
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Iterated Extended Kalman Smoother-Based Variable
Splitting for L1-Regularized State Estimation

Rui Gao, Filip Tronarp, and Simo Särkkä, Senior Member, IEEE

Abstract—In this paper, we propose a new framework for
solving state estimation problems with an additional sparsity-
promoting L1-regularizer term. We first formulate such problems
as minimization of the sum of linear or nonlinear quadratic error
terms and an extra regularizer, and then present novel algo-
rithms which solve the linear and nonlinear cases. The methods
are based on a combination of the iterated extended Kalman
smoother and variable splitting techniques such as alternating
direction method of multipliers (ADMM). We present a general
algorithmic framework for variable splitting methods, where the
iterative steps involving minimization of the nonlinear quadratic
terms can be computed efficiently by iterated smoothing. Due to
the use of state estimation algorithms, the proposed framework
has a low per-iteration time complexity, which makes it suitable
for solving a large-scale or high-dimensional state estimation
problem. We also provide convergence results for the proposed
algorithms. The experiments show the promising performance
and speed-ups provided by the methods.

Index Terms—State estimation, sparsity, variable splitting,
iterated extended Kalman smoother (IEKS), alternating direction
method of multipliers (ADMM)

I. INTRODUCTION

STATE estimation problems naturally arise in many signal
processing applications including target tracking, smart

grids, and robotics [1]–[3]. In conventional Bayesian ap-
proaches, the estimation task is cast as a statistical inverse
problem for restoring the original time series from imperfect
measurements, based on a statistical model for the measure-
ments given the signal together with a statistical model for
the signal. In linear Gaussian models, this problem admits a
closed-form solution, which can be efficiently implemented
by the Kalman (or Rauch–Tung–Striebel) smoother (KS) [2],
[4]. For nonlinear Gaussian models we can use various lin-
earization and sigma-point-based methods [2] for approximate
inference. In particular, here we use the so-called iterated
extended Kalman smoother (IEKS) [5], which is based on
analytical linearisation of the nonlinear functions. Although
the aforementioned smoothers are often used to estimate
dynamic signals, they lack a mechanism to promote sparsity
in the signals.

One approach for promoting sparsity is to add an L1-term to
the cost function formulation of the state estimation problem.
This approach imposes sparsity on the state estimate, which
is either based on a synthesis sparse or an analysis sparse
signal model. A synthesis sparse model assumes that the signal
can be represented as a linear combination of basis vectors,

R. Gao, F. Tronarp and S. Särkkä are with the Department of Electrical
Engineering and Automation, Aalto University, Espoo, 02150 Finland. E-mail:
{rui.gao, filip.tronarp, simo.sarkka}@aalto.fi).

where the coefficients are subject to, for example, an L1-
penalty, thus promoting sparsity. In the past decade, the use of
synthesis sparsity for estimating dynamic signals has drawn a
lot of attention [6]–[15]. For example, a pseudo-measurement
technique was used in the Kalman update equations for
encouraging sparse solutions [7]. A method based on sparsity
was applied compressive sensing to update Kalman innova-
tions or filtering errors [8]. Based on synthesis sparsity, the
estimation problem has been formulated as an L1-regularized
least square problem in [14]. Nevertheless, the previously
mentioned methods only consider synthesis sparsity of the
signal and assume a linear dynamic system.

On the other hand, analysis sparsity, also called cosparsity,
assumes that the signal is not sparse itself, but rather the
outcome is sparse or compressible in some transform domain,
which leads to the flexibility in the modeling of signals [16]–
[20]. Analysis sparse models involving an analysis operator – a
popular choice being total variation (TV) – have been very suc-
cessful in image processing. For example, several algorithms
[18], [19] have been developed to train an analysis operator
and the trained operators have been used for image denoising.
In [21] the authors proposed to use the TV regularizer to
improve the quality of image reconstruction. However, these
approaches are not ideally suited for reconstructing dynamic
signals. In state estimation problems, the available methods
for analysis sparse priors are still limited. The main goal of
this paper is to introduce these kinds of methods for dynamic
state estimation.

Formulating a state estimation problem using synthesis and
analysis sparsity leads to a general class of optimization
problems, which require minimization of composite functions
such as an analysis-L1-regularized least-square problems. The
difficulties arise from the appearance of the nonsmooth reg-
ularizer. There are various batch optimization methods such
as proximal gradient method [22], Douglas-Rachford splitting
(DRS) [23], [24], Peaceman-Rachford splitting (PRS) [25],
[26], the split Bregman method (SBM) [27], the alternating
method of multipliers (ADMM) [28], [29], and the first-order
primal-dual (FOPD) method [30] for addressing this problem.
However, these general methods do not take the inherent
temporal nature of the optimization problem into account,
which leads to bad computational and memory scaling in
large-scale or high-dimensional data. This often renders the
existing methods intractable due to their extensive memory
and computational requirements.

As a consequence, we propose to combine a Kalman
smoother with variable splitting optimization methods, which
allows us to account for the temporal nature of the data in order

ar
X

iv
:1

90
3.

08
60

5v
3

 [
cs

.I
T

]
 2

 A
ug

 2
01

9

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

to speed up the computations. In this paper, we derive novel
methods for efficiently estimating dynamic signals with an
extra (analysis) L1-regularized term. The developed algorithms
are based on using computationally efficient KS and IEKS
for solving the subproblems arising within the steps of the
optimization methods. Our experiments demonstrate promis-
ing performance of the methods in practical applications. The
main contributions are as follows:

i) We formulate the state estimation problem as an op-
timization problem that is based upon a general sparse
model containing analysis or synthesis prior. The formu-
lation accommodates a large class of popular sparsifying
regularizers (e.g., synthesis L1-norm, analysis L1-norm,
TV norm) for state estimation.

ii) We present novel practical optimization methods, KS-
ADMM and IEKS-ADMM, which are based on com-
bining ADMM with KS and IEKS, respectively.

iii) We also prove the convergence of the KS-ADMM
method as well as the local convergence of the IEKS-
ADMM method.

iv) We generalize our smoother-based approaches to a gen-
eral class of variable splitting techniques.

The advantage of the proposed approach is that the compu-
tational cost per iteration is much less than in the conventional
batch solutions. Our approach is computationally superior to
the state-of-the-art in a large-scale or high-dimensional state
estimation applications.

The rest of the paper is organized as follows. We conclude
this section by reviewing variable splitting methods and IEKS.
Section II first develops the batch optimization by a classical
ADMM method, and then presents a new KS-ADMM method
for solving a linear dynamic estimation problem. Furthermore,
for the nonlinear case, we present an IEKS-ADMM method
in Section III and establish its local convergence properties.
Section IV introduces a more general smoother-based variable
splitting algorithmic framework. In particular, a general IEKS-
based optimization method is formulated. Various experimen-
tal results in Section V demonstrate the effectiveness and
accuracy in simulated linear and nonlinear state estimation
problem. The performance of the algorithm is also illustrated
in real-world tomographic reconstruction.

The notation of the paper is as follows. Vectors x and
matrices X are indicated in boldface. (·)> stands for trans-
position, and (·)−1 is the matrix inversion. x1:T stands for
the time series from x1 to xT , and x(k) denotes the value of
x at k:th iteration. 〈x,y〉 represents the vector inner product
x>y. We denote by Rn the usual n dimensional Euclidean
space. The vector norm ‖·‖p for p ≥ 1 is the standard
`p-norm. The R-weighted Euclidean norm of a vector x is
denoted by ‖x‖R =

√
x>Rx. θ∗ is the conjugate of a

convex function θ, defined as θ∗(p) = supx〈x,p〉 − θ(x).
sgn represents the signum function. vec(·) is the vectorization
operator, blkdiag(·) is a block diagonal matrix operator with
the elements in its argument on the diagonal, ∂φ(x) denotes a
subgradient of φ at x, Jφ is the Jacobian of φ(x) and ∇φ(x)
and ∇2φ(x) are the gradient and Hessian of the function φ(x).

A. Problem Formulation

Consider the dynamic state-space model [1], [2]

xt = at(xt−1) + qt,

yt = ht(xt) + rt,
(1)

where t = 1, . . . , T , xt =
[
x1,t x2,t . . . xnx,t

]> ∈
Rnx denotes an nx-dimensional state of the system at the
time step t, and yt =

[
y1,t y2,t . . . yny,t

]> ∈ Rny is an
ny-dimensional noisy measurement signal, ht : Rnx → Rny
is a measurement function (typically with ny ≤ nx), and
at : Rnx → Rnx is a state transition function at time
step t. The initial state x1 is assumed to have mean m1

and covariance P1. The errors qt and rt are assumed to be
mutually independent random variables with known positive
definite covariance matrices Qt and Rt, respectively. The goal
is to estimate the state sequence x1:T = {x1, . . . ,xT } from
the noisy measurement sequence y1:T = {y1, . . . ,yT }. In this
paper, we focus on estimating x1:T by minimizing the sum of
quadratic error terms and an L1 sparsity-promoting penalty.

For the sparsity assumption, we add an extra L1-penalty for
the state xt, and then formulate the optimization problem as

x?1:T = arg min
x1:T

1

2

T∑
t=1

‖yt − ht(xt)‖2R−1
t

+ λ

T∑
t=1

‖Ωtxt‖1

+
1

2

T∑
t=2

‖xt − at(xt−1)‖2
Q−1
t

+
1

2
‖x1 −m1‖2P−1

1
,

(2)

where x?1:T is the optimal state sequence, Ωt is a linear
operator, and λ is a penalty parameter, which describes a
trade-off between the data fidelity term and the regularizing
penalty term. The formulation (2) encompasses two particular
cases: by setting Ωt to a diagonal matrix (e.g., identity matrix
Ωt = I), a synthesis sparse model is obtained, which assumes
that x1:T are sparse. Such a case arises frequently in state
estimation applications [10]–[12], [15], [31]. Correspondingly,
an analysis sparse model is obtained when a more general Ωt

is used. For example, the TV regularization, which is common
in tomographic reconstruction, can be obtained by using a
finite-difference matrix as Ωt.

More generally, Ωt can be a fixed matrix [16], [20], [32]
or a learned matrix [17]–[19]. It should be noted that, if the
L1 term is not used (i.e., when λ = 0) in (2), the objective
can be solved by using a linear or non-linear KS [2], [4], [5].
However, when λ > 0, the smoothing is no longer applicable,
and the cost function is non-differentiable.

Since ‖Ωtxt‖1 does not have a closed-form proximal
operator in general, we employ variable splitting technique
for solving the resulting optimization problem. As mentioned
above, many variable splitting methods can be used to solve
(2), such as PRS [26], SBM [27], ADMM [28], DRS [23],
and FOPD [30]. Especially, ADMM is a popular member
of this class. Therefore, we start by presenting algorithms
based on ADMM and then extend them to more general
variable splitting methods. In the following, we review variable
splitting and IEKS methods, before presenting our approach
in detail.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

B. Variable Splitting

The methods we develop in this paper are based on variable
splitting [33], [34]. Consider an unconstrained optimization
problem in which the objective function is the sum of two
functions

min
x
θ1(x) + θ2(Ωx), (3)

where θ2(·) = ‖ · ‖1, and Ω is a matrix. Variable splitting
refers to the process of introducing an auxiliary constrained
variable w to separate the components in the cost function.
More specifically, we impose the constraint w = Ωx, which
transforms the original minimization problem (3) into an
equivalent constrained minimization problem, given by

min
x,w

θ1(x) + θ2(w), s.t. w = Ωx. (4)

The minimization problem (4) can be solved efficiently by
classical constrained optimization methods [35]. The rationale
of variable splitting is that it may be easier to solve the
constrained problem (4) than the unconstrained one (3). PRS,
SBM, FOPD, ADMM, and their variants [36] are a few well-
known variable splitting methods – see also [37], [38] for a
recent historical overview.

ADMM [28] is one of the most popular algorithms for solv-
ing (4). ADMM defines an augmented Lagrangian function,
and then alternates between the updates of the split variables.
Given x(0), w(0), and η(0), its iterative steps are:

x(k+1) = arg min
x

θ1(x) + (η(k))>(w(k) −Ωx)

+
ρ

2
‖w(k) −Ωx‖2, (5a)

w(k+1) = arg min
w

θ2(w) + (η(k))>(w −Ωx(k+1))

+
ρ

2
‖w −Ωx(k+1)‖2, (5b)

η(k+1) = η(k) + ρ(w(k+1) −Ωx(k+1)), (5c)

where η is a Lagrange multiplier and ρ is a parameter.
The PRS method [25], [26] is similar to ADMM except that

it updates the Lagrange multiplier twice. The typical iterative
steps for (3) are

x(k+1) = arg min
x

θ1(x) + (η(k))>(w(k) −Ωx)

+
ρ

2
‖w(k) −Ωx‖2, (6a)

η(k+ 1
2) = η(k) + αρ(w(k) −Ωx(k+1)), (6b)

w(k+1) = arg min
w

θ2(w) + (η(k+ 1
2))>(w −Ωx(k+1))

+
ρ

2
‖w −Ωx(k+1)‖2, (6c)

η(k+1) = η(k+ 1
2) + αρ(w(k+1) −Ωx(k+1)), (6d)

where α ∈ (0, 1).
In SBM [27], we iterate the steps

x(k+1) = arg min
x

θ1(x) +
ρ

2
‖w(k) −Ωx + η(k)‖22, (7a)

w(k+1) = arg min
w

θ2(w) +
ρ

2
‖w −Ωx(k+1) + η(k)‖22,

(7b)

M times, and update the extra variable by

η(k+1) = η(k) + (w(k+1) −Ωx(k+1)). (8)

When M = 1, this is equivalent to ADMM.
There are also other variable splitting methods which al-

ternate proximal steps for the primal and dual variables. One
example is FOPD [30], where the (k+ 1):th iteration consists
of the following

w(k+1) = argmin
w

θ∗2(w) +
1

2γ
‖w − (w(k) + γΩx̂(k))‖2, (9a)

x(k+1) = argmin
x

θ1(x) +
1

2ρ
‖x− (x(k)−ρΩ>w(k+1))‖2, (9b)

x̂(k+1) = x(k+1) + τ(x(k+1) − x(k)), (9c)

where τ and γ are parameters.
All these variable splitting algorithms provide simple ways

to construct efficient iterative algorithms that offer simpler
inner subproblems. However, the subproblems such as (5a),
(6a), (7a) and (9b) remain computationally expensive, as they
involve large matrix-vector products when the dimensionality
of x is large. We circumvent this problem by combining
variable splitting with KS and IEKS.

C. The Iterated Extended Kalman Smoother

IEKS [5] is an approximative algorithm for solving non-
linear optimal smoothing problems. However, it can also be
seen as an efficient implementation of the Gauss–Newton
algorithm for solving the problem

x?1:T = arg min
x1:T

1

2

T∑
t=1

‖yt − ht(xt)‖2R−1
t

+
1

2

T∑
t=2

‖xt − at(xt−1)‖2
Q−1
t

+
1

2
‖x1 −m1‖2P−1

1
.

(10)

That is, it produces the maximum a posteriori (MAP) estimate
of the trajectory. The IEKS method works by alternating
between linearisation of at and ht around a previous estimate
x

(i)
1:T , as follows:

at(xt−1) ≈ at(x
(i)
t−1) + Jat(x

(i)
t−1)(xt−1 − x

(i)
t−1), (11a)

ht(xt) ≈ ht(x
(i)
t) + Jht(x

(i)
t)(xt − x

(i)
t), (11b)

and solving the linearized problem

x
(i+1)
1:T =

arg min
x1:T

1

2

T∑
t=1

‖yt − ht(x
(i)
t)− Jht(x

(i)
t)(xt − x

(i)
t)‖2

R−1
t

+
1

2

T∑
t=2

‖xt − at(x
(i)
t−1)− Jat(x

(i)
t−1)(xt − x

(i)
t)‖2

Q−1
t

+
1

2
‖x1 −m1‖2P−1

1
.

(12)

The solution of (12) can in turn be efficiently obtained by
the Rauch–Tung–Striebel (RTS) smoother [4], which first

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

computes the filtering mean and covariances m1:T and P1:T ,
by alternating between prediction

m−t = at(x
(i)
t−1) + Jat(x

(i)
t−1)(mt−1 − x

(i)
t−1), (13a)

P−t = Jat(x
(i)
t−1)Pt−1[Jat(x

(i)
t−1)]> + Qt, (13b)

and update

St = Jht(x
(i)
t)P−t [Jht(x

(i)
t)]> + Rt, (14a)

Kt = P−t [Jht(x
(i)
t)]>[St]

−1, (14b)

mt = m−t + Kt

(
yt − ht(x

(i)
t)− Jht(x

(i)
t)(m−t − x

(i)
t)
)
,

(14c)

Pt = P−t −KtSt[Kt]
>, (14d)

where St and Kt are the innovation covariance matrix and
the Kalman gain at the time step t, respectively. The filtering
means mt and covariances Pt are then corrected in a back-
wards (smoothing) pass

Gt = Pt[Jat(x
(i)
t−1)]>[P−t+1]−1, (15a)

mt = mt + Gt

(
ms
t+1 −m−t+1

)
, (15b)

Ps
t = Pt + Gt

(
Ps
t+1 −P−t+1

)
[Gt]

>. (15c)

Now setting x
(i+1)
t = ms

t gives the solution to (12). When the
functions at and ht are linear, the above iteration converges
in a single step. This algorithm is the classical RTS smoother
or more briefly KS [4].

In this paper, we use the KS and IEKS algorithms as
efficient methods for solving generalized versions of the
optimization problems given in (10), which arise within the
steps of variable splitting.

II. LINEAR STATE ESTIMATION BY KS-ADMM

In this section, we present the KS-ADMM algorithm which
is a novel algorithm for solving L1-regularized linear Gaussian
state estimation problems. In particular, Section II-A describes
the batch solution by ADMM. Then, by defining an artificial
measurement noise and a pseudo-measurement, we formulate
the KS-ADMM algorithm to solve the primal variable update
in Section II-B.

A. Batch Optimization

Let us assume that the state transition function at and the
measurement function ht are linear, denoted by

at(xt−1) = Atxt−1,

ht(xt) = Htxt,
(16)

where At and Ht are the transition matrix and the measure-
ment matrix, respectively. In order to reduce this problem to
(3), we stack the entire state sequence into a vector, which

transforms the objective into a batch optimization problem.
Thus, we define the following variables

x = vec(x1,x2, . . . ,xT), (17a)
y = vec(y1,y2, . . . ,yT), (17b)

m = vec(m1,0, . . . ,0), (17c)
H = blkdiag(H1,H2, . . . ,HT), (17d)
Q = blkdiag(P1,Q2, . . . ,QT), (17e)
R = blkdiag(R1,R2, . . . ,RT), (17f)
Ω = blkdiag(Ω1,Ω2, . . . ,ΩT), (17g)

Ψ =


I 0

−A2 I
. . .

. 0
−AT I

 . (17h)

The optimization problem introduced in Section I-A can
now be reformulated as the following batch optimization
problem

x? = arg min
x

1

2
‖y −Hx‖2R−1 +

1

2
‖Ψx−m‖2Q−1

+ λ ‖Ωx‖1 ,
(18)

which in turn can be seen to be a special case of (3). Here, our
algorithm for solving (18) builds upon the batch ADMM [28].

To derive an ADMM algorithm for (18), we introduce an
auxiliary variable w = vec(w1, . . . ,wT) and a linear equality
constraint w = Ωx. The resulting equality-constrained prob-
lem is formulated mathematically as

min
x

1

2
‖y −Hx‖2R−1 +

1

2
‖Ψx−m‖2Q−1 + λ‖w‖1

s.t. w = Ωx.
(19)

The main objective here is to find a stationary point
(x?,w?,η?) of the augmented Lagrangian function associated
with (19) as the function

L(x,w;η) ,
1

2
‖y −Hx‖2R−1 + λ‖w‖1

+
1

2
‖Ψx−m‖2Q−1 + η>(w −Ωx) +

ρ

2
‖w −Ωx‖2,

(20)

where η ∈ RTP is the dual variable and ρ is a penalty
parameter. As described in Section I-B, at each iteration of
ADMM we perform the updates

x(k+1) = arg min
x

L(x,w(k);η(k)), (21a)

w(k+1) = arg min
w

L(x(k+1),w;η(k)), (21b)

η(k+1) = η(k) + ρ(w(k+1) −Ωx(k+1)). (21c)

The update for the primal sequence x is equivalent to the
quadratic optimization problem given by

x(k+1) = arg min
x

1

2
‖y −Hx‖2R−1 +

1

2
‖Ψx−m‖2Q−1

+
ρ

2
‖w −Ωx + η/ρ‖2,

(22)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

which has the closed-form solution

x(k+1) =
[
H>R−1H + Ψ>Q−1Ψ + ρΩ>Ω

]−1

×
[
H>R−1y + Ψ>Q−1m + ρΩ>(w(k) + η(k)/ρ)

]
.

(23)

For the dual sequence w, the iteration in (21b) can be solved
by [39]

w(k+1) = max(|e(k)| − λ/ρ, 0) sgn(e(k)), (24)

where e(k) = Ωx(k+1) + η(k)/ρ.
While the optimization problem (22) can be solved in

closed-form, direct solution is computationally demanding, es-
pecially when the number of time points or the dimensionality
of the state is large. However, the problem can be recognized to
be a special case of optimization problems where the iterations
can be solved by KS (see Section I-C) provided that we add
pseudo-measurements to the problem. In the following, we
present the resulting algorithm.

B. The KS-ADMM Solver

The proposed KS-ADMM solver is described in Algo-
rithm 1. To extend the batch ADMM to KS-ADMM, we first
define an artificial measurement noise Σt = I/ρ and a pseudo-
measurement zt = wt + ηt/ρ, and then rewrite (22) as

min
x1:T

1

2

T∑
t=1

‖yt −Htxt‖2R−1
t

+
1

2

T∑
t=1

‖zt− Ωtxt‖2Σ−1
t

+
1

2

T∑
t=2

‖xt −Atxt−1‖2Q−1
t

+
1

2
‖x1 −m1‖2P−1

1
.

(25)

The solution to (25) can then be computed by running KS on
the state estimation problem

xt = Atxt−1 + qt, (26a)
yt = Htxt + rt, (26b)
zt = Ωtxt + σt. (26c)

Here, σt is an independent random variable with covariance
Σt. The KS-based solution can be described as a four stage
recursive process: prediction, yt-update, zt-update, and a RTS
smoother which should be performed for t = 1, . . . , T . First,
the prediction step is given by

m−t = Atmt−1, (27a)

P−t = At Pt−1 A>t + Qt, (27b)

where m−t and P−t are the predicted mean and covariance at
the time t. Secondly, the update steps for yt are given by

Syt = Ht P
−
t H>t + Rt, (28a)

Ky
t = P−t H>t [Syt]−1, (28b)

my
t = m−t + Ky

t [yt −Ht m
−
t], (28c)

Py
t = P−t −Ky

t Syt [Ky
t]>. (28d)

Thirdly, the update steps for zt are

Szt = Ωt P
y
t Ω>t + Σt, (29a)

Kz
t = Py

t Ω>t [Szt]
−1, (29b)

mt = my
t + Kz

t [zt −Ωtm
y
t], (29c)

Pt = Py
t −Kz

t Szt [Kz
t]
>. (29d)

Here, Syt and Szt , Ky
t and Kz

t , my
t and mt, Py

t and Pt are the
innovation covariances, gain matrices, means, and covariances
for the variables yt and zt at the time step t, respectively.
Finally, we run a RTS smoother [4] for t = T − 1, . . . , 1,
which has the steps

Gt = Pt A
>
t+1 [P−t+1]−1, (30a)

ms
t = Pt + Gt [ms

t+1 −m−t+1], (30b)

Ps
t = Pt + Gt [Ps

t+1 −P−t+1] G>t , (30c)

where ms
T = mT and Ps

T = PT (see [2] for more details).
This gives the update for x1:T as:

x
(k+1)
1:T = ms

1:T . (31)

The remaining updates for t = 1, . . . , T are given as

w
(k+1)
t = max(|e(k)

t | − λ/ρ, 0) sgn(e
(k)
t), (32)

where e
(k)
t = Ωtx

(k+1)
t + η

(k)
t /ρ, and

η
(k+1)
t = η

(k)
t + ρ (w

(k+1)
t −Ωtx

(k+1)
t). (33)

Algorithm 1: KS-ADMM
Input: yt, Ht, At, Qt, Rt, Ωt, t = 1, . . . , T ;

parameters λ and ρ; m1 and P1.
Output: x1:T .

1 while not convergent do
2 run the Kalman filter using (27), (28), and (29);
3 run the RTS smoother by using (30);
4 compute x1:T by (31);
5 compute w1:T by (32);
6 compute η1:T by (33);
7 end

It is useful to note that in Algorithm 1, the covariances
and gains are independent of the iteration number and thus
can be pre-computed outside the ADMM iterations. Further-
more, when the model is time-independent, we can often
use stationary Kalman filters and smoothers instead of their
general counterparts which can further be used to speed up
the computations.

C. Convergence of KS-ADMM

In this section, we discuss the convergence of KS-ADMM.
If the system (26) is detectable [40], then the objective
function (20) is convex. The traditional convergence results
for ADMM such as in [28], [41] then ensure that the ob-
jective globally converges to the stationary (optimal) point
(x?1:T ,w

?
1:T ,η

?
1:T). The result is given in the following.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Theorem 1 (Convergence of KS-ADMM). Assume that the
system (26) is detectable [40]. Then, for a constant ρ, the se-
quence {x(k)

1:T ,w
(k)
1:T ,η

(k)
1:T } generated by Algorithm 1 from any

starting point {x(0)
1:T ,w

(0)
1:T ,η

(0)
1:T } converges to the stationary

point {x?1:T ,w
?
1:T ,η

?
1:T } of (20).

Proof. Due to the detectability assumption, the objective func-
tion is convex, and thus the result follows from the classical
ADMM convergence proof [28], [41].

III. NONLINEAR STATE ESTIMATION BY IEKS-ADMM
When at and ht are nonlinear, the x subproblem arising in

the ADMM iteration cannot be solved in closed form. In the
following, we first present a batch solution of the nonlinear
case based on a Gauss–Newton (GN) iteration and then show
how it can be efficiently implemented by IEKS.

A. Batch Optimization
Let us now consider the case where the state transition

function at and the measurement function ht in (1) are
nonlinear. We now proceed to rewrite the optimization (2) in
batch form by defining the following variables

a(x) = vec(x1,x2 − a2(x1), . . . ,xT − aT (xT−1)), (34a)
h(x) = vec(h1(x1),h2(x2), . . . ,hT (xT)). (34b)

Note that the variables x, y, m, Q, R and Ω have the same
definitions as (17). Using these variables, the x subproblem
can be naturally transformed into

x? = arg min
x

1

2
‖y − h(x)‖2R−1 +

1

2
‖m− a(x)‖2Q−1

+ λ ‖Ωx‖1 ,
(35)

which is also a special case of (3), similarly to the linear case.
Following the ADMM, we define the augmented Lagrangian

function associated with (35) as:

L(x,w;η) ,
1

2
‖y − h(x)‖2R−1 + λ‖w‖1+

1

2
‖m− a(x)‖2Q−1 + η>(w −Ωx) +

ρ

2
‖w −Ωx‖2.

(36)

Since the nonlinear batch solution is based on ADMM, the
iteration steps of w and η are the same with the linear case
(see Equations (24) and (21c)). Here, we focus on introducing
the solution of the primal variable x.

When updating x, the objective is no longer a quadratic
function. However, the optimization problem can be solved
with GN [42]. Here, the x subproblem is rewritten as

min
x
f(x), (37)

where

f(x) =
1

2
‖R− 1

2 (y − h(x))‖2

+
1

2
‖Q− 1

2 (m− a(x))‖2 +
ρ

2
‖w −Ωx + η/ρ‖2.

Then, the gradient of f(x) is given by

∇f(x) =

R−
1
2 Jh(x)

Q−
1
2 Ja(x)

ρ
1
2 Ω

>  R−
1
2 (h(x)− y)

Q−
1
2 (a(x)−m)

ρ
1
2 (Ωx−w − η/ρ)

 , (38)

where

Jh(x) = blkdiag(Jh1
,Jh2

, . . . ,JhT),

Ja(x) =


I 0

−Ja2 I
. . .

. 0
−JaT I

 ,

and the Hessian is ∇2f(x) = J>J(x) + H(x), where

J>J(x) = J>hR−1Jh(x) + J>a Q−1Ja(x) + ρΩ>Ω,

[H(x)]ij =
1

2
(h(x)− y)>R−1 ∂

2h(x)

∂xi ∂xj

+
1

2
(a(x)−m)>Q−1 ∂2a(x)

∂xi ∂xj
.

In GN, avoiding the trouble of computing the residual
[H(x)]ij , we use the approximation ∇2f(x) ≈ J>J(x) to
replace ∇2f(x), which means [H(x)]ij is assumed to be small
enough. Thus, the primal variable in x iteration is updated by:

x? =
[
J>hR−1Jh(x) + J>a Q−1Ja(x) + ρΩ>Ω

]−1

× [J>hR−1(y − h(x)) + J>a Q−1(m− a(x))

+ ρΩ>(w(k) + η(k)/ρ)].

(40)

The iterations can stop after a maximum number of iterations
imax or if the condition ‖x(i+1)−x(i)‖2 ≤ ε is satisfied, where
ε is an error tolerance. If ε is small enough, then it means that
the above algorithm has (almost) converged. The rest of the
ADMM updates can be implemented similarly to the linear
Gaussian case.

B. The IEKS-ADMM Solver

We now move on to consider the IEKS-ADMM solver. As
discussed in Section I-C, IEKS can be seen as an efficient
implementation of the GN method, which inspires us to derive
an efficient implementation of the batch ADMM.

Now, we rewrite the x subproblem (37) as

min
x1:T

1

2

T∑
t=1

‖yt − ht(xt)‖2R−1
t

+
1

2

T∑
t=1

‖zt −Ωtxt‖2Σ−1
t

+
1

2

T∑
t=2

‖xt − at(xt−1)‖2
Q−1
t

+
1

2
‖x1 −m1‖2P−1

1
.

(41)

In a modest scale (e.g., T ≈ 103), x1:T can be directly com-
puted by (40) although its computations scale as O(n3

x×T 3).
When T is large, the batch ADMM will have high memory
and computational requirements. In this case, the use of IEKS
becomes beneficial due to its linear computational scaling.
In this paper, the proposed method incorporates IEKS into
ADMM to design the IEKS-ADMM algorithm for solving the
nonlinear case.

In the IEKS algorithm, the Gaussian smoother is run several
times with at and ht and their Jacobians are evaluated at
the previous (inner loop) iteration. The detailed iteration steps
of IEKS-ADMM are described in Algorithm 2. In particular,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

following the prediction steps (13) in Section I-C, the update
steps for yt are given by

Syt = Jht(x
(i)
t) P−t [Jht(x

(i)
t)]> + Rt, (42a)

Ky
t = P−t [Jht(x

(i)
t)]> [Syt]−1, (42b)

my
t = m−t + Ky

t [yt − ht(x
(i)
t)− Jht(x

(i)
t)(m−t − x

(i)
t)],

(42c)

Py
t = P−t −Ky

t Syt [Ky
t]>, (42d)

and for the pseudo-measurement zt, the update steps are the
same as in the linear case. They are given in (29).

Additionally, the RTS smoother steps are also described in
Section I-C. We can then obtain the solution as x

(k+1)
1:T =

ms
1:T . Note that the updates on w1:T and η1:T can be

implemented by (32) and (33), respectively.

Algorithm 2: IEKS-ADMM
Input: yt, ht, at, Qt, Rt, Ωt, t = 1, . . . , T ; parameters

λ and ρ; m1 and P1.
Output: x1:T

1 while not convergent do
2 compute x1:T by using the IEKS;
3 compute w1:T by (32);
4 compute η1:T by (33);
5 end

C. Convergence of IEKS-ADMM

In this section, our aim is to prove the convergence of
the IEKS-ADMM algorithm. Although we can rely much
on existing convergence results, unfortunately, when a(x)
and h(x) are nonlinear, the traditional convergence analysis
[28], [43]–[45] does not work as such. In particular, Jacobian
matrices Ja, Jh and linear operator Ω in this paper are
possibly rank-deficient, which is not covered by the existing
convergence results. In the following, we will establish the
convergence analysis which also covers this case.

For notational convenience, we define θ1(x) = 1
2‖y −

h(x)‖2R−1 + 1
2 ‖m− a(x)‖2Q−1 and θ2(w) = λ‖w‖1. The

variables x and w are two sets of time series, and θ1(x) is a
non-quadratic, possibly nonconvex function. The correspond-
ing augmented Lagrangian function can be rewritten as

L(x,w;η) = θ1(x) + θ2(w)

+ η>(w −Ωx) +
ρ

2
‖w −Ωx‖2,

(43)

where Ω can be full-row rank or full-column rank. Thus, the
convergence is analyzed in two different cases. We make the
following assumptions.

Assumption 1. The gradient ∇θ1(x) is Lipschitz continuous
with constant Lθ1 , that is,

‖∇θ1(x1)−∇θ1(x2)‖ ≤ Lθ1‖x1 − x2‖,∀x1,x2 ∈ dom(θ1).

Assumption 2. Function θ1(x)+θ2(w) is lower bounded and
coercive over the feasible set {(x,w) : w = Ωx}.

First, we prove that the sequence L(x(k),w(k);η(k)) is
monotonically non-increasing in the following lemma.

Lemma 1 (Nonincreasing sequence). Let Assumptions 1 and
2 be satisfied and {x(k),w(k),η(k)} be the iterative sequence
generated by ADMM. Assume that one of two cases is satisfied:

Case (a): There exists ρ0 such that when ρ > ρ0, x 7→
L(x,w;η) is µx-strongly convex, that is, L(x,w;η) satisfies

L(x(k),w(k);η(k))− L(x(k+1),w(k);η(k))

≥ 〈∇L(x(k),w(k);η(k)),x(k) − x(k+1)〉

+
µx
2
‖x(k) − x(k+1)‖2.

(44)

Furthermore, assume that ρ > max

(
2L2

θ1

κ2
aµx

, ρ0

)
and that Ω

has full row rank with

Ω Ω> � κ2
aI, κa > 0. (45)

Case (b): ρ > Lθ1
κ2
b

, and Ω has full-column rank with

Ω>Ω � κ2
bI, κb > 0. (46)

Then, sequence L(x(k),w(k);η(k)) is nonincreasing in k.

Proof. See Appendix A.
Next we prove the convergence of Algorithm 2. For that we
need a couple of lemmas which are presented in the following.

Lemma 2 (Convergence of GN). Let ∇f(x) be Lipschitz
continuous with constant Lf , H(x) be bounded by a constant,
that is, ‖H(x)‖ ≤ εh. If J>J(x(i)) � µ2I where µ > 0 is a
constant, and εh < µ2, then the sequence x(i) converges to a
local minimum x?. In particular, the convergence is quadratic
when εh → 0, and (at least) linear convergence is obtained
when εh < µ2.

Proof. See Appendix B.
Based on Lemmas 1 and 2, we can now establish the

convergence by GN-ADMM in the following lemma.

Lemma 3 (Convergence of GN-ADMM). Let assumptions
of Lemmas 1 and 2 be satisfied. Then, the sequence
{x(k),w(k),η(k)} generated by GN-ADMM algorithm con-
verges to a local minimum (x?,w?,η?).

Proof. By Lemma 1, the sequence L(x(k),w(k);η(k)) is
nonincreasing in k. By Assumption 2, the sequence
{x(k),w(k),η(k)} is bounded, because L(x(k),w(k);η(k)) is
upper bounded by L(x(0),w(0);η(0)) and nonincreasing. It is
also lower bounded by

L(x(k),w(k);η(k)) ≥ θ1(x(k)) + θ2(w(k)). (47)

By Lemma 2, there exists a local minimum x? such that the
sequence x(i) converges to x?, which is a local minimum of
x subproblem. The w subproblem is convex [46] and thus
there exists a unique minimum w?. We then deduce that
the iterative sequence {x(k),w(k),η(k)} generated by GN-
ADMM converges to (x?,w?,η?).

The equivalence of GN and IEKS can now be used
to show that IEKS-ADMM converges to a local minimum
(x?1:T ,w

?
1:T ,η

?
1:T).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Theorem 2 (Convergence of IEKS-ADMM). If the sequence
{x(k),w(k),η(k)} generated by GN-ADMM algorithm con-
verges to a local minimum (x?,w?,η?), then the sequence
{x(k)

1:T ,w
(k)
1:T ,η

(k)
1:T } generated by IEKS-ADMM algorithm con-

verges to the local minimum (x?1:T ,w
?
1:T ,η

?
1:T).

Proof. According to [47], the sequence {x(k),w(k),η(k)}
generated by the GN method and the sequence
{x(k)

1:T ,w
(k)
1:T ,η

(k)
1:T } generated by IEKS are identical.

Based on Lemma 3, we deduce the iterative sequence
{x(k)

1:T ,w
(k)
1:T ,η

(k)
1:T } generated by IEKS-ADMM is locally

convergent to (x?1:T ,w
?
1:T ,η

?
1:T).

IV. EXTENSION TO GENERAL ALGORITHMIC FRAMEWORK

A. The Proposed Framework

In this subsection, we present a general algorithmic frame-
work based on the combination of the extended Kalman
smoother and variable splitting. As the smoother solution
only applies to the x1:T -subproblem, here we only formu-
late the corresponding x1:T -subproblem which can be solved
with IEKS. The different variants in the proposed framework
are distinguished by three different choices: the pseudo-
measurement, the pseudo-measurement covariance, and the
pseudo-measurement model matrix.

When at and ht are linear functions, we have the following
general objective function for the x1:T -subproblem:

min
x1:T

1

2

T∑
t=1

‖yt −Htxt‖2R−1
t

+
1

2

T∑
t=2

‖xt −Atxt−1‖2Q−1
t

+
1

2
‖x1 −m1‖2P−1

1
+

1

2

T∑
t=1

‖∆t −Θtxt‖2Σ−1
t
,

(48)

and when at and ht are nonlinear functions, we have

min
x1:T

1

2

T∑
t=1

‖yt − ht(xt)‖2R−1
t

+
1

2

T∑
t=2

‖xt − at(xt−1)‖2
Q−1
t

+
1

2
‖x1 −m1‖2P−1

1
+

1

2

T∑
t=1

‖∆t −Θtxt‖2Σ−1
t
.

(49)

In the above objective functions, ∆t is the pseudo-
measurement, Σt is the pseudo-measurement covariance, and
Θt is the pseudo-measurement model matrix.

As mentioned in Section I-B, various variable splitting such
as PRS, SBM, and FOPD can be used to solve the problems
(22) and (37). Their KS / IEKS-based counterparts can be
obtained by selecting the aforementioned pseudo-measurement
model parameters as shown in Table I. The algorithms for
solving the optimization problems are then the same as Algo-
rithms 1 and 2 except that the pseudo-measurement updates
in (29) are replaced with

Sδt = Θt P
y Θ>t + Σt, (50a)

Kδ
t = P−t Θ>t [Sδt]

−1, (50b)

mt = my
t + Kδ

t [∆t −Θt m
y
t], (50c)

Pt = Py
t −Kδ

t Sδt [Kδ
t]
>, (50d)

and the updates of the other variables are performed using the
appropriate algorithm (see Section I-B).

B. Computational Complexity
This section investigates the computational complexity of

the KS / IEKS based variable splitting methods. The proposed
methods are iterative, in that we use several numbers of
iterations to compute the minimal points also for the primal
variable x?1:T in (35). However, we can always use a bounded
number of iterations and thus we only need to determine the
complexity of a single iteration to determine the complexity
of the whole method. In our case, the computational burden of
the auxiliary variable and the dual variable is low compared
with the matrix inversions in the primal variable update.
Asymptotically, the computational complexities of (32) and
(33) are both O(n2

x T).
In our method, we compute the primal variable update

using KS and IEKS, instead of computing matrix inversions
explicitly. The time complexity of (iteration of) KS and IEKS
is O(n3

x T) [2], [5], [48] (assuming ny ≤ nx), while the
dominating computation in batch variable splitting methods is
the matrix inversion with O(n3

x T
3) complexity [28]. Because

of the total O(n3
x T) computational complexity, the proposed

method is especially applicable to large-scale dataset.

V. NUMERICAL EXPERIMENTS

In the following, we demonstrate the KS and IEKS based
variable splitting methods in numerical experiments. We first
provide several simulated results to study the performance
with varying regularization parameter. Then, we turn our
attention to the behavior of the proposed methods with respect
to the convergence curve and the computational efficiency.
Finally, we report the results for large-scale signal estimation
and demonstrate the effectiveness of the methodology in a
tomographic reconstruction task.

A. Linear Gaussian Simulation Experiment
Consider a four-dimensional linear tracking model (see, e.g.,

[2]) where the state contains rectangular coordinates x1 and
x2, and velocity variables x3 and x4. The state of the system at
time step t is xt =

[
x1,t x2,t x3,t x4,t

]>
. The transition

and measurement model matrices are

At =


1 0 4t 0
0 1 0 4t
0 0 1 0
0 0 0 1

 ,Ht =

[
1 0 0 0
0 1 0 0

]
.

The matrix Ωt and the covariance for the transition are

Ωt =

[
0 0 1 0
0 0 0 1

]
,Qt = qc


∆t3

3 0 ∆t2

2 0

0 ∆t3

3 0 ∆t2

2
∆t2

2 0 ∆t 0

0 ∆t2

2 0 ∆t

 .
with qc = 1/2, ∆t = 0.1, the measurement noise covariance
Rt = σ2I with σ = 0.2, and T = 100 (small scale). The
relative error is calculated by∑T

t=1 ‖x
(k)
t − xtrue

t ‖2∑T
t=1 ‖xtrue

t ‖2
, (51)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE I
DIFFERENT CHOICES OF IEKS-BASED VARIABLE SPLITTING ALGORITHMS

Method Related Quadratic Term Θt ∆t Σt

PRS ρ
2
‖wt −Ωtxt + ηt/ρ‖2 Ωt wt + ηt/ρ I/ρ

SBM ρ
2
‖wt −Ωtxt + ηt‖2 Ωt ηt + wt ρI

FOPD 1
2ρ
‖xt − (x

(k)
t −Ω>t wt)‖2 I x

(k)
t −Ω>t wt ρI

ADMM ρ
2
‖wt −Ωtxt + ηt/ρ‖2 Ωt wt + ηt/ρ I/ρ

where xtrue
t is the ground truth at time step t and x

(k)
t is the

k:th iterate at time step t. The goal here is to estimate dynamic
signals from the noisy measurements y1:T .

In this experiment, we first illustrate the computations
for 1000 values of the regularizing penalty parameter λ in
the interval [0.01, 10]. We remark that other parameters, for
example, the parameter ρ in ADMM and KS-ADMM, are
chosen according to the existing guidelines [28], with no aim
at further optimizing the convergence performance. The CPU
times of various KS-based variable splitting methods are listed
in Fig. 1. The plotted result is an average over 30 experiments.
For 1000 values of parameter λ, the total number of ADMM
iterations required is less than 20, which takes around 0.02
seconds in total. Thus, in the small-scale dataset, the parameter
λ has a less effect on the computational complexity when λ is
varying. Fig. 2 shows the relative error as a function of reg-
ularization parameter λ, using KS-PRS, KS-SBM, KS-FOPD,
and KS-ADMM. As expected, we observe that the relative
error is dependent on a proper choice of λ. We test different
methods for the parameter λ, and find empirically that the
lowest relative errors are achieved with λ = 1.

2 4 6 8 10
0.006

0.008

0.01

0.012

0.014

C
PU

 ti
m

e
(s

)

2 4 6 8 10
0.006

0.008

0.01

0.012

0.014

C
PU

 ti
m

e
(s

)

2 4 6 8 10
0.006

0.008

0.01

0.012

0.014

C
PU

 ti
m

e
(s

)

2 4 6 8 10
0.006

0.008

0.01

0.012

0.014

CP
U

tim
e

(s
)

Fig. 1. Average CPU time when increasing the value of λ for KS-
PRS, KS-SBM, KS-FOPD, and KS-ADMM (from left-top to right-bottom,
respectively).

Additionally, we compare the convergence speed (relative
error versus iteration number) and the running time (average
CPU time versus iteration number) generated by batch ver-
sions of PRS [26], SBM [27], FOPD [30], ADMM [28], to
the proposed KS-based variable splitting methods. We also
evaluate the performance without adding an extra analysis-L1-
regularization term (i.e., λ = 0) in which case the optimization
problem (25) can be solved by KS. Fig. 3 (a) shows the number

10-2 10-1 100 101
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11
0.12
0.13

Re
lat

ive
 e

rro
r

Fig. 2. Relative error as function of the parameter λ in the four-dimensional
linear tracking model.

of iterations required to solve the estimation problem. In tens
of iteration numbers, all the methods have roughly the same
relative errors. Fig. 3 (b) shows the average CPU time as
function of number of iterations. Note that in order to speed
up the KS-based variable splitting methods, we compute the
gains Ky

t , Kz
t and Gt only at the first iteration, and use the

pre-computated matrices in the following iterations. Although
PRS and KS-PRS, SBM and KS-SBM, FOPD and KS-FOPD,
ADMM and KS-ADMM have the same convergence speed,
not surprisingly, KS-SBM, KS-FOPD and KS-ADMM have
a lower CPU time. When T = 100, KS and the KS-based
variable splitting methods have similar CPU time, but KS has
a worse relative error. As shown in Fig. 3 (b), running the PRS,
SBM, FOPD and ADMM solvers is time-consuming. The KF-
based variable splitting methods take about 0.03 seconds to
reach 10 iterations, while the classical optimization approaches
such as FOPD and ADMM take 7 times longer.

The benefit of our approach is highlighted by the fact that
the methods can efficiently solve a large-scale dynamic signal
estimation problem with an extra L1-regularized term. Next,
we enlarge the time step count from 103 to 108. All the results
reported in Fig. 4 are obtained with λ = 1, which gives the
smallest relative error for all the methods. We use 10 iterations
for each method, which in practice is enough for convergence.
It can be seen that the proposed method significantly out-
performs other batch solutions with respect to the consumed
CPU time. In particular, the PRS, SBM, FOPD and ADMM
solvers with 104 time steps take more time than the proposed
methods with T = 108. When T = 105, 106, 107, 108, the
computing operations on PRS, SBM, FOPD, and ADMM run

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

1 2 4 6 8 10
Iteration number k

10-1

100
Re

la
tiv

e
er

ro
r

(a)

k

(b)
Fig. 3. Performance as function of iteration number k with T = 100 in the
linear experiment: (a) relative error versus iteration number, with the y-axis
in log-scale; (b) average CPU time versus iteration number.

out of memory, and the related results cannot be reported. This
is mainly because the KS-based variable splitting methods
deal with the objective using recursive computations, which
significantly reduces the computational and memory burden,
while the batch optimization methods explicitly deal with large
vectors and matrices.

T

Fig. 4. The average CPU time (seconds) versus time steps T = 103, 104,
105, 106, 107 and 108. The axes are in log-scale.

Table II summarizes the average CPU time with different
regularization parameters λ when the number of time steps T
is varying from 102 to 108. The table reports the average CPU
time in seconds required by each solver with 10 iterations. Not
surprisingly, the KF-based variable splitting methods (i.e., KF-
PRS, KF-SBM, KF-FOPD, and KF-ADMM) are much faster
than the batch variable splitting methods when T grows.

B. Nonlinear Simulation Experiment

We consider a five-dimensional nonlinear coordinated turn
model [1]. We set the measurement noise covariance Rt = σ2I
with σ = 0.3, qc = 0.01, ∆t = 0.2, and run kmax = 20
iterations of all the optimization methods. Before moving on,
we provide some empirical evidence to support the choice
of the regularization parameter λ in the IEKS-based variable
splitting methods. Similarly to the linear case in Section V-A,
we plot the relative errors obtained by varying λ in Fig. 5.
It can be seen that the IEKS-based variable splitting methods
have similar relative errors with λ varying in the range [0.1, 1].
Next, we select λ = 0.1 for the following experiments.

10-2 10-1 100 101

10-1

100
Re

la
tiv

e
er

ro
r

Fig. 5. Relative error as function of regularization parameter λ in the five-
dimensional nonlinear coordinated turn model.

Then, we compare IEKS [5], GN-PRS and IEKS-PRS,
GN-SBM and IEKS-SBM, GN-FOPD, and IEKS-FOPD,
GN-ADMM, and IEKS-ADMM by plotting the relative error
and the CPU time as functions of the iteration number.
Fig. 6 demonstrates the efficiency of our IEKS-based variable
splitting methods against GN-PRS, GN-SBM, GN-FOPD and
GN-ADMM in the same experiment. The horizontal axis in
Fig. 6 (a) describes the total iteration number, and the vertical
axis gives the relative errors. As can be seen, all the methods
give the fast convergence in around 5 iterations.

We are also interested in the performance without adding
an extra analysis-L1-regularized term (i.e., λ = 0). Since there
is no outer iteration in IEKS, we plot the relative error of
IEKS after the inner iteration (dashed black line in Fig. 6
(b)). In contrast with the estimation results, we observe a
performance gap between the variable splitting methods and
IEKS. This gap reveals the benefit of the extra regularization
term that is used in these methods. In the average CPU time,
IEKS-PRS, IEKS-SBM, IEKS-FOPD, and IEKS-ADMM are

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE II
COMPARISON OF AVERAGE CPU TIME (SECONDS) WITH DIFFERENT λ IN THE LINEAR CASE.

λ T PRS SBM FOPD ADMM KS-PRS KS-SBM KS-FOPD KS-ADMM

0.1

103 6.05 25.42 14.06 6.12 0.23 0.16 0.31 0.16
104 841 6210 2379 851 0.54 0.60 1.55 0.53
105 - - - - 28.1 30.1 11.2 9.7
106 - - - - 39.4 52.1 87.8 38.5
107 - - - - 402 922 341 337
108 - - - - 3330 4121 3510 3378

0.5

103 6.07 24.61 14.04 6.06 0.22 0.17 0.32 0.14
104 832 6178 2366 837 0.52 0.60 1.53 0.50
105 - - - - 27.9 30.0 10.9 9.4
106 - - - - 38.9 51.3 87.2 38.1
107 - - - - 391 912 337 312
108 - - - - 3121 4003 3421 3115

1

103 6.06 23.65 14.04 6.04 0.22 0.15 0.31 0.14
104 814 5943 2189 824 0.52 0.59 1.56 0.47
105 - - - - 27.4 29.8 10.7 9.2
106 - - - - 37.4 48.8 83.1 37.3
107 - - - - 383 889 326 298
108 - - - - 2936 3961 3328 3096

2

103 6.12 28.64 16.02 6.16 0.21 0.18 0.32 0.14
104 874 6219 2415 868 0.59 0.62 1.54 0.51
105 - - - - 30.0 31.9 12.1 9.2
106 - - - - 40 53 86 38
107 - - - - 417 1002 345 316
108 - - - - 3148 4021 3510 3278

clearly superior to batch variable splitting (see Fig. 6 (b)).
IEKS-FOPD is the fastest convergent method, needing only 3
iterations. Although the state estimation problem is relatively
small scale, GN-PRS, GN-SBM, GN-FOPD and GN-ADMM
are still time-consuming.

Like with linear tracking model, also in this simulation, we
enlarge the time step count T from 102 to 107, and plot the
results in Fig. 7. When increasing the time step count, our
proposed methods significantly outperform the batch methods
with respect to CPU time. In particular, the PRS, SBM,
FOPD and ADMM solvers with 104 time steps take more
time than our proposed methods with 107 time steps, when
λ ∈ [0.1, 0.5, 1, 2]. In Table III, we further list the CPU times
with different λ when T is varying. The performance benefit
of the proposed methods is evident.

C. Tomographic Reconstruction

In this section, we consider the application of the methodol-
ogy to X-ray computed tomography (CT) imaging [49], [50].
First, we evaluate the performance of the proposed methods on
real tomographic X-ray data of an emoji phantom measured
at the University of Helsinki [51]. The dataset consists of
33-point time series of the X-ray sinogram of an emoji
made of small squared ceramic stones. In the sequence, the
emoji transforms from a face with closed eyes and a straight
mouth to a face with smiling eyes and mouth. Typically,
we have a sequence of square X-ray images of size s × s
with s = 64, 128, which we are interested in reconstructing
from low-dose observations taken from a limited number of
angles. These low-dose observations can be modeled by the
measurement matrix Ht which describes line integrals through
the object (i.e., Radon transform).

1 2 3 4 5 6 7 8 9 10
Total iteration number

0.1

0.5

1

Re
la

tiv
e

er
ro

r

(a)

k

(b)
Fig. 6. Performance in the coordinated turn model: (a) relative error versus
total iteration number, with the y-axis in log-scale; (b) average CPU time
(seconds) versus outer iteration number k.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

TABLE III
COMPARISON OF AVERAGE CPU TIME (SECONDS) WITH DIFFERENT λ IN THE NONLINEAR CASE.

λ T GN-PRS GN-SBM GN-FOPD GN-ADMM IEKS-PRS IEKS-SBM IEKS-FOPD IEKS-ADMM

0.01

102 0.26 1.15 0.24 0.38 0.07 0.39 0.08 0.05
103 99 231 86 94 0.22 1.32 0.25 0.19
104 1504 5624 4951 1396 1.31 7.27 1.16 2.01
105 - - - - 26.43 146.94 38.12 19.01
106 - - - - 275 1687 389 201
107 - - - - 2621 11542 3460 1963

0.1

102 0.27 1.17 0.23 0.39 0.06 0.37 0.07 0.05
103 102 233 85 93 0.22 1.31 0.24 0.17
104 1303 5212.7 4640 1252.6 1.29 7.26 1.16 1.99
105 - - - - 26.21 146.81 37.45 18.72
106 - - - - 263 1473 356 187
107 - - - - 2402 11155 3260 1716

1

102 0.32 1.28 0.26 0.43 0.06 0.39 0.07 0.05
103 105 241 89 102 0.23 1.38 0.31 0.26
104 1597 5711 5001 1450 1.32 7.31 1.19 2.03
105 - - - - 27.21 152.1 39.45 20.12
106 - - - - 291 1492 361 202
107 - - - - 2645 11784 3519 2001

2

102 0.34 1.28 0.27 0.43 0.06 0.43 0.07 0.07
103 111 249 95 121 0.26 1.41 0.34 0.27
104 1612 5821 5294 1510 1.48 7.48 1.23 2.45
105 - - - - 28.45 167 41.24 22.12
106 - - - - 312 1625 389 241
107 - - - - 2741 12016 3645 2268

T

Fig. 7. Average CPU time (seconds) versus time step T is 102, 103, 104,
105, 106, 107 in the nonlinear simulated trajectory. The axes are in log-scale.

Fig. 8 shows the CT reconstruction results for the emoji
motion dataset, obtained by KS-ADMM. We set the param-
eters to λ = 10, ρ = 1, kmax = 20, and nx = 4096. The
analysis operator Ωt consists of all the vertical and horizontal
gradients (one step differences), which corresponds to so
called TV regularization [21]. The number of measurements
that correspond to 60 or 30 projections are ny = 13020
and ny = 6510, respectively. Although there is no ground
truth to compare the qualitative results, we can observe the
visual results from different numbers of projections. When
the number of projections is 60, the method provides good
reconstruction results with 20 iterations. We see that the 30-
projection results suffer from the block artifacts as a conse-
quence of the reduction in dose.

Furthermore, we validate the effectiveness of the proposed

Fig. 8. Reconstruction results for the emoji motion dataset. Original pictures
at time step t = 1, 15, 33 are given in the first column, respectively.
Reconstruction results from 60 and 30 projections are shown in the middle
column and the third column.

method on the real inhalation (iBH-CT) and exhalation (eBH-
CT) breath-hold CT images, which was acquired as part of the
National Heart Lung Blood Institute COPDgene study [52].
The dataset consists of 10 expiratory phase images of the
segmented lung voxels. In detail, the parameters are λ = 1,
ρ = 0.1, kmax = 15, T = 10, nx = 16384, and the
numbers of measurements are ny = 13020 and ny = 6510,
corresponding to 60 and 20 projections. The ground truth and
the reconstruction results are shown in Fig. 9. By visually
comparing the results, we observe that moving from 60 to 20
projection provides much more drastic change. For example,
some additional artifacts exist, but the result with the setting
nx = 16384 and ny = 6510 is still very much acceptable

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

(see the third column in Fig. 9). The results show that our
methods still successfully preserve temporal information when
the number of projections is 20.

Fig. 9. Reconstruction results for the lung dataset. Original pictures at time
step t = 1, 3, 6 are given in the first column. Reconstruction results from 60
and 20 projections are shown in the middle column and the third column.

In the two experiments, we used a stationary Kalman
filter and smoother to implement the optimization. We pre-
computed all the gains before the iteration, which significantly
speeded up the computations in tomographic reconstruction.
We report CPU time (seconds) in Table IV. Table IV shows
that KS-ADMM achieves significantly lower CPU time than
the batch ADMM although the visual quality of all the
reconstructions is equal. For example, in emoji motion dataset,
when nx = 16384 , ADMM takes three time longer than our
proposed method. In the lung dataset, when nx = 16384 and
ny = 6510, KS-ADMM seems to be promising to provide
computationally efficient reconstruction.

TABLE IV
AVERAGE CPU TIME (SECONDS) FOR THE OUTER ITERATION IN THE

TOMOGRAPHIC RECOSTRUCTION.

Dataset T nx ny ADMM KF-ADMM

Emoji 33

16384 13020 3657.58 771.49
16384 6510 1422.38 387.26
4096 13020 284.83 97.93
4096 6510 77.79 20.10

Lung 10

16384 13020 3584.62 764.78
16384 6510 1378.41 367.13
10404 13020 1475.84 487.25
10404 6510 187.87 61.24

VI. CONCLUSION

In this paper, we have presented two new classes of methods
for solving state estimation problems. The estimation problem
has been formulated as an (analysis) L1-regularized opti-
mization problem and the resulting problem has been solved
by using the combinations of (iterated extended) Kalman
smoother and variable splitting methods such as ADMM.
The proposed approaches replace the batch solution for the

state-update by using the smoother, which has a lower time-
complexity than the batch solution. Furthermore, we have
extended the proposed methods to a more general algorith-
mic framework, where the state-update is computed with the
smoother. We have also established (local) convergence results
for the novel KS-ADMM and IEKS-ADMM methods. In
two different linear and nonlinear simulated cases, we have
presented experimental results which show the efficiency of
the smoother-based variable splitting optimization methods,
especially when applied to large-scale or high-dimensional
L1-regularized state estimation problems. We also applied the
methodology to a real-life tomographic reconstruction problem
arising in X-ray-based computed tomography. Further work
may explore a proper choice of the dual parameters using in
KS / IEKS-based variable splitting methods, and discuss the
convergence in the adaptive parameter settings.

ACKNOWLEDGEMENTS

The authors are grateful for the help of Zenith Purisha in
preparing the computed tomography experiment and Zheng
Zhao for useful comments on the manuscript.

APPENDIX A
PROOF OF LEMMA 1

We first prove for Case (a). By the first-order optimality
condition of x subproblem, we have

∇L(x(k+1),w(k);η(k)) = 0, (52)

which implies that

∇θ1(x(k+1)) = Ω>(η(k) + ρ(w(k) −Ωx(k+1)))

= Ω>η(k+1).
(53)

It follows that

‖Ω>η(k+1) −Ω>η(k)‖≤Lθ1‖x(k+1) − x(k)‖. (54)

Then, if we assume that Ω is full-row rank with ΩΩ> � κ2
aI,

we have

‖Ω>η(k+1) −Ω>η(k)‖2 ≥ κ2
a‖η(k+1) − η(k)‖2. (55)

By combining (54) and (55), we get

‖η(k+1) − η(k)‖2 ≤
L2
θ1

κ2
a

‖x(k+1) − x(k)‖2. (56)

Thus, for the η-subproblem, we can use the primal variable
to bound as follows:

L(x(k+1),w(k+1);η(k+1))− L(x(k+1),w(k+1);η(k))

= 〈η(k+1),w(k+1) −Ωx(k+1)〉 − 〈η(k),w(k+1) −Ωx(k+1)〉

=
1

ρ
‖η(k+1) − η(k)‖2 ≤

L2
θ1

ρκ2
a

‖x(k+1) − x(k)‖2.

(57)

Since the x-subproblem is µx-strongly convex we have

L(x(k+1),w(k);η(k))

≤ L(x(k),w(k);η(k))− µx
2
‖x(k+1) − x(k)‖2.

(58)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

Similarly, since the w-subproblem is convex, we have the
following inequality:

L(x(k+1),w(k+1);η(k)) ≤ L(x(k+1),w(k);η(k)). (59)

Thus, by combining (57), (58), and (59), we obtain:

L(x(k+1),w(k+1);η(k+1))− L(x(k),w(k);η(k))

= L(x(k+1),w(k+1);η(k+1))− L(x(k+1),w(k+1);η(k))

+ L(x(k+1),w(k+1);η(k))− L(x(k+1),w(k);η(k))

+ L(x(k+1),w(k);η(k))− L(x(k),w(k);η(k))

≤
L2
θ1

ρκ2
a

‖x(k+1) − x(k)‖2 − µx
2
‖x(k+1) − x(k)‖2

=

(
L2
θ1

ρκ2
a

− µx
2

)
‖x(k+1) − x(k)‖2,

(60)

which will be negative provided by ρ > 2L2
θ1
/κ2

aµx. Thus,

when ρ > max

(
2L2

θ1

κ2
aµx

, ρ0

)
, the result follows.

Next, we prove Case (b). In this case, we do not assume
convexity of the x-subproblem. For the η-subproblem, we
obtain

L(x(k+1),w(k+1);η(k+1))− L(x(k+1),w(k+1);η(k))

=
1

ρ
‖η(k+1) − η(k)‖2.

(61)

Let Ω be full-column rank with Ω>Ω � κ2
bI, which gives

‖Ωx(k+1) −Ωx(k)‖2 ≥ κ2
b‖x(k+1) − x(k)‖2. (62)

For the x-subproblem we get

L(x(k),w(k);η(k))− L(x(k+1),w(k);η(k))

= θ1(x(k))− θ1(x(k+1)) + 〈η(k),Ωx(k+1) −Ωx(k)〉
+ 〈ρ(w(k) −Ωx(k+1)),Ωx(k+1) −Ωx(k)〉

+
ρ

2
‖Ωx(k+1) −Ωx(k)‖2

(53)
= θ1(x(k))− θ1(x(k+1)) +

ρ

2
‖Ωx(k+1) −Ωx(k)‖2

+ 〈−∇θ1(x(k+1)),x(k) − x(k+1)〉

≥ − Lθ1
2
‖x(k) − x(k+1)‖2 +

ρ

2
‖Ωx(k+1) −Ωx(k)‖2

(62)
≥
(
ρκ2

b

2
− Lθ1

2

)
‖x(k+1) − x(k)‖2,

(63)

and by combining (59), (61), and (63), we get

L(x(k+1),w(k+1);η(k+1))− L(x(k),w(k);η(k))

= L(x(k+1),w(k+1);η(k+1))− L(x(k+1),w(k+1);η(k))

+ L(x(k+1),w(k+1);η(k))− L(x(k+1),w(k);η(k))

+ L(x(k+1),w(k);η(k))− L(x(k),w(k);η(k))

≤ Lθ1 − ρκ2
b

2
‖x(k+1) − x(k)‖2 +

1

ρ
‖η(k+1) − η(k)‖2,

(64)

which will be nonnegative provided that ρ > Lθ1
κ2
b

.

APPENDIX B
PROOF OF LEMMA 2

The error between the local iterate x(i+1) in the update and
the minimizer x? satisfies the following recursion:

‖x(i+1) − x?‖

=
∥∥∥[J>J(x(i))]−1

∥∥∥
×
∥∥∥J>J(x(i))(x(i) − x?)−

[
∇f(x(i))−∇f(x?)

]∥∥∥
≤
∥∥∥[J>J(x(i))]−1

∥∥∥
×
∫ 1

0

∥∥∥J>J(x(i))− (J>J(x? + α(x(i) − x?))

+H(x? + α(x(i) − x?)))
∥∥∥ ∥∥∥x(i) − x?

∥∥∥dα

≤
∥∥∥[J>J(x(i))]−1

∥∥∥
×
∫ 1

0

∥∥∥∇2f(x(i))−∇2f(x? + α(x(i) − x?))−H(x(i))
∥∥∥

×
∥∥∥x(i) − x?

∥∥∥dα

≤ Lf
2

∥∥∥[J>J(x(i))]−1
∥∥∥∥∥∥x(i) − x?

∥∥∥2

+
∥∥∥[J>J(x(i))]−1H(x(i))

∥∥∥ ∥∥∥x(i) − x?
∥∥∥ .

(65)
Let H(x) be bounded by εh, that is, ‖H(x)‖ ≤ εh. We
conclude that when εh → 0, the convergence is quadratic. Now
let J>J(x(i)) � µ2I. Then, linear convergence is obtained
when the following condition is satisfied:∥∥∥[J>J(x(i))]−1H(x(i))

∥∥∥
≤
∥∥∥[J>J(x(i))]−1

∥∥∥ ‖H(x(i))‖ ≤ εh
µ2

< 1.
(66)

REFERENCES

[1] Y. B. Shalom, X. Li, and T. Kirubarajan, Estimation with Applications
to Tracking and Navigation. Wiley, 2001.

[2] S. Särkkä, Bayesian Filtering and Smoothing. Cambridge, U.K.:
Cambridge Univ. Press, Aug. 2013.

[3] E. Mallada, C. Zhao, and S. Low, “Optimal load-side control for
frequency regulation in smart grids,” IEEE Trans. Automat. Control,
vol. 62, no. 12, pp. 6294–6309, Dec. 2017.

[4] H. E. Rauch, F. Tung, and C. T. Striebel, “Maximum likelihood estimates
of linear dynamic system,” AIAA J., vol. 3, no. 8, pp. 1445–1450, Aug.
1965.

[5] B. Bell, “The iterated Kalman smoother as a Gauss-Newton method,”
SIAM J. Optim., vol. 4, no. 3, pp. 626–636, Aug. 1994.

[6] J. A. Tropp and S. J. Wright, “Computational methods for sparse solution
of linear inverse problems,” Proc. IEEE, vol. 98, no. 6, pp. 948–958,
Jun. 2010.

[7] A. Carmi, P. Gurfil, and D. Kanevsky, “Methods for sparse signal
recovery using kalman filtering pseudo-measuremennt norms and quasi-
norms,” IEEE Trans. Signal Process., vol. 58, no. 4, pp. 2405–2409,
Apr. 2010.

[8] N. Vaswani, “Kalman filtered compressed sensing,” Proc. IEEE Int.
Conf. Image Processing (ICIP), pp. 893–896, Oct. 2008.

[9] D. Zachariah, S. Chatterjee, and M. Jansson, “Dynamic iterative pursuit,”
IEEE Trans Signal Process, vol. 60, no. 9, pp. 4967–4972, Sep. 2012.

[10] S. Farahmand, G. Giannakis, and D. Angelosante, “Doubly robust
smoothing of dynamical processes via outlier sparsity constraints,” IEEE
Trans. Signal Process., vol. 59, no. 10, pp. 4529–4543, Oct. 2011.

[11] A. Y. Aravkin, B. M. Bell, J. V. Burke, and G. Pillonetto, “An L1 laplace
robust kalman smoother,” IEEE Trans. Autom. Control, vol. 56, no. 12,
pp. 2898–2911, Dec. 2011.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

[12] A. Aravkin, J. V. Burke, L. Ljung, A. Lozano, and G. Pillonetto, “Gen-
eralized Kalman smoothing: Modeling and algorithms,” Automatica,
vol. 86, pp. 63–86, Dec. 2017.

[13] A. Simonetto and E. Dall’Anese, “Prediction-correction algorithms for
time-varying constrained optimization,” IEEE Trans. Signal Process.,
vol. 65, no. 20, pp. 942–952, Oct. 2017.

[14] A. Charles, M. Asif, J. Romberg, and C. Rozell, “Sparsity penalties in
dynamical system estimation,” in Proc. 45th Annu. Conf. Inform. Sci.
Syst. (CISS), no. 1–6, Mar. 2011.

[15] A. S. Charles, A. Balavoine, and C. J. Rozell, “Dynamic filtering of
time-varying sparse signals via L1 minimization,” IEEE Trans. Signal
Process., vol. 64, no. 21, pp. 5644–5656, Nov. 2016.

[16] M. Elad, P. Milanfar, and R. Rubinstein, “Analysis versus synthesis in
signal priors,” Inv. Probl., vol. 23, no. 3, pp. 947–968, Sep. 2007.

[17] R. Gao, S. A. Vorobyov, and H. Zhao, “Image fusion with cosparse
analysis operator,” IEEE Signal Process. Lett., vol. 24, no. 7, pp. 943–
947, Jul. 2017.

[18] M. Yaghoobi, S. Nam, R. Gribonval, and M. E. Davies, “Constrained
overcomplete analysis operator learning for cosparse signal modelling,”
IEEE Trans. Signal Process., vol. 61, no. 9, pp. 2341–2355, May 2013.

[19] R. Rubinstein, T. Peleg, and M. Elad, “Analysis K-SVD: A dictionary
learning algorithm for the analysis sparse model,” IEEE Trans. Signal
Process., vol. 62, no. 3, pp. 661–677, Feb. 2013.

[20] J. S. Turek, I. Yavneh, and M. Elad, “On MAP and MMSE estimators
for the co-sparse analysis model,” Digit. Signal Process., vol. 28, pp.
57–74, May 2014.

[21] Y. Hu and M. Jacob, “Higher degree total variation (HDTV) regulariza-
tion for image recovery,” IEEE Trans. Image Process, vol. 21, no. 5, pp.
2559–2571, May 2012.

[22] R. Chalasani and J. C. Principe, “Dynamic sparse coding with smoothing
proximal gradient method,” in in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., May 2014, pp. 7188–7192.

[23] J. Eckstein and D. Bertsekas, “On the Douglas-Rachford splitting
method and the proximal point algorithm for maximal monotone op-
erators,” Math. Programming, vol. 55, pp. 293–318, 1992.

[24] E. Ryu and S. P. Boyd, “A primer on monotone operator methods,” Appl.
Comput. Math., vol. 15, no. 1, pp. 3–43, 2016.

[25] D. W. Peaceman and H. H. Rachford, “The numerical solution of
parabolic and elliptic differential equations,” J. Soc. Indust. Appl. Math.,
vol. 3, no. 1, pp. 28–41, 1955.

[26] B. S. He, H. Liu, Z. R. Wang, and X. M. Yuan, “A strictly contractive
PeacemanRachford splitting method for convex programming,” SIAM J.
Optim., vol. 24, no. 3, pp. 1011–1040, 2014.

[27] T. Goldstein and S. Osher, “The split Bregman method for L1-
regularized problems,” SIAM J. Imaging Sci., vol. 2, no. 2, pp. 323–343,
Apr. 2009.

[28] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning., vol. 3,
no. 1, pp. 1–122, 2011.

[29] R. Glowinski, “On alternating direction methods of multipliers: A
historical perspective,” in Modeling, Simulation and Optimization for
Science and Technology. New York: Springer, 2014, pp. 59–82.

[30] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for
convex problems with applications to imaging,” J. Math. Imaging. Vis.,
vol. 40, no. 1, pp. 120–145, May 2011.

[31] J. Ziniel and P. Schniter, “Dynamic compressive sensing of time-varying
signals via approximate message passing,” IEEE Trans. Signal Process.,
vol. 61, no. 21, pp. 5270–5284, Jun. 2013.

[32] L. Shen, M. Papadakis, I. A. Kakadiaris, I. Konstantinidis, D. Kouri,
and D. Hoffman, “Image denoising using a tight frame,” IEEE Trans.
Image Process, vol. 15, no. 5, pp. 1254–1263, May 2006.

[33] R. Courant, “Variational methods for the solution of problems with
equilibrium and vibration,” Bull. Amer. Math. Soc., vol. 49, pp. 1–23,
1943.

[34] Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating minimiza-
tion algorithm for total variation image reconstruction,” SIAM J. Imag.
Sci., vol. 1, no. 3, pp. 248–272, 2008.

[35] S. J. Wright and J. Nocedal, Numerical Optimization. Springer Verlag,,
2006.

[36] H. Ouyang, N. He, L. Q. Tran, and A. Gray, “Stochastic alternating
direction method of multipliers,” Proc. Int. Conf. Mach. Learn., vol. 28,
pp. 80–88, Jun. 2013.

[37] E. Ryu and S. P. Boyd, “A primer on monotone operator methods,” Appl.
Comput. Math., vol. 15, no. 1, pp. 3–43, 2016.

[38] E. Esser, “Applications of Lagrangian-based alternating direction meth-
ods and connections to Split-Bregman computat,” Appl. Math., Univ.
California, Los Angeles, techreport 09–31, 2009.

[39] N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends Optim.,
vol. 1, no. 3, pp. 123–231, 2013.

[40] B. Anderson and J. B. Moore, “Detectability and stabilizability of time-
varying discrete-time linear systems,” SIAM Journal on Control and
Optimization, vol. 19, no. 1, pp. 20–32, 1981.

[41] B. S. He, H. Yang, and S. L. Wang, “Alternating direction method with
self-adaptive penalty parameters for monotone variational inequalities,”
J. Optimiz. Theory App., vol. 106, no. 2, pp. 337–356, Aug. 2000.

[42] J. Nocedal and S. J., Numerical Optimization. Springer-Verlag, 1999.
[43] M. Hong, M. Razaviyayn, and Z.-Q. Luo, “Convergence analysis of

alternating direction method of multipliers for a family of nonconvex
problems,” SIAM J. Optim., vol. 26, no. 1, pp. 337–364, Jan. 2016.

[44] W. Deng and W. Yin, “On the global and linear convergence of the
generalized alternating direction method of multipliers,” J Sci Comput.,
vol. 66, no. 3, pp. 889–916, Mar. 2016.

[45] Y. Wang, W. Yin, and J. Zeng, “Global convergence of ADMM in
nonconvex nonsmooth optimization,” J Sci Comput., vol. 78, no. 1, pp.
29–63, Jan. 2019.

[46] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Univ.
Press, 2004.

[47] B. M. Bell and F. W. Cathey, “The iterated Kalman filter update as a
Gauss-Newton method,” IEEE Trans. Automat. Control, vol. 38, no. 2,
pp. 294–297, Feb. 1993.

[48] S. Särkkä, “Unscented Rauch–Tung–Striebel smoother,” IEEE Trans.
Automat. Control, vol. 53, no. 3, pp. 845–849, Apr. 2008.

[49] L. Pfister and Y. Bresler, “Tomographic reconstruction with adaptive
sparsifying transforms,” Proc. IEEE Int. Conf. Acoust., Speech Signal
Process, pp. 6914–6918, 2014.

[50] T. A. Bubba, M. März, Z. Purisha, M. Lassas, and S. Siltanen, “Shearlet-
based regularization in sparse dynamic tomography,” Proc. SPIE, vol.
10394, p. 103940Y, Aug. 2017.

[51] A. Meaney, Z. Purisha, and S. Siltanen, “Tomographic X-ray data of 3D
emoji,” arXiv preprint arXiv:1802.09397, 2018.

[52] R. Castillo, E. Castillo, D. Fuentes, M. Ahmad, A. M. Wood, M. S.
Ludwig, and T. Guerrero, “A reference dataset for deformable image
registration spatial accuracy evaluation using the COPDgene study
archive,” Phys. Med. Biol., vol. 58, no. 9, pp. 2861–2877, Apr. 2009.

	I Introduction
	I-A Problem Formulation
	I-B Variable Splitting
	I-C The Iterated Extended Kalman Smoother

	II Linear State Estimation by KS-ADMM
	II-A Batch Optimization
	II-B The KS-ADMM Solver
	II-C Convergence of KS-ADMM

	III Nonlinear State Estimation by IEKS-ADMM
	III-A Batch Optimization
	III-B The IEKS-ADMM Solver
	III-C Convergence of IEKS-ADMM

	IV Extension to general algorithmic Framework
	IV-A The Proposed Framework
	IV-B Computational Complexity

	V Numerical Experiments
	V-A Linear Gaussian Simulation Experiment
	V-B Nonlinear Simulation Experiment
	V-C Tomographic Reconstruction

	VI Conclusion
	Appendix A: Proof of Lemma 1
	Appendix B: Proof of Lemma 2
	References

