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Abstract— In this paper, we studied the problem of beam
alignment for millimeter wave (mmWave) communications, in
which we assume a hybrid analog and digital beamforming
structure is employed at the transmitter (i.e. base station), and
an omni-directional antenna or an antenna array is used at the
receiver (i.e. user). By exploiting the sparse scattering nature of
mmWave channels, the beam alignment problem is formulated
as a sparse encoding and phaseless decoding problem. More
specifically, the problem of interest involves finding a sparse
sensing matrix and an efficient recovery algorithm to recover
the support and magnitude of the sparse signal from compressive
phaseless measurements. A sparse bipartite graph coding (SBG-
Coding) algorithm is developed for sparse encoding and phaseless
decoding. Our theoretical analysis shows that, in the noiseless
case, our proposed algorithm can perfectly recover the support
and magnitude of the sparse signal with probability exceeding a
pre-specified value from O(K2) measurements, where K is the
number of nonzero entries of the sparse signal. The proposed
algorithm has a simple decoding procedure which is computation-
ally efficient and noise-robust. Simulation results show that our
proposed method renders a reliable beam alignment in the low
and moderate signal-to-noise ratio (SNR) regimes and presents
a clear performance advantage over existing methods.

Index Terms— Millimeter wave (mmWave) communications,
beam alignment, sparse encoding and phaseless decoding.

I. INTRODUCTION

Millimeter wave (mmWave) communication is a promis-

ing technology for future cellular networks [1]–[4]. It has

the potential to offer gigabits-per-second communication data

rates by exploiting the large bandwidth available at mmWave

frequencies. Nevertheless, communication at the mmWave

frequency bands suffers from high attenuation and signal

absorption [5]. To address this issue, large antenna arrays

should be used to provide sufficient beamforming gain for

mmWave communications [6]. In fact, thanks to the small

wavelength at the mmWave frequencies, the antenna size is

very small and thus a large number of array elements can be
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packed into a small area, which makes the use of large antenna

arrays a feasible option for mmWave communications.

On the other hand, although directional beamforming helps

compensate for the significant path loss incurred by mmWave

signals, it comes up with a complicated beamforming training

procedure because, due to the narrow beam of the antenna

array, communication between the transmitter and the receiver

is possible only when the transmitter’s and receiver’s beams

are well-aligned, i.e. the beam directions are pointing towards

each other. Therefore, beamforming training is required to

find the best beamformer-combiner pair that gives the highest

beamforming gain [7]. A natural approach to perform beam-

forming training is to exhaustively search for all possible beam

pairs to identify the best beam alignment, which requires the

receiver to scan the entire space for each choice of beam

direction on the transmitter side. This exhaustive search has

a sample complexity of O(N2) (N denotes the number of

possible beam directions) and usually takes a long time (up

to several seconds) to converge, particularly when the number

of antennas at the transmitter and the receiver is large [8].

To address this issue, many efforts have been made to reduce

the time required for beamforming training. Specifically, the

IEEE 802.11ad standard proposed to conduct an exhaustive

search at the receiver, with the transmitter adopting a quasi-

omnidirectional beam pattern. This process is then reversed to

have the transmitter sequentially scan the entire space while

the receiver uses a quasi-omnidirectional beam shape. This

protocol reduces sample complexity from O(N2) to O(N).
To further reduce the training time, adaptive beam alignment

algorithms, e.g. [9]–[13], were proposed. In these works, a

hierarchical multi-resolution beamforming codebook set is

employed to avoid the costly exhaustive sampling of all pairs

of transmit and receive beams. The basic idea is to use coarse

codebooks to first identify the range of the beam direction,

and then use high-resolution subcodebooks to find a finer beam

direction. This adaptive beam alignment requires to adaptively

choose a subcodebook at each stage based on the output of

earlier stages, which requires feedback from the receiver to

the transmitter and may not be available at the initial channel

acquisition stage.

In addition to the above beam steering techniques, another

approach [14]–[23] directly estimates the mmWave channel

or its associated parameters, e.g. angles of arrival/departure,

without the need of scanning the entire space. The rationale

behind this class of methods is to exploit the sparse scattering

nature of mmWave channels and formulate the channel esti-
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mation into a compressed sensing problem. Although having

the potential to substantially reduce the training overhead,

this compressed sensing-based approach suffers from several

drawbacks. Firstly, compressed sensing methods usually in-

volve a computational complexity that might be too excessive

for practical systems. Secondly, compressed sensing methods

require the knowledge of the phase of the measurements.

While in mmWave communications, due to the carrier fre-

quency offset (CFO) caused by high-frequency hardware im-

perfections, the phase of the measurements might be corrupted

by a random noise that varies across time, and as a result,

only the magnitude information of the measurements is useful

for beam alignment. Lastly, for compressed sensing methods,

the beamforming/combining vectors have to be chosen to be

random vectors to satisfy the restricted isometry property.

This, however, comes at the cost of worse signal-to-noise ratio

(SNR) and reduced transmission range. Recently, a novel beam

steering scheme called as “Agile-Link” [8], [24] was proposed

to find the correct beam alignment. The proposed algorithm

only uses the magnitude information of the measurements

for recovery of the signal directions and achieves a sample

complexity of O(K logN), where K denotes the number of

signal paths.

In this paper, we continue the efforts towards developing

a fast and efficient beam alignment scheme for mmWave

communications. Similar to [8], [24], we rely on the magni-

tude information of the measurements for beam steering. By

exploiting the sparse scattering nature of mmWave channels,

we show that the beam alignment problem can be formulated

as a sparse encoding and phaseless decoding problem. More

specifically, the problem of interest is to devise a sparse

sensing matrix A (referred to as sparse encoding) and develop

a fast and efficient recovery algorithm (referred to as phaseless

decoding) to recover the support and magnitude information of

the sparse signal x from compressive phaseless measurements:

y = |Ax| (1)

Note that the estimation of sparse signals from compressive

phaseless measurements, termed as “compressive phase re-

trieval (CPR)”, has been extensively studied over the past few

years, e.g. [25]–[28]. Nevertheless, there are two important dis-

tinctions between our problem and the standard CPR problem.

First, standard CPR assumes a random measurement matrix

which satisfies the restricted isometry property. For our prob-

lem, the measurement matrix which determines the shape of

the beam pattern cannot be designed freely. In fact, to provide

a sufficient beamforming gain for signal reception, we need to

impose a sparse structure on the measurement matrix. Second,

standard CPR aims to retrieve the complete information of the

sparse signal x, while for the beam alignment purpose, only

partial information of x, i.e. the support and the magnitude

information of those nonzero entries, needs to recovered.

To our best knowledge, in existing literature, PhaseCode

proposed in [29] is a CPR algorithm that is most relevant to

our sparse encoding and phaseless decoding problem, in which

its measurement matrix is devised based on a sparse-graph

coding framework. It was shown that PhaseCode can recover

a K-sparse signal using slightly more than 4K measurements

Fig. 1. The transmitter has a hybrid beamforming structure, and the receiver
uses an omni-directional antenna.

with high probability. Nevertheless, PhaseCode (even its robust

version) involves a delicate decoding procedure sensitive to

noise and measurement errors, and suffers from severe per-

formance degradation in the presence of noise. To overcome

this difficulty, in this work, we propose a sparse bipartite graph

code (SBG-Code) algorithm for sparse encoding and phaseless

decoding. Different from PhaseCode, our proposed method

uses a set of sparse bipartite graphs, instead of a single bipar-

tite graph, to encode the sparse signal. The proposed algorithm

involves a simple decoding procedure which has a minimum

computational complexity and is robust against noise. Also,

it can recover the support and magnitude information of a

K-sparse signal with a sample complexity of O(K2), thus

providing a competitive solution for practical mmWave beam

alignment systems.

The rest of the paper is organized as follows. In Section

II, the system model is discussed and the beam alignment

is formulated into a sparse encoding and phaseless decoding

problem. In Section III, an overview of PhaseCode is provided.

A SBG-Code method is developed in Section IV, along with

its theoretical analysis provided in V. The robust version of

SBG-Code is studied in VI and the extension to antenna array

receiver is discussed in Section VII. Simulation results are

provided in Section VIII, followed by concluding remarks in

Section IX.

II. SYSTEM MODEL

Consider a mmWave communication system which consists

of a transmitter (base station) and a receiver (user). We assume

that a hybrid analog and digital beamforming structure is

employed at the transmitter, while the receiver has an omni-

directional antenna that receives in all directions (see Fig. 1).

The extension to an antenna array receiver will be discussed

in Section VII. The transmitter is equipped with N antennas

and R RF chains. Since the RF chain is expensive and

power consuming, we have R ≪ N . Note that although a

single receiver is considered in our paper, the extension of

our scheme to the multi-user scenario is straightforward, in

which case the base station periodically broadcasts a common

codeword that is decoded by each user to extract its associated
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channel information [30]. Each user then sends the index of the

beam corresponding to the selected angle-of-departure (AoD)

to the base station via a random access control channel. A

connection between the base station and the user is established

after the user receives a response from the base station.

The mmWave channel is characterized by a geometric

channel model [11]

h =

P
∑

p=1

αpat(θp) (2)

where P is the number of paths, αp is the complex gain

associated with the pth path, θp ∈ [0, 2π] is the associated

azimuth angle of departure (AoD), and at ∈ CN is the

transmitter array response vector. Suppose a uniform linear

array (ULA) is used. Then the steering vector at the transmitter

can be written as

at(θp) =
1√
N

[

1, ej
2π
λ

d sin(θp), . . . , ej(N−1) 2π
λ

d sin(θp)
]T

(3)

where λ is the signal wavelength, and d is the distance between

neighboring antenna elements. Due to the sparse scattering

nature of mmWave channels, h has a sparse representation in

the beam space (angle) domain:

h = Dx (4)

where D ∈ CN×N is the discrete Fourier transform (DFT)

matrix, and x ∈ CN is a K-sparse vector. If the true AoA

parameters {θp} lie on the discretized grid specified by the

DFT matrix, then the number of nonzero entries in the beam

space domain equals the number of signal paths, i.e. K = P .

The objective of beam alignment is to estimate the AoD

and the attenuation (in magnitude) of each path, which is

equivalent to recover the location indices and the magnitudes

of the nonzero entries in x. The AoD of the dominant path

is then reported back to the base station via a control channel

for beam alignment.

Suppose the transmitter sends a constant signal s(t) = 1 to

the receiver. The signal received at the tth time instant can be

expressed as

r(t) = hTb(t)s(t) + w(t) = xTDTb(t) + w(t) (5)

where b(t) ∈ CN is the precoding/beamforming vector used

by the transmitter at the tth time instant, and w(t) denotes the

additive complex Gaussian noise with zero mean and variance

σ2. Since a hybrid analog and digital beamforming structure

is employed at the transmitter, the precoding vector can be

expressed as

b(t) = F RF(t)fBB(t) (6)

in which F RF(t) ∈ CN×R and fBB(t) ∈ CR represent

the radio frequency (RF) precoding matrix and the baseband

(BB) precoding vector, respectively. Specifically, to provide a

sufficient beamforming gain for signal reception, the transmit-

ter needs to form multiple beams simultaneously and steers

them towards different directions. To this objective, the RF

precoding matrix is chosen to be a submatrix of the complex

conjugate of the DTF matrix, D∗

F RF(t) = D∗S(t) (7)

where S(t) ∈ RN×R is a column selection matrix containing

only one nonzero entry per column. Note that each column

of the DFT matrix can be considered as a beamforming

vector steering a beam to a certain direction. Hence, the

RF precoding matrix defined in (7) forms R beams towards

different directions simultaneously.

Substituting (6)–(7) into (5), we obtain

r(t) = xTa(t) + w(t) = aT (t)x+ w(t) (8)

where a(t) , S(t)fBB(t) is an N -dimensional sparse vector

with at most R nonzero elements. It should be noted (8) is

an ideal model without taking the CFO effect into account.

In mmWave communications, CFO is a factor that cannot be

neglected, and, due to the CFO between the transmitter and

the receiver, the measurements r(t) will incur an additional

unknown phase shift that varies across time [8]. Correcting this

unknown phase shift is difficult due to the high frequencies of

mmWave signals. In this case, only the magnitude information

of the measurements r(t), t = 1, . . . , T is reliable.

Our objective is to devise a measurement matrix A ,
[a(1) . . . a(T )]T ∈ C

T×N (referred to as sparse encoding)

and develop a fast and efficient recovery algorithm (referred to

as phaseless decoding) to recover z = |x|, i.e. the support and

magnitude of the sparse signal x, from compressive phaseless

measurements:

y , |r| = |Ax+w| (9)

where r , [r(1) . . . r(T )]T , and w , [w(1) . . . w(T )]T .

Note that the measurement matrix A cannot be designed

freely. As discussed earlier, the transmitter has to form di-

rectional beams for signal reception, otherwise the power of

the signal may be too weak to be received. To meet such a

requirement, a sparse structure is placed on A:

C1 A is a sparse matrix with each row of A containing at

most R nonzero elements.

For this reason, the design of the measurement matrix A is

referred to as sparse encoding. Also, since the amount of time

for beamforming training is proportional to the number of

measurement T , we wish A is properly devised such that a

reliable estimate of z = |x| can be obtained by using as few

measurements as possible.

III. REVIEW OF EXISTING SOLUTIONS

PhaseCode [29] is a CPR algorithm that is most relevant to

our sparse encoding and phaseless decoding problem. Here

we first provide a brief review on PhaseCode. PhaseCode

is an efficient algorithm developed in a sparse-graph coding

framework. It consists of an encoding step and a decoding step.

In the encoding step, the measurement matrix A ∈ C4M×N

is devised according to

A , H ⊙ T̄ (10)
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Fig. 2. The bipartite graph G and its associated binary code matrix H ,
in which each left node of G corresponds to an component of x, and each
right node of G corresponds to the set of measurements obtained via the
corresponding row of H.

where ⊙ denotes the Khatri-Rao product, H ∈ {0, 1}M×N

is a binary code matrix constructed using a random bipartite

graph G with N left nodes and M right nodes, with its (i, j)th
entry H(i, j) = 1 if and only if left node j is connected

to right node i, otherwise H(i, j) = 0. T̄ ∈ C4×N is the

so-called “trignometric modulation” matrix that provides 4
measurements for each row of H , and T̄ is given by

T̄ ,









ejω ej2ω · · · ejNω

e−jω e−j2ω · · · e−jNω

2 cos(ω) 2 cos(2ω) · · · 2 cos(Nω)

ejω
′

ej2ω
′ · · · ejNω′









(11)

where ω ∈ (0, 2π/N ], and ω′ is a random phase between 0 and

2π. In the decoding stage, a delicate procedure is employed

to recover x. It was shown in [29] that, in the noiseless

case, PhaseCode can recover a K-sparse signal with high

probability using only slightly more than 4K measurements.

This theoretical result suggests that the sample complexity

required for beam alignment can be significantly reduced to as

low as O(K). Nevertheless, there are two major issues when

applying PhaseCode to the beam alignment problem. Firstly, in

PhaseCode, the bipartite graph G used to determine the binary

code matrix H is randomly generated. There is no guarantee

that the resulting measurement matrix A satisfies constraint

C1. Secondly, PhaseCode involves a delicate decoding pro-

cedure requiring a high accuracy of the measurements, and

suffers from severe performance degradation in the presence

of noise. This makes PhaseCode an unsuitable solution for

beam alignment problems where measurements are inevitably

contaminated by noise.

IV. PROPOSED SBG-CODING ALGORITHM

To overcome the drawbacks of existing solutions, we pro-

pose a sparse bipartite graph-Code (SBG-Code) algorithm for

sparse encoding and phaseless decoding.

A. Sparse Encoding

Different from PhaseCode, the proposed SBG-Code uses a

set of bipartite graphs {Gl}Ll=1, instead of a single bipartite

graph, to encode the sparse signal. Let H l ∈ {0, 1}M×N

denote the binary code matrix associated with the graph Gl

with N left nodes and M right nodes. The (i, j)th entry of

H l is given by

Hl(i, j) =











1 if and only if left node j of Gl is connected

to right node i of Gl

0 otherwise

(12)

Given {H l}, the measurement matrix A ∈ R2ML×N is

devised as

A ,











H1 ⊙ T

H2 ⊙ T
...

HL ⊙ T











(13)

where T ∈ R2×N is a simplified trignometric modulation

matrix defined as

T ,

[

1 1 · · · 1
2 cos(ω) 2 cos(2ω) · · · 2 cos(Nω)

]

(14)

in which ω ∈ (0, π/(2N)] such that cos(ωl) ∈ [0, 1). We will

show later the trignometric function cos(nω) can be replaced

by a general function.

For each graph Gl, each of its left node can be deemed as

a component of the sparse signal x, and each right node of

Gl refers to a set of 2 measurements obtained as (see Fig. 2)

yl,m = |(H l[m, :]⊙ T )x| ∀m = 1, . . . ,M (15)

where H l[m, :] denotes the mth row of H l. A left node,

say node n, is called as active left node if the nth signal

component, xn, is nonzero. For a K-sparse signal x, there are

K active left nodes in total. A right node is called as a nullton,

a singleton or a multiton if:

• Nullton: A right node is a nullton if it is not connected

to any active left node.

• Singleton: A right node is a singleton if it is connected

to exactly one active left node.

• Multiton: A right node is a multiton if it is connected to

more than one active left node.

A bipartite graph which does not contain any multiton right

nodes is called as

• No-Multiton-graph (NM-graph): A bipartite graph whose

right nodes are either singletons or nulltons.

For our proposed SBG-Code, the purpose of employing mul-

tiple bipartite graphs is to ensure that, with overwhelming

probability, there exists at least an NM-graph, i.e. a bipartite

graph whose right nodes are either singletons or nulltons.

The bipartite graphs {Gl} with N left nodes and M (M >
K) right nodes are designed as follows. First, for simplicity,

we assume r , N/M to be an integer. For each graph, we

randomly divide N left nodes into M equal-size, disjoint sets

(i.e. each set has r left nodes) and establish a one-to-one

correspondence between M sets of left nodes and M right

nodes. If N is not an integer multiple of M , we can still

divide N left nodes into M disjoint sets, with all sets, except
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the last one, consisting of r = floor(N/M) left nodes. Clearly,

a right node is a singleton (nullton) if its corresponding set of

left nodes contains only one (zero) active left node. As to

be shown later, such design helps maximize the probability

that a bipartite graph is an NM-graph, i.e. its rights nodes

are either singletons or nulltons. Clearly, for each bipartite

graph Gl devised as described, its corresponding binary code

matrix H l has only one nonzero element per column, and at

most r nonzero elements per row. As a result, each row of the

resulting measurement matrix A contains at most r nonzero

elements. We can therefore choose r ≤ R, which is equivalent

to M ≥ N/R, such that A satisfies constraint C1. Once A

is given, the RF precoding matrices {F RF(t)} and baseband

precoding vectors {fBB(t)} can be accordingly determined.

B. Phaseless Decoding

Next, we discuss how to retrieve the support and magnitude

information of x from compressive phaseless measurement y.

We first ignore the observation noise in order to simplify our

exposition and analysis, i.e.

y = |Ax| (16)

Let

Al , H l ⊙ T (17)

denote the lth measurement sub-matrix associated with the

bipartite graph Gl, and

yl , |Alx| (18)

denote the corresponding measurements. Suppose Gl is an

NM-graph. If a right node is a nullton, it does not connect to

any active left nodes and thus we have yl,m = 0. Therefore we

only need to consider those singleton right nodes. A singleton

right node means that only one nonzero component of x, say

xn, contributes to the value of yl,m. More precisely, we can

write

yl,m =

[

|xn|
|2 cos(nω)xn|

]

(19)

Clearly, the magnitude and location index of xn can be readily

estimated as

zn̂ =y
(1)
l,m

n̂ =
1

ω
arccos

(

y
(2)
l,m

2y
(1)
l,m

)

(20)

where y
(1)
l,m and y

(2)
l,m denote the first and second entry of yl,m,

respectively. Note that the graph Gl is designed such that

each right node is exclusively connected to a subset of left

nodes, and every left node belongs to a certain subset that is

connected to a certain right node. Therefore, by performing the

estimation (20) for all singleton right nodes, we are guaranteed

to find the location indices and magnitudes of all active left

nodes. From the above discussion, we see that if a bipartite

graph, say graph Gl, is an NM-graph, then z = |x| can be

recovered from the corresponding phaseless measurements yl.

Algorithm 1 Proposed SBG-Code Algorithm

Given Al = H l ⊙ T̃ and yl for each bipartite graph Gl,

l = 1, . . . , L
for l = 1, . . . , L do

for m = 1, . . . ,M do

if yl,m 6= 0 then

Assume the mth right node is a singleton.

Estimate the magnitude and the location index of the

active left node connected to the mth right node via

(20)

end if

end for

Obtain an estimate of z, denoted as ẑ
(l)

.

end for

Given the L estimates {ẑ(l)}Ll=1, choose the estimate that

has the largest number of nonzero entries as the final

estimate.

The problem is that since we do not have the support

information of the sparse signal in advance, there is no

guarantee that a designed graph is an NM-graph which only

contains singleton and nullton right nodes. To address this

issue, we employ multiple bipartite graphs to encode the sparse

signal, with the hope that there exists at least one NM-graph.

Note that in our algorithm, we do not need to know which

bipartite graph is an NM-graph. We just perform the decoding

as if the graph is an NM-graph, even if this may not be true.

To see this, suppose the graph Gl is not an NM-graph and

contains a multiton. The multiton right node is a superposition

of multiple active left nodes, say, xn1 and xn2 , i.e.

yl,m =

[

|xn1 + xn2 |
|2(cos(n1ω)xn1 + cos(n2ω)xn2)|

]

(21)

Clearly, performing (20) by treating yl,m as a singleton

yields incorrect location index and magnitude information.

Nevertheless, in this case, it is clear that the estimate of

z = |x| based on yl, denoted as ẑ
(l)

, contains less than

K nonzero components. This is an important observation

based on which we can differentiate the correct estimate from

incorrect estimates. Due to the fact that K is unknown in

practice, given the L estimates {ẑ(l)}Ll=1, the final estimate

can be chosen to be the one which has the largest number of

nonzero entries. Obviously, our proposed algorithm succeeds

to recover the support and magnitude of the sparse signal as

long as there exists at least one NM-graph. For clarity, our

proposed algorithm is summarized in Algorithm 1.

We see that, through the use of multiple bipartite graphs, the

proposed SBG-Code circumvents the complicated decoding

procedure that is needed by PhaseCode to check whether a

right node is a singleton, a mergeable multiton or a resolvable

multiton. Although the use of multiple bipartite graphs could

bring a higher sample complexity, the simplified decoding pro-

cedure can help improve the robustness against measurement

errors and noise.
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C. Discussions

It should be noted that the cosine function used in (14) to

encode the sparse signal can be replaced by a general function.

For example, a linear function f(n) = n/N can be employed

to encode the sparse signal, in which case the trignometric

modulation matrix T is expressed as

T =

[

1 1 · · · 1
1/N 2/N · · · 1

]

(22)

Correspondingly, the mth singleton right node can be written

as

yl,m =

[

|xn|
|nxn/N |

]

(23)

and the magnitude and location index of xn can be readily

estimated as

zn̂ =y
(1)
l,m

n̂ =
Ny

(2)
l,m

y
(1)
l,m

(24)

V. THEORETICAL ANALYSIS FOR SBG-CODE

We now provide theoretical guarantees for our proposed

SBG-Code scheme. We first analyze the probability of a

bipartite graph being an NM-graph. To simplify our analysis,

we assume r , N/M is an integer. The results are summarized

as follows.

A. Main Results

Proposition 1: Suppose we have

yl = |Alx| (25)

where x ∈ C
N is a K-sparse signal, and the location indexes

of its nonzero components are chosen uniformly at random. Al

is defined in (17), in which H l ∈ {0, 1}M×N is a binary code

matrix constructed according to a given bipartite graph Gl.

Specifically, H l (i.e. Gl) is designed such that each column

of H l has at least one nonzero element, and the mth row of

H l has rm nonzero elements. If M ≥ K , then the probability

that all right nodes of Gl are either singletons or nulltons is

upper bounded by

P (Gl is an NM-graph) ≤ rKCK
M/CK

N , λ (26)

where CK
N denotes the number of K-combinations from a

set with N elements. Also, the inequality (26) becomes an

equality if and only if

r1 = · · · = rM = r (27)

Proof: See Appendix A.

From Proposition 1, we know that the probability of a

bipartite graph being an NM-graph is maximized when rm =
r, ∀m, in which case each column of H l has only one

nonzero element, and each row of H l has exactly r nonzero

elements. This result explains why we devise the bipartite

graphs {Gl} as discussed in Section IV.A. Based on this result,

our proposed phaseless decoding scheme can recover z = |x|
from compressive phaseless measurements with probability

given as follows.

Theorem 1: Consider the phaseless decoding problem de-

scribed in (16), where the measurement matrix A ∈ R2ML×N

is generated according to our proposed sparse encoding

scheme. If M ≥ K , then our proposed algorithm can recover

z = |x| from phaseless measurements (16) with probability

exceeding

p = 1− (1− λ)
L

(28)

where λ is defined in (26).

Proof: See Appendix B.

Note that our proposed algorithm requires a total number

of T = 2ML phaseless measurements, in which M is the

number of right nodes per bipartite graph and L is the number

of bipartite graphs. From (26), we see that increasing M
helps achieve a higher λ, which in turn leads to a higher

recovery probability for our algorithm. On the other hand,

increasing L improves the probability that there exists at least

one NM-graph among those L bipartite graphs, and thus can

also enhance the recovery probability. Therefore, given the

total number of measurements T fixed, there is a tradeoff

between the choice of M and L. Here we provide an example

to illustrate this tradeoff. Suppose N = 128, K = 2 and

T = 32. The parameters M and L can be chosen as one of

the following cases, and the exact recovery probability of our

proposed algorithm can be accordingly calculated:

• M = 16, L = 1: p = 94.4882%
• M = 8, L = 2: p = 98.6050%
• M = 4, L = 4: p = 99.6450%
• M = 2, L = 8: p = 99.6333%

From this example, we see that choosing a moderate value for

M and L provides the best performance.

B. Analysis of Sample Complexity

Let M = δK , where δ > 1 is parameter whose choice will

be discussed later. From Theorem 1, we can derive the number

of bipartite graphs required for perfectly recovering |x| with

probability exceeding a prescribed threshold p0:

L ≥ log(1 − p0)

log(1− λ)
=

log[(1− p0)
−1]

log[(1− λ)−1]
(29)

As a result, the total number of measurements required for

exact recovery with probability exceeding p0 is given by

T = 2ML = 2δKL ≥ cδK

log[(1− λ)−1]
(30)

where c , 2 log[(1− p0)
−1] > 0 is a constant determined by

p0. Note that λ defined in (26) can be lower bounded by

λ =
M !

MK(M −K)!

NK(N −K)!

N !

≥ M !

MK(M −K)!

≥ (M −K + 1)K

MK
=

(

1− 1−K−1

δ

)K

, f(K, δ) (31)



7

Define

h(K, δ) ,
1

log[(1− f(K, δ))−1]
(32)

The term on the right-hand side of (30) can be upper bounded

by

cδK

log[(1− λ)−1]
≤ cδKh(K, δ) (33)

To facilitate analyzing the sample complexity of our proposed

algorithm, we choose δ = K , i.e. M = K2, which is a choice

usually offering satisfactory performance. In this case, it can

be easily proved that the function f(K, δ) decreases with an

increasing K , and

lim
K→+∞

f(K, δ) |δ=K= e−1 (34)

Therefore h(K, δ) |δ=K can be upper bounded by

h(K, δ) |δ=K≤ 1

log[(1 − e−1)−1]
≈ 1.51 (35)

Combining (33) and (35), we can reach that, when δ = K ,

the term on the right-hand side of (30) is upper bounded by

cδK

log[(1− λ)−1]
≤ 1.51cK2 (36)

In other words, if the total number of phaseless measurements

T satisfies

T ≥ 1.51cK2 (37)

then our proposed algorithm can perfectly recover |x| with

probability exceeding p0. From (37), we see that the sample

complexity for our proposed algorithm is of order O(K2),
which, surprisingly, is independent of the dimension of the

sparse signal, N . Such a result can be well explained because

for the typical choice of δ = K , the probability of a bipartite

graph being an NM-graph is lower bounded by e−1 (cf. (34))

even for an arbitrarily large N . But notice that the irrelevance

of the sample complexity to N is achieved by increasing r
since we have r = N/M and M is kept fixed as K2 as N
grows. In the beam alignment application, r cannot become

arbitrarily large due to the limited number of RF chains.

Although a typical choice of M = K2 is adopted for

analyzing the sample complexity, it should not be difficult to

reach a similar conclusion for a general choice of M with

M = O(K2). As a comparison, note that the sample com-

plexity attained by most compressive phase retrieval methods

[27], [28] and the AgileLink beam steering scheme [8], [24]

is of order O(K log(N)).

VI. ROBUST SBG-CODE ALGORITHM

The basic idea of our proposed GF-Code algorithm is to

divide the N components of x (i.e. N left nodes) into M
disjoint sets, and each set of left nodes is connected to an

individual right node. If a right node is a singleton, it means

that its corresponding set of left nodes contains only one

active left node whose location and magnitude can be easily

estimated via (20) or (24), depending on which modulation

matrix is used. Such an idea works perfectly for the noiseless

case. Nevertheless, when the measurements are corrupted

by noise, a perfect estimate of the magnitude of the active

left node is impossible. Besides, the location index of the

active left node may be incorrectly estimated as well. In the

following, we develop a robust scheme for sparse encoding

and phaseless decoding in the presence of noise.

A. Robust Sparse Encoding

To facilitate our following exposition, the trignometric mod-

ulation matrix (14) or (22) is expressed as a general form as

T ,

[

1 1 · · · 1
t1 t2 · · · tN

]

(38)

where ti 6= tj for i 6= j, and tn > 0, ∀n = 1, . . . , N .

Let {m(l)
1 , . . . ,m

(l)
r } denote the set of indices of the left

nodes connected to the mth right node of the graph Gl. Note

that the index set {m(l)
1 , . . . ,m

(l)
r } is determined once the

corresponding bipartite graph Gl, i.e. H l, is given. Here we

assume r = N/M is an integer. The extension to the non-

integer case is straightforward, as discussed earlier in Section

IV. Also, for simplicity, the superscript l used to denote the

index of the bipartite graph is omitted, and in the following,

{m(l)
1 , . . . ,m

(l)
r } is simplified as {m1, . . . ,mr}.

Suppose the mth right node is a singleton and xmi
is the

active left node connected to the mth right node, in which

mi ∈ {m1, . . . ,mr}. When noise is present, the measurements

corresponding to the mth right node of the graph Gl can be

expressed as

yl,m =

[

|xmi
+ w

(1)
l,m|

∣

∣

∣tmi
xmi

+ w
(2)
l,m

∣

∣

∣

]

,

[

y
(1)
l,m

y
(2)
l,m

]

(39)

where w
(1)
l,m and w

(2)
l,m denote the observation noise added to the

first and the second entry of the mth right node, respectively.

In this case, the location index of the active left node can be

estimated as

m̂i = argmin
mi∈{m1,...,mr}

∣

∣

∣

∣

∣

tmi
−

y
(2)
l,m

y
(1)
l,m

∣

∣

∣

∣

∣

(40)

The problem lies in that, if the index set {m1, . . . ,mr}
contains an element mj such that tmj

is close to tmi
, then

it is likely that the location index of the active left node is

misidentified as mj since when noise is present, we may have
∣

∣

∣

∣

∣

tmi
−

y
(2)
l,m

y
(1)
l,m

∣

∣

∣

∣

∣

>

∣

∣

∣

∣

∣

tmj
−

y
(2)
l,m

y
(1)
l,m

∣

∣

∣

∣

∣

(41)

To improve robustness against noise, it is clear that the

absolute difference |tmi
− tmj

| should be as large as pos-

sible for any pair of indices {mi,mj} chosen from the set

{m1, . . . ,mr}.

Inspired by this insight, we propose to use an individual

modulation matrix for each bipartite graph. Specifically, the

modulation matrix for each bipartite graph is a column-

permuted version of the original modulation matrix, i.e.

T l = TP l ∀l (42)
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where T l denotes the modulation matrix for graph Gl, and P l

is a permutation matrix to be devised. Write

T l ,

[

1 1 · · · 1

t
(l)
1 t

(l)
2 · · · t

(l)
N

]

(43)

Following a similar deduction, the location index of the active

left node associated with the mth right node can be estimated

as

m̂i = argmin
mi∈{m1,...,mr}

∣

∣

∣

∣

∣

t(l)mi
−

y
(2)
l,m

y
(1)
l,m

∣

∣

∣

∣

∣

(44)

Therefore, if the permutation matrix P l is devised such that

for each right node m, the elements in the corresponding set

{t(l)m1 , . . . , t
(l)
mr} are sufficiently separated, then the robustness

against noise can be improved. To put it in a mathematical

way, define the pairwise distance associated with the mth right

node as

d(l)m , min
1≤i<j≤r

∣

∣

∣t(l)mi
− t(l)mj

∣

∣

∣ (45)

Then the design of P l can be formulated as a Max-Min prob-

lem whose objective is to maximize the minimum pairwise

distance among the pairwise distances associated with M right

nodes, i.e.

max
P l

min
m

d(l)m (46)

Such an optimization can be solved by searching for all pos-

sible permutation matrices. Note that it is more advantageous

to use an individual permutation matrix for each graph than

using a common permutation matrix for all graphs because

employing an individual permutation matrix for each graph

can help achieve a larger minimum pairwise distance.

B. Robust Phaseless Decoding

We next devise a robust decoding scheme to estimate

z = |x| from noisy measurements y. In the noisy case, the

measurements y are written as

y = |Ax+w| (47)

where the measurement matrix A is expressed as

A ,











A1

A2

...

AL











,











H1 ⊙ T 1

H2 ⊙ T 2

...

HL ⊙ TL











(48)

and the modulation matrix T l for graph Gl is given by (42).

The measurements associated with the bipartite graph Gl are

give by

yl , |Alx+wl| (49)

and the measurements, yl,m ∈ R
2, corresponding to the mth

right node of Gl are expressed as

yl,m = |(H l[m, :]⊙ T l)x+wl,m| ∀m = 1, . . . ,M (50)

where wl,m denotes the noise added to the mth right node

of Gl. Due to the presence of noise, we usually have yl,m 6=

0 even if the mth right node is a nullton. Hence we first

need to decide whether a right node of Gl is a nullton or not.

Such a problem can be formulated as a binary hypothesis test

problem:

H0 : y
(1)
l,m = |w(1)

l,m|

H1 : y
(1)
l,m =

∣

∣

∣

∣

∣

∑

mi∈S

xmi
+ w

(1)
l,m

∣

∣

∣

∣

∣

(51)

where w
(1)
l,m is the additive complex Gaussian noise with zero

mean and variance σ2, and S denotes the set of indices of

those active left nodes that are connected to the mth right

node. A simple energy detector can be used to perform the

detection:

y
(1)
l,m

H1

≷
H0

ǫ (52)

It is clear that y
(1)
l,m under H0 follows a Rayleigh distribution.

Given a prescribed false alarm probability, the threshold ǫ > 0

can be easily determined from the distribution of y
(1)
l,m under

H0. Such an energy detector is able to yield satisfactory

detection performance for a moderate and high signal-to-noise

ratio.

To proceed with our decoding scheme, we assume all

nullton right nodes of Gl are correctly identified. In this case,

we are able to determine whether Gl is an NM-graph or not.

Specifically, if Gl is an NM-graph, then it contains M − K
nullton right nodes; otherwise the number of nullton right

nodes is greater than M −K . Although the number of active

left nodes, K , is unknown a priori, those graphs which have

the smallest number of nullton right nodes can be considered

as NM-graphs and K can be simply estimated as

K̂ = M − J (53)

where J denotes the smallest number of nullton right nodes

among all graphs.

We now perform decoding on those NM-graphs. Suppose

Gl is an NM-graph and its mth right node is a singleton. Also,

xmi
is the active left node connected to the mth right node.

From the discussion in the previous subsection, it is clear that

the magnitude and location index of this active left node can

be estimated as

zm̂i
= y

(1)
l,m

m̂i = argmin
mi∈{m1,...,mr}

∣

∣

∣

∣

∣

t(l)mi
−

y
(2)
l,m

y
(1)
l,m

∣

∣

∣

∣

∣

(54)

where {m1, . . . ,mr} denotes the set of indices of those left

nodes connected to the mth right node. After performing (54)

for all singleton right nodes, we are able to obtain an estimate

of z = |x|. Let ẑ(l) denote an estimate of z obtained from

the measurements associated with Gl. Since we may have

more than one NM-graphs, we are able to collect multiple

estimates of z. The problem lies in, due to the existence of

noise, these multiple estimates, denoted as {ẑ(1), . . . , ẑ(I)},

are not exactly the same. In the following, we propose a set-

intersection scheme to combine these multiple estimates into

a more accurate estimate.
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To better illustrate our idea, suppose there are two NM-

graphs, say Gi and Gj , and xn is the only active left node

in x. Recall that for each bipartite graph, the N left nodes

are divided into M disjoint sets, with each set of left nodes

connected to an individual right node. Let S
(i)
n denote the

set of left nodes to which xn belongs in graph Gi, and S
(j)
n

denote the set of left nodes to which xn belongs in graph

Gj . Suppose the singleton right nodes in both Gi and Gj are

correctly identified. Then we know that xn belongs to both

S
(i)
n and S

(j)
n . If the intersection of the two sets S

(i)
n and S

(j)
n ,

S
(i)
n ∩S

(j)
n , contains only one element, then it must be xn and

the location of xn can be uniquely determined. Such an idea

can be easily extended to the scenario where there are more

then two NM-graphs, and for such a case, the set-intersection

scheme is more likely to succeed because the more sets are

used, the higher the probability of the intersection of these

sets containing only one element.

There, however, is a problem for the general case where x

contains multiple nonzero components (i.e. multiple active left

nodes). In this case, we have no idea which set of left nodes

a certain active node belongs to for each NM-graph. As a

result, it is impossible to determine which sets should be put

together to perform the intersection operation. To overcome

this difficulty, we note that the magnitudes of those active left

nodes are generally different. Hence the estimated magnitude

can be used to identify a certain active left node. Without loss

of generality, let x1, . . . , xK denote the nonzero components

of x in decreasing order in terms of magnitude, i.e. |x1| >
· · · > |xK | > 0. For each NM-graph, say graph Gi, we can

obtain an estimate of |x|, denoted as z(i). Specifically, let

ẑi1 > · · · > ẑiK > 0 represent the nonzero components of

ẑ(i), then the kth largest element ẑik can be regarded as an

estimate of |xk|. For each NM-graph, say Gi, the set of left

nodes containing xk can therefore be determined as the set

of left nodes containing ẑik . A set intersection operation can

then be performed to yield the final estimate of the location

index of xk. On the other hand, the magnitude of the kth

largest component of x can be estimated as the average of all

estimates, i.e.

|x̂k| =
1

I

I
∑

i=1

ẑik (55)

Note that if the intersection of the sets contains more than

one element, then we randomly pick up an element in the

intersection set as the estimate of the location index of xk. In

addition, in case the intersection is an empty set, which is pos-

sible due to the incorrect association between {x1, . . . , xK}
and {ẑi1 , . . . , ẑiK}, we randomly select an estimate from

{ẑ(1), . . . , ẑ(I)} as the final estimate. For clarity, our proposed

robust SBG-Code algorithm is summarized in Algorithm 2.

We see the proposed decoding algorithm involves very simple

addition and multiplication calculations, and thus is amiable

for practical implementation.

VII. EXTENSION TO ANTENNA ARRAY RECEIVER

In Section II, we assume the receiver employs an omni-

directional antenna that receives in all directions. In this

Algorithm 2 Robust SBG-Code Algorithm

Given Al = H l ⊙ T̃ l and yl for each bipartite graph Gl,

l = 1, . . . , L
for l = 1, . . . , L do

Decide whether a right node of Gl is a nullton or not via

the energy detector (52). Count the number of nulltons

of Gl.

end for

Find graphs that have the smallest number of nulltons and

consider them as NM-graphs

for l = 1, . . . , L do

if Gl is an NM-graph then

for m = 1, . . . ,M do

if y
(1)
l,m > ǫ then

Assume the mth right node is a singleton

Estimate the magnitude and the location index of

the active left node connected to the mth right

node via (54)

end if

end for

Obtain the estimate ẑ
(l)

end if

end for

Given multiple estimates {ẑ(l)}Il=1

if I = 1 then

Choose ẑ(1) as the final estimate

else

Resort to the set-intersection-check scheme to obtain a

final estimate

end if

section, we extend to the case where both the transmitter and

the receiver have antenna arrays for beam alignment. With a

slight abuse of notation, we let Nt and Nr denote the number

of antennas at the transmitter and the receiver, respectively.

The mmWave channel is characterized by a geometric channel

model

G =

P
∑

p=1

αpar(θp)a
H
t (φp) (56)

where P is the number of paths, αp is the complex gain

associated with the pth path, θp ∈ [0, 2π] and φp ∈ [0, 2π]
are the associated azimuth angle of arrival (AoA) and angle

of departure (AoD), respectively, and ar ∈ CNr (at ∈ CNt)

denotes the receiver (transmitter) array response vector. We

assume that the uniform linear array is used at both the

transmitter and receiver. Since there are only a few paths

between the transmitter and the receiver, the channel matrix

in the beam space domain has a sparse representation

G = DrḠDH
t (57)

where Dr ∈ CNr×Nr and Dt ∈ CNt×Nt are the DFT

matrices, and Ḡ ∈ CNr×Nt is a sparse matrix. Suppose the

transmitter sends a constant signal s(t) = 1 to the receiver.

The phaseless measurement received at the tth time instant
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can be expressed as

y(t) = |cH(t)Gb(t)s(t) + w(t)|
= |cH(t)DrḠDH

t b(t) + w(t)| (58)

where c(t) denotes the combining vector used at the receiver.

To perform beam alignment, we can let the receiver steer its

beam to a fixed direction over a period of time (or multiple

beams towards different directions if multiple RF chains at

the receiver are available), and let the transmitter send the

codewords devised according to our proposed sparse encoding

scheme. Specifically, the receiver uses a certain column of Dr

as its combining vector, i.e. c(t) = Dr[:, i], over a period of

time, say t = 1, . . . , T . The beamforming vector employed

by the transmitter is the same as discussed in Section II, i.e.

b(t) = DtS(t)fBB(t) , Dta(t). Thus we have

y(t) = |aH(t)ḡi + w∗(t)| t = 1, . . . , T (59)

where ḡi denotes the ith column of Ḡ
H

. We see that the

problem is now converted to the sparse encoding and phaseless

decoding problem discussed in this paper, and our proposed

scheme can be used to recover |ḡi|. After the receiver has

scanned all possible Nr beam directions, we are able to

obtain the full knowledge of |Ḡ|, based on which the best

beamformer-combiner pair can be obtained. Such a beam

alignment scheme has a sample complexity of O(NrK̄
2/Rr),

where Rr represents the number of RF chains at the receiver,

and K̄ , max{K1, . . . ,KNr
}, with Ki denoting the number

of nonzero entries in the ith column of Ḡ
H

, i.e. ḡi. Clearly,

K̄ is much smaller than the total number of paths P .

VIII. SIMULATION RESULTS

We now present simulation results to illustrate the perfor-

mance of our proposed SBG-Code algorithm. In our simula-

tions, the transmitter employs a ULA with N antennas and

R RF chains, while the receiver uses an omni-directional

antenna. The distance between neighboring antenna elements

is assumed to be d = λ/2. The mmWave channel h is assumed

to have a form of (4) with K paths. The nonzero components

of x are assumed to be random variables following a circularly

symmetric complex Gaussian distribution CN (0, 1), and the

locations of nonzero entries of x are uniformly chosen at

random. All the results are averaged over 104 independent

runs. In each run, x (i.e. h) is randomly generated. The linear

function f(n) = n/N is employed to encode the sparse signal,

i.e. the trignometric modulation matrix is given by (22), and

the estimator (24) is used to estimate z in the noiseless case.

We first examine the estimation performance of our pro-

posed algorithm in the noiseless case. The performance is

evaluated via the success rate, which is computed as the

ratio of the number of successful trials to the total number

of independent runs. A trial is considered successful if ‖ẑ −
z‖22/‖z‖22 < 10−8, where ẑ denotes the estimate of z. Fig.

3(a) depicts the success rates as a function of the number of

measurements T = 2ML, where the number of antennas is

set to N = 128, the number of RF chains is set to R = 8,

and the number of right nodes in each bipartite graph is set

to M = 16. In the figure, solid lines represent the theoretical

performance given in (28), while the circle marks represent

the performance obtained via the Monte Carlo experiments.

From Fig. 3, we see that our theoretical result matches the

empirical result very well. Also, when the number of paths K
is small, our proposed scheme can perfectly recover the AoA

and the attenuation (in magnitude) of each path with a decent

probability even using a small number of measurements, say

T = 32, thus achieving a substantial overhead reduction for

beam alignment. Fig. 3(b) plots the success rates as a function

of the dimension of the sparse signal N , where we set T = 64,

R = 8, and M = 16. From Fig. 3(b), we observe that

the success rate of our proposed algorithm remains almost

unaltered as N grows. This result corroborates our theoretical

claim that our proposed algorithm has a sample complexity

independent of N . It is also interesting to examine the impact

of the choice of the number of right nodes per bipartite graph,

M , on the performance of our proposed algorithm, given the

total number of measurements T fixed. Fig. 3(c) plots the

success rates as a function of M , where we set T = 64 and

N = 128. Note that since the parameter M must be chosen

such that R ≥ floor(N/M), the number of required RF chains

changes as M varies. From Fig. 3(c), we see that the best

performance is achieved when M ≈ K2.

Next, we illustrate the estimation performance of our pro-

posed algorithm in the noisy case. We compare our method

with the robust PhaseCode algorithm. As mentioned earlier

in our paper, PhaseCode uses a single randomly generated

bipartite graph to encode the sparse signal. The resulting

measurement matrix A may not satisfy constraint C1. To

fulfil the potential of PhaseCode, we allow the constraint

C1 to be violated by PhaseCode. For our proposed method,

the prescribed false alarm probability used to determine the

threshold in the energy detector (52) is set to e−9/2 ≈ 0.011,

thus the threshold is given by ǫ = 3σ. For a fair comparison,

the beamforming vector b(t) (cf. (6)) used in both schemes

is normalized to unit norm. The performance is evaluated via

the normalized mean squared error (NMSE) calculated as

NMSE = E

[‖ẑ − z‖22
‖z‖22

]

(60)

Note that PhaseCode is able to retrieve the complete infor-

mation of x. But the accuracy of the estimate of z = |x|
is of most concern for beam alignment. Fig. 4(a) shows the

NMSEs of respective schemes as a function of T , where we

set N = 128, M = 16, and the SNR is set to 20dB. Here the

SNR is defined as

SNR = 10 log(‖h‖22/(Nσ2)) (61)

From Fig. 4(a), we see that our proposed method outperforms

the robust PhaseCode method by a big margin for difference

choices of K . The performance improvement is primarily

due to the fact that our proposed method circumvents the

complicated decoding procedure that is needed for PhaseCode

and thus gains substantially improved robustness against noise.

Fig. 4(b) depicts the NMSEs of respective schemes as a

function of SNR, where we set T = 64 and M = 16. It

can be observed that our proposed method attains a decent
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Fig. 3. Success rates of our proposed method vs. T , N , and M in the noiseless case.
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Fig. 4. NMSEs of respective algorithms vs. T and SNR.
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Fig. 5. Beamforming gains of respective algorithms vs. T and SNR.

accuracy even in the low and moderate SNR regimes, whereas

the robust PhaseCode fails in this case.

Lastly, we compare our proposed algorithm with the Agile-

Link [8], a beam steering scheme which also relies on the

magnitude information of measurements for recovery of signal

directions. It should be noted that Alige-Link only recovers



12

signal directions, but not z. The beamforming gain defined

below is used as a metric to evaluate the performance of

respective schemes

GBF = E
[

N |aH
t (θ̂opt)h|2/‖h‖22

]

(62)

in which θ̂opt denotes the estimated direction of path that

delivers the maximum energy. For the Agile-Link, θ̂opt is

estimated as the direction with the highest probability. Fig.

5(a) depicts the beamforming gains of respective algorithms

as a function of T , where we set N = 128, K = 2,

M = 16, and SNR = 15dB. Again, for a fair comparison, the

beamforming vector b(t) used in these schemes is normalized

to unit norm. We see that our proposed method yields a higher

beamforming gain than the Agile-Link and the PhaseCode,

and the performance gap is particularly pronounced when the

number of measurements T is small. This result suggests that

our proposed method can help find a better beam alignment.

Fig. 5(b) plots the beamforming gains of respective algorithms

as a function of SNR, where we set T = 64 K = 2, and

M = 32, from which we can see that our proposed method

even renders a decent beamforming gain in the low SNR

regime.

IX. CONCLUSIONS

The problem of mmWave beam alignment was examined

in this paper. By exploiting the sparse scattering nature of

mmWave channels, we showed that the problem of beam align-

ment can be formulated as a sparse encoding and phaseless

decoding problem. A SBG-Code method was developed to en-

code the sparse signal and retrieve the support and magnitude

information of the sparse signal from compressive phaseless

measurements. Our analysis revealed that the proposed method

can provably recover the sparse signal with a pre-specified

probability from O(K2) phaseless measurements. Simulation

results showed that the proposed scheme renders a reliable

beam alignment even in a low or moderate SNR regime with

very few measurements, and presents a clear advantage over

existing mmWave beam alignment algorithms.

APPENDIX A

PROOF OF PROPOSITION 1

Before preceding, we first show that the probability that all

right nodes of Gl are either singletons or nulltons is maximized

when each column of H l has only one nonzero element, i.e.

each left node is connected to only one right node. Such a fact

can be easily verified via an edge-deletion operation performed

on Gl. Specifically, for each left node of Gl, if it has more

than one edge, that is, it is connected to more than one right

node, then we reserve only one edge and delete all the other

edges. It is clear that after the edge-deletion operation, the

number of singletons and nulltons of Gl either keeps increased

or unchanged. Therefore, the probability that all right nodes of

Gl are either singletons or nulltons is maximized when each

column of H l has only one nonzero element. Note than in

this case, we have

M
∑

m=1

rm = rM = N (63)

We now calculate the probability that Gl is an NM-graph

when each left node is connected to only one right node. More

precisely, we divide N left nodes into M disjoint sets, where

the mth set consisting of rm left nodes is connected to the

mth right node. There are K active left nodes in total. We

need to calculate the probability that each set of left nodes,

denoted as Sm, contains at most one active left node. Define

M , {1, . . . ,M} (64)

Let K , {i1, . . . , iK} be a subset of M consisting of K
elements, and {iK+1, . . . , iM} = M−K be the difference set

between M and K. It can be easily verified that the number

of ways of dividing N left nodes into M disjoint sets such

that each set Sm,m ∈ K, contains only one active left node

is given as

K!C
ri1−1

N−KC
ri2−1

N−R1−K+1 · · ·C
riK−1

N−RK−1−1C
riK+1

N−RK
· · ·CriM

N−RM−1

=
K!(N −K)!

∏K
t=1(rit − 1)!

∏M
t=K+1 rit !

(65)

where Rn ,
∑n

t=1 rit . Thus, the number of ways of dividing

N left nodes into M disjoint sets such that each set contains

at most one active left node is given by

n1 ,
∑

{i1,...,iK}⊆M

K!(N −K)!
∏K

t=1(rit − 1)!
∏M

t=K+1 rit !
(66)

On the other hand, the total number of ways of assigning N
left nodes to M disjoint sets is given as

n2 , Cr1
N Cr2

N−r1
· · ·CrM

N−
∑M−1

i=1 ri
=

N !
∏M

i=1 ri!
(67)

Therefore the probability that Gl is an NM graph can be

calculated as

P (Gl is an NM-graph) =
n1

n2
=

η(K)

CK
N

(68)

where

η(K) ,
∑

{i1,...,iK}⊆M

( K
∏

t=1

rit

)

(69)

Next, we prove

η(K) ≤ rKCK
M (70)

holds for all 1 ≤ K ≤ M when
∑M

i=1 ri = rM . The

inequality (70) is proved by mathematical induction. First, we

prove the base case: K = 1. It is easy to verify that

η(1) =

M
∑

i=1

ri = rM = rC1
M (71)

We then proceed to the inductive step. Suppose the following

inequality holds for K ′ − 1

η(K ′ − 1) ≤ rK
′−1CK′−1

M (72)

We need to prove

η(K ′) ≤ rK
′

CK′

M (73)
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To this goal, we multiply both sides of (72) by
∑M

i=1 ri, which

yields

η(K ′ − 1)

( M
∑

i=1

ri

)

≤ rK
′−1CK′−1

M Mr

= MrK
′

CK′−1
M (74)

The left-hand side of (74) can be further written as

η(K ′ − 1)

( M
∑

i=1

ri

)

=

M
∑

i=1

∑

{i1,...,iK′
−2}⊆M−{i}

r2i ri1 · · · riK′
−2

+K ′η(K ′)

=
1

M −K ′ + 1

∑

{i1,...,iK′}⊆M









K′

∏

t=1

rit
∑

j,k∈{1,...,K′}
j 6=k

rik
rij









+K ′η(K ′) (75)

For any {i1, . . . , iK′} ⊆ M, using the inequality of arith-

metic and geometric means (also referred to as the AM-GM

inequality), we have

∑

j,k∈{1,...,K′}
j 6=k

rik
rij

≥ K ′(K ′ − 1)









∏

j,k∈{1,...,K′}
j 6=k

rik
rij









1
K′(K′

−1)

= K ′(K ′ − 1) (76)

in which the inequality becomes an equality if and only if

ri1 = · · · = riK′
. Hence, we have

∑

{i1,...,iK′}⊆M









K′

∏

t=1

rit
∑

j,t∈{1,...,K′}
j 6=t

rit
rij









≥ K ′(K ′ − 1)η(K ′)

(77)

in which the inequality (77) becomes equality if and only if

r1 = · · · = rM = r. Combining (74), (75) and (77), we arrive

at

MrK
′

CK′−1
M ≥ η(K ′ − 1)

( M
∑

i=1

ri

)

≥
(

K ′(K ′ − 1)

M −K ′ + 1
+K ′

)

η(K ′) =
MK ′

M −K ′ + 1
η(K ′)

(78)

From (78), we have

η(K ′) ≤ M −K ′ + 1

MK ′
MrK

′

CK′−1
M = rK

′

CK′

M (79)

Thus the inductive step is proved. This completes our proof.

APPENDIX B

PROOF OF THEOREM 1

According to our proposed algorithm, we see that the

support and magnitude information of x can be perfectly

recovered when there is at least one NM-graph in all bipartite

graphs {Gl}Ll=1. Therefore, the probability that our proposed

algorithm succeeds to recover the support and magnitude

information of x equals the probability that there is at least

one NM-graph in {Gl}Ll=1, which is equivalent to

p = 1− (1− P (Gl is an NM-graph))L = 1− (1− λ)L

(80)
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