T∑
t=1

ζi(t) · x(t) and Ĝi ,
T∑
t=1

ζi(t) · x̂(t), (7)

where x(t) and x̂(t) are the column vectors containing the real
and the estimated arm gains, i.e., x(t) = [x1(t), · · · , xK(t)]T

and x̂(t) = [x̂1(t), · · · , x̂K(t)]T . Let us define a set A that
includes m arbitrary underlying experts, i.e., A ∈ C([Nr],m).
Then, by using the total gain of the underlying experts in the
best A (in terms of the total gain), the total gain of the best
actual expert can be written as

Gmax = max
A∈C([Nr],m)

∑
i∈A

Gi. (8)

We also define the upper bounded estimated gain of a set A, i.e
Γ̂A, and the set with the maximum upper bounded estimated
gain, i.e., A∗, as follows:

Γ̂A ,
∑
i∈A

Ĝi +
c√
KT

T∑
t=1

∑
i∈A

ûi(t) and A∗ = arg max
A∈C([Nr ],m)

Γ̂A.

(9)

In the following theorem, we provide a useful inequality
that relates Γ̂A∗ , GExp4.MP and the initial weights of the
underlying experts in A∗, i.e., wi(1) for i ∈ A∗ under a certain
assumption. This inequality will be used to derive regret
bounds for our algorithms in Corollary III.1 and Theorem IV.1,
where we ensure that the assumption in Theorem III.1 holds.

Theorem III.1. Let W1 denote
∑Nr
i=1 wi(1). Assuming

η(ŷi(t) +
cûi(t)√
KT

) ≤ 1, ∀i ∈ [Nr] and ∀t ∈ [T ]

Exp4.MP ensures that

(1− γ − 2η
K

m
)Γ̂A∗+

(1− γ)

η

( ∑
i∈A∗

ln(wi(1))−m ln
W1

m

)
≤GExp4.MP + c

√
KT +

ηc22K

γm
(10)

holds for any K,T > 0.

Proof. See Appendix B.

In the following corollary, we derive the regret bound of
Exp4.MP with uniform initialization.

Corollary III.1. If Exp4.MP is initialized with wi(1) = 1
∀i ∈ [Nr], and run with the parameters

η =
mγ

2K
γ =

√
K ln Nr

m

mT
c =

√
m ln

Nr
δ
,

for any m ln(Nr/δ)
K(e−2) ≤ T and δ ∈ [0, 1], it ensures that

Gmax −GExp4.MP ≤ 2

√
mKT ln

Nr
δ

+ 4

√
mKT ln

Nr
m

+m ln
Nr
δ

(11)

holds with probability at least 1− δ.

Proof. See Appendix B.

In the next theorem, we show that in the MAB-MP with
expert-advice setting, no strategy can enjoy smaller regret
guarantee than O(

√
mKT lnNr/ lnK) in the minimax sense.

In its following, we also show that the derived lower bound
is tight and it matches the regret bound of Exp4.MP given in
Corollary III.1.

Theorem III.2. Assume that Nr = Kn for an integer n and
that T is a multiple of n. Let us define the regret of an arbitrary
forecasting strategy ALG in a game length of T as

RALG(T ) = Gmax −GALG. (12)

Then there exists a distribution for gain assignments such that

inf
ALG

sup
ξ
RALG(T ) ≥ O

(√mKT lnNr
lnK

)
, (13)

where infALG is an infimum over all possible forecasting
strategies, supξ is a supremum over all possible expert advice
sequences.

Proof. The presented proof is a modification of [36, Theorem
1] for the MAB-MP with expert advice setting. To derive a
lower bound for the MAB-MP with expert advice setting, we
split the interval {1, · · · , T} into n non-overlapping subin-
tervals of length T/n, where each subinterval is assumed
independent and indexed by k ∈ {1, · · · , n}. For each
subinterval, we design a MAB-MP game, where the optimal
policy is some different Ak ∈ C([K],m). We also design
Nr = Kn sequences of underlying expert advice, such that for
every possible every possible sequence of arms j1, · · · , jn ∈
{1, · · · ,K}n, there is an underlying expert that recommends
the arms from the sequence throughout the corresponding
subintervals. By using the lower bound O(

√
mKT ) for the

vanilla MAB-MP setting [29], for each subinterval k, we have

inf
ALG

RkALG(T/n) ≥ O
(√mKT

n

)
.

where RkALG(T/n) is the regret bound corresponding to the
subinterval k. By summing all the regret components in each
subinterval, and noting RALG(T ) ≥

∑m
k=1R

k
ALG(T/n) and

n = lnNr/ lnK, we obtain

inf
ALG

sup
ξ
RALG(T ) ≥ O

(√mKT lnNr
lnK

)
.

We note that for Nr = K, MAB-MP with expert advice can
be reduced to the vanilla MAB-MP setting (by considering
underlying experts as arms) and in this case our regret lower
bound matches the lower and upper bounds for the MAB-
MP shown in [29]. Therefore, we maintain that our lower
bound is tight. Furthermore, we note that the regret bound
of Exp4.MP in Corollary III.1 matches the presented lower
bound with an additional lnK term, while the state-of-art
[24] provides a suboptimal regret bound O(

√
mKT lnN)

(notably for Nr << N as in the vanilla MAB-MP and the



Algorithm 2 Exp3.MSP

1: Parameters: η, γ, β ∈ [0, 1] and c ∈ R+

2: Init: v1(j) = 1/K for j ∈ [K]
3: for t = 1 to T do
4: if arg maxj∈[K] vj(t) ≥

(1/m)−(γ/K)
(1−γ) then

5: Decide αt as αt∑
vj(t)≥αt

αt+
∑

vj(t)<αt

vj(t)
= (1/m)−(γ/K)

(1−γ)

6: Set U0(t) = {j : vj(t) ≥ αt}
7: v′j(t) = αt for j ∈ U0(t)
8: else
9: Set U0(t) = ∅

10: end if
11: Set v′j(t) = vj(t) for j ∈ [K]− U0(t)

12: pj(t) = m
(

(1− γ)
v′j(t)
K∑
l=1

v′
l
(t)

+ γ
K

)
for j ∈ [K]

13: Set U(t) = DepRound(m, (p1(t), · · · , pK(t)))
14: Observe and receive rewards xj(t) ∈ [0, 1] for each j ∈ U(t)

15: x̂j(t) = xj(t)/pj(t) for j ∈ U(t)
16: x̂j(t) = 0 for j ∈ [K]− U(t)
17: for j = 1 to K do
18: if j ∈ [K]− U0(t) then
19: ṽj(t) = vj(t) exp

(
η(x̂j(t) + c

pj(t)
√
KT

)
)

20: else
21: ṽj(t) = vj(t)
22: end if
23: end for
24: vj(t+ 1) =

(1−β)ṽj(t)+
β

K−1

∑
i6=j ṽi(t)∑K

l=1
ṽl(t)

for j ∈ [K]

25: end for

tracking the best m-arm settings). Therefore, we state that
Exp4.MP is an optimal algorithm and it is required to obtain
the improvements presented in this paper.

In the following remark, we improve the best-known high-
probability bound [25] for the vanilla K-arm multi-play setting
by O(

√
m). We note that the resulting bound matches with

the minimax lower bound in the soft-Oh sense. Therefore, it
cannot be improved in the practical sense.

Remark III.1. If we use constant and deterministic actual
advice vectors in Exp4.MP, i.e., ξk(t) = 1A ∈ RK where A ∈
C([K],m), the algorithm becomes a vanilla K-armed MAB-
MP algorithm. We note that in this scenario, we can directly
operate with ζi(t) = 1i ∈ RK , where Nr = K. By Corollary
III.1, if we use γ =

√
K ln(K/m)

mT
and c =

√
m ln(K/δ),

Exp4.MP guarantees the regret bound O(
√
mKT ln(K/δ))

with probability at least 1 − δ. Since the most expensive
operation of this scenario is arm capping, our algorithm
achieves this performance with O(K logK) time and O(K)
space.

IV. COMPETING AGAINST THE SWITCHING STRATEGIES

In this section, we consider competing against the switching
m-arm strategies. We present Exp3.MSP, shown in Algorithm
2, which guarantees to achieve the performance of the best
switching m-arm strategy with the minimax optimal regret
bound.

We construct Exp3.MSP algorithm by using Exp4.MP algo-
rithm. For this, we first consider a hypothetical scenario, where

we mix each possible m-arm selection strategy as an actual
expert in Exp4.MP. We point out that the actual advice vectors
will be a repeated permutation of the vectors {1A ∈ RK : A ∈
C([K],m)} at each round, which we can write as the sum of
m sized subsets of the set {1i ∈ RK : i ∈ [K]}. Therefore,
in this hypothetical scenario, we can directly combine all
possible single arm sequences as the underlying experts, where
Nr = KT . However, since the regret bound of Exp4.MP
is O(

√
mKT ln(Nr/δ)), a straightforward combination of

KT underlying experts produces a non-vanishing regret bound
O(T ). To overcome this problem, we will assign a different
prior weight for each one of KT strategies based on its
complexity cost, i.e., the number of segments S (more detail
will be given later on).

Let st be a sequence of single arm selections, st =
{s1, s2, · · · , st} where st(t) = st ∈ [K], and wst be its
corresponding weight. For ease of notation, we define

n̂st(t) =
(
x̂st(t) +

c

pst(t)
√
KT

)
1st(t) 6∈U0(t) (14)

where pst(t) is the probability of choosing st(t) at round t,
and

N̂st(1:t−1) =

t−1∑
τ=1

n̂st(τ) (15)

where st(i : j) denotes the ith through jth elements of the
sequence st. Then, the weight of the sequence st is given by

wst = πst exp(ηN̂st(1:t−1)), (16)

where πst is the prior weight assigned to the sequence st.
We point out that using non-uniform prior weights, i.e., πst ,

is required to have a vanishing regret bound since the number
of single arm sequences grows exponentially with T . As noted
earlier, by Corollary III.1, the regret of Exp4.MP with uniform
initialization is dependent on the logarithm of Nr. Therefore,
combining KT strategies with uniform initialization results in
a linear regret bound, which is undesirable (the average regret
does not diminish). In order to overcome this problem, similar
to complexity penalty of AIC [37] and MDL [38], we assign
different prior weights πst for each strategy st based on its
the number of segments S . To get a truly online algorithm,
we use a sequentially calculable prior assignment scheme that
only depends on the last arm selection such that

π(st|st(t− 1)) =


1
K if t = 1

1− β if st(t) = st(t− 1) (no switch)
β

K−1 if st(t) 6= st(t− 1) (switch).
(17)

With the assignment scheme in (17), the prior weights are
sequentially calculable as

πst = π(st|st(t− 1))πst(1:t−1)

and the weights of the arm selection strategies are given by

wst = π(st|st(t− 1))wst(1:t−1) exp(ηn̂st(t−1)). (18)

In the following theorem, we show that Exp4.MP algorithm
running with KT underlying experts with the prior weighting



scheme given in (17) and (18) guarantees the minimax optimal
regret bound up to logarithmic factors with probability at least
1− S−1

e(T−1)δ.

Theorem IV.1. If Exp4.MP uses the prior weighting scheme
given in (17) and (18), and the parameters

η =
mγ

2K
β =

S − 1

T − 1

γ =

√
K ln( eK(T−1)

S−1
)

mT
c =

√
mS ln

(eK(T − 1)

(S − 1)δ

)
to combine all possible single arms sequences as the underly-
ing experts, for any mS

(e−2)K ln
(
eK(T−1)
(S−1)δ

)
≤ T and δ ∈ [0, 1]

GM∗
T
−GExp4.MP ≤ 6

√
mSKT ln

(eK(T − 1)

(S − 1)δ

)
+mS ln

(eK(T − 1)

(S − 1)δ

)
(19)

holds with probability at least 1− S−1
e(T−1)δ.

Proof. See Appendix C.

Although we achieved minimax performance, we still suffer
from exponential time and space requirements. In the follow-
ing theorem, we show that by keeping K weights and updating
the weights as

vj(t+ 1) =
(1− β)ṽj(t) + β

K−1

∑
i6=j ṽi(t)∑K

l=1 ṽl(t)
, (20)

where

ṽj(t) =

{
vj(t) exp

(
η(x̂j(t) + c

pj(t)
√
KT

)
)

if j ∈ [K]− U0(t)

vj(t) otherwise,
(21)

we can efficiently compute the same weights in the hypotheti-
cal Exp4.MP run with a computational complexity linear in K.
To show this, we extend [1, Theorem 5.1] for the MAB-MP
problem:

Theorem IV.2. For any β, γ, η ∈ [0, 1], and for any c, T > 0,
Exp4.MP algorithm that mixes all possible single arm se-
quences as underlying experts with the weighting scheme
given in (17) and (18) has equal arm weights with Exp3.MSP
algorithm, which updates its weights according to formulas in
(20) and (21).

Proof. See Appendix C.

Theorem IV.2 proves that for any parameter selec-
tion Exp3.MSP is equivalent algorithm to the hypothetical
Exp4.MP run. Therefore, Theorem IV.1 is valid for Exp3.MSP,
which shows that Exp3.MSP has a Õ(

√
mSKT ) regret bound

holding with at probability at least 1 − S−1
e(T−1) with respect

to the optimal m-arm strategy. Since the most expensive
operation in the algorithm is capping, Exp3.MSP requires
O(K logK) time complexity per round.

V. EXPERIMENTS

In this section, we demonstrate the performance of our
algorithms with simulations on real and synthetic data. These
simulations are mainly meant to provide a visualization of
how our algorithms perform in comparison to the state-of-
the-art techniques and should not be seen as verification of
the mathematical results in the previous sections. We note
that simulations only show the loss/gain of an algorithm for
a typical sequence of examples; however, the mathematical
results of our paper are the worst-case bounds that hold even
for adversarially-generated sequences of examples.

For the following simulations, we use four synthesized
datasets and one real dataset. We compare Exp4.MP with
Exp3.P [5], Exp3-IX [39], Exp3.M [26], FPL +GR.P [25], [27,
Figure 2], and [24, Figure 4]. We compare Exp3.MSP with
[27, Figure 4], and Exp3.S [5]. We note that all the simulated
algorithms are constructed as instructed in their original pub-
lications. The parameters of the individual algorithms are set
as instructed by their respective publications. The information
of the game length T and the number of the segments in the
best strategy S have been given a priori to all algorithms. In
each subsection, all the compared algorithms are presented to
the identical games.

A. Robustness of the Performances

We conduct an experiment to demonstrate the robustness of
our high-probability algorithms. For this, we run algorithms
several times and compare the distributions of their total gains.
For the comparison, we use Exp4.MP with the deterministic
and constant advice vectors. We compare Exp4.MP with
Exp3.P [5], Exp3-IX [39], Exp3.M [26], FPL +GR.P [25]
and the high-probability algorithm introduced by György et
al. in [27]. Since György et al. did not name their algorithms,
we use GYA-P to denote their high-probability algorithm. We
highlight that all the algorithms except Exp3.M guarantee a re-
gret bound with high probability, whereas Exp3.M guarantees
an expected regret bound.

For this experiment, we construct a 10-arm bandit game
where we choose 5 bandit arms at each round. All gains
are generated by independent draws of Bernoulli random
variables. In the first half of the game, the mean gains of
the first 5 arms are 0.5 + ε, and the mean gains of others’ are
0.5− ε. In the second half of the game, the mean gains of the
first 5 arms have been reduced to 0.5−ε, while the mean gains
of others’ have been increased to 0.5 + 4ε. We point out that
based on these selections, the m-arm consisting of the last 5
arms performs better than the others in the full game length.

We set the parameters T = 104, ε = 0.1 for all the
algorithms, and δ = 0.01 for the high-probability algorithms.
Our experiments are repeated 100 times to obtain statistically
significant results. Since the game environments are the same
for all the algorithms, we directly compare the total gains. We
study the total gain up to two interesting rounds in the game:
up to T/2, where the losses are independent and identically
distributed, and up to T , where the algorithms have to notice
the shift in the gain distribution.



(a) (b)

Fig. 2: Comparison of the distributions of the total gains received by the algorithms (a) up to T/2 (b) up to T .

We have constructed box plots by using the resulting total
gains of the algorithms. In the box plots, the lines extending
from the boxes (the whiskers) illustrate the minimum and
the maximum of the data. The boxes extend from the first
quartile to the third quartile. The horizontal lines and the
stars stand for the median and the mean of the distributions.
Fig. 2a illustrates the distributions of the total gains up to
T/2. We observe that the variance of all the total gains are
comparable. The mean total gain received by Exp4.MP is only
comparable with that of Exp3.M while outperforms the rest.
On the other hand, when the change occurred in the game,
Exp4.MP outperforms the rest in the overall performance (Fig.
2b). As expected, Exp3.M and Exp4.MP receive relatively
higher gains than the other algorithms. However, since we give
a special care for bounding the variance, Exp4.MP has a more
robust performance. From the results, we can conclude that
Exp4.MP yields the superior performance of the algorithms
with an expected regret guarantee and the robustness of the
high-probability algorithms at the same time.

B. Choosing an m-arm with Expert Advice

In this part, we demonstrate the performance of Exp4.MP
when the advice vectors of the actual advice vectors are
not necessarily constant nor deterministic. We compare our
algorithm with the only known algorithm that is capable of
choosing m-arm with expert advice, i.e., Unordered Slate
Algorithm with policies (USA-P) introduced in [24]. Since
our main point is to improve the regret bound by O(

√
m),

we compare algorithms under different subset sizes. For
this, we construct five 30-armed games, where we choose
m ∈ {5, 10, 15, 20, 25} arms respectively. In each game,
the gains of the first m arms are 1, and the gains of the
others are 0 throughout the game. In order to satisfy the
condition Nr = O(N

1
m ), we first generate the underlying

expert set where Nr = m + 2. The generation process is as
follows: The first m underlying experts are chosen constant
and deterministic where ζi = 1i for i ∈ {1, · · · ,m}. The
first m entries of the last two underlying experts are chosen 0,
i.e., ζm+1

j (t) = ζm+2
j (t) = 0 for j ∈ {1, · · · ,m}, while the

other entries are determined randomly at each round under the
constraint that their sum is 1. The actual vectors are generated
by summing each m sized subset of the underlying expert

set at each round, where we have a total of
(
m+2
m

)
experts.

We note that based on our arm gains selection and the advice
vector generating process, the actual expert which is the sum
of the constant underlying experts is the best expert.

In the experiment, we set the parameters T = 104 for both
algorithms and δ = 0.01 for Exp4.MP. We have repeated all
the games 100 times and plotted the ensemble distributions
in Fig. 3a, Fig. 3b, and Fig. 3c. Fig. 3a illustrates the time
averaged regret incurred by the algorithms at the end of the
games with increasing m. As can be seen, the regret incurred
by our algorithm remains almost constant while the regret
of USA-P increases as m increases. In order to observe the
temporal performances, we have plotted Fig. 3b, which illus-
trates the time averaged regret performances of the algorithms
when K = 30, and m = 15. We observe that our algorithm
suffers a lower regret value at each round. To analyze this
difference in the performances, we have also plotted the mean
of the probability values assigned to the optimum m arms by
the algorithms at each round when m = 15 (Fig. 3c). We
observe that USA-P saturates at the same probability value as
Exp4.MP, its convergence rate is slower. Therefore, since our
algorithm can explore the optimum m-arm more rapidly, it
is able to achieve better performance, especially in high m
values.

C. Sudden Game Change

In this section, we demonstrate the performance of
Exp3.MSP in a synthesized game. We compare our algorithm
with Exp3.S and the algorithm introduced by György et al.
in [27, Section 6]. Since György et al. did not name their
algorithms, we use GYA-SW to denote their algorithm. We also
compare each algorithm against the trivial algorithm, Chance
(i.e., random guess) for a baseline comparison.

For this experiment, we construct a game of length T = 104,
where we need to choose 5 arms out of 10 bandit arms. The
gains of the arms are deterministically selected as follows: Up
to round 3333, the gains of the first 5 arms are 1, while the
gains of the rest are 0. Between rounds 3334 and 6666, the
gains of the last 5 arms are 1, while the gains of the rest 0.
In the rest of the game, the gain distribution is the same as
in the first 3333 rounds. The optimum m-arms at consecutive
segments are intentionally selected mutually exclusive in order



(a) (b) (c)

Fig. 3: (a) Per round regret performances of the algorithms with increasing m. (b) Time-averaged regret performances of the algorithms in a game where
K = 30, m = 15. (c) Mean of the probabilities assigned to the optimum m arms by both algorithms when m = 15.

(a) (b)

Fig. 4: (a) Time averaged regrets of the algorithms in a game where K = 10, m = 5 and the optimum m-arm changes at every 3333 rounds. (b) Probabilities
of selecting the optimum m-arm for all of the algorithms in sudden game change setting.

to simulate sudden changes effectively. We point out that based
on our arm gains selections, the number of segments in the
optimum m-arm sequence is 3, i.e., S = 3.

For Exp3.MSP and GYA-SW, we set δ = 0.01. We have
repeated the games 100 times and plotted the ensemble dis-
tributions in Fig. 4a and Fig. 4b. Fig. 4a illustrates the time-
averaged regret performance of the algorithms. We observe
that our algorithm has a lower regret value at any time instance.
To analyse this, we have plotted the mean probability values
assigned to the optimum m arms by the algorithms at each
round in Fig. 4b. We observe that Exp3.S cannot reach high
values of probability due to the exponential size of its action
set. We also see that although GYA-SW saturates at the same
probability value as Exp3.MSP, its convergence rate is slower.
Therefore, Fig. 4b shows that since our algorithm adapts
faster to the changes in the environment, it achieves a better
performance throughout the game.

D. Random Game Change

In this part, we demonstrate the performance of Exp3.MSP
on random data sequences. We compare our algorithm with
two state-of-the-art techniques: Exp3.S [5] and GYA-SW [27].
We also compare each algorithm against the trivial algorithm,
Chance (i.e., random guess) for a baseline comparison. For this
experiment, we construct a game whose behavior is completely
random with the only regularization condition being an m-

arm should be optimum throughout a segment. We start to
synthesize the dataset by randomly selecting gains in [0, 1]
for all arms for all rounds. We predetermine the optimum m-
arms in each segment and then switch the maximum gains
with the gains of the optimum m-arm at each round. This
synthesized dataset creates a game with randomly determined
gains while maintaining that one m-arm is uniformly optimum
throughout each segment. We synthesize multiple datasets to
analyze the effects of the parameters of the game individually,
where we compare the algorithms performances for varying
game length (T ), number of switches (S), number of arms
(K) and subset size (m). We start with the control group of
T = 104, K = 10, m = 5, S = 3 and both T and S is
known a priori. Then, for each case, we vary one of the above
four parameters. Differing from before, the time instances of
switches are not fixed to 3333 and 6666 but instead selected
randomly to be in anywhere in the game. Thus, we create
completely random games with three segments.

To observe the effect of game length, we selected the 15
different game lengths, which are linearly spaced between 102

and 104. We provided the algorithms with the prior informa-
tion of both the game length and the number of switches. In
Fig. 5a, we have plotted the average regret incurred at the
end of the game, i.e., R(T )/T , by the algorithms at different
values of game length while fixing the other parameters. We
note that the error bars in Fig. 5a illustrate the maximum



(a) (b)
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Fig. 5: (a) Per round regrets of the algorithms with increasing game length. (b) Per round regrets of the algorithms with increasing number of switches. (c)
Per round regrets of the algorithms with increasing number of bandit arms. (d) Per round regrets of the algorithms with increasing number of subset size.

(a) (b) (c)

Fig. 6: (a) Time averaged regrets in ”univ-latencies” dataset when K = 10, m = 5 and S = 3. (b) Per round regret performances of the algorithms at the
end of the games with increasing number of switches. (c) Per round regret performances of the algorithms at the end of the games with increasing number
of bandit arms.

and the minimum average regret incurred at a fixed value of
game length. For any set of parameters, we have simulated
the setting for 25 times with recreating the game each time
to obtain statistically significant results. We observe that the
algorithm Exp3.S performs close to random guess up to
approximately game length of 7000 rounds, which is expected
since it assumes each action as a separate arm. We also observe
that Exp3.MSP and GYA-SW perform better than the chance
for all values of game length. However, there is a significant
performance difference in favor of Exp3.MSP.

To observe the effect of the number of switches on the
performances, we created random change games with 10 arms,

subset size m = 5 and game length of 104. We provided the
algorithms with the prior information of both the game length
and the number of switches. We selected 15 different switch
values, which are logarithmically spaced between 2 and 104. In
Fig. 5b, we have plotted the average regret incurred at the end
of the game by the algorithms at different values of number
of switches while fixing the other parameters. For any set of
parameters, we have simulated the setting for 25 times with
recreating the game each time. The algorithm Exp3.S performs
similar to random guess after approximately 5 switches, i.e.,
S = 5. Both Exp3.MSP and GYA-SW catch random guess
at S = 1000, which is comparable to the value of game



length, i.e., T = 104. However, Exp3.MSP manages to provide
better performance than the other algorithms for all number
of switches.

To observe the effect of the number of bandit arms on
the performances, we created random change games with
3 segments, subset size of 5 and game length of 104. We
provided the algorithms with the prior information of both
the game length and the number of switches. We selected the
number of bandit arms to be even numbers between 10 and
30. In Fig. 5c, we have plotted the average regret incurred at
the end of the game by the algorithms at different values of
the number of bandit arms while fixing the other parameters.
For any set of parameters, we have simulated the setting for
25 times with recreating the game each time. The algorithm
Exp3.S performs similar to random guess after approximately
12 bandit arms. Exp3.MSP and GYA-SW outperform random
guess for all values of bandit arms. On the other hand,
Exp3.MSP outperforms all algorithms for all values of bandit
arms uniformly.

To observe the effect of the subset size on the performances,
we created random change games with 3 segments, 20 bandit
arms and game length of 104. We provided the algorithms with
the prior information of both the game length and the number
of switches. We selected the subset size to be even numbers
between 2 and 18. In Fig. 5d, we have plotted the average
regret incurred at the end of the game by the algorithms at
different values of number of subset sizes while fixing the
other parameters. For any set of parameters, we have simulated
the setting for 25 times with recreating the game each time. We
observe that the algorithm Exp3.S performs similar to random
guess after subset size is equal to 4. Exp3.MSP and GYA-SW
outperform random guess for all values of subset sizes. On the
other hand, Exp3.MSP yields better performance, especially in
high values of subset size.

E. Online Shortest Path

In this subsection, we use a real-world networking dataset
that corresponds to the retrieval latencies of the homepages
of 760 universities. The pages were probed every 10 min for
about 10 days in May 2004 from an internet connection located
in New York, NY, USA [40]. The resulting data includes 760
URLs and 1361 latencies (in millisecond) per URL. For the
setting, we consider an agent that must retrieve data through
a network with several redundant sources available. For each
retrieval, the agent is assumed to select m sources and wait
until the data is retrieved. The objective of the agent is to
minimize the sum of the delays for the successive retrievals.
Intuitively, each page is associated with a bandit arm and each
latency with a loss.

Before experiments, we have preprocessed the dataset. We
observed that the dataset includes too high latencies. There-
fore, we have truncated the latencies at 1000 ms, which can be
thought of as timeout for a more realistic real-world setting.
We have normalized the truncated latencies into [0, 1], and
converted them to the gains by subtracting from 1. Since there
are 1361 latencies for each URL, we set T = 1361. The
other parameters are selected as δ = 0.01 and S = 3. We

note that the value of S we chose might not correspond to
the actual segment number in the optimum m-arm sequence.
Nonetheless, it is selected arbitrarily to simulate the practical
cases where the value of S is not available a priori.

Using the universities as the bandit arms, we have extracted
100 different games with 10 bandit arms. For each game,
we assumed that the agent chose 5 arms, i.e., K = 10
and m = 5. We have repeated each game 20 times and
plotted the time-averaged regrets in Fig. 6a. Similar to all
of the tests before, we observe that our algorithm achieves
a better performance in all time instances. Additionally, we
do benchmarks on the number of segments and the number
of arms. For the number of segments benchmark, we have
extracted 20 10-arm games, where the actual segment number
in the optimum strategy is in the interval [20i, 20i + 19] for
each game indexed by i ∈ {0, 1, · · · , 19}. We have repeated
each game 20 times and plotted the ensemble distributions in
Fig 6b. Interestingly, there is no direct correlation between the
segment numbers and the average regret values. Furthermore,
as can be observed, irrespective of the number of segments,
our algorithm outperforms the other algorithms for all number
of switches. For the number of bandit arms, we have used
the even numbers from 2 to 20 and chose the half of the
arms in every game. For each number of arms, we have
extracted 20 different games. We have run each game 20 times
plotted the ensemble distributions in Fig. 6c. As expected,
the regret values of the algorithms increase with the number
of arms. Moreover, the difference in performances becomes
more apparent as m increases, which is consistent with our
theoretical results.

VI. CONCLUDING REMARKS

We studied the adversarial bandit problem with multiple
plays, which is a widely used framework to model online
shortest path and online advertisement placement problems
[12], [13]. In this context, as the first time in the literature, we
have introduced an online algorithm that truly achieves (with
minimax optimal regret bounds) the performance of the best
multiple-arm selection strategy. Moreover, we achieved this
performance with computational complexity only log-linear
in the arm number, which is significantly smaller than the
computational complexity of the state-of-the-art [27]. We also
improved the best-known high-probability bound for the multi-
play setting by O(

√
m), thus, close the gap between high-

probability bounds [25], [27] and the expected regret bounds
[24], [26]. We achieved these results by first introducing
a MAB-MP with expert advice algorithm that is capable
of utilizing the structure of the expert set. Based on this
algorithm, we designed an online algorithm that sequentially
combines the selections of all possible m-arm selection strate-
gies with carefully constructed weights. We show that this
algorithm achieves minimax regret bound with respect to
the best switching m-arm sequence and it can be efficiently
implementable with a weight-sharing network applied on the
individual arm weights. Through an extensive set of exper-
iments involving synthetic and real data, we demonstrated
significant performance gains achieved by our algorithms with



Algorithm 3 DepRound

1: Inputs: The subset size m(< K), (p1, p2, · · · , pK) with∑K
i=1 pi = m

2: Output: Subset of [K] with m elements
3: while there is an i with 0 < pi < 1 do
4: Choose distinct i and j with 0 < pi < 1 and 0 < pj < 1
5: Set α = min(1− pi, pj) and β = min(pi, 1− pj)
6: Update pi and pj as

(pi, pj) =

{
(pi + α, pj − α) with probability β

α+β

(pi − β, pj + β) with probability α
α+β

7: end while
8: return {i : pi = 1, 1 ≥ i ≥ K}

respect to the state-of-the-art adversarial MAB-MP algorithms
[5], [24]–[27].

APPENDIX A
A. Dependent Rounding (DepRound)

To efficiently select a set of m distinct arms from [K], we
use a nice technique called dependent rounding (DepRound)
[35], see Algorithm 3. DepRound takes as input the subset size
m and the arm probabilities (p1, p2, · · · , pK) with

∑K
i=1 pi =

m. It updates the probabilities until all the components are
0 or 1 while keeping the sum of probabilities unchanged,
i.e., m. The while-loop is executed at most K times since
at least one of pi and pj becomes 0 or 1 in each time of
the execution. The algorithm updates the probabilities in a
randomized manner such that it keeps the expectation values
of pi the same, namely, E[pt+1

i ] = E[pti] for every i ∈ [K],
where pti denotes pi after the tth execution of the inside of
the while-loop. This follows from

(pi + α)
β

α+ β
+ (pi − β)

α

α+ β
=

(pi − α)
β

α+ β
+ (pi + β)

α

α+ β
= pi, (22)

which indicates that each arm in the output is selected by
its marginal probability pi. Since the while-loop is executed
at most K times, DepRound runs in O(K) time and O(K)
space.

B. Arm Capping

In this section, we describe how we find the threshold αt and
cap the weights, i.e the lines 7-14 in Algorithm 1, and the lines
4-11 in Algorithm 2. The presented algorithm in Algorithm 4
simultaneously finds the threshold αt and caps the weights.

In the algorithm, we start with sorting the arm weights in
a descending order (line 2). Then, we set the largest i arm
weights to (1/m)−(γ/K)

(1−γ) (line 10) and normalize the other
weights (line 11) so that the sum of the weights stays 1. By
the lines 10, 11, and 13, we aim to satisfy

αt∑
vj(t)≥αt

αt +
∑

vj(t)<αt

vj(t)
=

(1/m)− (γ/K)

(1− γ)
(23)

subject to max(vj(t)) = αt. Since (1/m)−(γ/K)
(1−γ) > 1

m , there is
always an i < m that satisfies Eq. (23) and it can be found in

Algorithm 4 Capping algorithm

1: Input: The subset size m(< K), (v1, v2, · · · , vK) with∑K
j=1 vi = 1

2: v↓ ← Sort (v1, v2, · · · , vK) in a descending order
3: indices↓ ← Keep the original indices of the sorted weights
4: upper bound = (1/m)−(γ/K)

(1−γ)
5: i← 1
6: temp← v↓

7: repeat
8: ( Set first i largest components to upper bound and normalize

the rest to (1− i ∗ upper bound) )
9: temp← v↓

10: temp(j) = upper bound for j = 1, · · · , i
11: temp(j) = (1 − i ∗ upper bound) temp(j)∑K

l=i+1
temp(l)

for j = i +

1, · · · ,K
12: i← i+ 1
13: until max(temp) ≤ upper bound
14: (v1, v2, · · · , vK) ← Replace the entries of temp by using

indices↓
15: return

O(m) step. After finding i, the algorithm replaces the capped
arm-weights (line 14) and returns. Since the most expensive
operation in the algorithm is sorting, the algorithm requires
O(K logK) time complexity.

APPENDIX B
Proof of Theorem III.1. Define qi(t) = wi(t)/Wt, where
Wt =

∑Nr
i=1 wi(t), and ỹi(t) = ŷi(t) + cûi(t)/

√
KT . By

following the first steps of the proof of Exp3.M (up to
inequality (4) in [26]), we can write

ln
(WT

W1

)
≤ η

T∑
t=1

Nr∑
i=1

qi(t)ỹi(t) + η2
T∑
t=1

Nr∑
i=1

qi(t)ỹi(t)
2 (24)

with the assumption of ηỹi(t) ≤ 1. By using the AM-GM
inequality, we get:

ln
(WT

W1

)
≥
∑
r∈A∗

ln(wr(T + 1))

m
− ln

W1

m

=
η

m

T∑
t=1

∑
r∈A∗

ỹr(t) +
1

m

∑
r∈A∗

ln(wr(1))− ln
W1

m
.

(25)

where A∗ is the set defined in (9). To bound the terms with
ỹi(t), we give two useful facts:
Nr∑
i=1

wi(t)ζ
i
j(t)

Wt
= vj(t) ≤

v′j(t)∑K
l=1 v

′
l(t)
≤ pj(t)

m(1− γ)
, j ∈ [K]− U0(t)

(26)

where we use
∑K
l=1 v

′
l(t) ≤

∑K
l=1 vl(t) = 1. For the second

fact, let us say di(t) =
∑
j∈[K]−U0(t)

ζij(t). Then,

Nr∑
i=1

wi(t)

Wt
ŷi(t)

2 =

Nr∑
i=1

wi(t)

Wt
di(t)

2
( ∑
j∈[K]−U0(t)

ζij(t)

di(t)
x̂j(t)

)2
≤

Nr∑
i=1

wi(t)

Wt

( ∑
j∈[K]−U0(t)

ζij(t)x̂j(t)
2
)

(27)

≤ 1

m(1− γ)

K∑
j=1

x̂j(t) (28)



where we use E[X]2 ≤ E[X2] and di(t) ≤ 1 in (27), then (26)
and pj(t)x̂j(t) ≤ 1 in (28). Next, we bound terms with ỹi(t):
Nr∑
i=1

qi(t)ỹi(t) =

Nr∑
i=1

wi(t)

Wt

( ∑
j∈[K]−U0(t)

ζij(t)x̂j(t) +
c√
KT

ζij(t)

pj(t)

)

=
∑

j∈[K]−U0(t)

Nr∑
i=1

wi(t)ζ
i
j(t)

Wt

(
x̂j(t) +

c

pj(t)
√
KT

)
≤ 1

m(1− γ)

( ∑
j∈[K]−U0(t)

pj(t)x̂j(t)
)

+
c

m(1− γ)

√
K

T
. (29)

Nr∑
i=1

qi(t)ỹi(t)
2 ≤

Nr∑
i=1

wi(t)

Wt

(
ŷi(t) +

cûi(t)√
KT

)2
≤ 2

m(1− γ)

( K∑
j=1

x̂j(t)
)

+
2c2

KT

K

mγ

Nr∑
i=1

wi(t)

Wt

∑
j∈[K]−U0(t)

ζij(t)

pj(t)

(30)

≤ 2

m(1− γ)

( K∑
j=1

x̂j(t)
)

+
2c2K

Tm2γ(1− γ)
(31)

where we use (a+ b)2 ≤ 2(a2 + b2) and ûi(t) ≤ K/(γm) in
(30). By using (25), (29) and (31) and by noting that pj(t) = 1
for j ∈ U0(t), we get:

η

m

T∑
t=1

∑
r∈A∗

ζr(t) · x̂(t) +
η

m

c√
KT

T∑
t=1

∑
r∈A∗

v̂r(t)− ln
W1

m

+
1

m

∑
r∈A∗

ln(wr(1))≤ η

m(1− γ)
GExp4.MP +

ηc
√
KT

m(1− γ)

+
2η2c2K

γm2(1− γ)
+

2η2

m(1− γ)

T∑
t=1

K∑
j=1

x̂j(t) (32)

where ζr(t) · x̂(t) =
∑K
j=1 ζ

r
j (t)x̂j(t). By dividing both

sides with η/(m(1 − γ)), and noting that
∑T
t=1

∑K
j=1 x̂j(t) ≤

(K/m)Γ̂A∗ , the statement in the theorem can be obtained.

Proof of Corollary III.1. The proof consists of two steps.
First, we prove an auxiliary result to help us to derive high-
probability bound. Second, by using the auxiliary result and
Theorem III.1 we prove the statement in the corollary. In the
first step, we use the beautiful martingale property given in
Theorem 1 in [34]. Let us say, Yi(t) = yi(t) − ŷi(t) for any
fixed i ∈ [Nr], where yi(t) =

∑
j∈[K]−U0(t)

ζij(t)xj(t) and
ŷi(t) =

∑
j∈[K]−U0(t)

ζij(t)x̂j(t). We point out that

E[Yi(t)] = 0, Yi(t) ≤ 1, E[Yi(t)
2] ≤ ûi(t).

Let us define

V ′
4
=
KT

m
and σi

4
=

√
m

KT

T∑
t=1

ûi(t) +

√
KT

m
. (33)

With the assumption of ln(Nr/δ) ≤ (e − 2)KT/m, by
Theorem 1 in [34], we can write

Pr
[ T∑
t=1

Yi(t) ≥
√

(e− 2) ln
Nr
δ
σi
]
≤ δ

Nr
(34)

for any i ∈ [Nr]. By applying union of events over the set
[Nr], and noting (e− 2) < 1, we get

Pr
[
∀i ∈ [Nr] :

T∑
t=1

Yi(t) ≤
√

ln
Nr
δ
σi
]
≥ 1− δ (35)

Since the event in (35) includes every i ∈ [Nr], we can sum
any m of them without changing the bound. Then we get

Pr
[
∀A ∈ C([Nr],m) :

∑
i∈A

T∑
t=1

Yi(t) ≤
√

ln
Nr
δ

∑
i∈A

σi
]
≥ 1− δ.

(36)

Note that
∑T
t=1 Yi(t) =

∑T
t=1

∑
j∈[K]−U0(t)

ζij(t)(xj(t)− x̂j(t)).
Since xj(t) = x̂j(t) for j ∈ U0(t), we can equivalently write

Pr
[
∀A ∈ C([Nr],m) :

∑
i∈A

Gi − Ĝi ≤
√

ln
Nr
δ

∑
i∈A

σi
]
≥ 1− δ.

(37)

Lastly, we point out that, according to (33),√
ln
Nr
δ

∑
i∈A

σi =

√
m ln

Nr
δ

( 1√
KT

T∑
t=1

∑
i∈A

ûi(t) +
√
KT

)
.

In the second step, we first observe that our parameter
selection satisfies the assumption (2) in Theorem III.1. Then,
we restate the result of the theorem when wi(1) = 1 ∀i ∈ [Nr],
and η = mγ/(2K):

(1− 2γ)ΓA∗ − (1− γ)
2K

γ
ln
Nr
m
≤ GExp4.MP + c

√
KT + c2.

(38)

By using (37), ΓA∗ from (9), and noting c =
√
m ln(Nr/δ),

we get Pr[Gmax ≤ ΓA∗ + c
√
KT ] ≥ 1− δ. Then,

Gmax −GExp4.MP ≤
2K

γ
ln
Nr
m

+ 2γGmax + 2c
√
KT + c2

(39)

holds with probability at least 1− δ. We point out that since
γ has a small value, we ignore (1− γ) and (1− 2γ) terms at
the right hand side. In the end, by noting that Gmax ≤ mT
and using the given parameters in the corollary, the statement
can be obtained.

APPENDIX C

Before the proof, we give one technical lemma:

Lemma C.1. For any S > 1 and T > S,

e1−S ≤ (1− S − 1

T − 1
)T−S .

Proof. By taking the natural logarithms of both sides, we get
S − 1 ≥ ln(1 + S−1

T−S )T−S . The fact that ln(1 + α
x )x ≤ α for

x ≥ 0 completes the proof .

Proof of Theorem IV.1. In this proof, we again begin with
proving an auxiliary statement to derive high-probability regret
bound. Fix sT and say XsT (t) = xsT (t) − x̂sT (t). Then,

E[XsT (t)] = 0, XsT (t) ≤ 1, E[X2
sT (t)] ≤ 1/psT (t).

We define

∆ =
δ′

K

( β

K − 1

)S−1

(1− β)T−S (40)

∆′ =
δ′

K

( β
K

)S−1

(1− β)T−S (41)



where δ′ ∈ [0, 1] and β = S−1
T−1

. We note that since S is the
same for all the elements of the set Z, ∆ and ∆′ are arbitrary
constants in [0, 1]. We use the same V ′ in (33) and define

σsT
4
=

√
m

KT

T∑
t=1

1

psT (t)

+

√
KT

m
.

With the assumption of ln(1/∆′) ≤ (e − 2)KT/m, by
Theorem 1 in [34], we can write

Pr
[ T∑
t=1

XsT (t) ≥
√

(e− 2) ln
1

∆′
σsT

]
≤ ∆. (42)

Applying a union bound over Z and noting
∑
Z ∆ ≤ δ,

Pr
[
∀sT ∈Z :

T∑
t=1

XsT (t)≤
√

ln
1

∆′
σsT

]
≥1− δ. (43)

In order to get a clear expression, we aim to write ln 1
∆′ in

terms of δ. Therefore, we aim to satisfy

δS−1 ≤ βS−1(1− β)T−S . (44)

By Lemma C.1, δ′ ≤ S−1
e(T−1)

satisfies inequality (44). Then, by
writing δ′ = S−1

e(T−1)
δ, where δ ∈ [0, 1], and summing any m

sT in (43), we get

Pr
[
∀A∈C(Z,m) :

∑
i∈A

T∑
t=1

XsT (t)≤cσA
]
≥1− S − 1

e(T − 1)
δ′. (45)

where

σA =
( 1√

KT

T∑
t=1

∑
i∈A

1

psT (t)

+
√
KT

)
and c is one of the given parameters in the theorem.

In the second step, we first observe that our parameter
selection satisfies the assumption (2) in Theorem III.1. Second,
we introduce a new notation {s1

T , · · · , smT } ∈ MT , which
means that MT can be written as the combination of single
arm sequences s1

T , · · · , smT . We point out that the single arm
sequences {s1

T , · · · , smT } ∈M∗T can be selected the ones with
the same switching instants, and the same segment number.
Then, their prior weights become

wsT (1) =
1

K

( β

K − 1

)S−1

(1− β)T−S (46)

for {s1
T , · · · , smT } ∈M∗T . To have a bound w.r.t. M∗T , we define

Γ̂M∗
T

4
= ĜM∗

T
+

T∑
t=1

∑
sT∈M∗

T

c

psT (t)

√
KT

. (47)

We note that Γ̂M∗T ≤ Γ̂A∗ . We also point out that W1 = 1 by
our prior scheme. Then by using η = mγ

2K , (47), and (46) in
inequality (10), we can write

(1− 2γ)
(
ĜM∗

T
+

T∑
t=1

∑
sT∈M∗

T

c

psT (t)

√
KT

+ c
√
KT

)
− 2c
√
KT

− 2K

γ
ln

KS

βS−1(1− β)T−S
+ c2 ≤ GExp4.MP (48)

where we use γ < 0.5, wsT (1) ≤ 1, and

wsT (1) ≥ 1

K

( β
K

)S−1

(1− β)T−S for {s1T , · · · , smT } ∈ M∗T .
(49)

By (45) and Lemma C.1, if we use the given c and β values,

(1− 2γ)GM∗
T
−GExp4.MP ≤

2KS

γ
ln
eK(T − 1)

S − 1

+ 2

√
mKST ln

(eK(T − 1)

(S − 1)δ

)
+mS ln

(eK(T − 1)

(S − 1)δ

)
(50)

holds with probability at least 1− S−1
e(T−1)

δ. By noting GM∗T ≤
mT and using the given γ value, the statement in the theorem
can be obtained.

Proof of Theorem IV.2. We use n̂st(t), N̂st(1:t−1) defined in
Section IV, and

n̂j(t) = (x̂j(t) +
c

pj(t)
√
KT

)1j 6∈U0(t) for j ∈ [K]. (51)

Let wst be the weight of an arbitrary sequence st , r be an
arbitrary arm, and vr(t) be the weight of the arm r in the
hypothetical Exp4.MP run at round t, given by

vr(t) =
∑

st(t)=r

wst∑
st
wst

. (52)

In the proof, we use mathematical induction to show vr(t) =
vr(t) for any r ∈ [K] and t = 1, 2, · · · , T . The proof begins
with noting vj(1) = ws1 = 1/K. Then,

vr(t) =
∑

st(t)=r

wst∑
st
wst

=
∑

st(t)=r

πst exp(ηN̂st(1:t−1))∑
st
wst

=
∑

st(t)=r

π(st|st(t− 1))πst(1:t−1) exp(ηN̂st(1:t−1))∑
st
wst

=
∑

st(1:t−1)

wst(1:t−1) exp(ηn̂st(t−1))π(st|st(t− 1))∑
st
wst

Assuming
∑

st(t−1)=j

wst(1:t−1) ∝ vj(t− 1) for j ∈ [K] (53)

=

K∑
j=1

vj(t− 1) exp(ηn̂j(t− 1))π(st|st(t− 1))∑
l∈[K] vl(t− 1) exp(ηn̂l(t− 1))

=

K∑
j=1

ṽj(t− 1)
(

β
K−1

1j 6=r + (1− β)1j=r
)

∑
l∈[K] ṽ(t− 1)

= vr(t). (54)

Since our assumption in (53) holds for t = 1, by (54) it holds
for all t. Then, the theorem holds for all t as well.
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