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Abstract

The main aim of this paper is to extend the semiparametric inference methodology, recently

investigated for Real Elliptically Symmetric (RES) distributions, to Complex Elliptically Symmetric

(CES) distributions. The generalization to the complex field is of fundamental importance in all practical

applications that exploit the complex representation of the acquired data. Moreover, the CES distributions

has been widely recognized as a valuable and general model to statistically describe the non-Gaussian

behaviour of datasets originated from a wide variety of physical measurement processes. The paper is

divided in two parts. In the first part, a closed form expression of the constrained Semiparametric Cramér-

Rao Bound (CSCRB) for the joint estimation of complex mean vector and complex scatter matrix of a

set of CES-distributed random vectors is obtained by exploiting the so-called Wirtinger or CR-calculus.

The second part deals with the derivation of the semiparametric version of the Slepian-Bangs formula in

the context of the CES model. Specifically, the proposed Semiparametric Slepian-Bangs (SSB) formula

provides us with a useful and ready-to-use expression of the Semiparametric Fisher Information Matrix

(SFIM) for the estimation of a parameter vector parametrizing the complex mean and the complex scatter
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matrix of a CES-distributed vector in the presence of unknown, nuisance, density generator. Furthermore,

we show how to exploit the derived SSB formula to obtain the semiparametric counterpart of the

Stochastic CRB for Direction of Arrival (DOA) estimation under a random signal model assumption.

Simulation results are also provided to clarify the theoretical findings and to demonstrate their usefulness

in common array processing applications.

Index Terms

Complex variables, semiparametric models, Semiparametric Cramér-Rao Bound, Slepian-Bangs

formula, Complex Elliptically Symmetric distributions, scatter matrix estimation, DOA estimation.

I. INTRODUCTION

Statistical analysis of complex data is a well-established field in Signal Processing (see [1]–[8]

just to cite a few). The use of complex representation for the acquired data can simplify the

modeling and the inference tasks in many applications such as acoustics, optics, seismology,

communications and radar/sonar Signal Processing. This fact, together with the need to model

the non-Gaussian, heavy-tailed statistical behavior of the disturbance, led to the introduction of

the wide family of Complex Elliptical Symmetric (CES) distributions ([9], [10, Ch. 3], [11],

[12], [13] and [14, Ch. 4]). Briefly, if an N -dimensional complex random vector z ∈ CN is

CES-distributed, say z ∼ CESN(µ,Σ, h), then its probability density function (pdf) is fully

specified by the complex mean vector µ ∈ CN , the complex scatter matrix Σ ∈ CN×N and

the density generator h ∈ G, where G is a suitable set of functions. CES distributions are the

complex extension of Real Elliptically Symmetric distributions [15,16] from which they inherit

most of their properties.

Our recent papers [17,18] focuses on the particular semiparametric1 structure of the RES

distributions. As noted in [21] and [19, Sec. 4.2 and 7.2], the RES distributions can be considered

as a semiparametric group model whose parametric part is given by the mean vector and by the

scatter matrix to be jointly estimated, while the non-parametric nuisance part is given by the

density generator. Moreover, in [18], a closed form expression for the Semiparametric Cramér-

Rao Bound (SCRB) on the joint estimation of the parametric part of the RES model has also

been derived. It is worth noticing that the SCRB for the estimation of the mean vector and of the

1The reader that is not familiar with the semiparametric theory may have a look at the books [19] and [20] or to the wide

statistical literature available on this topic and partially collected in the reference lists of [17,18].
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scatter matrix has been already derived in [22]–[25] by using a more general, but more abstract,

procedure based on the LeCam’s theory [26].

The aim of this paper is to generalize and extend the results on the SCRB, already derived in

the context of RES distributions in [18], to CES distributions. Firstly, we will provide a closed

form expression for the SCRB on the Mean Square Error (MSE) of the joint estimation of

the complex mean vector µ and complex scatter matrix Σ of a set of CES distributed random

vectors. This generalization relies on the Wirtinger or CR-calculus ([5]–[7,27]–[30]) and on its

application on the derivation of lower bounds ([31]–[36]). Then, the second part of the paper

is dedicated to the derivation of a semiparametric version of the the celebrated Slepian-Bangs

(SB) formula and the related Semiparametric Stochastic CRB (SSCRB) for Direction of Arrival

(DOA) estimation problems.

Introduced by Slepian and Bangs in [37] and [38], the SB formula has been extensively used

for many years in array processing. The “classic” SB formula is a compact expression of the

Fisher Information Matrix (FIM) for parameter estimation under a Gaussian data model [39,

Appendix 3C]. Specifically, let θ ∈ Θ ⊂ Rd be a d-dimensional, deterministic parameter vector

and let CN 3 z ∼ CN(µ(θ),Σ(θ)) be a possibly complex, Gaussian-distributed, random vector

(also called snapshot), representing the available observation. Then the SB formula provides us

with a closed-form expression of the FIM for the estimation of θ ∈ Θ.

Due to its central role in many practical applications, including DOA estimation, the SB for-

mula has been the subject of active research. In particular, it has been generalized to non-Gaussian

and mismatched estimation frameworks [40]. Specifically, in [41], Besson and Abramovich

proposed a generalization of the classical, SB formula to CES-distributed data. Richmond and

Horowitz in [35] showed an extension of the classical, Gaussian-based, SB formula to estimation

problems under model misspecification. The natural follow-on [41] and [35] has been proposed

in [42], where SB-type formulas, that encompass those previously obtained in [41] and [35] as

special cases, have been derived for parameter estimation problems involving CES-distributed

data under model misspecification. In this paper, we take a step forward to the generalization of

the SB formula for semiparametric estimation in the CES framework. Concretely, we propose

a Semiparametric SB (SSB) formula that provides a compact expression of the Semiparametric

FIM (SFIM) for the estimation of θ ∈ Θ in CES-distributed data when the density generator is

unknown. More specifically, let CN 3 z ∼ CESN(µ(θ),Σ(θ), h) be a CES-distributed random

vector parameterized by θ ∈ Θ ⊂ Rd, then the SCRB related to the proposed SSB formula
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provides a lower bound on the Mean Square Error (MSE) of any estimator of θ in the presence

of an unknown, nuisance density generator h ∈ G. It is worth pointing out that, we assume here

the unknown parameter vector θ ∈ Θ to be real-valued since in most of the practical application

of the SSB formula θ collects real parameters (e.g. the DOAs of a certain number of sources

in array processing). This assumption, however, does not represent a limitation, since we can

always maps a complex vector in a real one simply by stacking its real and the imaginary parts.

Moreover, Wirtinger calculus may be exploited to obtain the proposed SSB formula directly in

the complex field. We conclude the paper with an example of application of the derived SSB

formula. In particular, we provide a closed form expression of the so-called “Stochastic” CRB

for the DOA estimation in the presence of a random signal model [43]–[47].

Notation: Throughout this paper, italics indicates scalar quantities (a), lower case and upper

case boldface indicate column vectors (a) and matrices (A), respectively. Note that the word

“vector” indicates both Euclidean vectors and vector-valued functions. For the sake of clarity,

we indicate sometimes a vector-valued function as a ≡ a(z). The asterisk ∗ indicates complex

conjugation. The superscripts T and H indicate the transpose and the Hermitian operators

respectively, then AH = (A∗)T . Moreover, A−T , (A−1)T = (AT )−1, A−∗ , (A−1)∗ = (A∗)−1

and A−H , (A−1)H = (AH)−1. Each entry of a matrix A is indicated as ai,j , [A]i,j . Let

A(θ) be a matrix (or possibly a vector or even a scalar) function of the real vector θ ∈ Rd, then

A0 , A(θ0) while A0
i ,

∂A(θ)
∂θi
|θ=θ0 and A0

ij ,
∂2A(θ)
∂θi∂θj

|θ=θ0 , where θ0 is a particular (or true)

value of θ. IN defines the N ×N identity matrix. According to the notation introduced in [17]

and [18], we indicate the true pdf as p0(z) , pZ(z|θ0, h0), where h0 indicates the true nuisance

function. Moreover, E0{·} indicates the expectation operator with respect to (w.r.t.) the true pdf

p0(z). Finally, for random variables or vectors, =d stands for ”has the same distribution as”.

II. A BRIEF RECAP ON CES DISTRIBUTIONS

This section provides a brief overview of CES distributions with a specific focus on the

properties that will play a crucial role in the derivation of the complex version of the SCRB and

the SSB formula.

Definition II.1. ([9], [10], [12] and [14, Ch. 4]) Let z , xR + jxI ∈ CN be a complex random

vector and let xR ∈ RN and xI ∈ RN be two real random vectors that represent the real and
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the imaginary part of z, respectively. Then z is said to be CES-distributed with mean vector µ

and scatter matrix Σ such that (s.t.):

µ = µR + jµI ∈ CN Σ = C1 + jC2 ∈ CN×N , (1)

if and only if the real random vector x̃ , (xTR,x
T
I )T ∈ R2N is RES-distributed with mean vector

µ̃ = (µT
R,µ

T
I )T and scatter matrix Σ̃ that satisfies the following structure

Σ̃ =
1

2

 C1 −C2

C2 C1

 . (2)

We note that, as a consequence of Definition II.1, any CES-distributed random vector z satisfies

the circularity property, i.e. (z − µ) =d e
jϑ(z − µ), ∀ϑ ∈ R. Moreover, under the absolutely

continuous case, i.e. when the scatter matrix has full rank, the pdf of the CES-distributed vector

z can be directly obtained from the one of the RES-distributed vector x̃ ∼ RES2N(x̃; µ̃, Σ̃, g).

Specifically, (see [10, Sec. 3.5] and [14, Sec. 4.2.2]):

RES2N(x̃; µ̃, Σ̃, g) , pX̃(x̃; µ̃, Σ̃, g)

= 2−(2N)/2|Σ̃|−1/2g((x̃− µ̃)T Σ̃−1(x̃− µ̃)T )

= |Σ|−1g
(
2(z− µ)HΣ−1(z− µ)

)
= pZ(z;µ,Σ, h) , CESN(z;µ,Σ, h),

(3)

where h(t) , g(2t). Note that by moving from the real to the complex representation, the

functional form of the density generator remains unchanged except for the scaling factor 2 of

its argument. Furthermore, the pdf of a CES-distributed random vector z can be expressed as2:

pZ(z|θ, h) = |Σ|−1h
(
(z− µ)HΣ−1(z− µ)

)
. (4)

As for RES distributed vectors, any CES distributed vector z can be represented as ([9], [12]

and [10, Sec. 3.5]):

z =d µ +
√
QΣ1/2u, (5)

where u ∼ U(CSN) is a complex random vector uniformly distributed on the unit complex

N -sphere CSN and Q is the so-called 2nd-order modular variate, s.t.:

Q =d Q , (z− µ)HΣ−1(z− µ), (6)

2Note that this definition is consistent with the one proposed in [12] except for the normalizing constant cN,g that we included

in the functional form of density generator h.
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whose pdf is given by:

pQ(q) = 2−1sNq
N−1h (q) = πNΓ(N)−1qN−1g (2q) , (7)

where sN , 2πN/Γ(N) is the surface area of CSN . From (5) and by exploiting the properties

of u [12, Lemma 1], we have that the covariance matrix of the CES-distributed vector z is

M , E{(z− µ)(z− µ)H} = N−1E{Q}Σ.

It is immediate to verify that the representation in (5) is scale-ambiguous since z =d µ +
√
QΣ−1/2u =d µ +

√
c−2Q(cΣ−1/2)z,∀c > 0. Moreover, as for the RES case, the scale ambi-

guity appears also in the functional representation of a CES pdf since CESN(z;µ,Σ, h(t)) ≡
CESN(z;µ, cΣ, h(ct)),∀c > 0. There are two different, yet equivalent, ways to avoid this scale

ambiguity. The first one is to put a constraint on the scatter matrix Σ, e.g. we may choose to

impose the usual constraint on its trace as done in [18], that is tr(Σ) = N . The second equivalent

approach is to impose a constraint on the functional form of the density generator h. Following

the same procedure adopted in [42], we may assume that h ∈ G is parameterized in order to

satisfy the constraint:

E{Q} = πNΓ(N)−1

∫ +∞

0

qN−1h(q)dq = N. (8)

As a consequence of (8), the scatter matrix Σ equates the covariance matrix M of z [12,

Sec. III.C]. For further reference, we define the set Ḡ ⊂ G as the set of all the density

generators satisfying the constraint in (8). Moreover, all the expectation operators taken w.r.t.

the “constrained” pdf of the second-order modular variate in (6) will be indicated as Ē{·}, s.t.

Ē{f(Q)} ,
∫ +∞

0

f(q)pQ(q)dq = πNΓ(N)−1

∫ +∞

0

f(q)qN−1h(q)dq, h ∈ Ḡ. (9)

As we will discuss ahead in the paper, in order to obtain the constrained SCRB on the joint

estimation of µ and Σ, we will exploit the constraint on the trace of Σ, while to derive the SSB

formula we will rely on the constraint on the desity generator given in (8).

Definition II.1 and the equality chain in (3) suggest the existence of a one-to-one mapping

between the subset of the RES distributions satisfying the covariance structure specified in (2)

and the family of CES distributions. In other words, the CES “framework” is just a convenient

and compact representation of a subset of RES distributions. This implies that the theory already

developed for the RES class holds true for the CES class as well. In particular, by relying on the

approach proposed in [10, Sec. 3.5], CES distributions can be interpreted as the semiparametric
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group model generated by the set of Complex Spherically Symmetric (CSS) distributions through

the action of the group of affine transformations:

α(µ,Σ) : CN → CN , ∀µ,Σ

z 7→ α(µ,Σ)(z) = µ + Σ1/2z.
(10)

Then, the semiparametric structure detailed in [18, Sec. 3] for the RES distribution can be directly

translated in the CES context without any new specific manipulations.

III. THE CONSTRAINED SCRB FOR COMPLEX PARAMETER ESTIMATION IN CES

DISTRIBUTIONS

In this section, a closed form expression of the constrained CSCRB for the joint estimation of

the complex mean vector µ and of the complex constrained scatter matrix Σ of CES-distributed

vectors is provided. The subsequent derivation strictly follows the one described in [18] for the

real case. However, in the complex case, the derivatives have to be considered as Wirtinger

derivatives. More precisely, following Theorem IV.1 in [18], the steps are:

A. Define the complex constrained parameter space Ω̄C.

B. Evaluate the semiparametric efficient score vector s̄0(z) using the Wirtinger derivatives.

C. Derive the SFIM for the joint estimation of µ and Σ.

D. Obtain a closed form expression for the complex CSCRB.

A. The complex constrained parameter space Ω̄C

As mentioned before, the parametric part of the semiparametric CES model is given by the

mean vector µ and by the Hermitian scatter matrix Σ. According to the rules of the Wirtinger

calculus, to define a complex parameter space, we have to take into account the parameters to

be estimated together with their complex conjugates [31]–[36]. To this end, we note that, while

µ is composed of N complex free parameters, i.e. all its N entries, the Hermitian scatter matrix

Σ can be parametrized by means of its N real diagonal entries and of its N(N − 1)/2 complex

entries that are positioned strictly below the main diagonal [48]. More formally, and following

the notation in [34] and [35], the parametric part of the CES model can be described by the

parameter vector θ = (θTc ,θ
H
c ,θ

T
r )T , where:

θc = (µT , vecl(Σ)T )T , θr = diag(Σ), (11)
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the operator vecl(·) selects all the entries strictly below the main diagonal of Σ taken in the

same column-wise order as the ordinary vec(·) operator [48, Sec. 2.4] while diag(Σ) is a column

vector collecting the diagonal elements of Σ.

For ease of calculation, we express the parameter vector θ with respect to a different basis.

In particular, let us introduce a permutation matrix P, s.t.:

φ , (µT ,µH , vec(Σ)T )T = Pθ. (12)

It is worth stressing here that the previous two characterizations of the augmented complex

parameter vectors θ and φ given in (11) and (12) are equivalent, since the scatter matrix Σ is an

Hermitian matrix and the permutation matrix P only represents an orthogonal change of basis

[48, Sec. 6.5.5]. Consequently, let us define the “augmented” complex parameter space ΩC ⊂ Cq

of dimension q = N(N + 2) as:

ΩC = {φ ∈ Cq|φ is as in (12);µ ∈ CN ,Σ ∈MC
N}, (13)

where MC
N is the set of all the Hermitian, positive-definite matrices of dimension N × N . As

previously discussed, in order to avoid the scale ambiguity between the scatter matrix and the

density generator of a CES distribution, we choose to impose a constraint on the trace of Σ.

Specifically, let us define the scalar, real-valued, constraint function as:

c(Σ) , tr(Σ)−N = 0. (14)

Then, the function c(Σ) constrains the parameter vector φ in a smooth sub-manifold of ΩC

defined as:

Ω̄C = {φ ∈ ΩC|c(Σ) = 0}, (15)

of dimension q̄ = q− 1. From now on, Ω̄C will be considered as the reference parameter space.

B. The complex semiparametric efficient score vector s̄0(z)

This subsection provides a closed form expression for the semiparametric efficient score vector

s̄0 ≡ s̄0(z), evaluated at the true parameter vector φ0 ∈ ΩC. The complex extension of the

semiparametric efficient score vector given in [18, Theo IV.1] can be defined as:

s̄0 = [s̄Tµ0
, s̄Tµ∗0 , s̄

T
vec(Σ0)]

T = sφ0 − Π(sφ0|Th0), (16)

where sφ0 is the score vector w.r.t. φ0 and Π(sφ0|Th0) is the orthogonal projection of sφ0 on the

nuisance tangent space evaluated at the true density generator h0.
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The score vector w.r.t. φ0 can be expressed as:

sφ0 , ∇φ ln pZ(z;φ0, h0) = [sTµ0
, sTµ∗0 , s

T
vecs(Σ0)]

T (17)

where, following the approach detailed in [34], the complex gradient operator of a scalar, real-

valued, function f(φ), evaluated in φ0, is defined as:

[∇φf(φ0)]i = ∂f(φ)/∂φ∗i |φ=φ0
, i = 1, . . . , q. (18)

The closed form expression for sµ0 , sµ∗0 and sTvecs(Σ0) can be obtained by applying the standard

rules of the Wirtiger matrix calculus. For an excellent and comprehensive book about this topic,

we refer the reader to [48]. Here, to not clutter the presentation with too many technicalities,

we will provide only the final outcomes without reporting all the steps.

The complex gradient w.r.t. µ of ln pZ(z;φ0, h0) can be obtained by applying the rules listed

in Table 4.2 of [48] as:

sµ0(z) = −ψ0(Q0)Σ−1
0 (z− µ0) =d −

√
Qψ0(Q)Σ

−1/2
0 u. (19)

Consequently, we have that:

sµ∗0(z) = s∗µ0
(z) =d −

√
Qψ0(Q)(Σ∗0)−1/2u∗, (20)

where

ψ0(t) , d lnh0(t)/dt. (21)

Moreover, by applying the derivative rules listed in Table 4.3 and the equality in [48, eq. 6.199],

we get:

svec(Σ0)(z) = −vec(Σ−1
0 )− ψ0(Q0)Σ−∗0 ⊗Σ−1

0 vec
(
(z− µ0)(z− µ0)H

)
=d −vec(Σ−1

0 )−Qψ0(Q)((Σ∗0)−1/2 ⊗Σ
−1/2
0 )vec(uuH).

(22)

The next step is the derivation of the orthogonal projection of the score vector sφ0 on the

nuisance tangent space of the CES semiparametric group model evaluated at the true density

generator h0. The procedure to obtain a closed form expression for Π(sφ0|Th0) parallels the one

described in [18, Sec. IV.B] for the real case. Specifically, the properties of the semiparametric

group models collected in Proposition II.1 of [18] can be applied to derive Π(sφ0|Th0). Then,

by replicating step-by-step the procedure discussed in [18, Sec. IV.B], we obtain:

Π(sµ0|Th0) = Π(sµ∗0 |Th0) = 0N , (23)
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Π(svec(Σ0)|Th0) = −(1 +N−1Qψ0(Q))vec(Σ−1
0 ). (24)

Note that, as for the real case, sµ0 and sµ∗0 are orthogonal to the nuisance tangent space Th0 . This

implies that we achieve the same (asymptotic) performance in the estimation of µ0 by knowing

or not knowing the true density generator h0.

The efficient score vector s̄0 in (16) can now be derived by collecting previous results. In

particular, we have that s̄µ0 ≡ sµ0 and s̄µ∗0 ≡ sµ∗0 since, as reported in (23), the projection is nil,

and

s̄vec(Σ0) =d Qψ0(Q)((Σ∗0)−1/2 ⊗Σ
−1/2
0 vec(uuH)−N−1vec(Σ−1

0 )). (25)

C. The SFIM Ī(φ0|h0)

The SFIM can be expressed as the following block matrix:

Ī(φ0|h0) =

 Ī(µ0|h0) 02N×N2

0N2×2N C0(s̄vec(Σ0))

 , (26)

where, for a generic function l ≡ l(z), we define C0(l) , E0{llH}. The off-diagonal block

matrices in (26) vanish because all the third-order moments of u vanish [12, Lemma 1] and

Ī(µ0|h0) =

 C0(s̄µ0) 0N×N

0N×N C∗0(s̄µ0),

 , (27)

C0(s̄µ0) = N−1E{Qψ0(Q)2}Σ−1
0 . (28)

Note that the off-diagonal matrices in (27) vanish due to the circularity of u, while to derive

(28), we used the fact that E{uuH} = N−1I [12, Lemma 1]. Moreover, after some standard

complex matrix manipulations, we get:

C0(s̄vec(Σ0)) =
E{Q2ψ0(Q)2}
N(N + 1)

(Σ−T0 ⊗Σ−1
0 −N−1vec(Σ−1

0 )vec(Σ−1
0 )H). (29)

It is worth noticing that the constraint on the trace of the scatter matrix Σ0 has not been imposed

yet.
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D. The complex constrained SCRB: CCSCRB(φ0|h0)

We are now ready to derive a closed form expression of the SCRB for the constrained

estimation of the complex parameter vector φ0 ∈ Ω̄C, i.e. CCSCRB(φ0|h0). As showed in

[18, Theo. IV.1] for the real case, the first step to obtain CCSCRB(φ0|h0) is the derivation

of the matrix U whose columns form an orthonormal basis for the null space of the Jacobian

matrix of the constraint function c(Σ0) in (14). Since, in our case, c(Σ0) involves only the real

diagonal elements of the Hermitian matrix Σ0, U ∈ RN2×(N2−1) is the matrix that satisfies the

following two conditions:

∇T
vec(Σ)c(Σ0)U = 0, UTU = IN2−1. (30)

Through direct calculation, we have that:

∇T
vec(Σ)c(Σ0) = vec(IN)T . (31)

Then, matrix U can be obtained numerically by evaluating the N2−1 orthonormal eigenvectors

associated with the zero eigenvalue of vec(IN)T through SVD.

Finally, the CCSCRB for the estimation of φ0 ∈ Ω̄C in (15) can be expressed as:

CCSCRB(φ0|h0) =

 Ī(µ0|h0)−1 02N×N2

0N2×2N Ī(Σ0|h0)−1

 , (32)

where the two block-diagonal matrices are the inverse of the SFIMs for the estimation of the

mean vector µ0 and of the constrained scatter matrix Σ0 that can be expressed as:

Ī(µ0|h0)−1 =
N

E{Qψ0(Q)2}

 Σ0 0N×N

0N×N Σ∗0

 , (33)

Ī(Σ0|h0)−1 = U
(
UTC0(s̄vecs(Σ0))U

)−1
UT . (34)

Note that, as for the real case, the block-diagonal structure of CCSCRB(φ0|h0) implies that not

knowing the mean vector µ0 have no impact on the optimal asymptotic performance in the esti-

mation of the scatter matrix Σ0. A numerical example of the calculation of the CCSCRB(φ0|h0)

in complex t-distributed data will be given in Sect. VI-A, where the efficiency of two scatter

matrix estimators is investigated through simulations.
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IV. SEMIPARAMETRIC SLEPIAN-BANGS FORMULA FOR CES DISTRIBUTIONS

Eqs. (32), (33) and (34) provide a closed form expression for the CSCRB for the joint

estimation of the mean vector and the scatter matrix of a CES-distributed vector. In this section,

we focus our attention on a more general case where both the mean vector and the scatter

matrix can be parametrized by a real parameter vector. Let us start with some preliminaries.

Let CN 3 z ∼ CESN(µ(θ),Σ(θ), h) be a CES-distributed random vector whose mean value

µ(θ) ∈ CN and scatter matrix Σ(θ) ∈ CN×N are parameterized by a d-dimensional parameter

vector θ ∈ Θ ⊂ Rd to be estimated. The density generator h ∈ Ḡ is left unspecified since it

represents an unknown, infinite-dimensional nuisance parameter. We assume here that Σ(θ) is

a full rank, positive definite, Hermitian matrix for any possible value of θ ∈ Θ. Consequently,

the pdf of z can be expressed as shown in (4).

To avoid the scale ambiguity problem between the scatter matrix and the density generator,

we impose the constraint in (8) on the functional form of h. We were steered towards this choice

just by the ease of calculation. Here, in fact, the scatter matrix is parametrized by the vector of

interest θ and it is not easy to work with a constrained parametric scatter matrix. The adoption

of the constraint on h leaves Σ(θ) unconstrained and this greatly simplifies the derivation. Note

that, as a consequence of (8), the scatter matrix Σ(θ) is the covariance matrix of z.

We now focus our attention on the semiparametric group nature of the family of all the pdfs,

say Pθ,h, of an (absolutely continuous) CES-distributed random vector z ∼ CESN(µ(θ),Σ(θ), h)

with θ ∈ Θ and h ∈ Ḡ. Following the discussion provided in [19, Sec. 4.2 and 4.3], let us firstly

introduce the group A of affine transformations:

A 3 αθ : CN → CN , ∀θ ∈ Θ

CN 3w 7→ αθ(w) = µ(θ) + Σ(θ)1/2w.
(35)

Then, as shown in [19, Sec. 4.2, Lemma 2], the model Pθ,h can be considered as a semiparametric

group model generated by A and it can be explicitly expressed as:

Pθ,h =
{
pZ |pZ(z|θ, h) = |Σ(θ)|−1h(||α−1

θ (z)||2),θ ∈ Θ, h ∈ Ḡ
}
, (36)

where α−1
θ (·) = Σ(θ)−1/2(· −µ(θ)) is the inverse transformation of αθ ∈ A and || · || indicates

the Euclidean norm. Under some regularity conditions on the mapping θ → (µ(θ),Σ(θ))

discussed in [19, Sec. 4.2, pp. 92, Assumptions (iii), (iv), (v)], we can exploit the properties of

the semiparametric group models to evaluate the Semiparametric FIM Ī(θ0|h0) for the estimation
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of the “true” parameter vector θ0 ∈ Θ in the presence of the “true” nuisance density generator

h0 ∈ Ḡ. The closed form expression for Ī(θ0|h0) that we are going to derive is exactly the SSB

formula.

A. The single snapshot case

Let us start with the case in which we have only one snapshot sampled from an unspecified

CES distribution, i.e. z ∼ CESN(µ0,Σ0, h0), where µ0 ≡ µ(θ0) and Σ0 ≡ Σ(θ0). As discussed

in [19, Sec. 3.4] and recalled in [18, Sec. IV.B], the SFIM for the estimation of θ0 ∈ Θ is defined

as Ī(θ0|h0) , E0{s̄θ0 s̄Hθ0} where the semiparametric efficient score vector s̄θ0 ≡ s̄θ0(z) is given

by:

s̄θ0 , sθ0 − Π(sθ0|Th0), (37)

where sθ0 is the score vector evaluated at the true parameter vector θ0 and Π(sθ0|Th0) is the

orthogonal projection of sθ0 on the semiparametric nuisance tangent space Th0 of Pθ,h in (36)

evaluated at the true density generator h0. The procedure that we have to follow in order to

obtain the SSB formula, i.e. the closed form expression of Ī(θ0|h0) is similar to the one adopted

in Sec. III to derive the CSCRB for the joint estimation of µ and Σ:

1) Evaluate the semiparametric score vector s̄θ0 .

2) Calculate the SFIM Ī(θ0|h0) , E0{s̄θ0 s̄Hθ0}
3) Rearrange the Ī(θ0|h0) in a compact and easy-to-use expression, i.e. the SSB formula.

In the following, the above-mentioned three steps are developed in details.

1) Evaluation of the semiparametric efficient score vector s̄θ0: Let us start with the calculation

of the score function sθ0 . Following the derivation in [42, Sec. 3.1] and [41, Sec. III], each entry

of sθ0 can be easily evaluated as:

[sθ0 ]i ,
∂ ln pZ (z;θ)

∂θi

∣∣∣∣
θ=θ0

= tr(P0
i ) + ψ0(Q0)

∂Q0

∂θi
, (38)

where the function ψ0 has already been defined in (21) and P0
i , Σ

−1/2
0 Σ0

iΣ
−1/2
0 . Moreover,

from [42, eq. (22)] and [41, eq. (8)], we have:

∂Q0

∂θi
= −2Re

[
(z− µ0)HΣ−1

0 µ0
i

]
− (z− µ0)HS0

i (z− µ0), (39)
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where, according to the notation previously introduced, µ0
i , ∂µ0

∂θi
and S0

i = Σ−1
0 Σ0

iΣ
−1
0 . By

collecting previous results, the entries of the score vector sθ0 can be expressed as:

[sθ0 ]i = tr
(
P0
i

)
− ψ0(Q0)

(
2Re

[
(z− µ0)HΣ−1

0 µ0
i

]
+

+(z− µ0)HS0
i (z− µ0)

)
, i = 1, . . . , d.

(40)

Using the representation given in (5), eq. (40) can be rewritten as:

[sθ0 ]i =d −ψ0(Q)
(

2
√
QRe

[
uHΣ

H/2
0 Σ−1

0 µ0
i

]
+QuHΣ

H/2
0 S0

iΣ
1/2
0 u

)
+ tr

(
P0
i

)
= −ψ0(Q)

(
2
√
QRe

[
uHΣ

−1/2
0 µ0

i

]
+QuHP0

iu
)

+ tr
(
P0
i

)
, i = 1, . . . , d.

(41)

The orthogonal projection Π(sθ0|Th0) can be obtained by following exactly the same procedure

discussed in [18, Sec. IV.B]. For the sake of conciseness, here we report only the final result as:

[Π(sθ0|Th0)]i = E0|
√
Q{[sθ0 ]i|

√
Q}

=d tr(P0
i )− 2

√
Qψ0(Q)Re

[
E{u}HΣ

−1/2
0 µ0

i

]
−Qψ0(Q)tr

(
P0
iE{uuH}

)
= tr(P0

i )−N−1Qψ0(Q)tr
(
P0
i

)
, i = 1, . . . , d.

(42)

Finally, by substituting (41) and (42) in (37), we get explicit expressions for the d entries of

the semiparametric efficient score vector s̄θ0 as:

[s̄θ0 ]i =d ψ0(Q)
(
N−1Qtr

(
P0
i

)
− 2
√
QRe

[
uHΣ

−1/2
0 µ0

i

]
−QuHP0

iu
)

=d ψ0(Q)
(
N−1Qtr

(
P0
i

)
−
√
QuHΣ

−1/2
0 µ0

i −
√
Q(µ0

i )
HΣ

−1/2
0 u−QuHP0

iu
)
,

(43)

for i = 1, . . . , d.

2) Evaluation of the SFIM Ī(θ0|h0): As mentioned before, the SFIM for the estimation of

θ0 in the presence of the unknown, infinite-dimensional, nuisance parameter h0 is given by

Ī(θ0|h0) , E0{s̄θ0 s̄Hθ0}. In the sequel, a sketch of the calculation required to obtain an explicit

expression for each entry of Ī(θ0|h0) is reported.

Let us start by defining the vector t , Σ
−1/2
0 u and then, substituting t in (43), we get:

[s̄θ0 ]i =d ψ0(Q)
(
N−1Qtr(P0

i )−
√
QtHµ0

i −
√
Q(µ0

i )
Ht−QtHΣ0

i t
)
. (44)

The next step consists in evaluating the products:

[s̄θ0 ]i[s̄θ0 ]
∗
j = ψ(Q)2

[
N−2Q2tr(P0

i )tr(P
0
j)−

−N−1Q2
(
tr(P0

i )t
HΣ0

jt + tr(P0
j)t

HΣ0
i t
)
× +

+QtHµ0
i t
Hµ0

j +QtHµ0
i (µ

0
j)
Ht+

+Q(µ0
i )
HttHµ0

j +Q(µ0
i )
Ht(µ0

j)
Ht+

+Q2tHΣ0
i tt

HΣ0
jt
]
i, j = 1, . . . , d.

(45)
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Finally, by taking the expectation w.r.t. the true pdf p0(z) and by using the relations derived in

(B.4)-(B.10) of [42, Appendix B], it is easy to verify that each entry of the SFIM Ī(θ0|h0) can

be expressed as:

[Ī(θ0|h0)]i,j =
2Ē{Qψ0(Q)2}

N
Re[(µ0

i )
HΣ−1

0 µ0
j ]+

+
Ē{Q2ψ0(Q)2}
N(N + 1)

[
tr(Σ−1

0 Σ0
iΣ
−1
0 Σ0

j)−N−1tr(Σ−1
0 Σ0

i )tr(Σ
−1
0 Σ0

j)
]
,

(46)

for i, j = 1, . . . , d and where Ē{·} is defined in (9).

3) A compact expression for Ī(θ0|h0): Using the well-known properties of the Kronecker

product ⊗ and of the standard vectorization operator vec (see e.g. [49,50]), it is possible to

rewrite the SFIM in (46) in a more compact and easy-to-use form. This expression will represent

the SSB formula for a single CES-distributed snapshot.

Let us define two Jacobian matrices of the mean vector µ(θ) and of the scatter matrix Σ(θ)

as N0 = ∇T
θµ(θ0) ∈ CN×d and V0 = ∇T

θ vec(Σ(θ0)) ∈ CN2×d, respectively. Note that both N0

and V0 are evaluated at the true parameter vector θ0. Then, the Ī(θ0|h0) can be written in a

compact Gramian form as:

Ī(θ0|h0) =
2Ē{Qψ0(Q)2}

N
Re[(Σ

−1/2
0 N0)H(Σ

−1/2
0 N0)]+

+
Ē{Q2ψ0(Q)2}
N(N + 1)

(T1/2V0)H(T1/2V0)

=
2Ē{Qψ0(Q)2}

N
Re[NH

0 Σ−1
0 N0] +

Ē{Q2ψ0(Q)2}
N(N + 1)

VH
0 TV0,

(47)

where Ē{·} is defined in (9) and the matrices T1/2 and Π⊥vec(IN ) are:

T1/2 = Π⊥vec(IN )(Σ
−T/2
0 ⊗Σ

−1/2
0 ), (48)

Π⊥vec(IN ) = IN2 −N−1vec(IN)vec(IN)T . (49)

As the notation suggests, matrix Π⊥vec(IN ) is the orthogonal projection matrix on the orthogonal

complement of span(vec(IN)). Then, by exploiting the property of ⊗ and the fact that an

orthogonal projection matrix is idempotent, we have that:

T , Σ−T0 ⊗Σ−1
0 −N−1vec(Σ−1

0 )vec(Σ−1
0 )H . (50)

Remark: It is worth noticing that the compact expression of Ī(θ0|h0) obtained in (47) encom-

passes as special cases the expressions of the SFIM for the scatter matrix estimation derived in

[18, eq. 56]. To clarify this point, let us consider the scatter matrix estimation problem under the
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assumption of a perfectly known mean vector. Since in the RES case the scatter matrix Σ0 is

a real (symmetric) matrix, then the unknown parameter vector can be recast as θ0 = vecs(Σ0),

where the vecs operator maps the symmetric N ×N matrix Σ0 to an N(N + 1)/2-dimensional

vector containing the elements of the lower triangular sub-matrix of Σ0. This definition of θ0

implies that the Jacobian matrix of the mean vector N0 is nil while the Jacobian matrix of the

scatter matrix is given by V0 = ∇T
vecs(Σ0)vec(Σ0) = DN , where DN is the so-colled duplication

matrix and the last equality follows from [50, Lemma 3.8]. Finally, by substituting the derived

expressions for the two Jacobian matrices in (47), we immediately obtain the expression of the

SFIM for the (real) scatter matrix estimation problem already derived in [18, eq. 56].

B. The Multiple Snapshot Case

In this subsection, we provide two extensions of the single-snapshot SSB formula derived

in Sec. IV-A to two multi-snapshot scenarios. Before starting with the derivation, a com-

ment is in order. The general multiple-snapshot scenario considered in array processing ap-

plications is characterized by the availability of L independent, CES-distributed, data vectors

zl ∼ CESN(zl;µl(θ0),Σ(θ0), h0) sharing the same scatter matrix but with a possibly different

mean vector from snapshot to snapshot3. Due to the possible variation of the mean vectors,

the available data {zl}Ll=1 are not identically distributed. In particular, the semiparametric group

structure of the set Pθ,h in (36) no longer holds, since the affine transformations in (35) will

depends on l. The extension of the classical semiparametric theory to the non-i.i.d. (independent

and identical distributed) case is a well established topic (see e.g. [51] for a summary of

main works in this filed or the seminal paper [52]), but falls outside the scope of this paper.

Consequently, we left the extension of the SSB formula in (47) to the general, non-i.i.d. multiple

snapshot case for future work, while here we focus our attention on two less general models

which, however, are still relevant in practice.

1) SSB formula for the Elliptical Vector (EV) Model: The so-called Elliptical Vector model has

been already used in [10], [53], [35] and in [41]. Specifically, in [35] the EV model has been

exploited to derive the misspecified SB formula under the mismatched Gaussian assumption.

The basic idea behind the EV model is to consider as snapshots the L sub-vectors of an

3To clarify this point, one could thing to the “deterministic signal model” commonly used in array processing where the

mean vector of the observations is modelled as µl(θ0) = αla(θ0) where a(θ0) is the steering vector and αl is a deterministic

(generally unknown) complex scalar that changes from snapshot to snapshot.
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LN -dimensional, CES-distributed, random vector. More formally, suppose to have an LN -

dimensional CES-distributed vector CLN 3 z , [zT1 , . . . , z
T
L]T ∼ CESLN(z;µ0,Σ0, h0) whose

mean vector and scatter matrix are defined as:

µ0 , [µ1(θ0)T , . . . ,µL(θ0)T ]T ≡ [µT
1,0, . . . ,µ

T
L,0]T ∈ CLN , (51)

Σ0 , IL ⊗Ω(θ0) ≡ IL ⊗Ω0 ∈ CLN×LN . (52)

Under these assumptions on z, we can use [9, Lemma 3.5] and [12, Theo. 2] to derive some

useful properties of the sub-vectors {zl}Ll=1. Specifically, for each l, zl ∼ CESN(zl;µl,0,Ω0, h̃0)

is an N -dimensional CES-distributed random vector with mean vector µl,0, scatter matrix Ω0

and “marginal” density generator h̃0 that is related to h0 by the integral equation given in [10,

eq. 3.89]. It is important to note that, even if, in general, the functional form of h0 is different

from the one of its “marginal” counterpart h̃0, the vector z and all its sub-vectors {zl}Ll=1 share

the same characteristic generator [12, Theo. 2]. From [9, Lemma 3.5], zl admits the following

stochastic representation: zl − µl,0 =d

√QlΩ1/2
0 ul, ∀l = 1, . . . , L, where ul ∼ U(CSN) is

independent of Ql. Furthermore, Ql =d βQ where β ∼ Beta(N,N(L− 1)) is a Beta-distributed

random variable, independent of Q that is the second-order modular variate of z. The derivation

of the SSB formula for the EV model can be be easily obtained by substituting the expressions

of µ0 and Σ0, given in (51) and (52), in the SSB formula already derived in (46). Finally, by

using the properties of the Kronecker product, we get:

[ĪL(θ0|g0)]i,j =
2Ē{Qψ0(Q)2}

LN

L∑
l=1

Re[(µ0
i,l)

HΣ−1
0 µ0

j,l]+

+
Ē{Q2ψ0(Q)2}
N(LN + 1)

[
tr(Ω−1

0 Ω0
iΩ
−1
0 Ω0

j)−N−1tr(Ω−1
0 Ω0

i )tr(Ω
−1
0 Ω0

j)
]
,

(53)

for i, j = 1, . . . , d and where Ē{·} is defined in (9). Clearly, this expression of the SFIM for

the SV model can be rewritten in a compact Gramian form following the same procedure used

in Sec. IV-A3.

2) Semiparametric Bangs formula: Assume to have a set of L i.i.d. CES-distributed random

vectors {zl}Ll=1 sampled from CESN(zl;µl,Σ(θ0), h0), where the mean vector is assumed to

be constant with respect to θ. Since the data are i.i.d. random vectors, the multiple-snapshot

extension of the SSB formula in (47) is trivial. Let us define the multi-snapshot SFIM as

ĪL(θ0|g0) , E0{s̄θ0({zl}Ll=1)s̄θ0({zl}Ll=1)H}, then, from (47), we have:

ĪL(θ0|h0) = L
Ē{Q2ψ0(Q)2}
N(N + 1)

VH
0 TV0, (54)
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where the function ψ0 has already been defined in (21), and matrices V0 and T have been

defined in Sec. IV-A3.

In the next section, we show how to apply the SSB formula in (54) to a well-know problem

in array processing.

V. THE SEMIPARAMETRIC STOCHASTIC CRB FOR ARRAY PROCESSING

This section is dedicated to the derivation of the semiparametric version of the well-known

Stochastic CRB for DOA estimation problems under random signal models [43]–[47].

Assume to have an array of N sensors and K narrowband sources impinging on the array

and characterized by {ν1, . . . , νK} direction parameters. Let us assume to collect L i.i.d. and

CES-distributed data snapshots {zl}Ll=1, such that zl ∼ CESN(z; 0,Σ(ν,Γ, σ2), h0), ∀l where

the density generator h0 ∈ Ḡ, that is constrained as in (8), is left unspecified, and [54]:

Σ ≡ Σ(ν,Γ, σ2) = A(ν)ΓA(ν)H + σ2IN . (55)

where:

• A(ν) , [a(ν1) · · · a(νK)] is the steering matrix with ν , (ν1, . . . , νK)T and a(νk) is the

array steering vector for the k-th source,

• Γ is the source covariance matrix,

• σ2 is the noise power.

For the subsequent derivation, it is useful to introduce the vector ζ as the N2-dimensional

real vector such that:

ζ ,
(
diag(Γ)T , vecl(Re(Γ))T , vecl(Im(Γ))T

)T
, (56)

where the operator vecl(·) is defined as in (11).

Let us now collect in the (K +N2 + 1)-dimensional vector

θ , [νT , ζT , σ2]T (57)

all the finite-dimensional unknown parameters. Note that, in general, we are interested only in

the estimation of ν, while the signal covariance matrix Γ (or, equivalently ζ) and the noise power

σ have to be considered as nuisance terms. Following the notation introduced in the previous

sections, the true parameter vector will be indicated as θ0 = [νT0 , ζ
T
0 , σ

2
0]T . Similarly, the true

signal covariance matrix will be indicated as Γ0.
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The SFIM for the estimation of θ0 can be directly obtained by applying the semiparametric

Bangs formula given in (54) as:

ĪL(θ0|h0) = L
Ē{Q2ψ0(Q)2}
N(N + 1)

[
T1/2∇T

θ vec(Σ(θ0))
]H [

T1/2∇T
θ vec(Σ(θ0))

]
, (58)

where T1/2 has been introduced in (48) as T1/2 = Π⊥vec(IN )(Σ
−T/2
0 ⊗Σ

−1/2
0 ). It is immediate to

verify that (58) is the semiparametric counterpart of [43, eq. (8)].

Similarly to [43, eq. (10)], let us define the matrices Gs and ∆s as:

T1/2∇T
θ vec(Σ(θ0))

= T1/2

[
∇T

νvec(Σ(θ0)),∇T
ζ vec(Σ(θ0)),

∂vec(Σ(θ0))

∂σ

]
, [Gs,∆s] =

[
Π⊥vec(IN )G,Π⊥vec(IN )∆

]
,

(59)

where the matrices G and ∆ are implicitly defined by the second equality in (59) and are the

same of the ones in [43, eq. (10)].

By substituting (59) in (58), we get that the SFIM in (58) can be expressed in the following

block-matrix form:

ĪL(θ0|h0) = L
Ē{Q2ψ0(Q)2}
N(N + 1)

 GH
s Gs GH

s ∆s

∆H
s Gs ∆H

s ∆s

 . (60)

Since, as said before, we are interested only in the estimation of the direction parameter

vector ν0, the relevant expression of the SCRB is given by the top-left K ×K submatrix of the

inverse of (60). By using the Woodbury identity [55, eq. (157)], this submatrix, that represent

the Semiparametric Stochastic CRB (SSCRB) can be obtained as:

SSCRB(ν0|ζ0, σ
2
0, h0) =

N(N + 1)

LĒ{Q2ψ0(Q)2}
[
GH
s Gs −GH

s ∆s

(
∆H

s ∆s

)−1
∆H

s Gs

]−1

=
N(N + 1)

LĒ{Q2ψ0(Q)2}
[
GH
s Π⊥∆s

Gs

]−1
,

(61)

that represents the semiparametric counterpart of [43, eq. (12)]. It is possible to show (see the

proof in the Appendix) that:

SSCRB(ν0|ζ0, σ
2
0, h0) =

N(N + 1)σ2
0

2LĒ{Q2ψ0(Q)2}
[
Re
(
DH

0 Π⊥A0
D0

)
�
(
Γ0A

H
0 Σ−1

0 A0Γ0

)T]−1

, (62)

where � is the Hadamard product, Ē{·} is defined as in (9) and D0 , [d0,1, · · · ,d0,K ] where

d0,k is

d0,k ,
da(νk)

dνk

∣∣∣∣
νk=ν0,k

. (63)
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To conclude, we note that eq. (87) can be easily extended to the case in which, instead of

the diagonal matrix σ2
0IN , the noise covariance matrix in (55) is non-diagonal by following the

procedures detailed in [56].

VI. NUMERICAL RESULTS

The aim of this section is to provide some numerical examples that can help to clarify the

practical usefulness of the theoretical findings. In subsection VI-A, we show how to calculate

the constrained CSCRB derived in Sec. III for a set of complex, t-distributed random vectors

and we investigate the efficiency of two popular (constrained) scatter matrix estimators, i.e. the

Sample Covariance Matrix (SCM) and the Tyler’s estimator. Secondly, in subsection VI-B, an

example regarding the use of the SSCRB in (62) as a bound for the MSE of the adaptive MUSIC

DOA estimator in t-distributed data is discussed.

A. CCSCRB for t-distributed data

The pdf related to the complex t-distribution can be obtained from the real t-distribution by

applying the equality chain in (3). Specifically, the relevant density generator h0 can be obtained

from the one given in eq. (75) in [18] through a change of variables N → 2N , λ→ λ/2 as:

h0(t) = (πNΓ(λ))−1Γ(λ+N)(λ/η)λ(λ/η + t)−(λ+N) (64)

and then ψ0(t) = −(λ+N)(λ/η + t)−1. From (7), we have that:

pQ(q) =
Γ(λ+N)

Γ(N)Γ(λ)

(
λ

η

)λ
qN−1

(
λ

η
+ q

)−(λ+N)

. (65)

Using the integral in [57, pp. 315, n. 3.194 (3)], we get:

E{Qψ0(Q)2} =
ηN(λ+N)

N + λ+ 1
, (66)

E{Q2ψ0(Q)2} =
N(N + 1)(λ+N)

(N + λ+ 1)
. (67)

Finally, by inserting (66) and (67) in (28) and (34), we obtain closed form expressions for the

matrices C0(s̄µ0) and C0(s̄vec(Σ0)) and consequently the CCSCRB in (32).

In Fig. 1, the performance of the constrained SCM (CSCM) estimator and the constrained

Tyler’s (C-Tyler) estimator are compared against the CCSCRB. The explicit expressions of these

two estimators can be obtained from those provided in [18] for real data by replacing the

transpose with the Hermitian operator. The simulation parameters are:
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• Σ0 is a Toeplitz Hermitian matrix whose first column is given by [1, ρ, . . . , ρN−1]T , where

ρ = 0.8ej2π/5 and N = 8.

• The data power is σ2
X = E{Q}/N = 4.

• The data is assumed to be zero mean, i.e. µ0 = 0N .

• The number of the available i.i.d. data vectors is L = 3N = 24. Since we assume to have

L i.i.d. data vectors, the CCSCRB in (32) has to be divided by L.

• The number of independent Monte Carlo runs is 106.

As MSE indices and bound, in Fig. 1 we plot:

εα , ||E{(vec(Σ̂α)− vec(Σ0))(vec(Σ̂α)− vec(Σ0))H}||F , (68)

where α = {CSCM,C − Tyler} and

εCCSCRB,Σ0 , ||[CCSCRB(φ0, h0)]Σ0||F . (69)

In Fig. 1 we compare the MSE of the CSCM and C-Tyler’s estimators with the CCSCRB as

function of the shape parameter λ. When λ → ∞, i.e. when the data tends to be Gaussian

distributed, the CSCM tends to the CSCRB. Fig. 1 shows that the C-Tyler’s estimator is not an

efficient estimator w. r. t. the CCSCRB, even if its performance is higher than that of the SCM

for highly non-Gaussian data (i.e. small λ). Moreover, since the C-Tyler’s estimator is a robust

estimator, its MES is invariant w.r.t. the shape parameter, as expected.

B. Semiparametric Stochastic CRB and MUSIC algorithm

In this subsection, we show how to apply the SSCRB given in (62) in a simple but repre-

sentative problem in array processing. We assume to have a uniformly linear array (ULA) of

N omnidirectional sensors and a single (K = 1) narrowband source impinging on the array

with spatial frequency ν0.4 Note that, for a ULA, the steering vector can be expressed as

a(ν0) = [1, ej2πν0 , . . . , ej2π(N−1)ν0 ]T . We suppose to collect L, i.i.d. t-distributed data snapshots

{zl}Ll=1 whose scatter matrix is of the form given in (55):

Σ(ν0, γ
2
0 , σ

2
0) = γ2

0a(ν0)a(ν0)H + σ2
0IN , (70)

where γ2
0 is the (unknown) power of the single source impinging on the array while σ2

0 is the

(unknown) power of the white noise component. It is worth highlighting that, as discussed in

4For the ULA configuration, the spatial frequency is defined as ν = d/λ sin(θ) where d is the spacing between the sensor,

λ is the wavelength of the transmitted signal and θ is the conic angle of the source.
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Sec. IV, we assume that the density generator of the t-distribution, given in (64), satisfies the

constraint in (8), so that the scatter matrix in (70) is the covariance matrix of zl, ∀l. It is

immediate to verify that the constraint is satisfied by choosing η = λ/(λ− 1).

The parameter of interest that has to be estimated is the source spatial frequency ν, while

γ0 and σ2
0 represent two (finite-dimensional) nuisance parameters. To estimate ν, we adopt the

MUSIC algorithm (see e.g. [58]):

ν̂ = argmax
ν

{[∑N

n=K+1
|a(ν)H v̂n|2

]−1
}
, (71)

where a(ν) is the steering vector and {v̂n}Nn=K+1 are the N −K eigenvectors corresponding to

the N − K smallest eigenvalues of the estimated data covariance matrix Σ̂. In the following,

we assess the efficiency w.r.t. the SSCRB of the MUSIC algorithm in (71) when the unknown

covariance matrix Σ in (70) is estimated by means of the SCM or Tyler’s estimators. Note that

none of these two estimators rely on the knowledge of the density generator. As MSE indices

and bound we use:

%α , E{(ν̂α − ν0)2}, (72)

where α = {SCM, Tyler}, while the bound is SSCRB(ν0|δ0, σ
2
0, h0) obtained by specializing

the general expression in (62) for the particular case at hand. Note that, for the t-distribution,

the expectation operator Ē{Q2ψ0(Q)2} in (62) is equal to the one already evaluated in (67).

The simulation parameters are:

• Spatial frequency ν0 = 0.3,

• The noise power σ2
0 = 1 while the signal power γ0 is chosen in order to have a Signal-to-

Noise ration of 0 dB.

• N = 8 and L = 3N = 24.

• The number of Monte Carlo runs in 106.

In Fig. 2, we compare the MSE of two version of the MUSIC estimator with the SSCRB, as

function of the shape parameter λ. Similar to the results in Fig. 1, the MUSIC-Tyler estimator

achieves better performance when the data snapshot are highly non-Gaussian (small λ), and its

MSE is invariant w.r.t. the shape parameter. On the other hand, the non-robust MUSIC-SCM

estimator overtakes the MUSIC-Tyler estimator when the data tend to be Gaussian (large λ).

However, neither the MUSIC-Tyler nor MUSIC-SCM estimators are efficient estimators w.r.t.

the SSCRB.



23

VII. CONCLUSION

In this paper, the Semiparametric CRB (SCRB) and related results, recently obtained for the

RES model [18], have been extended to the CES distributions. Specifically, we derived the

SCRB for the (constrained) estimation of the complex mean vector and complex scatter matrix

of a CES-distributed random vector. The proposed complex CSCRB is a lower bound on the

estimation accuracy of any estimator of µ and Σ when the density generator of the underlying

CES distribution is unknown. Secondly, the Semiparametric Slepian-Bangs (SSB) formula for

the estimation of a parameter vector θ parametrizing the complex mean vector µ(θ) and the

complex scatter matrix Σ(θ) has been derived for CES-distributed data. Moreover, the proposed

SSB formula has been exploited to obtain the semiparametric version of the Stochastic CRB for

DOA estimation under random signal model assumption. Finally, some numerical results have

been described with the aim of clarifying the practical usefulness of our theoretical findings.

A lot of potential applications of the SCRB and the SSB formula to many Signal Processing

problems still remain to be investigated. Along with its practical exploitation, the Semiparametric

CRB poses a series of theoretical questions as well including, in particular, the existence of an

optimal trade-off between the semiparametric efficiency and the robustness of the estimator.
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APPENDIX

DERIVATION OF THE SEMIPARAMETRIC STOCHASTIC CRB IN EQ. (62)

This document is entirely dedicated to the calculation of SSCRB(ν0|ζ0, σ
2
0, h0) given in (62)

of our paper. To this end, whenever it is possible, we will rely on similar calculation already

derived in [43] and then we will try to remain as close as possible to the notation used there.

The crucial step for the calculation of SSCRB(ν0|ζ0, σ
2
0, h0) is the evaluation of Π⊥∆s

. Ac-

cording to [43, eq. (13)], we note that:

∆s = Π⊥vec(IN )∆ =
[
Π⊥vec(IN )Ṽ,Π

⊥
vec(IN )u

]
, (73)

where Ṽ is defined as [43, eq. (19)]:

Ṽ , VJ = (Σ
−T/2
0 A∗ ⊗Σ

−1/2
0 A)J, (74)
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where J is a non-singular matrix5 and u is given by [43, eq. (22)]:

u , T1/2∂vec(Σ(θ0))

∂σ
= Π⊥vec(IN )vec

(
Σ−1

0

)
. (75)

Since the matrices ∆s and
[
Π⊥vec(IN )Ṽ,Π

⊥
(Π⊥

vec(IN )
Ṽ)

Π⊥vec(IN )u

]
share the same column space,

the orthogonal projection matrix Π⊥∆s
can be expressed as:

Π⊥∆s
= Π⊥

(Π⊥
vec(IN )

Ṽ)
− 1

uHΠ⊥
(Π⊥

vec(IN )
Ṽ)

u
Π⊥

(Π⊥
vec(IN )

Ṽ)
uuHΠ⊥

(Π⊥
vec(IN )

Ṽ)
, (76)

that represents the “semiparametric” analogous of [43, eq. (14)].

To proceed, we need to evaluate the building blocks of the (76). Let us start with the orthogonal

projection matrix:

Π⊥
(Π⊥

vec(IN )
Ṽ)

, IN2 − Π⊥vec(IN )VJ
(
JHVHΠ⊥vec(IN )VJ

)−1
VHJHΠ⊥vec(IN )

= IN2 − Π⊥vec(IN )V
(
VHΠ⊥vec(IN )V

)−1
VHΠ⊥vec(IN )

= Π⊥(Π⊥
vec(IN )

V).

(77)

The first term that we are going to evaluate is
(
VHΠ⊥vec(IN )V

)−1

. We have that:(
VHΠ⊥vec(IN )V

)−1

=
[
(Σ
−T/2
0 A∗ ⊗Σ

−1/2
0 A)HΠ⊥vec(IN )(Σ

−T/2
0 A∗ ⊗Σ

−1/2
0 A)

]−1

=

[
(ATΣ

−∗/2
0 ⊗AHΣ

−H/2
0 )

(
IN2 − 1

N
vec(IN)vec(IN)T

)
(Σ
−T/2
0 A∗ ⊗Σ

−1/2
0 A)

]−1

=
[
(ATΣ

−∗/2
0 ⊗AHΣ

−H/2
0 )(Σ

−T/2
0 A∗ ⊗Σ

−1/2
0 A)−×

×−N−1((Σ
−H/2
0 A)T ⊗AHΣ

−H/2
0 )vec(IN)vec(IN)T (Σ

−T/2
0 A∗ ⊗ (ATΣ

−T/2
0 )T )

]−1

=
[
((AHΣ−1

0 A)∗ ⊗AHΣ−1
0 A)−N−1vec

(
AHΣ−1

0 A
)

vec
(
AHΣ−1

0 A
)H]−1

= ((AHΣ−1
0 A)∗ ⊗AHΣ−1

0 A)−1 +N−1 vec
(
(AHΣ−1

0 A)−1
)

vec
(
(AHΣ−1

0 A)−1
)H

1−N−1tr(IK)

= ((AHΣ−1
0 A)∗ ⊗AHΣ−1

0 A)−1 +
vec
(
(AHΣ−1

0 A)−1
)

vec
(
(AHΣ−1

0 A)−1
)H

N −K

= ((AHΣ−1
0 A)−T/2 ⊗ (AHΣ−1

0 A)−1/2)

(
IK2 +

1

N −K vec (IK) vec (IK)T
)
×

× ((AHΣ−1
0 A)−T/2 ⊗ (AHΣ−1

0 A)−1/2),

(78)

5More specifically, as discussed in [43], J represents a change of basis. However, since its explicit form is immaterial for the

subsequent derivation, we will not provide other details about it.
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where we use the fact that AHΣ−1
0 A is Hermitian. Moreover, we have that:

Π⊥vec(IN )V =

(
IN2 − 1

N
vec(IN)vec(IN)T

)
(Σ
−T/2
0 A∗ ⊗Σ

−1/2
0 A)

= (Σ
−T/2
0 A∗ ⊗Σ

−1/2
0 A)− 1

N
vec(IN)vec

(
AHΣ−1

0 A
)H

.

(79)

At this point, let us define the matrix B as:

B , [(XHX)−1/2XH ]T ⊗X(XHX)−1/2, (80)

where

X , Σ
−1/2
0 A. (81)

Finally, putting the previous results together, we have:

Π⊥vec(IN )V
(
VHΠ⊥vec(IN )V

)−1
VHΠ⊥vec(IN )

=

(
B− 1

N
vec (IN) vec (IK)T

)(
IK2 +

1

N −K vec (IK) vec (IK)T
)
×

×
(

B− 1

N
vec (IN) vec (IK)T

)H
=

(
B +

1

N −K vec (ΠX) vec (IK)T − 1

N −K vec (IN) vec (IK)T
)
×

×
(

BH − 1

N
vec (IK) vec (IN)T

)
= BBH +

1

N −K vec (ΠX) vec (ΠX)H − 1

N −K vec (IN) vec (ΠX)H ×

×− 1

N
vec (ΠX) vec (IN)T − K

N(N −K)
vec (ΠX) vec (IN)T ×

×+
K

N(N −K)
vec (IN) vec (IN)T

= ΠT
X ⊗ ΠX +

1

N −K vec (ΠX) vec (ΠX)H − 1

N −K vec (IN) vec (ΠX)H ×

×− 1

N −K vec (ΠX) vec (IN)T +
K

N(N −K)
vec (IN) vec (IN)T .

(82)

Moreover, we have that:

Π⊥(Π⊥
vec(IN )

V) ,IN2 − ΠT
X ⊗ ΠX −

1

N −K vec (ΠX) vec (ΠX)H +

+
1

N −K vec (IN) vec (ΠX)H +

+
1

N −K vec (ΠX) vec (IN)T − K

N(N −K)
vec (IN) vec (IN)T .

(83)
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The basic tools to evaluate the SSCRB in (62) are now ready to be used. Let’s start by evaluate

the matrix product Π⊥∆s
Gs. To this end, let us consider the “column-wise” version of Gs, i.e.:

Π⊥∆s
Gs =

[
Π⊥∆s

Π⊥vec(IN )g1, · · · ,Π⊥∆s
Π⊥vec(IN )gK

]
, (84)

and the k-th vector gk is the one defined in [43, eq. (17)] as:

gk , vec
(
Zk + ZH

k

)
, (85)

where

Zk , Xc0,kd
H
0,kΣ

−1/2
0 , (86)

and

d0,k ,
da(νk)

dνk

∣∣∣∣
νk=ν0,k

, (87)

while c0,k represents the k-th column of the signal covariance matrix Γ0, such that Γ0 =

[c0,1, · · · , c0,K ]. Given (76), in order to evaluate the k-th column of the matrix (84), we have to

calculate the following matrix:

Π⊥∆s
Π⊥vec(IN )gk = Π⊥(Π⊥

vec(IN )
V)Π

⊥
vec(IN )gk−

− 1

uHΠ⊥
(Π⊥

vec(IN )
V)

u
Π⊥(Π⊥

vec(IN )
V)uuHΠ⊥(Π⊥

vec(IN )
V)Π

⊥
vec(IN )gk.

(88)

The first term in (88) can be evaluated as:

Π⊥(Π⊥
vec(IN )

V)Π
⊥
vec(IN )gk = Π⊥vec(IN )gk − Π⊥vec(IN )V

(
VHΠ⊥vec(IN )V

)−1
VHΠ⊥vec(IN )gk

= Π⊥vec(IN )Π
⊥
(Π⊥

vec(IN )
V)gk

= Π⊥vec(IN )

(
gk − vec

(
ΠX(Zk + ZH

k )ΠX

))
= Π⊥vec(IN )

(
vec
(
Zk + ZH

k

)
− vec

(
ΠXZkΠX + ΠXZH

k ΠX

))
= Π⊥vec(IN )

(
vec
(
Zk + ZH

k − ZkΠX − ΠXZH
k

))
= Π⊥vec(IN )vec

(
ZkΠ

⊥
X + Π⊥XZH

k

)
,

(89)
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where, according to the properties of the projection matrices, ΠX = ΠH
X and, by definition of

the matrix Zk, we have that ΠXZk = Zk. Moreover, the last equality follows from the fact that:

Π⊥vec(IN )vec
(
ZkΠ

⊥
X + Π⊥XZH

k

)
= vec

(
ZkΠ

⊥
X + Π⊥XZH

k

)
−N−1vec (IN) vec (IN)T vec

(
ZkΠ

⊥
X + Π⊥XZH

k

)
= vec

(
ZkΠ

⊥
X + Π⊥XZH

k

)
−N−1tr(ZkΠ

⊥
X + Π⊥XZH

k )vec (IN)

= vec
(
ZkΠ

⊥
X + Π⊥XZH

k

)
−N−1

[
tr(Π⊥XZk) + tr(Π⊥XZk)

H
]

vec (IN)

= vec
(
ZkΠ

⊥
X + Π⊥XZH

k

)
,

(90)

where we used the fact that, by definition of the matrices Zk and Π⊥X, we have that Π⊥XZk = 0.

The second term in subtraction in (88) is nil since

uHΠ⊥(Π⊥
vec(IN )

V)Π
⊥
vec(IN )gk = vec

(
Σ−1

0

)H
vec
(
ZkΠ

⊥
X + Π⊥XZH

k

)
= tr(Σ−1

0 (ZkΠ
⊥
X + Π⊥XZH

k )) = 2Re{tr(Π⊥XΣ−1
0 Zk)} = 0,

(91)

where we used the fact that the matrix X and Σ−1
0 Zk share the same column space (see also

[43, eqs. (25), (26) and (27)]). We’re almost done now. The only thing that is left to be done is

to substitute the obtained results in (62). Specifically:

N(N + 1)

LĒ{Q2ψ0(Q)2}
[
SCRB(ν0|ζ0, σ

2
0, h0)

]−1

i,j
= gHi Π⊥vec(IN )Π

⊥
(Π⊥

vec(IN )
V)Π

⊥
vec(IN )gj

= gHi Π⊥(Π⊥
vec(IN )

V)Π
⊥
vec(IN )gj

= gHi vec
(
ZjΠ

⊥
X + Π⊥XZH

j

)
= tr(ZiZjΠ

⊥
X + ZiΠ

⊥
XZH

j + ZH
i ZjΠ

⊥
X + ZH

i Π⊥XZH
j )

= 2Re
{

tr(ZiΠ
⊥
XZH

j )
}
, i, j = 1, . . . , K,

(92)

that represents exactly [43, eq. 30], except for a scalar term. As before, we used the equality

Π⊥XZi = 0.

To conclude, by substituting in (92) the expression of the matrix Zk given in (86) and by

using [43, eq. (30)], we get the expression of the SSCRB reported in (62).
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Fig. 1: MSE indices for the CSCM and C-Tyler’s estimators and the related CCSCRB as functions

of the shape parameter λ for complex t-distributed data (L = 3N ).
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Fig. 2: MSE indices for the MUSIC-SCM and MUSIC-Tyler spatial frequency estimators and the

related SSCRB as functions of the shape parameter λ for complex t-distributed data (L = 3N ).
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