
Hardware-Limited Task-Based Quantization
Nir Shlezinger, Yonina C. Eldar, and Miguel R. D. Rodrigues

Abstract

Quantization plays a critical role in digital signal processing systems. Quantizers are typically

designed to obtain an accurate digital representation of the input signal, operating independently of

the system task, and are commonly implemented using serial scalar analog-to-digital converters (ADCs).

In this work, we study hardware-limited task-based quantization, where a system utilizing a serial scalar

ADC is designed to provide a suitable representation in order to allow the recovery of a parameter vector

underlying the input signal. We propose hardware-limited task-based quantization systems for a fixed and

finite quantization resolution, and characterize their achievable distortion. We then apply the analysis to

the practical setups of channel estimation and eigen-spectrum recovery from quantized measurements. Our

results illustrate that properly designed hardware-limited systems can approach the optimal performance

achievable with vector quantizers, and that by taking the underlying task into account, the quantization

error can be made negligible with a relatively small number of bits.

I. INTRODUCTION

Quantization refers to the representation of a continuous-amplitude signal using a finite dictionary,

or equivalently, a finite number of bits [1]. Quantizers are implemented in digital signal processing

systems using analog-to-digital convertors (ADCs), which typically operate in a serial scalar manner

due to hardware-limitations. In such systems, each incoming continuous-amplitude sample is represented

in digital form using the same mechanism [2]. The quantized representation is commonly selected to

accurately match the original signal, in the sense of minimizing some distortion measure, such that the

signal can be recovered with minimal error from the quantized measurements [3, Ch. 10], [4].

Quantization design is typically performed regardless of the system task. However, in many signal

processing applications, the goal is not to recover the actual signal, but to capture certain parameters,

such as an underlying model or unknown channel, from the quantized signal [5]. We refer to systems
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where one wishes to extract some information from the quantized signal, rather than recovering the signal

itself, as task-based quantization, and to such systems operating with serial scalar ADCs as hardware-

limited task-based quantization systems.

Hardware-limited quantization with low resolution is the focus of growing interest over recent years

due to the increasing complexity and bitrate demands of modern signal processing and communications

systems. Common tasks considered with low resolution hardware-limited quantization include multiple-

input multiple-output (MIMO) communications [6]–[12], channel estimation [11]–[17], subspace estima-

tion [18], time difference of arrival estimation [19], and direction of arrival (DOA) estimation [20], [21].

In these works it is assumed that quantization is carried out separately from the system task, typically

using fixed uniform low-precision quantizers, e.g., one-bit quantization of a scalar value is implemented

using the sign function [6]. These quantized measurements are then processed in the digital domain using

different inference algorithms, such as linear estimators [11], [14], maximum-likelihood estimation [15],

and approximate message passing based algorithms [10], [16], [17]. As these works focus only on the

digital processing, they do not provide guidelines to designing quantization systems with a small and

finite number of bits by acknowledging the task of the system.

When hardware-limitations are not present, task-based quantization systems can take advantage of joint

vector quantization, which is known to be superior to serial scalar quantization [22, Ch. 22.2]. Previous

works on task-based quantization without hardware limitations are divided according to whether the

parameter vector is modeled as a random vector, namely, a Bayesian setup, or as a deterministic unknown

parameter. When the signal parameter is random, task-based quantization can be viewed as an indirect

lossy source coding problem1 [1, Sec. V-G]. For this setup with a stationary source that is related to

the observation vector via a stationary memoryless channel, Witsenhausen proved in [23] that the rate-

distortion function, namely, the minimal number of bits required to obtain a given representation accuracy

determined by the distortion measure, is asymptotically equivalent to the rate-distortion function for

representing the observed signal – instead of the signal parameter – with a surrogate distortion measure.

Under mean-squared error (MSE) distortion, Wolf and Ziv proved in [24] that this equivalence also

holds for finite signal size, and the work [5] provided guidelines to the optimal joint quantization and

estimation scheme. Recently, Kostina and Verdu characterized nonasymptotic bounds on the rate-distortion

functions for indirect as well as direct lossy source coding with arbitrary distortion measures [25], [26], by

considering single-shot quantization, and specialized the bounds for i.i.d. signals with separable distortion.

The indirect source coding framework was also used to study conversion of continuous-time signals into

1Direct lossy source coding typically refers to the standard quantization setup where the task of the system is to recover the
quantized signal, while indirect source coding refers to task-based quantization [25].
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quantized discrete-time signals in [27], [28]. The focus in the works [23]–[28] is on the optimal tradeoff

between quantization rate and achievable distortion. Consequently, their results cannot be applied to

quantify the achievable performance of practical hardware-limited systems utilizing serial scalar ADCs.

For a signal parameter modeled as deterministic and unknown, [29] studied detection from quantized

observations, i.e., recovering a scalar binary parameter, while [30] treated detection from quantized prior

probabilities. Quantization for the recovery of a scalar parameter taking values on a discrete finite set

was studied in [31]. The design of quantizers for the recovery of a vector parameter taking values on a

continuous set was considered in [32], which proposed an adaptive algorithm for tuning the quantizer. In

all the works above, i.e., [29]–[32], as well as in [5], the analysis assumes vector quantizers with high

resolution, where the number of bits used for representing the quantized signal can be made arbitrarily

large. They do not consider practical systems that utilize serial scalar quantizers with a fixed and finite

number of bits.

A. Main Contributions

In this work we study quantization systems which are hardware-limited to utilize practical serial scalar

ADCs operating with a fixed number of bits, for the task of acquiring a random parameter vector taking

values on a continuous set. Our approach is to account for the task in design of the quantization system,

thus mitigating the effect of the structure imposed by hardware limitations. This hardware-limited task-

based framework fits a broad range of signal processing and communications systems. In particular, a task

may be any data processing or inference objective, and various constraints encountered in practice, such

as sampling rate limitations, delay restrictions, and imposed structures, can be represented as hardware

limitations. Consequently, although our derivation here considers quantization for the task of estimating a

desired parameter vector while restricted to using scalar ADCs, the underlying approach, i.e., to overcome

hardware limitations by properly accounting for a task in the system design, is applicable to a much

broader family of systems.

We first consider the case where the observations and the desired vector are related such that the

minimum MSE (MMSE) estimate is a linear function of the observations. Such relationships are com-

monly encountered in channel estimation and signal recovery problems, e.g., [5], [8]–[16]. We focus on

structured systems implementing uniform quantization with linear processing, allowing analog combining

prior to digital processing. This approach was previously studied in the context of MIMO communications

[6], [33]–[35]. For this setup, we derive the hardware-limited task-based quantization system which

minimizes the MSE, and characterize the achievable distortion. The proposed system accounts for the

task by reducing the number of quantized samples via an appropriate linear transformation to be not
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larger than the size of the desired signal. It then rotates the quantized samples to have identical variance.

Quantization is performed based on a waterfilling-type expression, accounting for the serial operation

and the limited dynamic range of practical ADCs.

In addition, we characterize the minimal achievable distortion of two suboptimal approaches: We

first discuss systems in which processing is carried out only in the digital domain, as is the structure

considered in the majority of the literature of tasks performed with low resolution quantization, e.g., [13]–

[16], [18]–[20]. Then, we study systems which quantize the MMSE estimate, an approach which is known

to be optimal when using vector quantizers [24], and was also proposed for compressed sensing with

quantized measurements [36]. Surprisingly, we show that, unlike when vector quantizers are employed, in

the presence of serial scalar ADCs, quantizing the MMSE estimate is generally suboptimal. We provide

a necessary and sufficient condition for this approach to coincide with the optimal design.

Next, we extend the proposed system to scenarios where the observations and the desired vector are

related via an arbitrary stochastic model. In particular, we identify the main design guidelines associated

with the case where the MMSE estimate is a linear function of the observations, and discuss how they

may be applied for arbitrary models. Then, we explicitly show how these guidelines can be used to

construct a hardware-limited task-based quantization system for scenarios in which the desired vector

can be recovered from the empirical covariance of the observations, as in [5], [18]–[21].

Finally, we apply our results to two practical setups: Channel estimation from quantized measurements

[11]–[16] and eigen-spectrum estimation from quantized measurements [5]. We demonstrate that, by

properly accounting for the presence of serial scalar ADCs, practical hardware-limited systems operating

with a relatively small number of bits approach the optimal performance, achievable with vector quantiz-

ers, in practical and relevant scenarios. Furthermore, we show that hardware-limited quantizers designed

accounting for the task of the system can substantially outperform task-ignorant systems utilizing vector

quantizers. This gain is mainly achieved by applying task-based linear analog processing, in addition to

the digital processing.

B. Organization and Notations

The rest of this paper is organized as follows: Section II briefly reviews some preliminaries in quantiza-

tion theory, and formulates the hardware-limited task-based quantization setup. Section III discusses task-

based quantization with vector quantizers. Section IV studies hardware-limited task-based quantization

when the MMSE estimate is linear, and Section V extends the proposed design to arbitrary setups.

Section VI presents the application of the results in a numerical study. Section VII provides some

concluding remarks. Detailed proofs of the results are given in the appendix.
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Fig. 1. Quantizer illustration.

Throughout the paper, we use boldface lower-case letters for vectors, e.g., x; the ith element of x is

written as (x)i. Matrices are denoted with boldface upper-case letters, e.g., M , and (M)i,j is its (i, j)th

element. Sets are denoted with calligraphic letters, e.g., X , and X n is the nth order Cartesian power of

X . Transpose, Euclidean norm, trace, stochastic expectation, sign, and mutual information are written as

(·)T , ‖·‖, Tr (·), E{·}, sign (·), and I (· ; ·), respectively, and R is the set of real numbers. We use a+

to denote max(a, 0), and In is the n× n identity matrix. All logarithms are taken to basis 2.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Preliminaries in Quantization Theory

To formulate the hardware-limited task-based quantization problem, we first review standard quanti-

zation notations, after which we discuss task-based quantization. To that aim, we recall the definition of

a quantizer:

Definition 1 (Quantizer). A quantizer Qn,kM (·) with logM bits, input size n, input alphabet X , output

size k, and output alphabet X̂ , consists of: 1) An encoding function ge
n : X n 7→ {1, 2, . . . ,M} , M

which maps the input into a discrete index i ∈ M. 2) A decoding function gd
k : M 7→ X̂ k which maps

each index i ∈M into a codeword qi ∈ X̂ k.

We write the output of the quantizer with input x ∈ X n as x̂ = gd
k (ge

n (x)) , Qn,kM (x). Scalar

quantizers operate on a scalar input, i.e., n = 1 and X is a scalar space, while vector quantizers have a

multivariate input. The set of codewords {qi}Mi=1 is referred to as the quantization codebook. When the

input size and output size are equal, namely, n = k, we write QnM (·) , Qn,nM (·). An illustration is given

in Figure 1.

1) Standard Quantization: In the standard quantization problem, a QnM (·) quantizer is designed to

minimize some distortion measure dn : X n×X̂ n 7→ R+ between its input and its output. The performance

of a quantizer is therefore characterized using two measures: The quantization rate, defined as R ,

1
n logM , and the expected distortion E{dn (x, x̂)}. For a fixed input size n and codebook size M , the
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optimal quantizer is thus given by

Qn,opt
M (·) = arg min

Qn
M (·)

E {dn (x, QnM (x))} . (1)

Characterizing the optimal quantizer via (1) and the optimal tradeoff between distortion and quantization

rate is in general a very difficult task. Consequently, optimal quantizers are typically studied assuming

either high quantization rate, i.e., R → ∞, see, e.g., [37], or asymptotically large input size, namely,

n → ∞, typically with i.i.d. inputs2, via rate-distortion theory [3, Ch. 10]. For example, when the

quantizer input consists of i.i.d. random variables (RVs) with probability measure fx, and the distortion

measure can be written as dn (x, x̂) = 1
n

n∑
i=1

d ((x)i , (x̂)i) for some d : X ×X 7→ R+, then the optimal

distortion in the limit n→∞ for a given rate R is given by the distortion-rate function:

Definition 2 (Distortion-rate function). The distortion-rate function for input x ∈ X with respect to the

distortion measure d : X × X 7→ R+ is defined as

Dx (R) = min
fx̂|x:I(x̂;x)≤R

E {d (x̂, x)} . (2)

The conditional distribution which obtains the minima in (2), fopt
x̂|x, is referred to as the optimal

distortion-rate distribution, and the marginal distribution fx̂ =
∫
fopt
x̂|xfx is referred to henceforth as

the optimal marginal distortion-rate distribution.

Comparing high quantization rate analysis for scalar quantizers and rate-distortion theory for vector

quantizers demonstrates the sub-optimality of serial scalar quantization. For example, for large R, even

for i.i.d. inputs, vector quantization outperforms serial scalar quantization, with a distortion gap of 4.35

dB for Gaussian inputs with the MSE distortion [22, Ch. 23.2].

2) Task-Based Quantization: In task-based quantization the design objective of the quantizer is some

task other than minimizing the distortion between its input and output. In the following, we focus on

the generic task of acquiring a zero-mean random vector s ∈ Rk from a measured zero-mean random

vector x ∈ Rn, where the entries of x and s have finite variance, and n ≥ k > 0. This formulation

accommodates a broad range of tasks, including channel estimation, covariance estimation, and source

localization. A natural distortion measure for such setups is the MSE, which we consider throughout the

paper. An illustration of a task-based quantization system is depicted in Figure 2.

2Rate-distortion theory can also be used for non i.i.d. signals, see, e.g., [38, Ch. 5]. However, the simple classical expression,
as given by the distortion-rate function in Def. 2, requires the observed signal to have i.i.d. entries.
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Fig. 3. Hardware-limited task-based quantizer.

B. Problem Formulation

In this work we study task-based quantization with hardware limitations. As discussed in the intro-

duction, practical digital signal processing systems typically obtain a digital representation of physical

analog signals using serial scalar ADCs. We refer to task-based quantization with serial scalar ADCs as

hardware-limited task-based quantization. Since in such systems, each continuous-amplitude sample is

converted into a discrete representation using a single quantization rule, this operation can be modeled

using identical scalar quantizers. Consequently, the system we consider is modeled using the setup

depicted in Fig. 3. The observed signal x ∈ Rn is projected into Rp, p ≤ n, using some mapping

ha(·), which represents the pre-quantization processing carried out in the analog domain. Since general

mappings may be difficult to implement in analog, we henceforth restrict ha(·) to be a linear function,

namely, we only allow linear analog combining, as in, e.g., [6], [33]. In this case, ha(x) = Ax for some

A ∈ Rp×n.

Each entry of ha

(
x
)

is quantized using the same scalar quantizer with resolution M̃p , bM1/pc,

denoted Q1
M̃p

(·). The overall number of quantization levels is thus
(
M̃p

)p ≤M . We note that M , which

represents the memory requirement of the system, is also directly related to the ADC power consumption.

However, for the same overall number of quantization levels M , different selections of p may result in

different power consumptions, depending on the physical implementation of the ADC, see, e.g., [35]. In

the following we keep the value of M fixed and finite, i.e., the memory requirement, which is independent

of the specific implementation of the ADC, is the same for all considered systems.

The representation of s, denoted ŝ, is obtained as the output of some post-quantization mapping

hd : Rp 7→ Rk, applied to the output of the identical scalar quantizers. The mapping hd(·) represents
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the joint-processing carried out in the digital domain. The quantized representation ŝ can be written as

ŝ = hd

(
Q1
M̃p

(
(ha (x))1

)
, . . . , Q1

M̃p

(
(ha (x))p

))
. (3)

The novelty of the model in Fig. 3, compared to previous works on quantization for specific tasks

with serial scalar ADCs, e.g., [8]–[21], is in the introduction of the additional linear processing carried

out in the analog domain, represented by the mapping ha(·). The concept of using analog combining

prior to digital processing was previously studied in the context of MIMO communications in [6], [7],

[33]–[35]. The motivation for introducing ha(·) is to reduce the dimensionality of the input to the ADC,

thus facilitating a more accurate quantization without increasing the overall number of bits, logM . As

shown in the following sections, by properly designing ha(·), this approach can substantially improve

the performance of task-based quantizers operating with serial scalar ADCs.

Our analysis of hardware-limited task-based quantization, focusing on the MSE distortion, consists of

three parts:

1) As a preliminary step, in Section III, we discuss non hardware-limited task-based quantization

systems, namely, systems implementing task-based quantization using optimal vector quantizers

instead of serial scalar ADCs. The purpose of this analysis is to serve as a basis for comparing the

performance of hardware-limited task-based quantizers to vector quantizers.

2) Next, in Section IV, we focus on the case where x and s are related such that the MMSE estimate

of s from x is a linear function of x. Such relationships arise in various channel estimation and

signal recovery setups, e.g., [5], [8]–[16].For this setting, we propose a hardware-limited quantization

system design, and characterize its achievable distortion. We also characterize the minimal achievable

distortion when no pre-quantization processing is carried out, as well as when the analog combiner

is designed to recover the MMSE estimate.

3) Then, in Section V, we use the characterization of ha(·) and hd(·) given in Section IV for linear

models, to provide guidelines for designing ha(·) and hd(·) under arbitrary relationships between x

and s. We suggest a concrete design for cases in which s can be estimated from the second-order

statistical moments of x, as in [5], [18]–[21].

Our analysis shows that, unlike when vector quantizers are applied, the optimal strategy for systems

utilizing serial scalar ADCs is not to quantize the MMSE estimate. Instead, the input to the ADC is

rotated to account for the identical quantization rule of serial scalar ADCs, and includes a waterfilling-type

expression to account for the limited dynamic range. Furthermore, our numerical comparison presented

in Section VI demonstrates that the proposed system, which uses simple hardware, can approach the
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Fig. 4. Task-ignorant quantizer.

performance of the optimal vector quantizer.

III. TASK-BASED VECTOR QUANTIZATION

As a preliminary step towards our study of hardware-limited task-based quantizers, we consider task-

based quantization which utilizes vector quantizers without hardware limitations. We focus on two

approaches for task-based quantization: In the first, referred to as optimal task-based quantization, the

quantizer QMn,k(·) in Figure 2 is designed to recover the desired vector s. In the second strategy, described

in Figure 4 and referred to as task-ignorant quantization, the quantizer is designed to recover the observed

vector x separately from the task, and s is estimated from the quantized representation. The optimal

task-based quantizer obtains the minimal achievable distortion for a given quantization rate, while the

task-ignorant quantizer represents the best system one can construct when the quantizer is designed

separately from the task. The approaches we discuss below are based on joint vector quantization, and

thus cannot be implemented using practical serial scalar ADCs.

1) Optimal Task-Based Quantizer: For the MSE distortion, the optimal quantizer is constructed by

first obtaining the MMSE estimate of s from x, s̃ = E {s|x}, and then quantizing the estimate [24].

This leads to a minimal distortion given by

min
Qn,k

M (·)
E

{∥∥∥s−Qn,kM (x)
∥∥∥2
}

= E
{
‖s− s̃‖2

}
+ min
Qk

M (·)
E

{∥∥∥s̃−QkM (s̃)
∥∥∥2
}
. (4)

It follows from (4) that the minimal distortion is the sum of the minimal estimation error of s from x,

and the minimal distortion in quantizing the MMSE estimate s̃. The latter can be obtained explicitly

under a high quantization rate assumption, i.e., 1
k logM → ∞, using fine quantization analysis, as was

done in [5], or alternatively, when s̃ has i.i.d. entries and k tends to infinity, using rate-distortion theory.

For finite k, n and M , the minimal distortion in quantizing the MMSE estimate may be bounded as

stated in the following proposition:

Proposition 1. For any random vector c̃ ∈ Rk with probability measure fc̃ independent of s̃, the minimal

MSE in quantizing the MMSE estimate s̃ using a QkM quantizer satisfies

Ds̃(logM) ≤ min
Qk

M (·)
E

{∥∥∥s̃−QkM (s̃)
∥∥∥2
}
≤ E


∞∫

0

[
Pr
(
‖c̃−s̃‖2 > t

∣∣∣ s̃)]M dt

 . (5)

Proof: See Appendix A.
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The bounds in (5) are used in the sequel for comparing the performance of hardware-limited task-based

quantization to the optimal performance achievable using vector quantizers. These bounds are required

since evaluating the minimal distortion of a vector quantizer, i.e., the middle term in (5), is a challenging

task for finite signal size and quantization resolution. The upper bound in (5) is the exact performance

of random coding, which is known to provide a relatively tight bound for fixed blocklengths [26], and

to asymptotically achieve the distortion-rate curve [22, Ch. 23.2]. A reasonable assignment for fc̃ in (5)

is the optimal marginal distortion-rate distribution; with this distribution the distortion of quantizers with

i.i.d. random codewords coincides with the distortion-rate function for sources generating asymptotically

large number of i.i.d. realizations of s̃ [22, Ch. 24.2]. Alternative upper bounds, which may be tighter and

simpler to compute compared to the one used in (5) yet are not analytically expressible, can be obtained

by numerically evaluating the distortion of iterative and data-driven vector quantizer designs, such as the

extension of Lloyd’s algorithm to multivariate inputs [39]. In general, the distortion-rate function and

the optimal marginal distribution can be obtained using iterative algorithms, e.g., the Blahut-Arimoto

algorithm [3, Ch. 10.8] and its extensions to continuous-valued RVs [40].

2) Task-Ignorant Quantizer: When the quantizer operates independently of the task, the desired vector

s must be estimated directly from the quantized observations. For the optimal quantizer and estimator for

this setup, QnM (·) minimizes the MSE between its output and x, and s is estimated from the output of the

quantizer using the MMSE estimator. From the orthogonality principle, the resulting MSE in estimating

s is

E
{∥∥s− E{s∣∣QnM (x)

}∥∥2
}

= E
{
‖s− s̃‖2

}
+ E

{∥∥s̃−E{s∣∣QnM (x)
}∥∥2
}

(a)
= E

{
‖s−s̃‖2

}
+ E

{∥∥s̃−E{s̃∣∣QnM (x)
}∥∥2
}
, (6)

where (a) follows since s 7→ x 7→ QnM (x) form a Markov chain, thus, by [41, Prop. 4], E
{
s
∣∣QnM (x)

}
=

E
{
s̃
∣∣QnM (x)

}
. The relation in (6) shows that the distortion of the task-ignorant quantizer is given by

the sum of the estimation error of the MMSE estimate s̃ and the estimation error of the MMSE estimate

of s̃ from the quantizer output QnM (x). The main difference between (6) and the optimal estimation error

in (4) is that in (6) the quantizer is fixed, while in (4) it can be set to minimize the estimation error.

In order to compute (6), the distribution of s̃ given QnM (x) is required, which may be difficult to

characterize. One scenario in which this requirement can be relaxed is when s̃ is a linear function of

x, i.e., s̃ = Γx for some Γ ∈ Rk×n. To formulate the resulting distortion, let Σx and ΣQn
M (x) be the

covariance matrices of x and of QnM (x), respectively. The MSE in this case is stated in the following

proposition.
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Proposition 2. When s̃ = Γx, x is zero-mean, and QnM (x) is the optimal quantizer of x, then

E
{∥∥s̃−E{s̃∣∣QnM (x)

}∥∥2
}

=Tr
(
ΓTΓ

(
Σx−ΣQn

M (x)

))
. (7)

Proof: When s̃ is the linear MMSE estimator, the second summand in (6) can be written as

E
{∥∥Γ(x−E{x∣∣QnM (x)

})∥∥2
}

. Therefore,

E
{∥∥s̃−E{s̃∣∣QnM (x)

}∥∥2
}

(a)
= E

{
‖Γ (x−QnM (x))‖2

}
= Tr

(
ΓTΓE

{
(x−QnM (x)) (x−QnM (x))T

})
(b)
= Tr

(
ΓTΓ

(
Σx−ΣQn

M (x)

))
, (8)

where (a) follows since QnM (x) is the optimal quantizer of x in the MSE sense, hence QnM (x) =

E
{
x
∣∣QnM (x)

}
; and (b) is a result of the fact that the optimal quantizer is uncorrelated with the

quantization error [1, Sec. III].

Proposition 2 suggests that, when s̃ is a linear function of x, the distortion can be evaluated using

only the covariance matrix of the task-ignorant quantizer QnM (x). Nonetheless, the covariance of the

quantizer which minimizes the distortion with respect to x is typically difficult to compute for finite M .

Since I(x;QnM (x)) ≤ logM [22, Thm. 23.2], a possible approach to approximate the distortion is to

evaluate Proposition 2 with the covariance matrix of the output distribution which obtains the distortion-

rate function Dx (logM), instead of ΣQn
M (x). This replacement provides a reliable characterization of the

performance of random codes distributed via the optimal marginal distortion-rate distribution for large

M . In the numerical study in Section VI we illustrate that (7) approaches the performance of the optimal

quantizer designed to recover x.

IV. HARDWARE-LIMITED TASK-BASED QUANTIZATION SYSTEMS DESIGN

A. Model Assumptions

We now study the design of hardware-limited task-based quantization systems illustrated in Fig. 3.

As stated in the problem formulation, we consider the case where n, k and logM are fixed and finite,

namely, we do not assume high quantization rate or arbitrarily large inputs. In such cases, explicitly

characterizing the optimal quantization system and the minimal achievable distortion is a very difficult

task, just as characterizing the minimal achievable distortion in lossy source coding with fixed blocklengths

is difficult [25], [26]. Consequently, in the following section we focus on scenarios in which the stochastic

relationship between the vector of interest s and the observation vector x are such that the MMSE estimate

of s from x, s̃ = E{s|x}, is a linear function of x. Additionally, we restrict the digital mapping hd(·)

11
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Fig. 5. Dithered uniform quantization illustration.

to be linear, namely, hd(u) = Bu, B ∈ Rk×p. Since the MMSE estimate is linear here, this constraint

is not expected to have a notable effect on the overall performance, especially when the error due to

quantization is small.

By focusing on these setups, we are able to explicitly derive the achievable distortion and to characterize

the system which achieves minimal distortion. This derivation reveals some non-trivial insights. For

example, we show that the optimal approach when using vector quantizers, namely, to quantize the MMSE

estimate, is no longer optimal in the presence of serial scalar ADCs. Furthermore, as detailed in Section V,

this analysis provides general guidelines for designing hardware-limited task-based quantization systems,

which can be used for any relationship between s and x.

To design a system which operates with simple scalar uniform quantizers, we carry out our analysis

assuming dithered quantization [42]. Using dithered quantizers results in some favorable properties of

the quantized signal, elaborated on in the sequel, which facilitate the analysis. These properties are also

approximately satisfied without dithering for many input distributions [43]. Therefore, by considering

dithered quantization, we are able to rigorously derive the optimal system, where in practice the resulting

system can approach the optimal performance using standard uniform quantizers without dithering.

More specifically, we assume the identical scalar quantizers Q1
M̃p

(·) implement non-subtractive uni-

form dithered quantization [42]. Unlike subtractive dithered quantization, considered in, e.g., [46], non-

subtractive quantizers do not require the realization of the dithered signal to be subtracted from the

quantizer output in the digital domain, resulting in a practical structure [42]. An illustration is depicted

in Figure 5.

To formulate the input-output relationship of the serial ADC, let γ denote the dynamic range of the

quantizer, and define ∆p ,
2γ

M̃p

as the quantization spacing. The uniform quantizer is designed to operate

within the dynamic range, namely, the amplitude of the input is not larger than γ with sufficiently large

probability. To guarantee this, we fix γ to be some multiple η of the maximal standard deviation of the

12



input. By Chebyshev’s inequality [3, Pg. 64], for η ≥ 3 the amplitude of the input is smaller than the

dynamic range with probability over 89% for any input distribution. We assume that η <
√

3M̃p, such

that the variable κp , η2
(
1− η2

3M̃2
p

)−1 is strictly positive. Note that η = 3 satisfies this requirement for

any M̃p ≥ 2, i.e., the ADC is implemented using scalar quantizers with at least one bit. The output of the

serial scalar ADC with input sequence y1, y2, . . . , yp can be written as Q1
M̃p

(yi) = qp (yi + zi), where

z1, z2, . . . , zp are i.i.d. RVs uniformly distributed over
[
−∆p

2 ,
∆p

2

]
, mutually independent of the input,

representing the dither signal. The function qp(·), which implements uniform quantization, is given by

qp(y) =

−γ + ∆p

(
l + 1

2

)
y − l ·∆p + γ ∈ [0,∆p] , l ∈ {0, 1, . . . , M̃p − 1}

sign (y)
(
γ − ∆p

2

)
|y| > γ.

Note that when M̃p = 2, the resulting quantizer is a standard one-bit sign quantizer of the form qp(y) =

c · sign(y), where the constant c > 0 is determined by the dynamic range γ.

Dithered quantizers significantly facilitate the analysis, due to the following favorable properties: When

the input is inside the dynamic range of the quantizer, the output can be written as the sum of the input and

an additive zero-mean white quantization noise signal, which is uncorrelated with the input. This model

allows us to accurately characterize the quantization system which minimizes the MSE in Theorem

1. The favorable properties of dithered quantization are also satisfied in uniform quantization without

dithering for inputs with bandlimited characteristic function, and are approximately satisfied for various

families of input distributions, including the Gaussian distribution [43]. Furthermore, for those input

distributions under which the favorable additive uncorrelated quantization noise model holds without

dithering, the energy of the quantization noise is smaller without dithering than it is with dithering.

Consequently, while in the following analysis we assume dithered quantization, exploiting the fact that

the resulting quantization noise is white and uncorrelated with the input, the proposed system can also

be applied without dithering. Under input distributions for which the uncorrelated quantization noise

model approximately holds, we expect lower distortion values to be achievable compared to the dithered

case. This behavior is demonstrated in the simulations study in Section VI, where we show that applying

the proposed system without dithering yields improved performance, due to the reduced energy of the

quantization noise.

Since the dithered quantization operation can be modeled as adding uncorrelated noise, designing

hardware-limited task-based quantization systems bears some similarity to linear transceiver design in

MIMO communications. However, there are several fundamental differences between the two models. In

hardware-limited quantization the additive quantization noise depends on the number of scalar quantizers
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due to the constraint on the overall number of bits, while in MIMO communications the channel noise

does not depend on how many antennas are used. Furthermore, this additive noise is uncorrelated with the

input but not independent, as commonly assumed in MIMO communications, and this model holds only

when the quantized input is within the dynamic range. These differences between MIMO communications

and hardware-limited task-based quantization result in a different system design.

B. Hardware-Limited Task-Based Quantizer Design

We now characterize the hardware-limited task-based quantizer which minimizes the MSE under the

system model detailed in the previous subsection. Recall that here, the linear operators ha(·) and hd(·),

denoting the analog combining and digital processing in Figure 3, respectively, are represented using

the matrices A and B, respectively. Our characterization yields the analog combining matrix and digital

processing matrix, denoted Ao and Bo, respectively, and the corresponding dynamic range γ. Since for

any quantized representation ŝ, it follows from the orthogonality principle that the MSE, E{‖s− ŝ‖2},

equals the sum of the estimation error of the MMSE estimate, E{‖s − s̃‖2}, and the distortion with

respect to the MMSE estimate, E{‖s̃ − ŝ‖2}, in the following we characterize the performance of the

proposed systems via the distortion with respect to s̃.

Let Γ be the MSE optimal transformation of x, namely, s̃ = Γx, and let Σx be the covariance matrix

of x, assumed to be non-singular. Before we study the overall hardware-limited task-based quantization

system, we first derive the digital processing matrix which minimizes the MSE for a given analog

combining matrix A and the resulting MSE, as stated in the following lemma:

Lemma 1. For any analog combining matrix A and dynamic range γ such that Pr
(∣∣ (Ax)l + zl

∣∣ > γ
)

=

0, namely, the quantizers operate within their dynamic range with probability one, the digital processing

matrix which minimizes the MSE is given by

Bo (A) = ΓΣxA
T

(
AΣxA

T +
2γ2

3M̃2
p

Ip

)−1

,

and the minimal achievable MSE is

MSE (A) = min
B
E
{
‖s̃− ŝ‖2

}
=Tr

(
ΓΣxΓT−ΓΣxA

T

(
AΣxA

T +
2γ2

3M̃2
p

Ip

)−1

AΣxΓT

)
.

Proof: See Appendix B.

The digital processing matrix in Lemma 1 is the linear MMSE estimator of s from the vector Ax+e,

where e represents the quantization noise, which is white and uncorrelated with Ax. This stochastic
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representation is a result of the usage of dithered quantizers with the amplitude of the input to the

quantizers being within the dynamic range. The resulting requirement, namely, to set the dynamic range

γ such that Pr
(∣∣ (Ax)l + zl

∣∣ > γ
)

= 0, is quite restrictive, as it holds only when the entires of x have a

finite support. This model can be satisfied along with the requirement for the MMSE estimator to be linear

in some setups, for example, when s = Γx + w where w is a zero-mean random vector independent of

x. However, in many scenarios of interest the entires of x have an infinite support. In this case, there is

always some probability that the input amplitude will exceed the dynamic range, resulting in some level

of correlation between Ax and e.

Nonetheless, in the following we use the model on which Lemma 1 is based, namely, that the output of

the dithered quantizer can be written as its input corrupted by additive uncorrelated white noise, to design

hardware-limited task-based quantizers also when the entires of x have infinite support. Specifically,

when the dynamic range is set such that the probability of overloading the quantizer is sufficiently

small, namely, Pr
(∣∣ (Ax)l + zl

∣∣ > γ
)
≈ 0 for each l, then modeling Ax and e as uncorrelated becomes

a reliable approximation. Therefore, in order to use Lemma 1 to design hardware-limited task-based

quantizers, we explicitly require the uniform quantizers to operate within their dynamic range with

high probability, as explained in Subsection IV-A, and set the value of γ accordingly. In Section VI

we numerically demonstrate that this model leads to hardware-limited task-based quantizers which are

capable of approaching the performance achievable using vector quantizers for inputs with infinite support.

We now use Lemma 1 to obtain the analog combining matrix Ao which minimizes MSE and the

resulting system. Define the matrix Γ̃ , ΓΣ
1/2
x , and let {λΓ̃,i} be its singular values arranged in a

descending order. Note that for i > rank
(
Γ̃
)
, λΓ̃,i = 0.

The hardware-limited task-based quantization system based on the structure detailed in Subsection II-B

which minimizes the MSE under the model assumptions of Subsection IV-A is given in the following

theorem:

Theorem 1. For the hardware-limited quantization system based on the model detailed in Subsection

IV-A, the analog combining matrix Ao is given by Ao = UAΛAV T
AΣ
−1/2
x , where

• V A ∈ Rn×n is the right singular vectors matrix of Γ̃.

• ΛA ∈ Rp×n is a diagonal matrix with diagonal entries

(ΛA)2
i,i =

2κp

3M̃2
p · p

(
ζ · λΓ̃,i − 1

)+
, (9a)

where ζ is set such that 2κp

3M̃2
p ·p

p∑
i=1

(
ζ · λΓ̃,i − 1

)+
= 1.
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• UA ∈ Rp×p is a unitary matrix which guarantees that UAΛAΛT
AUT

A has identical diagonal

entries, namely, UAΛAΛT
AUT

A is weakly majorized by all possible rotations of ΛAΛT
A [47, Cor.

2.1]. The matrix UA can be obtained3 via [47, Alg. 2.2].

The dynamic range of the ADC is given by

γ2 =
κp
p

=
η2

p

(
1− η2

3M̃2
p

)−1
, (9b)

and the digital processing matrix is equal to

Bo (Ao) = Γ̃V AΛT
A

(
ΛAΛT

A +
2γ2

3M̃2
p

Ip

)−1

UT
A. (9c)

The resulting minimal achievable distortion is

E
{
‖s̃−ŝ‖2

}
=


k∑
i=1

λ2
Γ̃,i

(ζ·λΓ̃,i−1)
+
+1
, p≥k

p∑
i=1

λ2
Γ̃,i

(ζ·λΓ̃,i−1)
+
+1

+
k∑

i=p+1
λ2
Γ̃,i
, p<k.

(9d)

Proof: See Appendix C.

We note that, unlike task-based vector quantizers, for hardware-limited systems detailed in Subsection

II-B, recovering the MMSE estimate s̃ in the analog domain is sub-optimal. Since the quantization is

carried out using a serial scalar ADC, the proposed analog combining rotates the input to the ADC such

that each entry has identical variance, accounting for the fact that the same quantization rule is applied

to each entry. Furthermore, the analog combiner includes a waterfilling-type expression over its singular

values, which accounts for the finite dynamic range of the ADC. In particular, the waterfilling allows the

resulting system to balance the estimation and quantization errors. To see this, we note from Appendix

C that the matrix ΛA determines the dynamic range γ. Consequently, by potentially nulling the diagonal

entries corresponding to the less dominant singular values {λΓ̃,i}, the quantization system reduces the

dynamic range. This yields more precise quantization and reduces the quantization error, at the cost of

a small estimation error.

The quantization system in Theorem 1 minimizes the MSE under the model detailed in Subsection IV-A.

This model is restricted to uniform quantization mappings, as these quantizers faithfully represent typical

serial ADCs. The performance can be further improved by allowing for non-uniform quantizers, as shown

in [44], which used data-driven machine learning methods to optimize the overall system. The model-

3The existence of the unitary matrix UA is guaranteed by [47, Cor. 2.1]. However, this matrix is not unique as, e.g., both
UA and −UA result in a rotation of ΛAΛT

A having identical diagonal entries.
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based analysis of task-based quantization with non-uniform quantizers is left for future investigation.

Theorem 1 also provides guidelines to selecting the dimensions of the output of the analog combiner,

as stated in the following corollary:

Corollary 1. In order to minimize the MSE, p must not be larger than the rank of the covariance matrix

of s̃.

Proof: See Appendix D.

Corollary 1 indicates that analog combining should project the observed vector such that the signal

which undergoes the serial scalar quantization has reduced dimensionality, not larger than the rank of

the covariance of s̃. This follows since, by reducing the dimensionality of the input to the ADC while

keeping the overall number of quantization levels M fixed, the quantization error induced by the scalar

quantization is reduced. The exact optimal value of p is determined by the values of the non-zero singular

values {λΓ̃,i}. In particular, the MSE expression in Theorem 1 implies that decreasing p below the number

of non-zero singular values results in a tradeoff between improving quantization precision and increasing

the estimation error. In the numerical analysis in Section VI we demonstrate that using the proposed

hardware-limited task-based system, the quantization error is made negligible for relatively small M , and

the performance approaches that of the MMSE estimator.

Finally, we show that when the quantization resolution is sufficiently large, the proposed system

produces the MMSE estimate s̃. To that aim, we assume that the covariance matrix of s̃ is non-singular,

thus we set p = k. When the quantization resolution is such that M̃k is sufficiently large, the quantization

noise introduced by the ADC becomes negligible, and the output of the system can be written as

ŝ ≈ BoAox

≈ Γ̃V AΛT
A

(
ΛAΛT

A

)−1
ΛAV T

AΣ
−1/2
x x. (10)

Furthermore, for large M̃k, the parameter ζ becomes ζ ≈ 3M̃2
k · k/

(
2κk

k∑
i=1

λΓ̃,i
)
. Thus, the diagonal

entries in (9a) become (ΛA)2
i,i ≈ λΓ̃,i/

( k∑
i=1

λΓ̃,i
)
. By writing the singular value decomposition (SVD)

Γ̃ = U Γ̃ΛΓ̃V
T
Γ̃

in (10), and recalling that V Γ̃ = V A, we have

ŝ ≈ U Γ̃ΛΓ̃ΛT
A

(
ΛAΛT

A

)−1
ΛAV T

Γ̃
Σ
−1/2
x x

(a)
= U Γ̃ΛΓ̃V

T
Γ̃
Σ
−1/2
x x

(a)
= Γx = s̃,

where (a) follows since for this setting of ΛA, ΛΓ̃ΛT
A

(
ΛAΛT

A

)−1
ΛA = ΛΓ̃, and (b) follows since
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Γ̃ = ΓΣ
1/2
x . Consequently, for sufficiently large quantization resolution, ŝ approaches the MMSE estimate

s̃.

C. Suboptimal Quantization Systems

In the previous subsection we characterized the hardware-limited task-based quantization system which

minimizes the MSE under the model assumptions of Subsection IV-A. In the following we study two

suboptimal systems of interest: a system which does not carry out any processing in the analog domain,

and a system which mimics the optimal vector task-based quantizer by quantizing the MMSE estimate.

Our results in the following are based on the characterization of the achievable MSE for a fixed analog

combining matrix A in Lemma 1.

We begin with the suboptimal case where processing is carried out only in the digital domain. Here,

p = n, and the analog combiner is given by A = In. This structure accommodates the majority of

systems studied in the literature in the context of tasks performed with low precision ADCs, e.g., [13]–

[16], [18]–[20]. The digital processing matrix which minimizes the MSE for this case and the resulting

MSE are stated in the following corollary:

Corollary 2. When the analog combiner is A = In, the minimal achievable MSE is given by

E
{
‖s̃−ŝ‖2

}
=Tr

(
Γ̃T Γ̃

(
In+

3M̃2
n

2κnσ2
x,max

Σx

)−1)
, (11a)

and the corresponding digital matrix is

Bo (In) = ΓΣx

(
Σx +

2κnσ
2
x,max

3M̃2
n

In

)−1

, (11b)

where σ2
x,max , max

i=1,...,n

(
(Σx)i,i

)
.

Proof: The corollary follows directly from Lemma 1. In particular, (11b) is obtained from the digital

processing matrix in Lemma 1 by setting A = In, and (11a) is obtained from the resulting MSE via the

matrix inversion lemma.

The resulting suboptimal system bears some similarity to the task-ignorant system discussed in Section

III in the sense that quantization is carried out independently of the task. However, the system discussed

in Section III performs joint vector quantization, while (11a) is achievable with a serial ADC. As a

result, the system considered here can operate only when logM ≥ n, otherwise the scalar quantizers are

assigned zero bits, while the task-ignorant system of Section III can operate with any positive value of

logM .
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Next, we consider a system in which the analog combining is designed to recover the MMSE estimate

s̃. Here, p = k, and A = Γ. As noted in the discussion following Theorem 1, this approach is suboptimal

when working with serial scalar ADCs, unlike the case with vector quantizers discussed in Section III.

The digital processing matrix which minimizes the MSE for this setup and the resulting MSE are stated

in the following corollary:

Corollary 3. When the analog combiner is A = Γ, the minimal achievable MSE is given by

E
{
‖s̃−ŝ‖2

}
=Tr

(
Γ̃T Γ̃

(
In+

3M̃2
k

2κkσ
2
s̃,max

Γ̃T Γ̃

)−1)
, (12a)

and the corresponding digital matrix is

Bo (Γ) = Γ̃Γ̃T
(

Γ̃Γ̃T +
2κkσ

2
s̃,max

3M̃2
k

Ik

)−1

, (12b)

where σ2
s̃,max , max

i=1,...,k

(
E{(s̃)2

i }
)
.

Proof: The corollary follows directly from Lemma 1 using the same arguments as in the proof of

Corollary 2.

The approach of quantizing the MMSE estimate is in general suboptimal. When the entries of s̃ are

not linearly dependent, namely, the covariance matrix of s̃ is non-singular [49, Ch. 8.1], designing the

analog combiner to recover the MMSE estimate minimizes the MSE if and only if the conditions stated

in the following corollary is satisfied:

Corollary 4. When the covariance matrix of s̃ is non-singular, quantizing the MMSE estimate minimizes

the MSE if and only if the covariance matrix of s̃ is 1
kIk.

Proof: See Appendix E.

Corollary 4 indicates that, except for very specific statistical relationships between x and s, quantizing

the entries of the MMSE estimate vector is purely suboptimal. In the numerical study presented in Section

VI we numerically evaluate the achievable MSE of the considered systems, and illustrate that both the

system proposed in Theorem 1 and the suboptimal system discussed in Corollary 4 are able to approach

the performance of the optimal vector quantizer for large number of quantization levels M , and that the

system of Theorem 1 outperforms the suboptimal system in Corollary 4 for all considered values of M .

Additionally, we illustrate that for large k and relatively small M , a notable gap in MSE is observed

between the hardware-limited task-based quantizer of Theorem 1 and the suboptimal system of Corollary

4.
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V. GUIDELINES FOR HARDWARE-LIMITED TASK-BASED QUANTIZATION FOR ARBITRARY MODELS

A. Design Guidelines

In the previous section we characterized the distortion of hardware-limited task-based quantizers when

the digital mapping hd(·) is a linear function. To that aim, we designed the analog combining ha(·) and the

digital mapping hd(·) such that, if the quantization error induced by the serial scalar ADC is negligible,

then the resulting output approaches the MMSE estimate. In scenarios where the MMSE estimate s̃ is

linear, one can design linear ha(·) and hd(·) such that the resulting quantized representation approaches

s̃ as M increases for any value of p ∈ [k, n], which denotes the dimensions of the output of the analog

linear mapping. In particular, it was noted that when p decreases to the rank of the covariance matrix

of s̃, the performance of the quantization system improves. This improvement follows as more bits can

be assigned to the ADC, thus reducing the error induced by scalar quantization without modifying the

overall number of bits used by the system, logM .

The principles used for designing the linear analog and digital mappings ha(·) hd(·) for the relationship

between s and x considered in Section IV also suggest guidelines for designing hardware-limited task-

based quantization systems for arbitrary joint distributions of s and x with finite-variance entries. In

particular, we propose to set ha(·) and hd(·) according to the following guidelines:

1) The mappings ha(·), hd(·) are such that when M̃p is large enough, hd(ha(x)) approaches the MMSE

estimate s̃.

2) The size of the output of the analog linear mapping, p, is as small as possible.

The first guideline implies that when the quantization error induced by the ADC is sufficiently small,

the output of the system approaches the MMSE estimate, thus reducing the estimation error. The second

guideline guarantees that more bits are assigned to the serial scalar ADC, thus decreasing the quantization

error. Generally speaking, these guidelines provide the ability to balance quantization and estimation

errors.

We note that in some scenarios, it may not be possible to obtain or approximate the MMSE estimate,

s̃, from a linear function of x of reduced dimensions. For example, when s is estimated from the

second-order statistical moments of x, as in eigen-spectrum estimation [5], subspace learning [18], DOA

estimation [20], [21], and source localization [19]. In such cases, s̃ generally cannot be obtained from

a linear function of x of reduced dimensions. Nonetheless, the proposed guidelines can still be applied

to design the quantization system. As an illustrative example, in the following subsection we explicitly

show how these guidelines can be used for recovering the empirical covariance of an input signal.
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B. Example: Recovery from Empirical Covariance

We next demonstrate how the guidelines for designing hardware-limited task-based quantization sys-

tems discussed in Subsection V-A can be applied for recovering the empirical covariance of the input.

Unlike the results presented in Section IV, here we will not be able to explicitly characterize the resulting

distortion. However, in the numerical study carried out in Section VI we empirically illustrate the benefits

of the proposed design, and show that it outperforms processing the observations only in the digital

domain, which is the more popular approach in the literature.

In particular, consider the case where the observed vector x consists of nx zero-mean i.i.d. mx × 1

vectors {xi}nx

i=1, i.e., x =
[
xT1 ,x

T
2 , . . . ,x

T
nx

]T and n = nx · mx. The desired vector s (or its MMSE

estimate s̃) can be recovered from the empirical covariance of {xi}nx

i=1, namely, from

Rx ,
1

nx

nx∑
i=1

xix
T
i .

For example, when s is the eigenspectrum of x, the MMSE estimate s̃ is obtained from Rx via [5,

Eq. (22)]. At first glance, the proposed guidelines cannot be used here, as, in general, for p < n there

exists no linear transformation ha : Rn 7→ Rp such that Rx can be recovered from ha(x). However, an

approximation of Rx can be obtained via the following steps:

• Divide the set {xi}nx

i=1 into ns distinct sets, each consisting of ms = nx

ns
vectors, namely, the lth set

is given by {xi}l·ms

i=(l−1)ms+1, l ∈ {1, 2, . . . , ns}.

• Fix the analog combining such that the input to the serial scalar ADC consists of ns vectors {zl}ns

l=1,

where zl =
l·ms∑

i=(l−1)ms+1

xi. This is achieved by setting ha(x) = Ax, where the entries of A ∈

Rns·mx×nx·mx are given by

(A)(p1−1)mx+q1,(p2−1)mx+q1
= δq1,q2

ms∑
l=1

δ(p1−1)ms+l,p2 ,

for p1 ∈ {1, 2, . . . , ns}, p2 ∈ {1, 2, . . . , nx}, q1, q2 ∈ {1, 2, . . . ,ms}.

• In the digital domain, we approximate Rx from the quantized vectors z̄l ,
[
Q1
M̃p

((zl)1) , . . . , Q1
M̃p

((zl)1)
]T

via

R̂x ,
1

nx

ns∑
l=1

z̄lz̄
T
l .

The rationale behind these steps is that, as discussed in the previous subsection, it allows to balance

quantization and estimation errors. To see this, we note that when the quantization error is negligible,

and the number of sets ns is sufficiently large, R̂x approaches the true covariance matrix by the law of

large numbers. Furthermore, by decreasing the number of sets ns, fewer scalar quantizers are needed,

thus the quantization error induced by the serial scalar ADCs is reduced. As ns increases to nx, R̂x
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approaches the true covariance of z̄l (up to a constant factor). The proposed guidelines thus provide the

ability to trade quantization and estimation errors, which is expected to be most beneficial for small values

of M , i.e., low quantization rates, where the quantization error becomes dominant. We expect to have

an optimal value of ns in the range [1, nx] for each value of M . This behavior, as well as the benefits

of the proposed approach for finite values of M , are illustrated in the empirical study in Subsection

VI-B. In particular, in Subsection VI-B it is illustrated that for the problem of eigenspectrum recovery, a

quantization system designed according to the above guidelines outperforms a system which performs no

analog combining prior to quantization, and that the performance gap depends on the overall quantization

levels M and on the number of sets ns.

VI. APPLICATIONS AND NUMERICAL STUDY

In this section we study the application of the hardware-limited task-based quantization systems pro-

posed in Sections IV-V, in two scenarios involving parameter acquisition from quantized measurements:

First, in Subsection VI-A, we study the achievable MSE in estimating a scalar channel with finite

intersymbol interference (ISI) from a fixed number of quantized measurements, as in, e.g., [13]–[15],

using the hardware-limited task-based quantizer proposed in Section IV. Then, in Subsection VI-B, we

consider the problem of estimating the eigen-spectrum from a set of i.i.d. measurements, see, e.g., [5],

and evaluate the achievable distortion of the quantization system design detailed in Section V.

A. ISI Channel Estimation

We first consider the estimation of a scalar ISI channel from quantized observations, as in [13]–[15].

In this scenario, the parameter vector s represents the coefficients of a multipath channel with k taps.

The channel is estimated from a set of n = 120 noisy observations x, given by [13, Eq. (1)]

(x)i =

k∑
l=1

(s)l ai−l+1 + wi, i ∈ {1, 2, . . . , n}, (13)

where ai is a deterministic known training sequence, and {wi}ni=1 are samples from an i.i.d. zero-mean

unit variance Gaussian noise process independent of s. In particular, the channel s is modeled as a zero-

mean Gaussian vector with covariance matrix Σs, given by
(
Σs

)
i,j

= e−|i−j|, i, j ∈ {1, 2, . . . , k} , K,

and the training sequence is given by ai = cos
(

2πi
n

)
for i > 0 and ai = 0 otherwise. Note that s and x

are jointly Gaussian, and thus the MMSE estimator s̃ is a linear function of x.

In the following we evaluate the achievable distortion of the resulting hardware-limited task-based

quantization for this setup, and compare the achievable distortion to that of the optimal task-based

quantizer and of the task-ignorant quantizer discussed in Section III. To that aim, we consider two

channels: one with k = 2 taps and one with k = 8 taps, and let the overall number of quantization bits
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be logM ∈ [2 · k, 10 · k]. As logM is strictly smaller than n, any quantization system which is based

on applying serial scalar quantization to the observation x without any processing in the analog domain,

such as the system discussed in Corollary 2, as well as the quantization systems considered in [13], [14],

cannot be implemented here.

In the numerical study we evaluate the following quantities:

• The MMSE E
{∥∥s− s̃

∥∥2}, which is the optimal distortion of a system with no quantization.

• For hardware-limited task-based quantization, we compute the achievable distortion of the system

derived in Theorem 1. Since the covariance matrix of s̃ is non-singular for the considered setup, we

set p = k following Corollary 1. Additionally, we compute the MSE of a system which recovers

the MMSE estimate s̃ in the analog domain, based on Corollary 3. Furthermore, since dithering

increases the energy of the quantization noise, we also compute the achievable MSE of the proposed

systems when the ADCs implement uniform quantization without dithering. The MSE of all these

systems is computed by empirical averaging over 10000 Monte Carlo simulations. In order to avoid

cluttering, we do not depict the theoretical performance of the systems in Theorem 1 and Corollary

3 with dithering, computed via (9d) and (12a), respectively. However, we note that the empirical

performance depicted here coincides with the theoretical MSE.

• For the optimal task-based system, we evaluate the bounds in Proposition 1, where the lower bound

is computed using the reverse waterfilling algorithm for multivariate Gaussian sources [3, Ch. 10.3],

and the upper bound is computed via (5), by setting fc̃ to be the optimal marginal distortion-rate

distribution, which is a zero-mean Gaussian distribution whose covariance is obtained as in [3, Ch.

10.3].

• For the task-ignorant system, we numerically evaluate the distortion in (6) by letting QnM be

the quantizer in which the codewords are generated i.i.d. from the optimal marginal distortion-

rate probability measure with respect to x, averaging the performance over 20000 Monte Carlo

simulations. As this computation becomes prohibitive for large values of M , we evaluate (6) only

for logM ≤ 16. We also compute the approximate achievable distortion of Proposition 2, where the

quantized output distribution is set to the optimal marginal distortion-rate distribution for quantizing

x, as proposed in the discussion following Proposition 2. This quantity is computed for all considered

values of M , and is shown to provide a good approximation of (6) for large values of M .

Figs. 6-7 depict the distortions for k = 2 and for k = 8, respectively. Observing Figs. 6-7, we note

that hardware-limited task-based quantizers substantially outperform task-ignorant vector quantization,

and approach the optimal performance as M increases. In particular, when each scalar quantizer uses at
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least five bits, i.e., logM ≥ 5k, the quantization error becomes negligible and the overall distortion is

effectively the minimum achievable estimation error, i.e., the MMSE.

Furthermore, we note that the gap between the system of Theorem 1 and the system which quantizes

the MMSE estimate of Corollary 3 is small for k = 2, and becomes notable for k = 8 at small values

of M . However, it is emphasized that, as expected, the system of Theorem 1 outperforms the approach
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of quantizing the MMSE estimate, which is known to be optimal when using vector quantizers, for

all considered values of M . It is also noted that the proposed hardware-limited task-based quantizers,

designed assuming dithered uniform quantizers, obtain improved performance without dithering. This

follows since the favorable properties of dithered quantization discussed in Subsection IV-A, which are

accounted for in the design of the systems in Section IV, are approximately satisfied also for non-dithered

standard quantization, as noted in [43], without the excess distortion induced by dithering. This illustrates

that our proposed design can be applied also without dithering, and that the resulting performance is

improved compared to systems implementing dithered quantization.

Regarding the achievable distortion of the non hardware-limited system discussed in Section III, we note

that the gap between the lower and the upper bounds on the optimal achievable distortion in Proposition

1, which is represented by the shaded region in the figure, narrows down from an MSE gap of 0.16

at log2M = 4 to 0.0158 at log2M ≥ 10 for k = 2, and from 0.095 at log2M = 16 to 0.06 at

log2M ≥ 36 for k = 8. Since the systems proposed in Section IV can be obtained as a special case

of the task-based vector quantizer depicted in Fig. 2, combining Theorem 1 and Proposition 1 provides

relatively tight bounds on the optimal distortion for finite quantization resolution. We also note that the

empirical distortion of the task-ignorant system is higher than the upper bound on the optimal distortion

for all values of M , and from Fig. 6 we note that the approximated distortion of the task-ignorant system,

computed via Proposition 2, provides an excellent match with the empirical distortion for log2M > 10,

without the need to empirically average over multiple codes.

B. Eigen-Spectrum Estimation

We next consider the problem of estimating the eigen-spectrum of a multivariate Gaussian source

from quantized measurements, as in [5]. Here, the desired vector s represents the eigenvalues of a

k × k covariance matrix, Σx , UΛUH , where U is a deterministic known unitary matrix, and Λ is a

diagonal matrix with diagonal entries (Λ)i,i = (s)i, i ∈ K. Following [5], the entries of s are mutually

independent, and each entry (s)i obeys an inverse gamma distribution with shape parameter αi > 2 and

scale parameter βi > 0, i ∈ K. The vector x consists of nx random vectors {xi}nx

i=1, which, given s, are

i.i.d. zero-mean Gaussian with covariance Σx.

Note that for the considered scenario, x and s are uncorrelated, as, by the law of total expectation,

E{xsT } = E{E{x|s}sT } = 0.

Hence, the linear MMSE estimator of s from x is the expected value E{s}, and it thus makes little

sense to design the quantization system to approach the linear MMSE estimator, which is main design
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principle of the systems proposed in Section IV. On the other hand, the (non-linear) MMSE estimator

for this scenario is given by [5, Thm. 4]

s̃i=
1

αi− 1
2nx−1

(
βi+

1

2

(
UH

( nx∑
l=1

xlx
T
l

)
U

)
i,i

)
,

i ∈ K. Consequently, the eigen-spectrum s can be estimated from the empirical covariance of {xi}nx

i=1,

and we thus apply the quantizer design proposed in Section V. To implement the hardware-limited

task-based quantizer, we divide the nx realizations {xi}nx

i=1 into ns distinct sets of size ms = nx

ns
. The

quantization system of Section V is then used to produce a quantized estimation of 1
nx

nx∑
i=1

xix
T
i , denoted

R̂x, using p = k · nx identical scalar quantizers. The eigen-spectrum is then estimated via

ˆ̃si =
1

αi − 1
2nx − 1

(
βi +

1

2

(
UHR̂xU

)
i,i

)
, (14)

i ∈ K. Note that when ns = nx, no analog combining is performed, and the quantization system results

the standard approach of estimating from uniformly quantized measurements.

In the numerical study we consider two setups:

• In the first setup, we fix k = 2, and set the inverse gamma distribution parameters to {αi}ki=1 =

{5.5, 6.5} and {βi}ki=1 = {8.4, 11.6}, thus, each entry of s has approximately unit variance [45].

The observed vector x consists of nx = 20 realizations, thus n = nx ·k = 40, and the unitary matrix

U is set to the k × k discrete Fourier transform (DFT) matrix.

• In the second setup, we fix k = 4, and set the inverse gamma distribution parameters to {αi}ki=1 =

{4, 5, 6, 7} and {βi}ki=1 = {4.2, 6.9, 10, 13.4}, which again results each entry of s having approxi-

mately unit variance. The observed vector x consists of nx = 60 realizations, thus n = 240, and U

is set to the identity matrix.

For both setups we numerically evaluate the achievable distortion of the quantization system proposed in

Section V, where the scalar quantization is carried out using standard (non-dithered) uniform mapping.

These distortions are compared to the achievable distortion of the optimal task-based system in Proposition

1, which is computed with fc̃ set to the probability measure of s. The actual minimal achievable distortion

is thus upper bounded by this achievable rate, and lower bounded by the MMSE (dashed black curve in

Figs. 8-9). The distortions are also compared to the distortion of the optimal linear estimator, which, in this

case, is the mean value E{s} (dashed blue curve in Figs. 8-9), and is thus independent of the observed

signal and the quantization system. The distortions are computed for quantization rate R ∈ [0.1, 3],

resulting in logM ∈ [4, 120] for the first setup and logM ∈ [24, 720] for the second setup. Note that

unlike the numerical study presented in Subsection VI-A, here we do not evaluate the performance of
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the task-ignorant vector quantizer, since the MMSE estimator is not linear, thus the approximation in

Proposition 2 does not hold, and explicitly computing the distortion in (6) by Monte-Carlo simulations

is not feasible for large values of M .

In Figure 8 we depict the achievable distortion of the proposed hardware-limited task-based quanti-

zation systems for the first scenario, where we used ns ∈ {2, 4, 5, 10, 20}, while Figure 9 depicts the

corresponding distortions for the second scenario with ns ∈ {12, 15, 20, 30, 60}. Observing Figs. 8-9,

we first note that the performance of the optimal task-based quantizer can still be approached within a

small gap by the proposed hardware-limited task-based quantization by properly selecting the number

of sets ns. In this context, we note that the best selection of ns depends on the overall number of bits

logM . When logM is small, the distortion is dominated by the quantization error induced by the scalar

quantizers, and thus using less partitions, which allows to assign more bits to the scalar quantizers, is

beneficial. However, as logM increases, the error in estimating the empirical covariance induced by

averaging over each set becomes dominant, and thus using more sets of smaller size achieves better

performance. In particular, for the first setup, it is observed in Figure 8 that using ns = 10 results in

the smallest distortion for most considered values of logM , and in fact, achieves an MSE which is less

than 0.6 from the MMSE for logM = 40, i.e., for quantization rate as small as R = 1
3 . For the second

setup, it is observed in Figure 8 that using ns = 20 is the best selection for logM ∈ [160, 480), i.e.,

R ∈
[

2
3 , 2
)
, while ns = 30 achieves the best performance for logM ≥ 480, namely R ≥ 2.

The approach of estimating from uniformly quantized measurements without any analog combining,

namely, ns = nx, achieves poor performance for logM ≤ 60 when k = 2, and for all considered values

of logM when k = 4. In fact, for the scenario in Figure 9, the approach of estimating from uniformly

quantized measurements is outperformed by the data ignorant mean estimate for most considered values

of logM . The results presented in this section thus demonstrate the gain of the proposed hardware-limited

task-based quantization system design for systems operating with finite and relatively small number of

bits logM , in scenarios where the MMSE estimate is not a linear function of the observations.

VII. CONCLUSIONS

In this work we studied hardware-limited task-based quantization systems, operating with practical se-

rial scalar ADCs, for finite-size signals with finite-resolution quantization. We characterized the hardware-

limited task-based quantizer which minimizes the MSE when the MMSE estimate of the desired signal

is a linear function of the observed signal, and demonstrated that the analysis leads to design principles

applicable to a much wider range of settings. We showed that, unlike when vector quantizers are used,

quantizing the MMSE estimate is generally not optimal. Finally, we applied our results to the relevant
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problems of channel estimation in ISI channels and eigen-spectrum estimation. For these scenarios, we

showed that the performance of the optimal task-based vector quantizer can be approached with a practical

system operating with a serial scalar ADC. Furthermore, we demonstrated that by properly accounting

for the task in the design of the quantizer, hardware-limited systems can substantially outperform task-

ignorant vector quantizers. The proposed hardware-limited task-based framework and the gains observed
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in this work for the task of signal recovery give rise to a multitude of future research directions by

considering different tasks and hardware-limitations, including communications with low-resolution ADCs

and hardware-limited task-based quantization for classification.

APPENDIX

A. Proof of Proposition 1

The lower bound in (5) follows from Shannon’s converse [48], which states that for any quantizer QkM ,

I
(
s̃;QkM (s̃)

)
≤ logM , and thus

min
Qk

M (·)
E

{∥∥∥s̃−QkM (s̃)
∥∥∥2
}
≥ min

Qk
M (·):I(s;Qk

M (x))≤logM
E

{∥∥∥s̃−QkM (s̃)
∥∥∥2
}

(a)

≥ Ds̃(logM), (A.1)

where (a) follows from Def. 2. The upper bound in (5) is obtained by considering the quantizer in which

the codewords {qi}Mi=1 are generated i.i.d. from the probability measure fc̃, and the quantizer output is

set to

QkM (y) = arg min
{qi}

‖y − qi‖2, ∀y ∈ Rk.

The MSE of this quantizer is given by

E

{∥∥∥QkM (s̃)−s̃
∥∥∥2
}

= E
{

min
i

(
‖qi−s̃‖

2
)}

= E
{
E
{

min
i

(
‖qi−s̃‖

2
) ∣∣∣s̃}}

(a)
= E


∞∫

0

Pr
{

min
i

(
‖qi−s̃‖

2 > t
) ∣∣∣s̃} dt


(b)
= E


∞∫

0

[
Pr
(
‖c̃−s̃‖2 > t

∣∣∣ s̃)]M dt

 , (A.2)

where (a) follows from [49, Ch. 5.3] as ‖qi−s̃‖
2 is non-negative for any realization of s̃, and (b) follows

from the code construction. Eqns. (A.1)-(A.2) prove (5).

B. Proof of Lemma 1

To prove the lemma, we first show that the output of the ADC can be written as the sum of its input

and uncorrelated noise, and then we derive the optimal digital processing matrix.

Note that when Pr
(∣∣ (Ax)l + zl

∣∣ > γ
)

= 0, it follows from [42, Thm. 2] that, since the dither signal zl

is uniformly distributed over (−∆p/2,∆p/2], then the output of the scalar ADC can be written as Ax+e,
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where the quantization noise e has uncorrelated zero-mean entries with variance ∆2
p

6 . Furthermore, by

[42, Thm. 2] e satisfies E{e|Ax} = E{e} = 0, and thus

E{xeT } = E{xE{eT |x}}
(a)
= E{xE{eT |Ax}} = 0,

i.e., e is uncorrelated with x. Here, (a) follows since the quantization noise e depends on the observed

vector x only via the input to the serial scalar quantizer Ax, and thus the conditional distribution of e

given some realization x = x′ is equal to the conditional distribution of e given Ax = Ax′. Thus, the

optimal digital processing matrix, which results in ŝ being the linear MMSE estimator of s̃ from Ax+e,

is

Bo (A) = E{s̃ (Ax + e)T }
(
E{(Ax + e) (Ax + e)T }

)−1

= E{Γx (Ax)T }
(
E{(Ax) (Ax)T }+ E{eeT }

)−1

(a)
= ΓΣxA

T

(
AΣxA

T +
∆2
p

6
Ip

)−1

, (B.1)

where (a) is a result of [42, Thm. 2]. The MSE of the linear MMSE estimate is thus given by

MSE (A) = Tr
(
ΓΣxΓT

)
− Tr

(
ΓΣxA

T

(
AΣxA

T +
∆2
p

6
Ip

)−1

AΣxΓT
)
. (B.2)

Plugging the quantization spacing ∆p = 2γ

M̃p

into (B.1)-(B.2) proves the lemma.

C. Proof of Theorem 1

To prove the theorem, we first derive the optimal unitary rotation for a given A. Then, we characterize

the optimal analog combining and the resulting MSE. We use the fact that for a fixed matrix A, the

resulting MSE is given in Lemma 1.

Recall that the dynamic threshold is set to a multiple η of the maximal standard deviation of the

quantizer input. Therefore,

γ2 = η2 max
l=1,...,p

E
{

((Ax)l + zl)
2
}

(a)
= η2 max

l=1,...,p
E
{

(Ax)2
l

}
+ η2 γ2

3M̃2
p

, (C.1)
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where (a) follows since zl is independent of x and its variance equals ∆2
p

12 = γ2

3M̃2
p

. From (C.1),

γ2 = η2

(
1− η2

3M̃2
p

)−1

max
l=1,...,p

E
{

(Ax)2
l

}
= κp max

l=1,...,p
E
{

(Ax)2
l

}
. (C.2)

Substituting (C.2) to the expression for MSE(A) in Lemma 1 yields

MSE (A) = Tr

(
ΓΣxΓT − ΓΣxA

T

(
AΣxA

T +
2κp

3M̃2
p

max
l=1,...,p

E
{

(Ax)2
l

}
Ip

)−1

AΣxΓT

)
. (C.3)

Using (C.3), we can find for each analog combining matrix A an optimal unitary rotation, which

minimizes the MSE, as stated in the following lemma:

Lemma C.1. For every matrix A ∈ Rp×n there exists a unitary matrix UA ∈ Rp×p such that

MSE (A) ≥ MSE (UAA)

= Tr

(
ΓΣxΓT − ΓΣxA

T

(
AΣxA

T +
2κp

3M̃2
p · p

Tr
(
AΣxA

T
)
Ip

)−1

AΣxΓT

)
. (C.4)

Proof: Note that for any unitary matrix UA, it follows from (C.3) that

MSE (UAA) = Tr
(
ΓΣxΓT

)
− Tr

(
ΓΣxA

T

(
AΣxA

T +
2κp

3M̃2
p

max
l=1,...,p

E
{

(UAAx)2
l

}
Ip

)−1

AΣxΓT

)
. (C.5)

For each pair of positive semi-definite symmetric matrices M1,M2, note that the scalar function h(α) =

Tr
(
M1 (M2 + αI)−1 ) is monotonically decreasing for α > 0. Thus, by (C.5), the unitary UA which

minimizes the MSE is given by

UA = arg min
U

max
l=1,...,p

E
{

(UAx)2
l

}
= arg min

U
max
l=1,...,p

(
UAΣxA

TUT
)
l,l
. (C.6)

From majorization theory [47, Cor. 2.4] it follows that min
U

max
l=1,...,p

(
UAΣxA

TUT
)
l,l

= 1
pTr

(
AΣxA

T
)
.

Furthermore, a unitary matrix which solves (C.6) can be obtained using the iterative algorithm in [47,

Alg. 2.2]. Plugging this into (C.5) proves the lemma.

Finally, we characterize the matrix A which minimizes (C.4). To that aim, define Ã , AΣ
1/2
x , and
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recall the notation Γ̃ = ΓΣ
1/2
x . It follows from (C.4) that Ã must be set to

Ão = arg max
Ã

Tr

(
Γ̃ÃT

(
ÃÃT +

2κp

3M̃2
p · p

Tr
(
ÃÃT

)
Ip

)−1

ÃΓ̃T

)
. (C.7)

Note that the right hand side of (C.7) is invariant to replacing Ã with α · UÃ for any α > 0 and for

any unitary U . Consequently, we can fix Tr
(
ÃÃT

)
= 1, and write Ã = ΛV T , where Λ ∈ Rp×n is a

diagonal matrix whose diagonal entries are arranged in a descending order, and V ∈ Rn×n is unitary.

Under this setting, solving (C.7) reduces to solving

arg max
Λ,V

Tr

(
Γ̃T Γ̃V ΛT

(
ΛΛT +

2κp

3M̃2
p · p

Ip

)−1

ΛV T

)
,

subject to Tr
(
ΛΛT

)
= 1. (C.8)

We use ΛA,V A to denote the optimizing matrices of (C.8).

Let Λ̃ , ΛT

(
ΛΛT + 2κp

3M̃2
p ·p

Ip

)−1

Λ. Clearly, Λ̃ is a diagonal matrix with diagonal entries

(
Λ̃
)
l,l

=
(Λ)2

l,l

(Λ)2
l,l + 2κp

3M̃2
p ·p

, l ∈ {1, 2, . . . , p}, (C.9)

thus, the diagonal entires of Λ̃ are arranged in descending order. By [50, Thm. II.1], the optimal unitary

matrix V A is the right singular vectors matrix of Γ̃. The fact that the diagonal entries of Λ̃ are arranged

in descending order results in the optimal V A being the right singular vectors matrix of Γ̃ instead of a

permutation of this matrix [50, Thm. II.1].

With this setting, (C.8) becomes

arg max
Λ

min(k,p)∑
i=1

λ2
Γ̃,i
·

(Λ)2
i,i

(Λ)2
i,i + 2κp

3M̃2
p ·p

subject to
p∑
i=1

(Λ)2
i,i = 1. (C.10)

To solve (C.10), we write αi , (Λ)2
i,i. With this setting, (C.10) is concave with respect to {αi}pi=1. Thus,

the KKT conditions are necessary and sufficient for optimality [51, Ch. 5.5.3]. The resulting {αi}pi=1

satisfy αi = 0 for i > k and for i ≤ k,
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αi =

(√
2κp

3M̃2
p · p · β

λΓ̃,i −
2κp

3M̃2
p · p

)+

=
2κp

3M̃2
p · p

√3M̃2
p · p

2κp · β
λΓ̃,i − 1

+

, (C.11)

where β is set such that
p∑
i=1

αi = 1.

By defining ζ ,
(

3M̃2
p ·p

2κp·β

)1/2
, it follows that the diagonal entries of the optimal diagonal matrix ΛA

satisfy

(ΛA)2
i,i =


2κp

3M̃2
p ·p

(
ζ · λΓ̃,i − 1

)+
, i ≤ min(k, p)

0 i > min(k, p),

where ζ > 0 is set such that 2κp

3M̃2
p ·p

p∑
i=1

(
ζ · λΓ̃,i − 1

)+
= 1.

The optimal analog combining is thus given by Ao = UAΛAV T
AΣ
−1/2
x . Note that under this setting,

the dynamic range in (C.2) is given by γ2 = κp

p Tr
(
ΛAΛT

A

)
= κp

p , proving (9b). The resulting optimal

MSE can be written as

MSE (Ao) = MSE
(
Ão
)

= Tr
(
ΓΣxΓT

)
−

k∑
i=1

λ2
Γ̃,i
·

(ΛA)2
i,i

(ΛA)2
i,i + 2κp

3M̃2
p ·p

=

k∑
i=1

λ2
Γ̃,i
−

min(k,p)∑
i=1

λ2
Γ̃,i

(
ζ · λΓ̃,i − 1

)+(
ζ · λΓ̃,i − 1

)+
+ 1

. (C.12)

Since λ2
Γ̃,i
·
(

1− (ζ·λΓ̃,i−1)
+

(ζ·λΓ̃,i−1)
+

+1

)
=

λ2
Γ̃,i

(ζ·λΓ̃,i−1)
+

+1
, it follows that (C.12) results in

MSE (Ao) =


k∑
i=1

λ2
Γ̃,i

(ζ·λΓ̃,i−1)
+

+1
, p ≥ k

p∑
i=1

λ2
Γ̃,i

(ζ·λΓ̃,i−1)
+

+1
+

k∑
i=p+1

λ2
Γ̃,i
, p < k.

Combining this with the design of Ao proves the theorem.

D. Proof of Corollary 1

We note that the MSE in Theorem 1 decreases as ζ increases. Therefore, p must be set such that ζ

is maximized. Let r denote the number of non-zero singular values {λΓ̃,i}. From the definition of Γ̃ it

follows that r is also the rank of the covariance matrix of s̃. When p ≥ r, ζ is set such that

2κp

3M̃2
p · p

r∑
i=1

(
ζ · λΓ̃,i − 1

)+
= 1. (D.1)
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Since M̃p grows exponentially with 1/p, it follows that as p decreases, the value of 2κp

3M̃2
p ·p

, also decreases,

and thus ζ is maximized for p ≥ r when p = r, proving the corollary.

E. Proof of Corollary 4

Since the optimal Ao for any p, including p = k, is given in Theorem 1, in the following we find a

necessary and sufficient condition for which Ao = Γ, or equivalently, UAΛAV T
A = Γ̃. Note that V A

already equals the right-singular matrix of Γ̃, and thus A = Γ is optimal if and only if UAΛAΛT
AUA =

Γ̃Γ̃T . This condition is satisfied only if

(ΛA)2
i,i = λ2

Γ̃,i
, ∀i ∈ K. (E.1)

Since Γ̃Γ̃T is the covariance matrix of the MMSE estimate s̃, the fact that the covariance matrix is

non-singular implies that λΓ̃,i 6= 0 for all i ∈ K. Combining this with (9a) results in

λ2
Γ̃,i

=
2κk

3M̃2
k · k

(
ζ · λΓ̃,i − 1

)+

=
2κk

3M̃2
k · k

(
ζ · λΓ̃,i − 1

)
. (E.2)

Consequently, ζ · λΓ̃,i − 1 > 0 for all i ∈ K, and thus, from the condition 2κp

3M̃2
p ·p

p∑
i=1

(
ζ · λΓ̃,i − 1

)+
= 1,

we have that ζ = k
(

3M̃2
k

2κk
+ 1
)( k∑

i=1
λΓ̃,i

)−1
. Plugging this into (E.2) results in

λ2
Γ̃,i

= λΓ̃,i

( k∑
i=1

λΓ̃,i

)−1
, ∀i ∈ K. (E.3)

Note that (E.3) is satisfied if and only if λΓ̃,i = 1√
k

. As a result, ΛA in (E.1) has identical diagonal

entries, UA can be any permutation matrix, and both the condition on UA in Theorem 1 as well as

the condition UAΛAΛT
AUA = Γ̃Γ̃T are satisfied here. Consequently, the condition λΓ̃,i = 1√

k
is not

only necessary for A = Γ to be optimal, but it is also sufficient. Noting that in this case, the covariance

matrix of s̃ is 1
kIk, concludes the proof of the corollary.
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