
ar
X

iv
:1

90
8.

00
16

0v
2 

 [e
es

s.
S

P
]  

2 
A

ug
 2

01
9

1

This paper is accepted for publication in IEEE Transactions

on Signal Processing with DOI 10.1109/TSP.2019.2929470.

IEEE copyright notice. 2019 IEEE. Personal use of this

material is permitted. Permission from IEEE must be obtained

for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promo-

tional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted.

http://arxiv.org/abs/1908.00160v2


2

Max-Min Fairness Design for MIMO Interference

Channels: a Minorization-Maximization Approach
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Abstract—We address the problem of linear precoder (beam-
former) design in a multiple-input multiple-output interference
channel (MIMO-IC). The aim is to design the transmit covariance
matrices in order to achieve max-min utility fairness for all
users. The corresponding optimization problem is non-convex and
NP-hard in general. We devise an efficient algorithm based on
the minorization-maximization (MM) technique to obtain quality
solutions to this problem. The proposed method solves a second-
order cone convex program (SOCP) at each iteration. We prove
that the devised method converges to stationary points of the
problem. We also extend our algorithm to the case where there
are uncertainties in the noise covariance matrices or channel state
information (CSI). Simulation results show the effectiveness of
the proposed method compared with its main competitor.

Keywords: Interference channel, Minorization-

maximization (MM), Max-min fairness, MIMO, Rate

optimization.

I. INTRODUCTION

We consider the linear precoder design problem in a MIMO

interference channel in which a set of transmitter-receiver pairs

communicate over a shared (time or frequency) resource. The

precoder matrices can be designed to improve the network

performance from a sum rate or minimum rate (max-min

fairness) point of view [1]–[17].

The problem of linear transceiver design under the max-min

fairness criterion has been widely studied in the literature [1]–

[10]. In [1] and [2], the power control problem under a max-

min signal-to-interference-plus-noise ratio (SINR) criterion

has been studied and performance bounds for power control

algorithms have been obtained. The problem of designing

the transmitter precoder that maximizes the minimum rate

of users in a multiple-input single-output (MISO) network

is also studied in [3]–[6]. The authors of [7] maximized the

worst case SINR subject to a power constraint on the design

precoder matrices in a MIMO-IC and showed this problem can

be solved using standard conic optimization packages. The au-

thors of [18] considered the max-min fairness precoder design

in a single-input multiple-output (SIMO) IC and showed that

this problem can be solved in polynomial time. In [8], the

authors recast the max-min fairness problem in MIMO-IC as

the problem of finding the globally optimal transceiver that
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TABLE I: Notations

‖x‖n: the ln-norm of the vector x, defined as
(
∑

k |x(k)|n
) 1

n

‖X‖2: the spectral norm of the matrix X i.e. the largest singular value of X

XH : the conjugate transpose of matrix X

tr(X): the trace of matrix X

λmax(X): the maximum eigenvalue of hermitian matrix X
A⊗B: the Kronecker product of two matrices A and B

X � Y: X−Y is positive semidefinite
X ≻ Y: X−Y is positive definite

X
1

2 : the Hermitian square root of the positive semidefinite matrix X

i.e. X = X
1

2 (X
1

2 )H

vec(X): the vector obtained by column-wise stacking of X

In: the identity matrix of Cn×n

R: the set of real numbers
C: the set of complex numbers
ℜ(x): the real part of x
R+: the set of nonnegative real numbers

S
+
N

: the set of positive semidefinite matrices of CN×N

S
++
N

: the set of positive definite matrices of CN×N

maximizes the minimum SINR among all users. They showed

that when each transmitter (receiver) is equipped with more

than one antenna and each receiver (transmitter) is equipped

with more than two antennas, the problem is strongly NP-

hard. To deal with the problem they proposed two algorithms

which decompose the original NP-hard problem into a series

of convex subproblems. The authors of [17] further showed

that the max-min fairness problem in MIMO-IC is strongly

NP-hard when each transmitter and receiver is equipped with

more than one antenna. In [9] and [10], the authors considered

the problem of linear precoder design for MIMO-IC under

a max-min fairness criterion and showed that when there

are at least two antennas at each transmitter and receiver,

the problem belongs to a class of NP-hard problems. They

proposed an algorithm that computes an approximate solution

to the original problem. Note that in the aforementioned works,

the precoder matrices are designed for the cases in which the

number of symbols in a stream is assumed to be a priori

known.

The precoder design for achieving max-min rate fairness

among users in MIMO-IC leads to a non-convex and, in

general, NP-hard problem. Some works [9] [10] address and

tackle this design problem by using block coordinate descent

as an optimization technique. At the same time, minorization-

maximization (MM)1, a general iterative optimization tech-

nique which is often quiet stable and shown to be difficult to

be outperformed [19] [20] [21], has recently been successfully

employed to deal with several non-convex problems in com-

1Also known as MaMi or MiMa in the literature [16].
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Fig. 1: A generic MIMO-IC.

munication/active sensing systems, see e.g. [16] [22]. In light

the good properties of MM technique, we consider using it for

precoder design in MIMO-IC. The main contributions of the

present paper can be summarized as follows:

• We design the transmit covariance matrices (the number

of transmitted symbols is not necessarily given) under

a max-min fairness criterion for systems using the con-

ventional linear minimum mean square error (LMMSE)

receivers. We propose an efficient algorithm based on the

MM technique to obtain quality solutions to this design

problem.

• We prove that the obtained solutions are stationary points

of the problem. This result is obtained as a corollary

of a general theorem that can be used to analyze the

convergence of MM algorithms for an entire class of

maxmin optimization problems.

• Compared with [9] and [10], we consider a more general

case of designing the precoder covariance matrices, which

means that the optimal number of symbols in a stream is

also obtained as a by-product.

• We also extend our algorithm to the practical cases where

there are uncertainties in the noise covariance matrices or

in the CSI.

The rest of the paper is organized as follows. The signal and

system model along with the associated max-min precoder

covariance design problem are described in Section II. The

proposed method for designing the precoder covariances as

well as the precoder matrices under the max-min fairness

criterion is derived in Section III. This section also includes

a convergence analysis of the proposed method. Precoder

design under noise covariance uncertainty and imperfect CSI

is considered in Section IV. Numerical results are provided in

Section V and, finally, conclusions are drawn in Section VI.

Table I summarizes the notation used throughout this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider N transmit-receive pairs communicating over a

MIMO interference channel as shown in Fig. 1. We assume

that the ith transmitter and the jth receiver are equipped with

Mi and Lj antennas, respectively. The ith transmitter uses the

linear precoder matrix Vi ∈ CMi×di to convert the symbol

stream si ∈ Cdi×1 (consisting of di independent data symbols)

into the vector di ∈ CMi×1, i.e.,

di = Visi (1)

and sends it over flat fading channels. The received signal at

the ith receiver is given by:

yi = Hiidi︸ ︷︷ ︸
desired signal

+
∑

j 6=i

Hjidj + ni

︸ ︷︷ ︸
interference plus noise

(2)

where Hji ∈ C
Li×Mj denotes the channel matrix between the

jth transmitter and the ith receiver. Also, ni ∈ CLi×1 is the

circularly symmetric complex Gaussian (CSCG) noise at the

ith receiver with zero mean and covariance matrix Γi ∈ S
++
Li

.

The ith receiver uses the linear decoder matrix Wi ∈ Cdi×Li

to obtain ŝi ∈ Cdi×1 which is an estimate of the transmitted

vector si:

ŝi =Wiyi (3)

=WiHiiVisi +Wi

∑

j 6=i

HjiVjsj +Wini

Assuming the symbol stream si is a Gaussian random vector

with zero mean and covariance matrix Idi
, the rate of the ith

user is given by [23]:

Ri = log det
(
Idi

+WiHiiViV
H
i HH

iiW
H
i

(
WiCiW

H
i

)−1
)

(4)

with Ci being the interference plus noise covariance matrix

defined as

Ci = Γi +
∑

j 6=i

HjiVjV
H
j HH

ji (5)

Employing the conventional LMMSE decoder at the re-

ceivers means that the ith decoder matrix is given by

WLMMSE
i = VH

i HH
ii




N∑

j=1

HjiVjV
H
j HH

ji + Γi




−1

(6)

By substituting (6) into (4), it can be verified that (for

completeness we include a proof of (6) and (7) in Appendix

A):

Ri = log det


Idi

+VH
i HH

ii



Γi +
∑

j 6=i

HjiVjV
H
j HH

ji




−1

HiiVi




(7)

Remark 1. The system model and the proposed design

methodology in this paper can be extended to the MIMO

interference broadcast channel (MIMO-IBC) (see Appendix

B for details on the MIMO-IBC case).

Remark 2. Interestingly, using the decoder W′
i =

VH
i HH

iiC
−1
i

, see (5), leads to the same rate as the LMMSE,

see (7). Furthermore, the matrix W′
i maximizes the rate in

(4). To see this, use standard properties of Schur complement

to verify that the inequality

VH
i HH

iiW
H
i (WiCiW

H)−1WiHiiVi � VH
i HH

iiC
−1

i
HiiVi

(8)
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is equivalent to the positive semi-definitness of the matrix:

Φi =

[
VH

i HH
iiC

−1

i
HiiVi VH

i HH
iiW

H
i

WiHiiVi WiCiW
H

]
. (9)

Now, observe that the matrix Φi above indeed is in S
+
di

because

it can be decomposed as Φi = ΘiΘ
H
i with

Θi =

[
VH

i HH
ii 0

0 Wi

] [
C

−1/2

i

C
1/2

i

]
(10)

Therefore, (8) holds true. Moreover, it can be verified that by

substituting Wi = W′
i = VH

i HH
iiC

−1

i
in (8), the left-hand

side becomes VH
i HH

iiC
−1

i
HiiVi which is equal to the right-

hand side. Therefore, W′
i maximizes the rate in (4). Because

the LMMSE decoder in (6) and W′
i yield the same rate, we

conclude that the LMMSE decoder maximizes the rate as well.

Note that the optimality of this decoder for mean square error

minimization has been addressed in [10], [24] (see also [25]).

�

Using Sylvester’s determinant property, i.e. det(I+AB) =
det(I+BA), the rate Ri in (7) can be rewritten as

Ri = log det


ILi

+HiiQiH
H
ii



Γi +
∑

j 6=i

HjiQjH
H
ji




−1




(11)

where Qi , ViV
H
i ∈ CMi×Mi , i = 1, . . . , N , are the

precoder covariance matrices. In this paper, the goal is to

design the precoder covariance matrices {Qi}
N
i=1 to maximize

the minimum rate of the users, which can be cast as the

following problem:

max
{Qi}N

i=1

min
i=1,2,...,N

Ri (12)

s.t. tr{Qi} ≤ pi ∀i = 1, 2, . . . , N

Qi � 0 ∀i = 1, 2, . . . , N

where pi is the power available to the ith transmitter. Note

that in the covariance design approach, we jointly design the

optimum precoder matrices {Vi}
N
i=1, as well as, the optimum

number of their columns {di}
N
i=1, i.e. the length of symbol

streams. More precisely, we fully exploit the available degrees

of freedom of the design problem instead of considering the

design problem in a limited framework in which {di}
N
i=1 are

assumed to be a priori known.

In the next section, we assume that the noise covariance

matrices {Γi}
N
i=1 as well as the channel matrices {Hij}

N
i,j=1

are exactly known. We consider the case of uncertain a priori

knowledge in Section IV.

III. THE PROPOSED METHOD

A. Derivation of the proposed method

It can be shown that the design problem in (12) is non-

convex and NP-hard in general [10]. In what follows we

devise a method based on the minorization-maximization

(MM) technique [26] to tackle this problem.

In (12) the constraints are convex but the objective function

is non-convex. Therefore we will apply the MM technique to

the objective function. For this purpose, we first introduce the

following proposition.

Proposition 1. The rate Ri, see (11), can be rewritten as:

Ri = log det(UHB−1
i U) (13)

where U and Bi are defined as,

U ,
[
IMi

0Mi×Li

]T
(14)

and

Bi =




IMi
ṼH

i HH
ii

HiiṼi Γi +

N∑

j=1

HjiṼjṼ
H
j HH

ji


 (15)

with Ṽi , Q
1

2

i ∈ CMi×Mi .

Proof: See Appendix C. �

By using (13), the problem in (12) can be rewritten as follows

max
{Ṽi}N

i=1
,

min
i=1,··· ,N

log det(UHB−1
i U) (16)

s.t. tr{ṼiṼ
H
i } ≤ pi, ∀i = 1, 2, . . . , N

The following lemma (see, e.g., [22]) lays the ground for

applying MM to (16).

Lemma 1. The function f(X) = log det(UHX−1U):
S
++
N → R+ is convex for any full column rank matrix U. �

Using Lemma 1 and noting that Bi ≻ 0, ∀i = 1, 2, . . . , N
(see Appendix D), the objective function in problem (16) can

be minorized at a given Bi as follows

log det(UHB−1
i U) ≥ log det(UHB

−1

i U) (17)

− tr{Fi(Bi −Bi)}

where Fi is given by (see Appendix E):

Fi = B
−1

i U(UHB
−1

i U)−1UHB
−1

i . (18)

Note that Bi can be chosen as the value of Bi at the (κ−1)th
iteration. Consequently, let

g
(κ)
i (Ṽ1, · · · , ṼN ) , log det(UH(B

(κ−1)
i )

−1
U) (19)

− tr{Fi(Bi −B
(κ−1)
i )}

(we omit the dependence of Fi on the iteration number to

simplify the notation). Then it follows from (17) that the

objective function in (16) can be minorized at the κth iteration

by:

min
i=1,··· ,N

log det(UHB−1
i U) ≥ min

i=1,··· ,N
g
(κ)
i (Ṽ1, · · · , ṼN )

(20)

The MM technique that makes use of (20), consists of itera-

tively solving the following problem (for κ = 1, 2, ...):

max
{Ṽi}N

i=1

min
i=1,··· ,N

g
(κ)
i (Ṽ1, · · · , ṼN ) (21)

s.t. tr{ṼiṼ
H
i } ≤ pi, ∀i = 1, 2, . . . , N
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Next, we rewrite (21) using an auxiliary variable t:

max
{Ṽi}N

i=1
,t

t (22)

s.t. g
(κ)
i (Ṽ1, · · · , ṼN ) ≥ t, ∀i = 1, 2, . . . , N

tr{ṼiṼ
H
i } ≤ pi, ∀i = 1, 2, . . . , N

To derive an explicit expression for the constraints

g
(κ)
i (Ṽ1, · · · , ṼN ) ≥ t in terms of the design variables

{Ṽi}
N
i=1, let

F =

(
F11Mi×Mi

F12Mi×Li

F21Li×Mi
F22Li×Li

)
. (23)

Then, combining (23) and (15), it can be verified that:

tr {FiBi} =2ℜ{tr{(Fi)12HiiṼi}}+ tr{(Fi)11} (24)

+ tr{(Fi)22Γi}

+ tr{(Fi)22

N∑

j=1

HjiṼiṼ
H
i HH

ji}.

Defining xi , vec(Ṽi) and using properties of the vec-

torization operator, viz. tr(AB) = (vec(AT ))T vec(B) and

vec(ABC) = (CT ⊗ A) vec(B) (for any arbitrary matrices

A, B and C), we can rewrite the first and the last terms in

(24) as:

tr{(Fi)12HiiṼi} = bH
i xi (25)

tr{(Fi)22

N∑

j=1

HjiṼiṼ
H
i HH

ji} =

N∑

j=1

xH
j Gjixj (26)

where bi , vec(HH
ii (Fi)

H
12) and Gji , IM ⊗

(HH
ji(Fi)22Hji). Note that according to the Kronecker prod-

uct properties, Gji � 0, because HH
ji(Fi)22Hji is positive

semidefinite.

Finally, the problem in (22) that is solved at the κth iteration

of MM can be rewritten as the following optimization:

max
t,{xi}N

i=1

t (27)

s.t. C
(κ−1)
i + 2ℜ{(b

(κ−1)
i )Hxi}+

N∑

j=1

xH
j G

(κ−1)
ji xj ≤ −t

∀i = 1, 2, . . . , N

‖xi‖
2
2 ≤ pi ∀i = 1, 2, . . . , N

where Ci is the following real-valued constant:

C
(κ−1)
i =− log det(UH(B

(κ−1)
i )−1U)− tr{F

(κ−1)
i B

(κ−1)
i }

(28)

+ tr{(F
(κ−1)
i )11}+ tr{(F

(κ−1)
i )22Γi}.

Note that (27) is a convex problem with a linear objective

and quadratic constrains. Hence it can be expressed as a

second-order cone program (SOCP). The proposed algorithm,

which is based on iteratively solving (27), is summarized in

Table II. In the first step, we initialize the algorithm with

i.i.d. CSCG random variables after making them feasible by

normalization i.e. ‖xi‖
2
2 ≤ pi. In the second step, we use

efficient methods such as interior point algorithms to solve the

problem in (27) [27] [28]. The (conservative) computational

complexity for this step is O(N4.5M6) assuming Mi = M, ∀i
[28]. Step 3 includes matrix manipulations for updating the

parameters; concretely, it includes inversion of the matrices

{Bi ∈ S
++
Mi+Li

}Ni=1 for obtaining Fi via (18) and then

updating the parameters according to (25), (26), and (28). The

computational complexity of this step is mainly dominated

by computing B−1
i which is of O((Mi + Li)

3) for each i.

After step 3, the stop criterion is checked and steps 1 to 3 are

repeated until this criterion is satisfied.

Remark 3. (Calculating Vi from Qi): At the convergence

of the proposed method, the optimized transmit covariances

{Qi = ṼiṼ
H
i } ∈ CMi×Mi are obtained. Next, the precoder

matrices {Vi} ∈ C
Mi×di are obtained as square roots of the

{Qi}: ViV
H
i = Qi. Note that the so-obtained precoder matrix

Vi is not unique but this has no effect on the rate. Indeed

the rate Ri in (7) is a many-to-one function of Vi as Vi

and ViA lead to the same Ri for any matrix A satisfying

AAH = I. Also note that whenever Qi is (nearly) singular,

one can perform a thresholding operation on its eigenvalues

and reduce the number of columns of Vi accordingly. Finally

observe that the optimized stream lengths {di}
N
i=1 are given

once we have {Vi} ∈ CMi×di . �

B. Design of precoder matrices {Vi}
N
i=1 for given {di}

N
i=1

In the previous subsection, we proposed an efficient algo-

rithm to design the precoder covariance matrices {Qi}
N
i=1. By

using this algorithm, the optimum precoder matrices {Vi}
N
i=1

as well as the optimum number of their columns {di}
N
i=1 are

designed. In some cases, the symbol stream length di is given

and the precoder matrices {Vi}
N
i=1 are the only ones to be

designed. In such a case, the following optimization problem

is considered:

max
{Vi}N

i=1
,t
t (29)

s.t. Ri ≥ t ∀i = 1, 2, . . . , N

‖Vi‖
2
F ≤ pi ∀i = 1, 2, . . . , N

where Ri is given in (7). This problem, which is also NP-hard,

can be tackled by modifying the proposed method as follows.

The matrices U and Bi defined in (14) and (15) are replaced

by:

U ,
[
Idi

0di×Li

]T
(30)

and

Bi =




Idi
VH

i HH
ii

HiiVi Γi +
N∑

j=1

HjiVjV
H
j HH

ji


 , (31)

respectively. By following an approach similar to that used in

designing {Qi}
N
i=1, the following problem is solved at the κth
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iteration of the algorithm to obtain {Vi}
N
i=1:

max
t,{xi}N

i=1
,
t (32)

s.t. C
(κ−1)

i + 2ℜ{(b
(κ−1)

i )Hxi}+
N∑

j=1

xH
j (G

κ−1

ji )Hxj ≤ −t

∀i = 1, 2, . . . , N

‖xi‖
2
2 ≤ pi ∀i = 1, 2, . . . , N

where xi , vec(Vi), Gji , Idi
⊗ (HH

ji(Fi)22Hji), and

C
(κ−1)

i is the following real constant:

C
(κ−1)

i =− log det(U
H
(B

(κ−1)

i )−1U)− tr{F
(κ−1)

i B
(κ−1)

i }
(33)

+ tr{(F
(κ−1)

i )11}+ tr{(F
(κ−1)

i )22Γi}.

The problem in (32) is also a convex SOCP. Therefore

{Vi}
N
i=1 can be obtained by slightly modifying the procedure

in Table II according to the discussion above.

C. Convergence

In this subsection, we study the convergence of the proposed

method and prove that it converges to a stationary point of the

problem. To this end, observe that for the minimum rate at the

κth iteration, we have that:

min
i

logdet(UH(B
(κ−1)
i )−1U)=min

i
g
(κ)
i (Ṽ

(κ−1)
1 ,· · ·,Ṽ

(κ−1)
N )

(34)

≤ min
i

g
(κ)
i (Ṽ

(κ)
1 , · · · , Ṽ

(κ)
N ) ≤ min

i
log det(UH(B

(κ)
i )

−1
U)

The first inequality in (34) holds due to the maximization step

at the κth iteration and the second one is satisfied due the

definition of the minorizer, see (20). Combining (34) and the

fact that the objective function is upper bounded, it follows that

the sequence of objective values converges to a limit point f⋆.

In the sequel, we prove that f⋆ is a stationary value and that

the associated sequence {Q
(κ)
i } converges to a stationary point

of the design problem. The following theorem (from [21]–see

also [29]) establishes a general framework for convergence

analysis of MM algorithms.

Theorem 1. Consider the following optimization problem

max
x

f(x) (35)

s.t. x ∈ C

with C being a compact convex set in RN and f(x) being a

non-smooth function (like our criterion in the design problem

(12)). Let g(x,x0) be a minorizer of f(x) at x0. The sequence

generated by MM algorithm for the problem (35) converges

to a stationary point if the following conditions are satisfied:

(A.1) g(x,x0) be continuous in x and x0.

(A.2) The sublevel set defined as lev≤f(x0)f := {x ∈
C|f(x) ≤ f(x0)} is compact (given f(x0)<∞).

(A.3)

lim sup
λ→0

g(x0 + λd,x0)− g(x0,x0)

λ
= (36)

lim sup
λ→0

f(x0 + λd)− f(x0)

λ
, ∀x0 + d ∈ C

�

Next, we prove the following theorem that lays the ground

for convergence analysis of a class of maxmin optimization

problems (including the design problem in (12)) tackled by

MM algorithms.

Theorem 2. Consider the following maxmin optimization

problem

max
x

min
i=1,2,...,M

fi(x) (37)

s.t. x ∈ C

where fi(x), i = 1, ...,M are convex functions and C is

a compact convex set in RN . Let gi(x,x0) , fi(x0) +
tr{(∇xfi(x0))

T
(x − x0)} be the minorizer of fi(x) at x0

used in the MM method. Then, the sequence generated by the

MM algorithm for the problem (37) converges to a stationary

point.

Proof: See Appendix F.

Lemma 2. The proposed MM method for the design problem

(12) converges to a stationary point.

Proof: To prove this lemma, we follow the proof provided

for Theorem 2 in Appendix F. First, note that every Ri is

continuous and their minimizers are continuous. Also, the

constraint set in problem (12) is closed, convex, and bounded

in the matrix space with Frobenius norm. Thus the conditions

A.1 and A.2 are satisfied. Second, every Ri is convex with

respect to Bi. Therefore, according to Appendix F, we can

write:

lim sup
λ→0

g(B̄i + λD, B̄i)− g(B̄i, B̄i)

λ
= (38)

lim sup
λ→0

f(B̄i + λD) − f(B̄i)

λ

To complete the proof, we use the chain rule to show that A.3

is also satisfied for our problem [30]:

lim sup
λ→0

g(Qi + λD,Qi)− g(Qi,Qi)

λ
=

lim sup
λ→0

f(Qi + λD)− f(Qi)

λ

�

IV. PRECODER DESIGN IN THE PRESENCE OF A PRIORI

KNOWLEDGE UNCERTAINTY

In practice there always exist uncertainties in the noise

covariance and the channel state information. In this section

we will consider these uncertainties in the design problem.

We first consider the effect of imperfect CSI due to channel

estimation errors. Using the conventional LMMSE estimator,

the channels can be modeled as [31]:

Hji = Ĥji + Zji (39)
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TABLE II: The proposed method for the max-min rate design

of the transmit covariance matrices in MIMO-IC.

Step 1: Initialize {xi}Ni=1 with complex random vectors in CM2

i ×1 such

that they satisfy ‖xi‖22 ≤ pi.
Step 2: Solve the (convex) SOCP problem in (27).
Step 3: Update bi, Gji, and Ci according to equations (18), (25), (26),
and (28), respectively.
Step 4: Repeat steps 1 and 2 until a pre-defined stop criterion is satisfied,
e.g |t(κ) − t(κ−1)| ≤ ǫ, for a given ǫ > 0.

where Ĥji is the estimate of the true channel Hji and

Zji is the channel estimation error which is assumed to be

uncorrelated with Ĥji. Assuming the entries of Hji are i.i.d

random variables (RVs) with variances σ2
ji, the entries of

Ĥji and Zji will be i.i.d RVs with variances ρ2jiσ
2
ji and

(1−ρ2ji)σ
2
ji , respectively. The parameter ρji ∈ [0, 1] quantifies

the estimation accuracy, in particular if ρji = 1, Ĥji = Hji

and CSI is perfect.

Substituting (39) in (2), we obtain:

yi = ĤiiV
′
isi︸ ︷︷ ︸

desired signal

+
∑

j 6=i

ĤjiV
′
jsj +

N∑

j=1

ZjiV
′
jsj + ni

︸ ︷︷ ︸
interference plus estimation error and noise

(40)

with V′
i being the precoder matrix of the ith transmitter

designed under imperfect CSI. It can be proved that:

E

{
ZjiV

′
jV

′H
j ZH

ji

}
= (1− ρ2ji)σ

2
ji tr{V

′
jV

′H
j }ILi

(41)

Therefore, the LMMSE decoder will be:

ŴLMMSE
i =V′H

i ĤH
ii




N∑

j=1

ĤjiV
′
jV

′H
j ĤH

ji+ (42)

N∑

j=1

(1− ρ2ji)σ
2
ji tr{V

′
jV

′H
j }ILi

+ Γi




−1

Let Q′
j , V′

jV
′H
j be the precoder covariance matrices in

the imperfect CSI case. Note that the term
∑N

j=1 ZjiV
′
jsj in

(40) is the sum of the products of Gaussian random variables

(i.e. Zji and sj) and hence, it is no longer Gaussian; this

observation leads to difficulties for computation of the user

rate. Therefore, in this case, we resort to a common approach

in the literature (see e.g. [32]–[34] and references therein)

to make the problem tractable; more precisely, the following

lower bound R̂i on the rate of the ith user is considered as

the design metric:

R̂i = log det



ILi
+ ĤiiQ

′
iĤ

H
ii



Γi +
∑

j 6=i

ĤjiQ
′
jĤ

H
ji

(43)

+

N∑

j=1

(1− ρ2ji)σ
2
ji tr{Q

′
j}ILj



−1




Next, we also consider the uncertainty of the noise covari-

ance matrices, which can be modeled as [22]:

‖Γi − Γ̂i‖2 ≤ ζi, ∀i = 1, · · · , N (44)

where Γ̂is are known positive definite matrices (initial guesses

of the covariance matrices) and ζis are positive scalars that

determine the size of the uncertainty regions. We remark on

the fact that in the case of imperfect CSI, we have uncertainty

about the true channel value; however, in the case of noise

vectors, we consider uncertainty in the noise covariance matrix

(rather than in the noise vector). Therefore, we consider a

worst-case approach to deal with uncertain noise covariance

matrices which is commonly used in literature (see for instance

[35], [36]).

We can robustify the design method with respect to a

priori knowledge uncertainty by considering the following

reformulation of the optimization problem:

max
{Q′

i}
N
i=1

min
i=1,...,N

min
{Γi}N

i=1

R̂i (45)

s.t. tr{Q′
i} ≤ pi, ∀i = 1, 2, . . . , N

‖Γi − Γ̂i‖2 ≤ ζi, ∀i = 1, 2, · · · , N

Γi � 0,Q′
i � 0 ∀i = 1, 2, · · · , N

where R̂i is as given in (43). In what follows we present a

theorem which shows that the problem in (45) can be dealt

with via a modified version of the method proposed in Section

III.

Theorem 3. Let R′
i be defined as:

R′
i = log det


ILi

+ ĤiiQ
′
iĤ

H
ii


Γ′

i +
∑

j 6=i

ĤjiQ
′
jĤ

H
ji

(46)

+

N∑

j=1

(1− ρ2ji)σ
2
ji tr{Q

′
j}ILj




−1




where Γ′
i = Γ̂i + ζiILi

. The problem

max
{Q′

i
}N
i=1

min
i=1,2,...,N

R′
i (47)

s.t. tr{Q′
i} ≤ pi, ∀i = 1, 2, . . . , N

Q′
i � 0 ∀i = 1, 2, · · · , N

is equivalent to the problem in (45) in the sense that these two

problems share the same solution {Q′
i}

N
i=1.

Proof: Noting that the inner problem of (45) is separable

w.r.t i, we consider it for a fixed i:

min
Γi�0

R̂i (48)

s.t. ‖Γi − Γ̂i‖2 ≤ ζi

Note that ‖Γi− Γ̂i‖2 =

√
λmax

(
(Γi − Γ̂i)H(Γi − Γ̂i)

)
and

the matrix Γi−Γ̂i is Hermitian; therefore, the constraint ‖Γi−
Γ̂i‖2 ≤ ζi is equivalent to maxm |λm(Γi − Γ̂i)| ≤ ζi with
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λm(Γi − Γ̂i) being the mth eigenvalue of the matrix Γi− Γ̂i.

Therefore, we have that

λm(Γi − Γ̂i) ∈ [−ζi, ζi], ∀m = 1, 2, ..., Li (49)

Consequently, it can be verified that the constraint in (48) is

equivalent to

Γ̂i − ζiILi
� Γi � Γ̂i + ζiILi

(50)

and therefore, that the problem (48) is equivalent to the

following optimization:

min
Γi�0

R̂i (51)

s.t. Γ̂i − ζiILi
� Γi � Γ̂i + ζiILi

Note that HjiQjH
H
ji � 0 and also that

(1 − ρ2ji)σ
2
ji tr{Q

′
j}ILj

� 0, ∀i, j. Consequently, using

(50) we have that:



Γi +
∑

j 6=i

HjiQjH
H
ji +

N∑

j=1

(1− ρ2ji)σ
2
ji tr{Q

′
j}ILj




−1

�

(52)


Γ̂i + ζiILi
+
∑

j 6=i

HjiQjH
H
ji +

N∑

j=1

(1− ρ2ji)σ
2
ji tr{Q

′
j}ILj




−1

The stated result follows from (52). �

Corollary 1. The robust design problem in (45) can be solved

using the proposed algorithm (see Table II) after replacing Γi

with Γ′
i +

∑N
j=1(1− ρ2ji)σ

2
ji tr{Q

′
j}ILj

, and after modifying

Fi, Gji and Ci accordingly. �

V. NUMERICAL RESULTS

In this section, we present several numerical examples to

illustrate the performance of the proposed method. In all

cases, unless otherwise stated, we assume that N = 3, Mi =
Li , M = 4, and SNR, Lipi

tr{Γi}
=15dB, ∀i = 1, 2, · · · , N .

The receiver noise vectors are assumed to be white with

unit variances, i.e., Γi = ILi
, and the elements of channel

matrices are i.i.d. CSCG random variables with zero mean

and unit variances. The convex problems are solved using

CVX toolbox. We set ǫ = 10−3 for the stop criterion of the

algorithm.

To investigate the convergence behaviour of the proposed

algorithm, in Fig. 2 we plot the minimum rate achieved at

various iterations for different values of the SNR. It can be

observed that the minimum rate, i.e. the value of the objective

function, increases at each iteration in agreement with the

results in Section III. As expected, the higher the SNR, the

larger the minimum rate.

Next, we compare the proposed method with the method

in [10] that has been suggested for min rate optimization.

We also include in this comparison the interference alignment

and the max SINR algorithms proposed in [37] along with

the isotropic transmission (in which a precoder matrix Vi is
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Fig. 2: The min rate versus number of iterations for the

proposed method.
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Fig. 3: The max-min rate (versus SNR) achieved by the

proposed algorithm, the method in [10], two methods in [37],

and the isotropic transmission.

given by a scalar version of identity matrix)2 as benchmarks.

Fig. 3 shows the max-min rates, averaged over 30 random

channel realizations. In this example, we set di = 2, ∀i for

all methods (see subsection III.B). We observe that the rate

obtained by the proposed algorithm is considerably higher

than those obtained by the other methods. This observation

shows that the method introduced in this paper can provide

higher quality solutions to the design problem, (12), than its

competitors. As expected, we also see that the rates improve as

SNR increases. To further compare the proposed method with

that of [10] which deal with the same maxmin design problem

2Note that the method in [10] considers min-rate optimization for given di
(see III.B). On the other hand, the interference alignment and the max SINR
algorithms proposed in [37] consider sum-rate maximization; however, the
min-rate associated with these two methods can be computed by employing
the designed precoders of these methods.
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Fig. 4: Illustration of users’ rates for min-rate maximization

algorithms for N = 10: the proposed method and the method

in [10].

(for given di), we show in Fig. 4 the rates of various users

for N = 10. It can be seen that by using our method the rate

will be distributed more fairly among the users; and the min

rate associated with the proposed method is larger than that

of [10]. The superiority of the proposed method may be due

to the special reformulation of the problem. More precisely,

the design problem is non-convex; hence, our devised method

and the method in [10] are not guaranteed to find the global

solution in general. Consequently, the way of dealing with

this non-convex problem affects the quality of the obtained

solutions. In this paper, we apply an MM technique to the

objective function and employ a tight linear minorizer to tackle

the problem. On the other hand, in [10], the design problem

is tackled via a BCD method, viz. an alternation between

precoders, decoders and some auxiliary variables. It is worth

mentioning that at each iteration of the BCD, the updating

of the vector variable is performed only in the direction of

one block. Such a limitation of the BCD algorithm usually

leads to a relatively poor performance when compared to that

of other optimization algorithms. To gain further insights into

these methods, we consider a SIMO interference channel and

compare the following methods: the proposed method, the

method in [10], the SDP bisection algorithm (SDPBA) [18]

and the inexact cyclic coordinate ascent algorithm (ICCAA)

[18]. Fig. 5 shows the max-min rates versus the number

of transmit-receive pairs for the aforementioned methods.

It is seen that the proposed method performs close to the

optimal method in [18] which is a global solver for the SIMO

design problem. Also, similar to Fig. 3, the proposed method

outperforms the method in [10].

To provide more insights, we next compare the computa-

tional complexities of the proposed method and the method in

[10]. To this end, in Fig. 6, we plot the average run time (for

100 random trials) of these methods using a standard PC (with

CPU Core i7 and 16 GB of RAM). The average run time of

the method in [10] is lower than that of the proposed method.
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Fig. 5: Max-min rate of different methods versus the number

of transmit-receive pairs in a SIMO scenario.
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Fig. 6: Average run times of the proposed method and the

algorithm in [10], versus the number of antennas.

On the other hand, as shown e.g. in Fig. 3, the method of this

paper significantly outperforms that of [10] in terms of the

minimum rate.

Unlike the method in [10] that directly designs the precoder

matrices {Vi}
N
i=1 (given {di}

N
i=1), the proposed algorithm

designs the precoder covariance matrices {Qi}
N
i=1 (the pre-

coder matrices {Vi}
N
i=1 can be obtained as a by-product

of the proposed method). Therefore, by using the proposed

method, the optimum precoder matrices {Vi}
N
i=1 as well

TABLE III: Average run times for covariance design and for

precoder design cases using the proposed method.

Qi design
Vi design

(d = 2)
Vi design

(d = 3)
Vi design

(d = 4)

M = 4 98.8s 74.3s 88.3s 100.5s

M = 6 121.7s 95.6s 108.4s 110.9s
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Fig. 7: The max-min rate achieved by the proposed algorithm

for designing {Qi}
N
i=1 and, respectively, designing {Vi}

N
i=1

for different values of d, versus the number of antennas per

user (M ).

as the optimum number of their columns {di}
N
i=1 (i.e. the

lengths of symbol streams) will be determined. To show the

importance of this design aspect, in Fig. 7 we plot the max-

min rate achieved by designing {Qi}
N
i=1 and, respectively,

by designing {Vi}
N
i=1 for certain values of {di}

N
i=1 = d, ∀i,

versus the number of antennas. As expected, the rates achieved

by designing {Qi}
N
i=1 are higher than (or equal to) those

obtained by designing {Vi}
N
i=1 with fixed {di}

N
i=1. This can

be explained by the fact that the optimal values for {di}
N
i=1

are also determined in the design of {Qi}
N
i=1. To compare

the computational time for covariance design with that for

only precoder design, we report the corresponding average run

times of these two cases in Table III for 100 random trials.

We observe that there is no considerable difference between

the average run times.

As stated earlier, the considered optimization problem is

NP-hard and, as a result, any solution depends on the em-

ployed initial point. To investigate the dependency of the

proposed method on the employed initial points, in Fig. 8.a

we plot the histogram of the max-min rates corresponding to

200 randomly chosen initial points. The histogram for the al-

gorithm in [10] is also depicted in Fig. 8.b. The rates achieved

by the proposed method are in the interval [5.11− 5.98] with

a variance of about 0.02, while those achieved by the method

in [10] are in the interval [2.77 − 4.78] with a variance of

about 0.2. Consequently, in this example, the proposed method

achieves higher rates and its performance depends on the initial

points only mildly.

Finally, we study the effect of channel estimation errors and

noise covariance uncertainty on the performance of the method

proposed in Section IV. To this end, we set ρji = ρ as well

as ζi = ζ, ∀i, j = 1, · · · , N and define the loss parameter

L(ρ, ζ) = 1−
Rnr(ρ, ζ)

Rr(ρ, ζ)
(53)
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Fig. 8: Histogram of max-min rates achieved using (a) the

proposed method and (b) the algorithm in [10] for 200

randomly chosen initial points.

where Rnr(ρ, ζ) and Rr(ρ, ζ) denote the max-min rates

achieved by the non-robust and the robust methods, respec-

tively, for uncertainty parameters (ρ, ζ). Note that the loss pa-

rameter L(ρ, ζ) quantifies the performance degradation caused

by employing the non-robust method instead of the robust one.

Note also that L depends on the realizations of the channel

matrices as well as noise covariances. In Fig. 9, we plot the

maximum value of L(ρ, ζ) versus ρ for 100 realizations of

channel matrices. In this example, we set Γi = Γ̂i + ζI, ∀i
with ζ = 0.25. It can be seen that even for large values of

ρ (i.e., relatively low channel estimation errors), employing

the robust method provides a significantly larger max-min

rates. As expected, the loss decreases as the estimation quality

improves, i.e., as ρ increases. Note that the loss is non-zero

even for the case of ρ = 1 in which CSI is perfect. This is

due to the uncertainty in the noise covariances. Finally, note

that in this example we have numerically observed that the
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Fig. 9: The Loss L (in percentage) versus the CSI error

parameter ρ (ζ = 0.25).

performance loss is more sensitive to CSI uncertainty than the

noise covariance uncertainty.

VI. CONCLUSION

In this paper, we considered a MIMO interference chan-

nel network with conventional LMMSE decoder matrices at

the receivers for which we designed the transmit covariance

matrices under the max-min fairness criterion. The problem is

non-convex and NP-hard in the number of users. We proposed

an efficient algorithm based on the MM optimization technique

that provides quality solutions to this design problem. We

proved that the proposed algorithm converges to stationary

points of the problem. Our results on the convergence analysis

can pave the way for convergence analysis of other MM

solvers for a class of maxmin optimization problems. We also

considered uncertainties in the noise covariances and the CSI,

and extended our algorithm to design precoder covariance

matrices in these cases. Numerical results were included to

illustrate the effectiveness of the proposed method in various

scenarios.

APPENDIX A

PROOF OF (6) AND (7)

We begin by proving the expression of the LMMSE in (6).

Assuming E{yi} = 0 and E{si} = 0, the LMMSE estimator

of si for given yi has the following expression [31]:

ŝi = Csiyi
C−1

yi︸ ︷︷ ︸
,Wi

yi (54)

where Csiyi
is the cross-covariance matrix between si and yi

and Cyi
is the auto-covariance matrix of yi. Using (2) and

noting that E{sis
H
i } = Idi

and E{sis
H
j } = 0, i 6= j, we have:

Csiyi
= E{siy

H
i } = VH

i HH
ii (55)

Cyi
= E{yiy

H
i } =

N∑

j=1

HjiVjV
H
j HH

ji + Γi

The expression of the LMMSE in (6) is obtained by substi-

tuting (55) in (54).

Next, we show that substituting (6) in (4) yields the ex-

pression for rate Ri in (7). To this end, we rewrite (6) by

using the matrix inversion identity (A + BCD)−1BC =
A−1B(C−1 +DA−1B)−1 as follows:

WLMMSE
i =

(
Idi

+VH
i HH

iiC
−1
i

HiiVi

)−1

︸ ︷︷ ︸
,Ce

VH
i HH

iiC
−1
i

(56)

Let Ωi , WiHiiViV
H
i HH

iiW
H
i

(
WiCiW

H
i

)−1
, then

Ωi =CeV
H
i HH

iiC
−1

i
HiiViC

−1
e × (57)

CeV
H
i HH

iiC
−1

i
HiiViCe

(
CeV

H
i HH

iiC
−1

i
HiiViCe

)−1

=CeV
H
i HH

iiC
−1

i
HiiViC

−1
e

Finally, it is readily verified that by substituting (57) in (4)

and using Sylvester determinant property, (7) is obtained.

APPENDIX B

EXTENSION TO MIMO-IBC

To model MIMO IBC, we consider N cells that each con-

sists of one transmitter (base station) and multiple receivers.

More precisely, the transmitter of the nth cell (n ∈ {1, ..., N})

is equipped with Mn antennas and serves In receivers. Also,

we denote the ith receiver in the nth cell by in and its

number of antennas by Lin . The nth transmitter uses the linear

precoder matrix Vin ∈ CMn×din to send the information to its

ith receiver. More precisely, it uses Vin to convert the symbol

stream si ∈ Cdin×1 into the vector din ∈ CMin×1, i.e.,

din = Vinsin (58)

and sends
∑I

i=1 din over flat fading channels. The received

signal at the inth receiver is given by:

yin = Hnindin︸ ︷︷ ︸
desired signal

+
∑

k 6=i

Hnindkn

︸ ︷︷ ︸
intracell interference

+
∑

j 6=n

∑

k

Hjindkj

︸ ︷︷ ︸
intercell interference

+nin

(59)

where Hjin ∈ C
Lin×Mj denotes the channel matrix between

the jth transmitter and the inth receiver. Also, nin ∈ CLin×1

is the CSCG noise at the inth receiver with zero mean and

covariance matrix Γin ∈ S
++
Lin

. The maxmin optimization

problem can be cast as follows:

max
{Qin}

IN
in=1

min
in=1,2,...,IN

Rin (60)

s.t.

I∑

i=1

tr{Qin} ≤ pin ∀in = 1, 2, . . . , IN

Qin � 0 ∀in = 1, 2, . . . , IN

where,

Rin = (61)

log det



ILin
+HninQinH

H
nin



Γin +
∑

(j,k) 6=(n,i)

HjinQkj
HH

jin



−1




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with Qin , VinV
H
in

∈ CMin×Min , n = 1, . . . , N, i =
1, . . . , I , being the precoder covariance matrices. The design

problem above is similar to that in (12) and hence can be dealt

with by the proposed MM method.

APPENDIX C

PROOF OF PROPOSITION 1

First, note that Qi can be decomposed as Qi = ṼiṼ
H
i .

Let Bi,11 denote the left upper block of B−1
i . By using the

blockwise matrix inversion lemma (see, e.g., [38]), we have

that:

Bi,11=


IMi

− ṼH
i HH

ii



Γi +

N∑

j=1

HjiṼjṼ
H
j HH

ji




−1

HiiṼi




−1

(62)

Then, by using Woodbury matrix identity, (62) can be rewritten

as:

Bi,11=IMi
+ṼH

i HH
ii


Γi +

∑

j 6=i

HjiṼjṼ
H
j HH

ji



−1

HiiṼi (63)

Finally, substituting (63) in (13) and using Sylvester determi-

nant property, (11) is obtained.

APPENDIX D

PROOF THAT Bi ≻ 0

The matrix Bi is defined in (15). First it is obvious that

IMi
≻ 0. Thus, it suffices to prove that the Schur complement

of IMi
in Bi is positive definite, i.e. [27] [38]:

Si ,Γi +

N∑

j=1

HjiQjH
H
ji −HiiQiH

H
ii (64)

=Γi +

N∑

j=1
j 6=i

HjiQjH
H
ji ≻ 0

The matrices HjiQjH
H
ji , ∀i, j are obviously positive semidef-

inite. Therefore, Si is positive definite because it is the sum

of a positive definite matrix (Γi) and a number of positive

semidefinite matrices, and as a result Bi ≻ 0.

APPENDIX E

PROOF OF EQ. (17)

We begin the proof by presenting the following theorem

from [39].

Theorem 4. Let X ∈ S
+
N and define

∇Xf(X) =




∂f(X)
∂X11

∂f(X)
∂X12

∂f(X)
∂X13

. . .
∂f(X)
∂X1N

∂f(X)
∂X21

∂f(X)
∂X22

∂f(X)
∂X23

. . .
∂f(X)
∂X2N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∂f(X)
∂XN1

∂f(X)
∂XN2

∂f(X)
∂XN3

. . .
∂f(X)
∂XNN




for a differentiable function f(X) : S
+
N → R. Then, the

following inequality holds for any convex (differentiable)

function f(X):

f(Y) ≥ f(X) + tr{(∇Xf(X))H (Y −X)}, ∀X,Y � 0 (65)

�

Now, we use the following differentiation formulas for

g(X) , det(AX−1B) with X ∈ S
++
N and A, B of proper

dimensions:

∇X (g(X)) = (66)

− det(AX−1B)X−1AH(BHX−1AH)−1BHX−1

Putting A = UH and B = U in (66) and applying the chain

rule, we can write:

∇X(log(g(X))) =
1

g(X)
∇X(g(X))

= −X−1U(UHX−1U)−1UHX−1. (67)

The proof of (17) is completed by using (67) in (65).

APPENDIX F

PROOF OF THEOREM 2

Let f(x) , min
i

fi(x) and g(x,x0) , min
i

gi(x,x0). To

prove Theorem 2, we will show that the conditions A.1-A.3

stated in Theorem 1 are satisfied for the problem (37).

f(x) is a continuous function, since it is the minimum of

finite set of continuous functions. Therefore, the set A =
f−1((−∞, f(x0)]) is closed and as a result lev≤f(x0)f , which

is a closed subset of compact set C, is also compact [40].

Since M is finite, there is an interval Λ = [0, λmax] such that

mini fi(x0+λd) = fî(x0+λd) and mini gi(x0+λd,x0) =
gî(x0 + λd,x0) , ∀λ ∈ Λ. From convexity of fî(x), we have:

fî(x0 + λd) ≥ fî(x0) + tr (∇Xfî(x0))
T
(λd)) , ∀λ ∈ Λ

(68)

On the other hand, from the definition of g(x,x0):

lim sup
λ→0

g(x0 + λd,x0)− g(x0,x0)

λ
= (69)

tr{(∇Xfî(x0))
T
(d)}

Combining (68) and (69) leads to:

lim sup
λ→0

f(x0 + λd)− f(x0)

λ
≥ (70)

lim sup
λ→0

g(x0 + λd,x0)− g(x0,x0)

λ

Also for every ǫ > 0 there is some α such that the following

inequality holds for λ ≤ α, λ ∈ Λ:

fî(x0 + λd) ≤ fî(x0) + tr{(∇Xfî(x0))
T
λd}+ ǫλ (71)

Therefore:

f(x0 + λd) − f(x0)

λ
≤

g(x0 + λd,x0)− g(x0,x0)

λ
+ ǫ

(72)

lim sup
λ→0

f(x0 + λd)− f(x0)

λ
≤ (73)

lim sup
λ→0

g(x0 + λd,x0)− g(x0,x0)

λ

The proof is completed by combining (73) and (70).
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