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Abstract—This paper presents secrecy analyses of a full-duplex
MIMOME network which consists of two full-duplex multi-
antenna users (Alice and Bob) and an arbitrarily located multi-
antenna eavesdropper (Eve). The paper assumes that Eve’s channel
state information (CSI) is completely unknown to Alice and Bob
except for a small radius of secured zone. The first part of this paper
aims to optimize the powers of jamming noises from both users. To
handle Eve’s CSI being unknown to users, the focus is placed on Eve
at the most harmful location, and the large matrix theory is applied
to yield a hardened secrecy rate to work on. The performance
gain of the power optimization in terms of maximum tolerable
number of antennas on Eve is shown to be significant. The second
part of this paper shows two analyses of anti-eavesdropping channel
estimation (ANECE) that can better handle Eve with any number
of antennas. One analysis assumes that Eve has a prior statistical
knowledge of its CSI, which yields lower and upper bounds on
secure degrees of freedom of the system as functions of the number
(N) of antennas on Eve and the size (K) of information packet.
The second analysis assumes that Eve does not have any prior
knowledge of its CSI but performs blind detection of information,
which yields an approximate secrecy rate for the case of K being
larger than N.

Index Terms—Physical layer security, secrecy rate, full-duplex
radio, MIMOME, jamming, artificial noise, anti-eavesdropping
channel estimation (ANECE).

I. INTRODUCTION

S ECURITY of wireless networks is of paramount impor-
tance in today’s world as billions of people around the globe

are dependent upon these networks for a myriad of activities
for their businesses and lives. Among several key issues in
wireless security [1], confidentiality is of particular interest to
many researchers in recent years and is a focus of this paper.
For convenience, we will refer to confidentiality as security and
vice versa.

The traditional way to keep information confidential from
unauthorized persons and/or devices is via cryptography at
upper layers of the network, which include the asymmetric-
key method (involving a pair of public key and private key)
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Fig. 1. A Full-Duplex MIMOME network.

and the symmetric-key method (involving a secret key shared
between two legitimate users). As the computing capabilities
of modern computers (including quantum computers) rapidly
improve, the asymmetric-key method is increasingly vulnerable
as this method relies on computational complexity for security.
In fact, the symmetric-key method is gaining more attraction in
applications [2].

However, the establishment of a secret key (or any secret)
shared between two users is not trivial in itself. Even if a secret
key was pre-installed in a pair of legitimate devices (during
manufacturing or otherwise), the lifetime of the secret key in
general shortens each time the secret key is used for encryption.
For many applications such as big data streaming, such secret
key must be periodically renewed or changed. To enjoy the
convenience of mobility, it is highly desirable for users to be
able to establish a secret key in a wireless fashion.

Establishing a secret key or directly transmitting secret in-
formation between users in a wireless fashion (without a pre-
existing shared secret) is the essence of physical layer secu-
rity [3]. There are two complementary approaches in physical
layer security: secret-key generation and secret information
transmission. The former requires users to use their (correlated)
observations and an unlimited public channel to establish a secret
key, and the latter requires one user to transmit secret information
directly to the other. This paper is concerned with the latter, i.e.,
transmission of secret information (such as secret key) between
users without any prior digital secret.

Specifically, this paper is focused on a network as illustrated
in Fig. 1 where one legitimate user (Alice) wants to send a secret
key to another legitimate user (Bob) subject to eavesdropping by
an eavesdropper (Eve) anywhere. Each of the two users/devices
is allowed to have multiple antennas, and both Alice and Bob are
capable of full-duplex operations. Following a similar naming
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in the literature such as [4], we call the above setup a full-duplex
MIMOME network where MIMOME refers to the multi-input
multi-output (MIMO) channel between Alice and Bob and the
multi-antenna Eve.

The MIMOME related works in the literature include: [4]–
[15] where the channel state information (CSI) at Eve is assumed
to be known not only to Eve itself1 but also to Alice and Bob;
[16]–[19] where a partial knowledge of Eve’s CSI is assumed to
be available to Alice and Bob and an averaged secrecy or secrecy
outage was considered; [13], [16], [20]–[24] where artificial
noise is embedded in the signal from Alice; and [25]–[30] where
Bob is treated as a full-duplex node capable to receive the signal
from Alice while transmitting jamming noise.

From the literature, the idea of using jamming noise from
Alice or Bob appears important. Inspired by that, this paper will
first consider a case where both Alice and Bob send jamming
noises while Alice transmits secret information to Bob. We will
explore how to optimize the jamming powers from Alice and
Bob. In [26], jamming from both users was also considered. But
here for power optimization we include the effect of the residual
self-interference of full-duplex radio. There are other differences
in the problem formulation and objectives. We assume that
Eve’s CSI is completely unknown to Alice or Bob except for
a radius of secured zone free of Eve around Alice. A similar
idea was also applied in [31] but in a different problem setting.
We will focus on Eve that is located at the most harmful position.
Furthermore, to handle the small-scale fading at Eve, we apply
the large matrix theory to obtain a closed-form expression of
a secrecy rate, which makes the power optimization tractable.
Unlike [24] where large matrix theory was also applied, we con-
sider an arbitrary large-scale-fading at Eve among other major
differences. With the optimized powers, we reveal a significant
performance gain in terms of the maximum tolerable number
of antennas on Eve to maintain a positive secrecy. We will
also show that as the number of antennas on Eve increases, the
impact of the jamming noise from either Alice or Bob on secrecy
vanishes. This contribution extends a previous understanding of
single-antenna users shown in [30].

Later in this paper, we will analyze a two-phase scheme for se-
cret information transmission proposed in [30]. In the first phase,
an anti-eavesdropping channel estimation (ANECE) method is
applied which allows users to find their CSI but suppresses Eve’s
ability to obtain its CSI. In the second phase, secret information
is transmitted between Alice and Bob while Eve has little or
no knowledge of its CSI. We show two analyses based on two
different assumptions. The first analysis assumes that Eve has a
prior statistical knowledge of its CSI. With every node knowing
a statistical model of CSI anywhere, we use mutual information
to analyze the secret rate of the network, from which lower and
upper bounds on the secure degrees of freedom are derived.
These bounds are simple functions of the number of antennas
on Eve. The second analysis assumes that Eve does not have any
prior knowledge of its CSI. Due to ANECE in phase 1, Eve is
blind to its CSI. But in phase 2, Eve performs blind detection of
the information from Alice. We analyze the performance of the

1All entities are treated as “gender neutral”.

blind detection, from which an approximate secret rate is derived
and numerically illustrated. Both of these analyses are important
contributions useful for a better understanding of ANECE.

Notation: Matrices and column vectors are denoted by upper
and lowercase boldface letters. The trace, Hermitian transpose,
column-wise vectorization, (i, j)th element, and complex con-
jugate of a matrix A are denoted by Tr(A), AH , vec(A), Ai,j ,
andA∗, respectively. For a matrixX and its vectorized versionx,
ivec(x) is the inverse operation of x = vec(X). A diagonal ma-
trix with elements of x on its diagonal is diag(xT ). Expectation
with respect to a random variable x is denoted by Ex[·]. Let the
random variables Xn and X be defined on the same probability
space, and we write Xn

a.s.→ X if Xn converges to X almost
surely as n → ∞. The identity matrix of the size n× n is In (or
I with n implied in the context), and 1n is a row vector of length
n of all ones. A circularly symmetric complex Gaussian random
variable x with variance σ2 is denoted as x ∼ CN (0, σ2). The
mutual information between random variablesx and y is I(x; y),
andh(x) denotes the differential entropy ofx. Logarithm in base
2 is denoted by log(·), and (·)+ � max(0, ·).

II. OPTIMIZATION OF JAMMING POWERS AND EFFECTS OF

EVE’S ANTENNAS

A. System Model

Our network setup is shown in Fig. 1, where Alice (with NA

antennas) intends to send secret information over a wireless
channel to Bob (with NB antennas) in the presence of possibly
many passive Eves (of NE antennas each) that may collude with
each other at the network layer but not at the physical layer. We
will focus on the most harmful Eve. Physical layer colluding
among distributed Eves to form a large virtual antenna array is
highly difficult in practice. But if a virtual antenna array from
colluding Eves is likely in some applications, we could treat
these colluding Eves as a single mega Eve with a large number
of antennas.

The system parameters are normalized in a similar way as
in [28]. In particular, the large-scale-fading factor from Alice
to Eve is modeled as (when a model is needed): a = d−α

A =
((x+ 0.5)2 + y2)−α/2, and that from Bob to Eve is b = d−α

B =
((x− 0.5)2 + y2)−α/2 where α is the path-loss exponent. We
assume that no Eve is closer to Alice than a radius Δ, i.e.,
dA ≥ Δ. The normalized large-scale-fading factor of the resid-
ual self-interference at both Alice and Bob is denoted by ρ. (In all
simulations, ρ is considered to be 0.1%.) The small-scale-fading
channel matrix from Alice to Eve is denoted byA, that from Bob
to Eve is B, and that of the residual self-interference at Bob and
Alice areG andK, respectively.2 The channel matrix from Alice
to Bob is denoted by H, and its SVD is denoted by

H = UΣVH , (1)

where U and V are unitary matrices, and Σ is the NB ×NA

diagonal matrix that contains the singular values of H (i.e.,
σi, i = 1, . . . , NB) in descending order assuming NA ≥ NB .

2Up to Section III, Alice is only a transmitter, and hence it does not utilize its
full-duplex capability.
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All the elements in all channel matrices are modeled as i.i.d.
circularly symmetric complex Gaussian random variables with
zero mean and unit variance.

In this section, we assume that Alice and Bob have the
knowledge of H but not of A and B, and Eve has the knowledge
of all these matrices.

Alice sends the following signal containing r ≤ NB ≤ NA

streams of secret information mixed with artificial noise:

xA(k) = V1s(k) +V2wA(k), (2)

where k is the index of time slot, V1 is the first r columns
of V, V2 is the last NA − r columns of V, s(k) is Alice’s
information vector with the covariance matrixQr andTr(Qr) =
Ps, and wA(k) is an (NA − r)× 1 artificial noise vector with
distribution CN (0, Pn

NA−r I). Here, Ps + Pn = PA ≤ Pmax
A .

While Bob receives information from Alice, it also sends a
jamming noise:

xB(k) = wB(k), (3)

where wB(k) is an NB × 1 artificial noise vector with distribu-
tion CN (0, PB

NB
I).

Note that bothPA andPB are normalized powers with respect
to the path loss from Alice to Bob, and with respect to the power
of the background noise. So, without loss of generality, we let
the power of the background noise be one.

With jamming from both Alice and Bob, the signals received
by Bob and Eve are respectively:

yB(k) = HV1s(k) +HV2wA(k) +
√
ρGw̄B(k) + nB(k),

(4)

yE(k) =
√
aA1s(k) +

√
aA2wA(k)

+
√
bBwB(k) + nE(k), (5)

where [A1,A2] = [AV1,AV2] = AV. Since A1 and A2 are
linear functions of the Gaussian matrixA, they remain Gaussian.
Because of the unitary nature of V, A1 and A2 are independent
of each other, and all elements in them are i.i.d. Gaussian of
zero mean and unit variance. The noise vectors nB and nE

are distributed as CN (0, I). Also note that
√
ρGw̄B(k) is the

residual self-interference originally caused by wB(k) but is
independent of wB(k) [30].

If CSI anywhere is known everywhere, the achievable secrecy
rate of the above system is known [32] to be

RS = (RAB −RAE)
+ (6)

where RAB is the rate from Alice to Bob and RAE is the rate
from Alice to Eve. Namely,

RAB = log |I+C−1
B HV1QrV

H
1 HH |, (7)

RAE = log |I+ aC−1
E A1QrA

H
1 |, (8)

where

CB = I+
Pn

NA − r
HV2V

H
2 HH +

ρPB

NB
GGH , (9)

CE = I+
aPn

NA − r
A2A

H
2 +

bPB

NB
BBH . (10)

Note that since HV1 = U1Σ1 and HV2 = U2Σ2 are orthog-
onal to each other where U1 and U2 are the partitions of U
similar to those of V, and Σ1 and Σ2 are the corresponding
diagonal partitions of Σ, a sufficient statistics of s(k) at Bob
is UH

1 yB(k) = Σ1s(k) +
√
ρU1Gw̄B(k) +U1nB(k) which

shows that the artificial noise from Alice does not affect Bob.
Consequently, an equivalent form of RAB is

RAB = log |Ir +C−1
B,1Σ1QrΣ1|, (11)

where

CB,1 = Ir +
ρPB

NB
UH

1 GGHU1. (12)

However, the expression shown in (7) is needed later due to its
direct connection to H and G.

If we optimize Pn,PB andQr to maximize the above RS , the
solution would be a function of Eve’s CSI. This does not appear
to be useful in practice.

If Eve’s CSI is unknown to Alice but the statistics of Eve’s
CSI is known to Alice, then we can consider the ergodic secrecy:

R̄S = (EH,G[RAB ]− EA,B[RAE ])
+ (13)

which is achievable via coding over many CSI coherence pe-
riods. Closed form expression of each of the two terms in the
above can be obtained using ideas in [33] and [34]. But if we
use R̄S as objective to optimize Pn, PB and Qr, the solution
would be independent of the CSI between Alice and Bob, and
such a solution is not very useful either.

Because of the above reasons, we will consider the worst case
of RAE . The worst case is such that Eve is located at the most
harmful location and has a large number of antennas.

It is shown in our earlier work [35] that the most harmful
position of Eve is at x∗ = −0.5−Δ and y∗ = 0. From now on,
we will refer to a and b as corresponding to the position (x∗, y∗).
In all simulations, we will use Δ = 0.1 unless mentioned
otherwise.

Given a large number of antennas at Eve, we can use large
matrix theory to obtain a closed-form expression of RAE that
is no longer dependent on instantaneous CSI at Eve, which is
shown next. We can rewrite (8) as follows:

RAE = log |I+ J3Θ̄3J
H
3 | − log |I+ J4Θ̄4J

H
4 | (14)

where J3 = 1√
NE

[A1,A2,B], J4 = 1√
NE

[A2,B], and

Θ̄3 = NE diag

[
aqT

r ,
aPn

NA − r
1NA−r,

bPB

NB
1NB

]
, (15)

Θ̄4 = NE diag

[
aPn

NA − r
1NA−r,

bPB

NB
1NB

]
(16)

where qr is the vector containing the diagonal elements of the
diagonal matrix Qr (assuming that Alice does not know Bob’s
self-interference channel). Note that the J matrices consist of
i.i.d. random variables and the Θ̄ matrices are diagonal. (The
numbering of 3 and 4 used here is because of the numbering
later.)

Lemma 1: Let J be an N ×K matrix whose entries are
i.i.d. complex random variables with variance 1

N , and Θ be a
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Fig. 2. Comparison of the exact random realizations of RAE
NE

with its asymp-
totic result (the red/solid curve).

diagonal deterministic matrix. Based on Theorem (2.39) of [36],
as N,K → ∞ with K

N → β, we have

1

N
log |I+ JΘJH | a.s.→ Ω(β,Θ, η) , (17)

where

Ω(β,Θ, η) � βVΘ (η)− log (η) + (η − 1) log(e), (18)

VΘ (η) � 1

LΘ

LΘ∑
j=1

log (1 + ηΘj,j) . (19)

Here, Θj,j is the jth diagonal element of the diagonal matrix
Θ, LΘ is the number of diagonal elements of Θ, and η > 0 is
the solution to the equation

1− η =
βη

LΘ

LΘ∑
j=1

Θj,j

1 + ηΘj,j
. (20)

Proof: The proof is given in Appendix A. �
Using the lemma, it follows from (14) that for large NE ,

RAE

	
LΘ̄3∑
j=1

log
(
1 + η̄3

(
Θ̄3

)
j,j

)
−

LΘ̄4∑
j=1

log
(
1 + η̄4

(
Θ̄4

)
j,j

)

+NE log

(
η̄4
η̄3

)
+NE (η̄3 − η̄4) log(e)

� RAE (21)

where for i = 3, 4, η̄i is the solution of η to (20) with β = β̄i

and Θ̄ = Θ̄i. Here, β̄3 = NA+NB

NE
and β̄4 = NA−r+NB

NE
. Note

that the right side of (20) is a monotonic function of η ≥ 0 and
hence a unique solution of 0 ≤ η ≤ 1 can be easily found by
bisection search.

It is useful to note that the asymptotic form RAE is a good
approximation of the exact form RAE as long as NE is large
regardless of NA and NB . Shown in Fig. 2 is a comparison of
the exact random realizations of RAE

NE
from (8) with its asymp-

totic result RAE

NE
from (21) where NA = 2NB = 8, r = NB ,

Qr = Ps

NB
I, Ps = Pn = PA

2 . Note that 100 realizations of RAE

NE

corresponding to 100 random realizations of Eve’s CSI for each

value of PA are shown. We see that as NE increases (beyond 8),
RAE

NE
becomes a good approximation of RAE

NE
.

B. Power Optimization and Maximum Tolerable Number of
Antennas on Eve

With (RAB −RAE)
+ as the objective function, we can now

develop an optimization algorithm to optimize the power distri-
bution. Note that since the CSI required for RAB is known to
Alice and Bob, we do not need to replace RAB by its asymptotic
form.

Specifically, we can use this cost function g(xr) � RAE −
RAB where xr = [qT

r , Pn, PB ]
T . Then, we need to solve the

following problem:

min
r

min
xr

g (xr)

s.t.
r∑

i=1

qr(i) + Pn ≤ Pmax
A

qr(i) ≥ 0, ∀i = 1, . . . , r

Pn ≥ 0

0 ≤ PB ≤ Pmax
B . (22)

Here the optimization of r is simple, which can be done via
sequential search. For a given r, the above problem is not convex.
Although the constraints are convex, the cost g(xr) is not. To
see this, let us rewrite this function as follows:

g (xr) =−log |CB +HV1QrV
H
1 HH |+ log |CB |

+

LΘ̄3∑
j=1

log
(
1 + η̄3

(
Θ̄3

)
j,j

)
−

LΘ̄4∑
j=1

log
(
1 + η̄4

(
Θ̄4

)
j,j

)

+NE log

(
η̄4
η̄3

)
+NE (η̄3 − η̄4) log(e). (23)

The non-convex parts of g(xr) are log |CB | and
∑LΘ̄3

j=1 log(1 +

η̄3(Θ̄3)j,j), which are concave functions of xr. These two terms
can be replaced by their upper bounds based on the first-order
Taylor-series expansion around the solution of the previous
iteration. Also, the dependence of g(xr) on η̄3 and η̄4 can be
resolved by choosing the values of η̄3 and η̄4 as follows:

1− η̄ti =
β̄iη̄

t
i

LΘ̄i

LΘ̄i∑
j=1

(Θ̄
t
i)j,j

1 + η̄ti(Θ̄
t
i)j,j

, i = 3, 4. (24)

where t denotes the tth iteration. In other words, at iteration t,
the following convex problem is solved:

xt+1
r = argmin

xr

ht (xr)

s.t.
r∑

i=1

qr(i) + Pn ≤ Pmax
A

qr(i) ≥ 0, ∀i = 1, . . . , r

Pn ≥ 0

0 ≤ PB ≤ Pmax
B . (25)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 16,2020 at 16:44:24 UTC from IEEE Xplore.  Restrictions apply. 



5972 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 23, DECEMBER 1, 2019

Algorithm 1: Algorithm for Power Optimization.

Choose proper ε, η̄03 , η̄04 , and set gmin = 0.
for r = 1 : NA do

Initialize xr satisfying the constraints.
Set t = 0.
while ‖xt

r−xt−1
r ‖

‖xt−1
r ‖ > ε do

Solve (25) to get xt+1
r .

Update η̄3, η̄4 by solving (24) using xt+1
r .

t = t+ 1.
end while
if g(xt

r) < gmin then
gmin = g(xt

r)
xmin = xt

r

end if
end for
Return xmin.

where

ht (xr) =−log |CB +HV1QrV
H
1 HH |

−
LΘ̄4∑
j=1

log
(
1 + η̄t4

(
Θ̄4

)
j,j

)
+

(
xr − xt

r

)T ∇xr
f t|xr=xt

r
,

(26)

and f t(xr) = log |CB |+
∑LΘ̄3

j=1 log(1 + η̄t3(Θ̄3)j,j). All con-
stant terms in (23) are omitted in (26) as they do not affect the
optimization.

Algorithm 1 details the proposed procedure for the power
optimization. It is worth mentioning that a different optimization
approach was explored in our previous work [35], where a
stochastic optimization approach was applied to the objective
function RAB − E [RAE ]. These two approaches more or less
give the same results, but Algorithm 1 in this paper has a
significantly lower complexity. To illustrate a performance gain
of the optimized powers over non-optimal powers, we will not
repeat similar figures as available in [35]. But next we consider
the maximum tolerable number of antennas on Eve, which can
be defined in several ways. One is

ÑE � maxNE , s.t. RAB −RAE > 0. (27)

which however depends on instantaneous CSI everywhere. An-
other is

N̄E � maxNE , s.t. RAB −RAE > 0. (28)

where RAB and RAE are asymptotic forms of RAB and RAE

respectively. Obviously, N̄E is a function of xr. The third
definition is

N̄opt
E � maxNE , s.t.

(
1

L

L∑
l=1

(Ropt
AB,l −Ropt

AE,l)

)+

> 0.

(29)
whereRopt

AB,l −Ropt
AE,l is a value ofRAB −RAE corresponding

to a random realization of H and G and the corresponding

optimal xr and r, and L is the total number of realizations of H
and G for each NE .

To obtain N̄E in (28), we will let NA > NB , r = NB and
Qr = Ps

NB
I. Hence, range(V2) is the null-space of H. As a

consequence, HV1QrV
H
1 HH = PS

NB
HHH , and (7) becomes

RAB =

log

∣∣∣∣I+ ρPB

NB
GGH +

Ps

NB
HHH

∣∣∣∣− log

∣∣∣∣I+ ρPB

NB
GGH

∣∣∣∣
= log

∣∣I+ J1Θ1J
H
1

∣∣− log
∣∣I+ J2Θ2J

H
2

∣∣ (30)

where J1 = 1√
NB

[H,G], J2 = 1√
NB

G, Θ2 = ρPBI, and
Θ1 = diag([Ps1NA

, ρPB1NB
]). Applying the lemma to (30)

yields that for β1 = NA+NB

NB
, β2 = 1 and a large NB ,

RAB

NB
	 Ω(β1,Θ1, η1)− Ω(β2,Θ2, η2)

= (β1 − 1) log(1 + η1Ps) + log
1 + η1ρPB

1 + η2ρPB

+ log

(
η2
η1

)
+ (η1 − η2) log(e)

� RAB

NB
(31)

where η1 is the solution of η to (20) with β = β1 and Θ = Θ1,
which reduces to

1− η1 =
(β1 − 1)η1Ps

1 + η1Ps
+

η1ρPB

1 + η1ρPB
. (32)

and η2 is the solution to

1− η2 =
η2ρPB

1 + η2ρPB
, (33)

or equivalently η2 =
√
1+4ρPB−1
2ρPB

.

Also with r = NB and Qr = Ps

NB
I, RAE in (21) reduces to

RAE

NE
	 Ω(β3,Θ3, η3)− Ω(β4,Θ4, η4)

= (β3 − β4) log

(
1 +

aPsη3
β3 − β4

)

+ (β3 − β4) log
β3 − β4 + bPBη3
β3 − β4 + bPBη4

+ (2β4 − β3) log
2β4 − β3 + aPnη3
2β4 − β3 + aPnη4

+ log

(
η4
η3

)
+ (η3 − η4) log(e)

� RAE

NE
(34)

where

Θ3 = NEdiag

([
aPs

NB
1NB

,
aPn

NA −NB
1NA−NB

,
bPB

NB
1NB

])
,

(35)
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Fig. 3. Comparison of N̄E and N̄opt
E vs NA.

and

Θ4 = NEdiag

([
aPn

NA −NB
1NA−NB

,
bPB

NB
1NB

])
, (36)

also β3 = NA+NB

NE
, β4 = NA

NE
, η3 is the solution to

1− η3 =
aPsη3

1 + aPsη3
1

β3−β4

+
aPnη3

1 + aPnη3
1

2β4−β3

+
bPBη3

1 + bPBη3
1

β3−β4

, (37)

and η4 is the solution to

1− η4 =
aPnη4

1 + aPnη4
1

2β4−β3

+
bPBη4

1 + bPBη4
1

β3−β4

. (38)

Fig. 3 shows N̄E versus NA and N̄opt
E versus NA where

Pmax
A = Pmax

B = 30 dB and NA = 2NB (β1 = 3). For N̄E ,
we also chose Ps = Pn = PA

2 and PA = PB . We see that N̄opt
E

is consistently larger than N̄E . And the gap between the two is
due to the power optimization.

During simulation, we also observed that the optimal Ps

is often distributed approximately equally between different
streams, and that if NE gets larger, the optimization favors
smaller PB and smaller r (the latter of which is consistent
with a result in [37] which does not use full-duplex jamming
at Bob).

With the same parameters as in Fig. 3, Fig. 4 illustrates a
convergence property of Algorithm 1 where the mean num-
ber of iterations needed for convergence versus NA is shown.
Also shown in Fig. 4 is the 95% confidence interval of the
number of iterations needed for convergence versus NA. We
used 100 random realizations of the channels for each value
of NA. The threshold ε used for convergence was chosen to
be 0.01.

C. When the Number of Antennas on Eve is Very Large

We now consider the case where NE 
 NA > NB , r = NB

and Qr = Ps

NB
I. It follows that β3 � 1 and β4 � 1. Hence,

Fig. 4. 95% confidence interval of the number of iterations needed for con-
vergence of Algorithm 1 vs. NA. The dark line is the mean of the number of
iterations.

(37) implies 1− η3 ≈ β3 and (38) implies 1− η4 ≈ β4. Fur-
thermore, referring to the terms in (34), we have

lim
NE→∞

NE(β3 − β4) log

(
1 +

aPsη3
β3 − β4

)

= NB log

(
1 +

NEaPs

NB

)
, (39)

lim
NE→∞

NE(β3 − β4) log
β3 − β4 + bPBη3
β3 − β4 + bPBη4

= NB log 1 = 0, (40)

lim
NE→∞

NE(2β4 − β3) log
2β4 − β3 + aPnη3
2β4 − β3 + aPnη4

= (NA −NB) log 1 = 0, (41)

lim
NE→∞

NE

(
log

(
η4
η3

)
+ (η3 − η4) log(e)

)

= lim
NE→∞

NE

(
log

1− β4

1− β3
+ (β4 − β3) log e

)

= lim
NE→∞

NE log

(
1 +

NB

NE − (NA +NB)

)
−NB log e

= lim
NE→∞

NE
NB

NE − (NA +NB)
log e−NB log e

= 0. (42)

The above equations imply that all terms, except the first, in
RAE from (34) converge to zero. Therefore,

lim
NE→∞

RAE = lim
NE→∞

RAE = NB log

(
1 +

NEaPs

NB

)
� R∗

AE

(43)
which is independent of Pn and PB (and hence the optimal
Pn and PB are now zero). This result implies that if Eve has
an unlimited number of antennas then the jamming noise from
either Alice or Bob has virtually no impact on Eve’s capacity
to receive the information from Alice. Furthermore, we see that
RAE increases without upper bound asNE increases whileRAB

stays independent of NE (for large NE).
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Fig. 5. The convergence of RAE to R∗
AE .

Fig. 5 compares R∗
AE from (42) with RAE from (34) where

NA = 2NB = 8 and PA = PB = 2Ps = 2Pn. We see that the
two results are very close when NE > 40.

III. ANALYSIS OF ANECE

A key observation from the previous section is that if Eve
knows its CSI and the number of antennas on Eve is large,
then neither the artificial noise from multi-antenna Alice nor the
full-duplex jamming from multi-antenna Bob can rescue Alice
and Bob from being totally exposed to Eve. (This observation is
an extension of a previous observation for single-antenna users
shown in [30].) To handle Eve with large number of anten-
nas, there is a two-phase method involving anti-eavesdropping
channel estimation (ANECE) proposed in [30]: in phase 1 the
users conduct ANECE which allows users to obtain their CSI
but denies Eve the same ability; and in phase 2 the users
transmit information to each other with Eve not knowing its
CSI. Both phases are within a common coherence period. While
the earlier work has shown promising properties of ANECE,
the understanding of ANECE is still incomplete. In this section,
we show two new analyses of the secrecy rate of a two-user
MIMOME network assisted by ANECE.

To simplify the problem, we do not consider the artificial noise
from either Alice or Bob. The first analysis assumes a (globally
known) statistical model for all CSI in the network. And the
analysis is based on ideal full-duplex devices where there is
no self-interference. When a result of this analysis is applied
to practice, one must restrict the application to situations where
the residual self-interference is negligible. Typically, the residual
self-interference is proportional to the transmitted power which
increases with the distance between devices. So, a situation
where the residual self-interference is negligible corresponds
generally to a short-range communication. The second analysis
assumes that Eve does not know the statistical distribution of its
CSI but rather assumes that Eve is able to perform blind detection
of the information from Alice. These two analyses constitute an
important new understanding of ANECE, which is not available
elsewhere.

A theory where Eve knows the statistical distribution of its CSI
can be applicable to situations where Eve’s CSI is statistically
stationary and experiences many cycles of coherence periods in
a time window of interest. A theory where Eve does not know
its CSI distribution can be applicable to situations where Eve’s

CSI is statistically un-stationary in a time window of interest.
Both assumptions have their own merits.

A. Eve Uses a Statistical Model of Its CSI

Consider a block Rayleigh fading channel for which Alice
and Bob first conduct ANECE by transmitting their pilot signals
pA(k) and pB(k) concurrently (in full-duplex mode) where
k = 1, . . . ,K1 (K1 is the length of the pilot), and then transmit
information to each other (over K2 samples). For information
transmission, we will consider a one-way transmission and a
two-way transmission separately.

1) Channel Estimation: Define Pi = [pi(1), . . . ,pi(K1)]
where i = A,B. then the corresponding signals received by
Alice, Bob and Eve can be expressed as

YA = HTPB +NA (44a)

YB = HPA +NB (44b)

YE =
√
aAPA +

√
bBPB +NE (44c)

where H is the reciprocal channel matrix between Alice and
Bob, and all the noise matrices consist of i.i.d. CN (0, 1). Here,
the self-interferences at Alice and Bob are assumed to be
negligible.

It is known and easy to show that for the best performance
of the maximum likelihood (ML) estimation (or the MMSE
estimation as shown later) of H by Bob, PA should be such
that PAP

H
A = K1PA

NA
INA

. Similarly, PB should be such that

PBP
H
B = K1PB

NB
INB

.
In the following analysis, we assume that H, A and B all

consist of i.i.d. CN (0, 1) elements (from one coherence block
to another). This statistical model along with the large-scale
fading factors a and b is assumed to be known to everyone.

Without loss of generality, let NA ≥ NB . Without affecting
the channel estimation performance at Alice and Bob, but max-
imizing the difficulty of channel estimation for Eve, we let the
row span ofPB be part of the row span ofPA. More specifically,

we can write PA =
√

K1PA

NA
[INA

,0NA×(K1−NA)]Γ and PB =√
K1PB

NB
[INB

,0NB×(K1−NB)]Γ where Γ can be any K1 ×K1

unitary matrix. In this way, any estimates of A and B by Eve,
denoted by Â and B̂, are ambiguous in that [

√
aÂ,

√
bB̂] can be

added to Θ[CA,CB ] without affecting Eve’s observation YE

whereΘ ∈ C
NE×NB is arbitrary and [CA,CB ][P

T
A,P

T
B ]

T = 0.
Let h = vec(H), a = vec(A), b = vec(B), yA =

vec(YT
A), yB = vec(YB), nA = vec(NT

A) and nB =
vec(NB). Note vec(XYZ) = (ZT ⊗X)vec(Y). Then (44)
becomes

yA = (INA
⊗PT

B)h+ nA (45a)

yB = (PT
A ⊗ INB

)h+ nB (45b)

yE =
√
a(PT

A ⊗ INE
)a+

√
b(PT

B ⊗ INE
)b+ nE . (45c)

It is known that the minimum-mean-squared-error (MMSE)
estimate of a vector x from another vector y is x̂ =
Kx,yK

−1
y y with Kx,y = E{xyH} and Ky = E{yyH}. And
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the error Δx = x− x̂ has the covariance matrix KΔx = Kx −
Kx,yK

−1
y KH

x,y.

Let ĥA be the MMSE estimate of h by Alice, and
ΔhA = h− ĥA be its error. Similar notations are defined
for Bob and Eve. It is easy to show that the covariance matrices
of the errors of these estimates are, respectively, KΔhA

=
σ2
AINANB

, KΔhB
= σ2

BINANB
, KΔa = σ2

EAINANE

and KΔb = σ2
EBINBNE

where σ2
A = 1

1+K1PB/NB
,

σ2
B = 1

1+K1PA/NA
, σ2

EA = bK1PB/NB+1
(aK1PA/NA+bK1PB/NB)+1 and

σ2
EB = aK1PA/NA+1

(aK1PA/NA+bK1PB/NB)+1 .
2) One-Way Information Transmission: Now assume that

following the pilots (over K1 samples) transmitted by Alice and
Bob in full-duplex mode, Alice transmits information (over K2

samples) to Bob in half-duplex mode. Namely, while the first
phase is in full-duplex, the second phase is in half-duplex. In the
second phase, Bob and Eve receive

YB = HSA +NB

YE =
√
aASA +NE (46)

where SA = [sA(1), . . . , sA(K2)]. The corresponding vector
forms of the above are

yB = (IK2
⊗H)s̄A + nB (47a)

yE =
√
a(IK2

⊗A)s̄A + nE (47b)

where s̄A = vec(SA) (which is assumed to be independent of
all channel parameters). Then an achievable secrecy rate in
bits/s/Hz in phase 2 from Alice to Bob (conditional on the
MMSE channel estimation in phase 1) is

Rone =
1

K2

(
I(s̄A;yB |ĥB)− I(s̄A;yE |â)

)+
(48)

To analyze Rone, we now assume PA = PB = P (which
holds for both phases 1 and 2) and that sA(k) are i.i.d. with
CN (0, PA

NA
INA

). We also use ĤB = ivec(ĥB) ∈ C
NB×NA (i.e.,

ĥB = vec(ĤB)).
We will next derive lower and upper bounds on Rone. To do

that, we need to obtain lower and upper bounds on I(s̄A;yB |ĥB)
and those on I(s̄A;yE |â).

First, we have

I(s̄A;yB |ĥB) = h(s̄A|ĥB)− h(s̄A|yB , ĥB)

= h(s̄A)− h(s̄A|yB , ĥB). (49)

It is known that h(s̄A) = log[(πe)NAK2 | PA

NA
INAK2

|]. It is also
known [38] that for a random vector s ∈ C

n×1 and another
random vector w, h(s|w) ≤ log[(πe)n|Ks|w|] where Ks|w
= Ks −Ks,w(Kw)−1Ks,w which is the covariance matrix
of the MMSE estimation of s from w. Note that yB =
(IK2

⊗ ĤB )̄sA + (IK2
⊗ΔHB )̄sA + nB . Then conditional

on ĤB (which is independent of s̄A), the covariance matrix
of the MMSE estimate of s̄A from yB is Ks̄A|yB ,ĥB

=

PA

NA
INAK2

− P 2
A

N2
A
(IK2

⊗ ĤH
B )( PA

NA
(IK2

⊗ ĤBĤ
H
B ) + KB +

INBK2
)−1(IK2

⊗ ĤB) where KB = E{(IK2
⊗ΔHB)s̄As̄

H
A

(I⊗ΔHH
B )} = PA

1+K1PA/NA
INBK2

. Using |IrA +AB| =

|IrB +BA| where rA and rB are the numbers of rows of
A and B respectively, one can verify that log |Ks̄A|yB ,ĥB

|
= NAK2 log

PA

NA
+ log |KB + INBK2

| − log | PA

NA
(IK2

⊗
ĤBĤ

H
B ) +KB + INBK2

| = NAK2 log
PA

NA
−K2 log |INB

+
PA/NA

1+
PA

1+K1PA/NA

ĤBĤ
H
B |. Applying the above results to (49)

yields

I(s̄A;yB |ĥB)

≥ log

∣∣∣∣ PA

NA
INAK2

∣∣∣∣− E{log |Ks̄A|yB ,ĥB
|}

= K2E
{
log

∣∣∣∣∣INB
+

PA/NA

1 + PA

1+K1PA/NA

ĤBĤ
H
B

∣∣∣∣∣
}

� R−
B . (50)

To derive an upper bound on I(s̄A;yB |ĥB), we now write

I(s̄A;yB |ĥB) = h(yB |ĥB)− h(yB |ĥB , s̄A). (51)

Here, h(yB |ĥB) ≤ E{log[(πe)NBK2 | PA

NA
(IK2

⊗ ĤBĤ
H
B ) +

KB + INBK2
|]} = K2E{log[(πe)NB | PA

NA
(ĤBĤ

H
B ) + (1 +

PA

1+K1PA/NA
)INB

|]}, and h(yB |ĥB , s̄A) = E{log[(πe)NBK2

| 1
1+K1PA/NA

(ST
AS

∗
A ⊗ INB

) + INBK2
|]}=NBE{log[(πe)K2 |

1
1+K1PA/NA

(ST
AS

∗
A) + IK2

|]}. Note that conditional on ĥB

and s̄A the covariance matrix of yB is invariant to ĥB . Now
define

MA =

⎧⎪⎪⎨
⎪⎪⎩

NA

PA
ST
AS

∗
A, K2 < NA

NA

PA
S∗
AS

T
A, K2 ≥ NA

(52)

which is a full rank matrix for any NA and K2 and a self-

product of
√

NA

PA
SA with i.i.d. CN (0, 1) entries. Also define

tA = min{NA,K2} and rA = max{NA,K2}. It follows that
(as part of h(yB |ĥB , s̄A))

E
{
log

∣∣∣∣ 1

1 +K1PA/NA

(
ST
AS

∗
A

)
+ IK2

∣∣∣∣
}

= E
{
log

∣∣∣∣ PA/NA

1 +K1PA/NA
MA + ItA

∣∣∣∣
}

≥ tAE
{
log

(
1 +

∣∣∣∣ PA/NA

1 +K1PA/NA
MA

∣∣∣∣
1

tA

)}
(53a)

= tAE
{
log

(
1 +

PA/NA

1 +K1PA/NA
exp

(
1

tA
ln |MA|

))}

≥ tA log

(
1 +

PA/NA

1 +K1PA/NA
exp

(
1

tA
E {ln |MA|}

))

(53b)

= tA log

⎛
⎝1 +

PA/NA

1 +K1PA/NA
exp

⎛
⎝ 1

tA

tA∑
j=1

rA−j∑
k=1

1

k
− γ

⎞
⎠
⎞
⎠

(53c)
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where (53a) is due to the matrix Minkowskis inequality |X+
Y|1/n ≥ |X|1/n + |Y|1/n where X and Y are n× n positive
definite matrices [39], (53b) is due to the Jensen’s inequality
and that log(1 + aex) is a convex function of x when a > 0,
and (53c) is based on [40, Th. 1] where γ � 0.57721566 is
Euler’s constant. Defining eA = exp( 1

tA

∑tA
j=1

∑rA−j
k=1

1
k − γ)

and applying the above results since (51), we have from (51)
that

I(s̄A;yB |ĥB)

≤ K2E
{
log

∣∣∣∣∣INB
+

PA/NAĤBĤ
H
B

1 + PA

1+K1PA/NA

∣∣∣∣∣
}

+NB log

⎛
⎜⎝

(
1 + PA

1+K1PA/NA

)K2

(
1 + PA/NA

1+K1PA/NA
eA

)tA

⎞
⎟⎠

� R+
B (54)

From (50) and (54) we see that the difference between the upper
and lower bounds on I(s̄A;yB |ĥB) is the second term in (54).

To consider I(s̄A;yE |â) in (48), we let Â = ivec(â). Similar
to the discussions leading to (50) and (54), one can verify that

I(s̄A;yE |â) ≥ K2E
{
log

∣∣∣∣∣INE
+

PA/NAÂÂH

1 + PAσ2
EA

∣∣∣∣∣
}

� R−
E

(55)
and

I(s̄A;yE |â)

≤ R−
E +NE log

(
(1 + PAσ

2
EA)

K2(
1 + (PAσ2

EA/NA)eA
)tA

)

� R+
E

(56)

When PA = PB = P → ∞, we have σ2
EA → bNA

aNB+bNA
,

σ2
B → 0, E{âiâ∗i} → aNB

aNB+bNA
and E{ĥB,iĥ

∗
B,i} → 1.

From [41, Th. 2], we know that E{log |Ir + P
t XXH |} →

min(r, t) logP + o(logP ) as P → ∞ where the entries of
X ∈ C

r×t are i.i.d. CN (0, 1). Therefore, from (50) and (54),

lim
P→∞

R−
B

logP
= lim

P→∞
R+

B

logP
= K2 min{NA, NB} (57)

And from (55) and (56), we have

lim
P→∞

R−
E

logP
= 0 (58)

and

lim
P→∞

R+
E

logP
=

{
0, K2 ≤ NA

NE(K2 −NA), K2 > NA

(59)

Combining (57), (58) and (59) and using R+
one � 1

K2
[R+

B −
R−

E ]
+ and R−

one � 1
K2

[R−
B −R+

E ]
+ (i.e., R−

one ≤ Rone ≤

R+
one), we have

lim
P→∞

R−
one

logP

=

⎧⎪⎨
⎪⎩

min{NA, NB}, K2 ≤ NA(
min{NA, NB} − NE

K2
(K2 −NA)

)+

, K2 > NA

(60)
and

lim
P→∞

R+
one

logP
= min{NA, NB}. (61)

Note that limP→∞ Rone

logP is called the secure degrees of free-
dom of the one-way information transmission. From (60) and
(61), we see that when K2 ≤ NA, we have limP→∞ Rone

logP =

min{NA, NB} which equals the degrees of freedom of the
main channel capacity from Alice to Bob. This supports and
complements a conclusion from [30] where the analysis did not
use the complete statistical model of H, A and B. We also see
from (60) that if K2 > NA, the above lower bound on secure
degrees of freedom decreases linearly as NE increases.

3) Two-Way Information Transmission: Now we consider
a two-way (full-duplex) communication in the second phase
where the signals received by Alice, Bob and Eve in a coherence
period are

YA = HTSB +NA

YB = HSA +NB

YE =
√
aASA +

√
bBSB +NE (62)

where SA = [sA(1), . . . , sA(K2)] and sA(t) ∼ CN (0, PA

NA
I).

Similarly SB = [sB(1), . . . , sB(K2)] and sB(t) ∼
CN (0, PB

NB
I). Note that all information symbols from Alice and

Bob are i.i.d. The vectorized forms of (62) are

yA = (IK2
⊗HT )s̄B + nA

yB = (IK2
⊗H)s̄A + nB

yE =
√
a(IK2

⊗A)s̄A +
√
b(IK2

⊗B)s̄B + nE (63)

where both s̄A and s̄B are assumed to be independent of all chan-
nel parameters. Conditional on the MMSE channel estimation
in phase 1, an achievable secrecy rate in phase 2 by the two-way
wiretap channel is (e.g., see [42]):

Rtwo =
1

K2

(
I(s̄B ;yA|ĥA) + I(s̄A;yB |ĥB)

− I(s̄A, s̄B ;yE |â, b̂)
)+

(64)

The following analysis is similar to the previous section, for
which we will only provide the key steps and results.

From (50) and (54), we already know a pair of lower and upper
bounds on I(s̄A;yB |ĥB). To show a similar pair of lower and
upper bounds on I(s̄B ;yA|ĥA), we let ĤA = ivec(ĥA). One
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can verify that

I(s̄B ;yA|ĥA)

≥ K2E
{
log

∣∣∣∣∣INA
+

PB/NB

1 + σ2PB

1+σ2T1PB/NB

ĤT
AĤ

∗
A

∣∣∣∣∣
}

� R−
A

(65)

and

I(s̄B ;yA|ĥA) ≤ R−
A +NA log

⎛
⎜⎝

(
1 + PB

1+K1PB/NB

)K2

(
1 + PB/NB

1+K1PB/NB
eB

)tB

⎞
⎟⎠

� R+
A (66)

where eB = exp( 1
tB

∑tB
j=1

∑rB−j
k=1

1
k − γ), tB = min{NB ,

K2} and rB = max{NB ,K2}.
For I(s̄A, s̄B ;yE |â, b̂), we use B̂ = ivec(b̂) (similar to

Â). One can verify that KyE |â,b̂ = PA

NA
(IK2

⊗ ÂÂH) +
PB

NB
(IK2

⊗ B̂B̂H) +KEA +KEB + INEK2
where KEA =

E{(IK2
⊗ΔA)s̄As̄

H
A (IK2

⊗ΔA)H} = σ2
EAPAINEK2

and
KEB=E{(IK2

⊗ΔB)s̄B s̄
H
B (IK2

⊗ΔB)H}=σ2
EBPBINEK2

.
Also note that yE = (ST

A ⊗ INE
)hEA + (ST

B ⊗ INE
)hEB +

nE . Then,

I(s̄A, s̄B ;yE |â, b̂)
= h(yE |â, b̂)− h(yE |â, b̂, s̄A, s̄B)
≤ E{log[(πe)K2NE |KyE |â,b̂|]} − h(yE |â, b̂, s̄A, s̄B)
= E{log |KyE |â,b̂|} − E{log |σ2

EA(S
T
AS

∗
A ⊗ INE

)

+ σ2
EB(S

T
BS

∗
B ⊗ INE

) + INEK2
|}

= K2E
{
log

∣∣∣∣ PA

NA
ÂÂH +

PB

NB
B̂B̂H + (1 + PAσ

2
EA

+ PBσ
2
EB)INE

∣∣∣∣
}

−NEE{log |σ2
EAS

T
AS

∗
A + σ2

EBS
T
BS

∗
B + IK2

|} (67)

Define SAB = [ŠT
A, Š

T
B ] ∈ C

K2×(NA+NB) where
SA = PA

NA
ŠA and SB = PB

NB
ŠB . Define T =

diag{σ2
EA

PA

NA
INA

, σ2
EB

PB

NB
INB

}. Then we can rewrite the last
term from (67) as E{log |σ2

EAS
T
AS

∗
A + σ2

EBS
T
BS

∗
B + IK2

|} =
E{log |IK2

+ SABTSH
AB |}.

For K2 < NA +NB , we have

E{log |IK2
+ SABTSH

AB |}

≥ K2E
{
log

(
1 + |SABTSH

AB |
1

K2

)}

= K2E
{
log

(
1 + exp

(
1

K2
ln |SABTSH

AB |
))}

≥ K2E
{
log

(
1 + exp

(
1

K2
lnσ2K2

min |SABS
H
AB |

))}

≥ K2 log
(
1 + σ2

mineE1

)
(68)

where eE1 = exp( 1
K2

∑K2

j=1

∑NA+NB−j
k=1

1
k − γ). The sec-

ond inequality in (68) is from the fact (e.g., see [43,
Th. 3]) that |SABTSH

AB | ≥ σ2K2

min |SABS
H
AB | where σ2

min =
min{σ2

EA
PA

NA
, σ2

EB
PB

NB
}. Similarly, for K2 ≥ NA +NB , we

have

E{log |I+ SABTSH
AB |}

= E{log |I+TSH
ABSAB |}

≥ (NA +NB)E
{
log

(
1 + |T| 1

NA+NB

× exp

(
1

NA +NB
ln |SH

ABSAB |
))}

≥ (NA +NB) log
(
1 + |T| 1

NA+NB eE2

)
(69)

where eE2 = exp( 1
NA+NB

∑NA+NB

j=1

∑K2−j
k=1

1
k − γ) There-

fore, using (68) and (69), we have from (67) that

I(s̄A, s̄B ;yE |â, b̂)

≤ K2E
{
log

∣∣∣∣∣
PA

NA
ÂÂH + PB

NB
B̂B̂H

1 + PAσ2
EA + PBσ2

EB

+ I

∣∣∣∣∣
}

+

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

K2NE log

(
1 + PAσ

2
EA + PBσ

2
EB

1 + σ2
mineE1

)
, K2 ≤ NA +NB

NE log

⎛
⎜⎝
(
1 + PAσ

2
EA + PBσ

2
EB

)K2

(
1 + |T| 1

NA+NB eE2

)NA+NB

⎞
⎟⎠, K2 > NA +NB

� R+
E,t (70)

One can also verify I(s̄A, s̄B ;yE |â, b̂) ≥
K2E{log |

PA
NA

ÂÂH+
PB
NB

B̂B̂H

1+PAσ2
EA+PBσ2

EB
+ I|} � R−

E,t which is the
first term in (70).

When PA = PB = P → ∞, we have σ2
EA → bNA

aNB+bNA
,

σ2
EB → aNB

aNB+bNA
, σ2

A → 0, σ2
B → 0, E{âiâ∗i} →

aNB

aNB+bNA
, E{b̂ib̂∗i} → bNA

aNB+bNA
, E{ĥA,iĥ

∗
A,i} → 1,

E{ĥB,iĥ
∗
B,i} → 1, σ2

min = P min{σ2
EA

NA
,
σ2
EB

NB
} and

|T| 1
NA+NB = P ((

σ2
EA

NA
)NA(

σ2
EB

NB
)NB )1/(NA+NB).

Then, similar to (57), we have

lim
P→∞

R−
A

logP
= lim

P→∞
R+

A

logP
= K2 min{NA, NB} (71)

One can also verify that

lim
P→∞

R−
E,t

logP
= 0 (72)

and

lim
P→∞

R+
E,t

logP
=

{
0, K2 ≤ NA +NB

NE(K2 −NA −NB), K2 > NA +NB

(73)
Now applying (57), (71), (72) and (73), and using
R+

two � 1
K2

[R+
A +R+

B −R−
E,t]

+ and R−
two � 1

K2
[R−

A +
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R−
B −R+

E,t]
+ as upper and lower bounds on Rtwo, we have

lim
P→∞

R−
two

logP

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2min{NA, NB}, K2 ≤ NA +NB(
2min{NA, NB} − NE

K2
(K2 −NA −NB)

)+

,

K2 > NA +NB

(74)

and

lim
P→∞

R+
two

logP
= 2min{NA, NB} (75)

We see that if K2 ≤ NA +NB , limP→∞ Rtwo

logP =

2min{NA, NB} which equals the degrees of freedom of
the full-duplex channel between Alice and Bob. And if
K2 > NA +NB , the above lower bound on limP→∞ Rtwo

logP
decreases linearly as NE increases. We see an advantage of
two-way information transmission over one-way information
transmission.

B. Eve Uses Blind Detection With Zero Knowledge of Its CSI

Now we reconsider the case of one-way information trans-
mission from Alice to Bob in the second phase but assume that
Eve performs a blind detection of the information transmitted
from Alice. For the blind detection shown next, we also assume
that K2 > NA and Eve’s knowledge of its CSI matrix

√
aA ∈

C
NE×K2 is zero. (The two-way information transmission be-

tween Alice and Bob in either half-duplex or ideal full-duplex
can be treated similarly. For the case of K2 ≤ NA, Eve cannot
receive any information from the users due to its unknown CSI.)

The signal received by Eve during information transmission
from Alice over K2 sampling intervals is

YE =
√
aASA +NE (76)

where the elements in SA ∈ C
NA×K2 are assumed to be inde-

pendently chosen from a known constellation SN with size N .
Assume that Eve performs the blind detection as follows:(

Ŝ, Â
)
= argmin

S∈SNA×K2
N ,

√
aA∈CNE×K2

‖YE −√
aAS‖2F . (77)

Given any S, the optimal
√
aA is YES

H(SSH)−1. Then, the
above problem reduces to the following (an issue of uniqueness
will be addressed later)

Ŝ = argmin
S∈SNA×K2

N

‖YE −YES
H
(
SSH

)−1
S‖2F , (78)

or equivalently Ŝ = argmax
S∈SNA×K2

N

f(s), where f(s) =

Tr(SH(SSH)−1SZ), s = vec(S) and Z = YH
EYE . The above

problem is computationally expensive. But we assume that Eve
is able to afford it.

Assume that the solution Ŝ of the above problem is so close
to the actual information matrix S0 that f(s) can be replaced by
its 2nd-order Taylor’s series expansion (which is conservative

for Alice and Bob or equivalently optimistic for Eve). Then
ŝ = vec(Ŝ) has the following properties

∇sf̃ (s) |s=ŝ = 0, (79)

∇s∗ f̃ (s) |s=ŝ = 0, (80)

where f̃(s) is the second-order Taylor series expansion [44] of
f(s) around s0 = vec(S0), i.e.,

f̃ (s) =

f (s0) +∇T
s f (s) |s=s0 (s− s0) +∇T

s∗f (s) |s=s0 (s− s0)
∗

+
1

2

[
(s− s0)

H Hss (s− s0) + (s− s0)
H Hs∗s (s− s0)

∗

+(s− s0)
T Hss∗ (s− s0) + (s− s0)

T Hs∗s∗ (s− s0)
∗
]
.

(81)

which involves the Hessian matrices: Hss =
∂
∂s (∇s∗f)|s=s0 ,

Hs∗s =
∂
∂s∗ (∇s∗f)|s=s0 , Hss∗ =

∂
∂s (∇sf)|s=s0 , Hs∗s∗ =

∂
∂s∗ (∇sf)|s=s0 . Subject to uniqueness of solution, solving (79)
and (80) results in the following [44]

ŝ− s0 =
(
Hss −Hs∗sH

−T
ss HH

s∗s
)−1 (

Hs∗sH
−T
ss ∇sf −∇s∗f

)
.

(82)
Furthermore,

∇s∗f =
(
Z
(
I− SH

(
SSH

)−1
S
))T

⊗ (
SSH

)−1
s, (83)

∇sf = (∇sf)
∗ , (84)

Hss =
[
Z− ZSH

(
SSH

)−1
S− SH

(
SSH

)−1
SZ

+ SH
(
SSH

)−1
SZSH

(
SSH

)−1
S
]T

⊗ (
SSH

)−1

+
(
SH

(
SSH

)−1
S− I

)T

⊗ SH
(
SSH

)−1
SZSH

(
SSH

)−1
S, (85)

Hs∗s =

[(((
SSH

)−1
SZ

)(
SH

(
SSH

)−1
S− I

))T

⊗ (
SSH

)−1
S+

[(
SSH

)−1
S
]T

⊗
((

SSH
)−1

SZ
)

×
(
SH

(
SSH

)−1
S− I

)]
Π (86)

where Π is a permutation matrix with

Πi,j =

{
1 j =

(
(i− 1)mod NA

)
K2 + �(i− 1) /NA�

0 else
(87)

where amod b denotes the remainder of the division of a by b.
For more details about complex derivatives, please refer to [44].

Because of the blind nature, Hss is always rank deficient by
N2

A. To remove the ambiguity, we can treat the first NA of the
transmitted vectors from Alice as known, which is equivalent
to removing N2

A corresponding rows and N2
A corresponding

columns from each of Hss and Hs∗s, and removing N2
A corre-

sponding elements from each of ∇sf and ∇s∗f . This results in
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Fig. 6. Eve’s rates vs K2/NA for known or unknown CSI at Eve. With
ANECE, Eve does not know its CSI. Otherwise, Eve does.

H̄ss, H̄s∗s, ∇̄sf and ∇̄s∗f , respectively. Hence the MSE matrix
M̄ of the remaining unknown parameters can be formed as

M̄ = E
[(
ŝ− s0

) (
ŝ− s0

)H]
, (88)

where ŝ− s0 is the approximation of errors in the vector of all
NA(K2 −NA) remaining symbols and

ŝ− s0 =
(
H̄ss − H̄s∗sH̄

−T
ss H̄H

s∗s
)−1 (

H̄s∗sH̄
−T
ss ∇̄sf − ∇̄s∗f

)
(89)

Finally, forK2 > NA, Eve’s effective rate (with the information
in the first NA vectors of s(k) removed) can be approximated
as

R
(2)
AE =

1

K2

(
log |Q̄| − log |M̄|) , (90)

where Q̄ is the covariance matrix of the vector of all remaining
symbols.

To evaluate R
(2)
AE , one has to specify the actual constellation

SN of each symbol in S, compute ŝ− s0 for each actual realiza-
tion of S0 according to (89), and then obtain a sample averaged
version of M̄ in (88). Each of the realizations of S0 should be
coupled with an independent realization of the channel matrix
A and the noise matrix NE . With the final sample-averaged
versions of Q̄ and M̄, R(2)

AE in (90) can be obtained.
For the next two plots, we assume that SN is 4-QAM,3 100

random realizations of S0, A and NE are used in computing
R

(2)
AE . Also, during information transmission from Alice to Bob,

PA = 30 dB (and PB = 0). In this case, due to high power, we
expect the Taylor’s series expansion applied in our derivation is
accurate.

Fig. 6 shows R(2)
AE versus K2/NA where NA = NB = 4 and

NE = 8. We see that only when K2 becomes much larger than
NA,R(2)

AE approachesRAE . Note thatR(2)
AE is based on unknown

CSI at Eve and blind detection at Eve while RAE is based on
the assumption that Eve knows its CSI perfectly.

Fig. 7 shows the averaged secret rate R̄S = (E [RAB −
R

(2)
AE ])

+ versus NE where NA = NB = 4. (The curves in this
figure were zoomed in for the range of NE from 4 to 20.

3For higher order constellations, the simulation became too slow and
consuming.

Fig. 7. R̄S vs. NE for known or unknown CSI at Eve. With ANECE, Eve
does not know its CSI. Otherwise, Eve does.

The actually computed points were at NE = 4, 8, 16, 32.) In
this case, (E [RAB −RAE ])

+ is zero for all values of NE . But
when Eve is blind to its CSI (caused by ANECE), the secrecy
rates become substantial. In this case, we also see that for given
K2 > NA the secrecy rate decreases as the number of antennas
on Eve increases.

The above results in this subsection complement the analytical
insights shown in the previous subsection (e.g., see (60)). Due
to different assumptions, we cannot make a precise comparison
between (60) and Figs. 6 and 7 while the general trends predicted
in both cases are somewhat consistent. An additional discussion
of the blind detection where Eve uses a partial knowledge of its
CSI from phase 1 is shown in Appendix B.

IV. CONCLUSION

In this paper, we have investigated the secrecy performance of
a full-duplex MIMOME network in some important scenarios.
In the first part of this paper, we studied how to optimize the
jamming powers from both Alice and Bob when Eve’s CSI is
unknown to Alice and Bob but Eve knows all CSI. To handle
Eve’s CSI being unknown to Alice and Bob, we focused on
Eve at the most harmful location and adopted the large matrix
theory that yields a hardened secret rate for any large number
of antennas on Eve. With the optimized powers, we revealed
a significant improvement in terms of the maximum tolerable
number of antennas on Eve. In the second part of this paper,
we analyzed the full-duplex MIMOME network subject to the
application of anti-eavesdropping channel estimation (ANECE)
in a two-phase scheme. Assuming that a statistical model of CSI
anywhere is known everywhere, we derived lower and upper
bounds on the secure degrees of freedom of the network, which
reveal clearly how the number of antennas on Eve affect these
bounds. In particular, for 1 ≤ K2 ≤ NA in one-way information
transmission or 1 ≤ K2 ≤ NA +NB in two-way information
transmission, the lower and upper bounds coincide and equal to
those of the channel capacity between Alice and Bob. Further-
more, assuming that Eve does not have any prior knowledge of
its CSI but uses blind detection in phase 2 of the two-phase
scheme, we provided and illustrated an approximate secrecy
rate for K2 > NA in one-way information transmission. But the
exact secrecy rate of the full-duplex MIMOME network with
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ANECE for K2 larger than the total number of transmitting
antennas still remains elusive. Nevertheless, the contributions
shown in this paper are significant additions to our previous
works shown in [30] and [35], which expands the understanding
of full-duplex radio for wireless network security.

APPENDIX A
PROOF OF LEMMA 1

The following proof is a simple digest from [36] that is
useful to help readers to understand Lemma 1 more easily. The
Shannon transform of the distribution of a random variable X
with parameter γ is defined as

VX(γ) = EX [log(1 + γX)], (91)

and the η−transform of the distribution of X with parameter γ
is defined as

ηX(γ) = EX

[
1

1 + γX

]
, (92)

where γ ≥ 0. The empirical cumulative distribution function
of the eigenvalues of an n× n random non-negative-definite
Hermitian matrix A is defined as

Fn
A(x) =

1

n

n∑
i=1

1{λi(A) ≤ x} (93)

where λ1(A), . . . , λn(A) are the eigenvalues of A, and 1{.} is
the indicator function. When Fn

A(x) converges as n → ∞, the
corresponding limit is denoted by FA(x).

It is obvious that

1

n
log |I+ γA| = 1

n

n∑
i=1

log(1 + γλi(A))

=

∫ ∞

0

log(1 + γx)dFn
A(x), (94)

and if n → ∞ then

1

n
log |I+ γA| →

∫ ∞

0

log(1 + γx)dFA(x) (95)

which is the Shannon transform of the eigenvalue distribution
of the matrix A when n is large.

The Shannon transform of the eigenvalue distribution of Θ
with parameter η is obviously given by (19). And the η-transform
of the eigenvalue distribution ofΘwith parameterx is obviously
given by

ηΘ(x) =
1

LΘ

LΘ∑
j=1

1

1 + xΘj,j
. (96)

From Theorem 2.39 in [36], the η-transform of the eigenvalue
distribution of JΘJH with parameter γ, denoted by η here,
satisfies

β =
1− η

1− ηΘ(γη)
. (97)

Applying (96) to the above equation with γ = 1 yields

1− η = β

⎛
⎝1− 1

LΘ

LΘ∑
j=1

1

1 + ηΘj,j

⎞
⎠ (98)

which reduces to (20). Also from Theorem 2.39 in [36], the
Shannon transform of the eigenvalue distribution of JΘJH with
parameter γ = 1 is

VJΘJH (1) = βVΘ(η)− log (η) + (η − 1) log(e) (99)

which is Ω(β,Θ, η) in (18). �

APPENDIX B
EVE USES BLIND DETECTION WITH PARTIAL

KNOWLEDGE OF ITS CSI

Now we consider the case where Eve can use its signal in
phase 1 to obtain its CSI up to a subspace ambiguity, i.e., in
the absence of noise, Eve can obtain from YE as in (44c) the
following:

Â = A+ΘCA (100)

B̂ = B+ΘCB (101)

where [CA,CB ] ∈ C
min{NA,NB}×(NA+NB) is a known matrix

satisfying [CA,CB ][P
T
A,P

T
B ]

T = 0. For convenience and with-
out loss of generality, we assume here a = b = 1.

With one-way information transmission from Alice to Bob in
phase 2, Eve can now perform a constrained blind detection as
follows:

min
S∈SNA×K2

N ,A|Â=A+ΘCA

‖YE −AS‖2 (102)

or equivalently

min
S∈SNA×K2

N ,Θ

‖YE − (Â−ΘCA)S‖2. (103)

For any given S, the solution for Θ is

Θ = −(YE − ÂS)(CAS)
H(CAS(CAS)

H)−1. (104)

Then, the problem of (103) reduces to

min
S∈SNA×K2

N

‖(YE − ÂS)(IK2
−PCAS)‖2 (105)

where PCAS = (CAS)
H(CAS(CAS)

H)−1CAS. The prob-
lem of (105) is more complex than (78) due to higher order
of the cost function in terms of S. A performance analysis of
(105) can be done in a similar way as for (78) but is omitted.

ACKNOWLEDGMENT

The views and conclusions contained in this document are
those of the author and should not be interpreted as representing
the official policies, either expressed or implied, of the Army
Research Office or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 16,2020 at 16:44:24 UTC from IEEE Xplore.  Restrictions apply. 



SOHRABI et al.: SECRECY ANALYSES OF A FULL-DUPLEX MIMOME NETWORK 5981

REFERENCES

[1] Y. Zou, J. Zhu, X. Wang, and L. Hanzo, “A survey on wireless security:
Technical challenges, recent advances, and future trends,” Proc. IEEE,
vol. 104, no. 9, pp. 1727–1765, Sep. 2016.

[2] M. Koziol, “Wi-Fi gets more secure: Everything you need to know
about WPA3,” IEEE Spectrum, Sep. 2018. [Online]. Available: https:
//spectrum.ieee.org/tech-talk/telecom/security/everything-you-need-to-
know-about-wpa3

[3] M. Bloch and J. Barros, Physical-Layer Security. Cambridge, U.K.:
Cambridge Press, 2011.

[4] A. Khisti and G. W. Wornell, “Secure transmission with multiple antennas
Part II: The MIMOME wiretap channel,” IEEE Trans. Inf. Theory, vol. 56,
no. 11, pp. 5515–5532, Nov. 2010.

[5] F. Oggier and B. Hassibi, “The secrecy capacity of the MIMO wire-
tap channel,” IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 4961–4972,
Aug. 2011.

[6] A. Khisti, G. Wornell, A. Wiesel, and Y. Eldar, “On the Gaussian MIMO
wiretap channel,” in Proc. Inf. Theory, Int. Symp., 2007, pp. 2471–2475.

[7] P. K. Gopala, L. Lai, and H. E. Gamal, “On the secrecy capacity of
fading channels,” IEEE Trans. Inf. Theory, vol. 54, no. 10, pp. 4687–4698,
Oct. 2008.

[8] Z. Chu, K. Cumanan, Z. Ding, M. Johnston, and S. Y. L. Goff, “Secrecy
rate optimizations for a MIMO secrecy channel with a cooperative jam-
mer,” IEEE Trans. Veh. Technol., vol. 64, no. 5, pp. 1833–1847, May
2015.

[9] E. Tekin and A. Yener, “The general Gaussian multiple-access and two-
way wiretap channels: Achievable rates and cooperative jamming,” IEEE
Trans. Inf. Theory, vol. 54, no. 6, pp. 2735–2751, Jun. 2008.

[10] T. Liu and S. Shamai, “A note on the secrecy capacity of the multiple-
antenna wiretap channel,” IEEE Trans. Inf. Theory, vol. 55, no. 6,
pp. 2547–2553, Jun. 2009.

[11] S. A. A. Fakoorian and A. L. Swindlehurst, “Solutions for the MIMO
Gaussian wiretap channel with a cooperative jammer,” IEEE Trans. Signal
Process., vol. 59, no. 10, pp. 5013–5022, Oct. 2011.

[12] Z. Chu, H. Xing, M. Johnston, and S. L. Goff, “Secrecy rate optimiza-
tions for a MISO secrecy channel with multiple multiantenna eaves-
droppers,” IEEE Trans. Wireless Commun., vol. 15, no. 1, pp. 283–297,
Jan. 2016.

[13] X. Zhou and M. R. McKay, “Secure transmission with artificial noise over
fading channels: Achievable rate and optimal power allocation,” IEEE
Trans. Veh. Technol., vol. 59, no. 8, pp. 3831–3842, Oct. 2010.

[14] O. Cepheli, G. Dartmann, G. K. Kurt, and G. Ascheid, “A joint optimiza-
tion scheme for artificial noise and transmit filter for half and full duplex
wireless cyber physical systems,” IEEE Trans. Sustain. Comput., vol. 3,
no. 2, pp. 126–136, Apr.–Jun. 2018.

[15] M. Masood, A. Ghrayeb, P. Babu, I. Khalil, and M. Hasna, “A
minorization–maximization algorithm for maximizing the secrecy rate of
the MIMOME wiretap channel,” IEEE Commun. Lett., vol. 21, no. 3,
pp. 520–523, Mar. 2017.

[16] R. Negi and S. Goel, “Secret communication using artificial noise,” in
Proc. IEEE 62nd Veh. Technol. Conf., vol. 3, Sep. 2005, pp. 1906–1910.

[17] Z. Li, R. Yates, and W. Trappe, “Achieving secret communication for fast
Rayleigh fading channels,” IEEE Trans. Wireless Commun., vol. 9, no. 9,
pp. 2792–2799, Sep. 2010.

[18] J. Li and A. P. Petropulu, “On ergodic secrecy rate for Gaussian MISO
wiretap channels,” IEEE Trans. Wireless Commun., vol. 10, no. 4,
pp. 1176–1187, Apr. 2011.

[19] A. Hyadi, Z. Rezki, A. Khisti, and M. S. Alouini, “Secure broadcasting
with imperfect channel state information at the transmitter,” IEEE Trans.
Wireless Commun., vol. 15, no. 3, pp. 2215–2230, Mar. 2016.

[20] S. Goel and R. Negi, “Guaranteeing secrecy using artificial noise,” IEEE
Trans. Wireless Commun., vol. 7, no. 6, pp. 2180–2189, Jun. 2008.

[21] W.-C. Liao, T.-H. Chang, W.-K. Ma, and C.-Y. Chi, “QoS-based transmit
beamforming in the presence of eavesdroppers: An optimized artificial-
noise-aided approach,” IEEE Trans. Signal Process., vol. 59, no. 3,
pp. 1202–1216, Mar. 2011.

[22] A. L. Swindlehurst, “Fixed SINR solutions for the MIMO wiretap chan-
nel,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2009,
pp. 2437–2440.

[23] A. Mukherjee and A. L. Swindlehurst, “Fixed-rate power allocation
strategies for enhanced secrecy in MIMO wiretap channels,” in Proc.
IEEE 10th Workshop Signal Process. Adv. Wireless Commun., Jun. 2009,
pp. 344–348.

[24] S. Liu, Y. Hong, and E. Viterbo, “Artificial noise revisited,” IEEE Trans.
Inf. Theory, vol. 61, no. 7, pp. 3901–3911, Jul. 2015.

[25] G. Zheng, I. Krikidis, J. Li, A. P. Petropulu, and B. Ottersten, “Improving
physical layer secrecy using full-duplex jamming receivers,” IEEE Trans.
Signal Process., vol. 61, no. 20, pp. 4962–4974, Oct. 15, 2013.

[26] Y. Zhou, Z. Z. Xiang, Y. Zhu, and Z. Xue, “Application of full-duplex
wireless technique into secure MIMO communication: Achievable secrecy
rate based optimization,” IEEE Signal Process. Lett., vol. 21, no. 7,
pp. 804–808, Jul. 2014.

[27] L. Li, Z. Chen, D. Zhang, and J. Fang, “A full-duplex Bob in the MIMO
Gaussian wiretap channel: Scheme and performance,” IEEE Signal Pro-
cess. Lett., vol. 23, no. 1, pp. 107–111, Jan. 2016.

[28] Y. Hua, Q. Zhu, and R. Sohrabi, “Fundamental properties of full-duplex
radio for secure wireless communications,” 2017, arXiv:1711.10001.

[29] L. Chen, Q. Zhu, W. Meng, and Y. Hua, “Fast power allocation for secure
communication with full-duplex radio,” IEEE Trans. Signal Process.,
vol. 65, no. 14, pp. 3846–3861, Jul. 15, 2017.

[30] Y. Hua, “Advanced properties of full-duplex radio for securing wireless
network,” IEEE Trans. Signal Process., vol. 67, no. 1, pp. 120–135,
Jan. 2019.

[31] W. Liu, Z. Ding, T. Ratnarajah, and J. Xue, “On ergodic secrecy capacity
of random wireless networks with protected zones,” IEEE Trans. Veh.
Technol., vol. 65, no. 8, pp. 6146–6158, Aug. 2016.

[32] I. Csiszar and J. Korner, “Broadcast channels with confidential messages,”
IEEE Trans. Inf. Theory, vol. IT-24, no. 3, pp. 339–348, May 1978.

[33] M. Chiani, M. Z. Win, and H. Shin, “MIMO networks: The effects
of interference,” IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 336–349,
Jan. 2010.

[34] H. Shin and J. H. Lee, “Closed-form formulas for ergodic capacity of
MIMO Rayleigh fading channels,” in Proc. IEEE Int. Conf. Commun.,
vol. 5, May 2003, pp. 2996–3000.

[35] R. Sohrabi and Y. Hua, “A new look at secrecy capacity of MIMOME using
artificial noise from Alice and Bob without knowledge of Eves CSI,” in
Proc. IEEE Global Conf. Signal Inf. Process., 2018, pp. 1291–1295.

[36] A. M. Tulino and S. Verdú, “Random matrix theory and wireless commu-
nications,” Found. Trends Commun. Inf. Theory, vol. 1, no. 1, pp. 1–182,
2004.

[37] Y. Liu, H. Chen, and L. Wang, “Secrecy capacity analysis of artificial noisy
MIMO channels—An approach based on ordered eigenvalues of Wishart
matrices,” IEEE Trans. Inf. Forensics Secur., vol. 12, no. 3, pp. 617–630,
Mar. 2017.

[38] A. A. El Gamal and Y.-H. Kim, Network Information Theory. Cambridge,
U.K.: Cambridge Univ. Press, 2011.

[39] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, U.K.: Cam-
bridge Univ. Press, 2012.

[40] O. Oyman, R. Nabar, H. Bolcskei, and A. Paulraj, “Characterizing the
statistical properties of mutual information in MIMO channels,” IEEE
Trans. Signal Process., vol. 51, no. 11, pp. 2784–2795, Nov. 2003.

[41] A. Grant, “Rayleigh fading multi-antenna channels,” EURASIP J. Adv.
Signal Process., vol. 2002, no. 3, Dec. 2002, Art. no. 260208.

[42] E. Tekin and A. Yener, “The general Gaussian multiple-access and two-
way wiretap channels: Achievable rates and cooperative jamming,” IEEE
Trans. Inf. Theory, vol. 54, no. 6, pp. 2735–2751, Jun. 2008.

[43] S. Jin, X. Gao, and X. You, “On the ergodic capacity of rank-1 Ricean-
fading MIMO channels,” IEEE Trans. Inf. Theory, vol. 53, no. 2,
pp. 502–517, Feb. 2007.

[44] K. Kreutz-Delgado, “The complex gradient operator and the CR-calculus,”
2009, arXiv:0906.4835.

Reza Sohrabi (S’18) received the B.S. degree in
electrical engineering from the University of Tehran,
Tehran, Iran, in 2014, and the master’s and Ph.D. de-
grees in electrical engineering from the University of
California at Riverside, Riverside, CA, USA, in 2015
and 2018, respectively. Since 2019, he has been a Data
Scientist with Stitch Fix, Inc. His research interests
include wireless communications, data science, and
machine learning.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 16,2020 at 16:44:24 UTC from IEEE Xplore.  Restrictions apply. 

https://spectrum.ieee.org/tech-talk/telecom/security/everything-you-need-to-know-about-wpa3


5982 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 23, DECEMBER 1, 2019

Qiping Zhu (S’15) received the B.E. degree in
telecommunications engineering from the Beijing In-
stitute of Petrochemical Technology, Beijing, China,
in 2013, and the Ph.D. degree in electrical engineer-
ing from the University of California at Riverside,
Riverside, CA, USA, in 2019. His research inter-
ests include physical layer security, full-duplex radio,
MIMO communications, and resource allocation.

Yingbo Hua (S’86–M’88–SM’92–F’02) was born in
China. He received the B.S. degree from Southeast
University, Nanjing, China, in 1982, and the Ph.D. de-
gree from Syracuse University, Syracuse, NY, USA,
in 1988.

He was on the Faculty of the University of Mel-
bourne, Melbourne, VIC, Australia, before he took a
Full Professor position in 2001 with the University
of California at Riverside, where he has advanced
to Professor IX. He has authored and coauthored
hundreds of articles in signal processing of wireless

networks with a recent focus on wireless network security. He is currently
serving the second terms as a Senior Area Editor for the IEEE TRANSACTIONS ON

SIGNAL PROCESSING, Associate Editor for the IEEE TRANSACTIONS ON SIGNAL

AND INFORMATION PROCESSING OVER NETWORKS, and a member of Steering
Committee for the IEEE WIRELESS COMMUNICATION LETTERS. He is a Fellow
of AAAS.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 16,2020 at 16:44:24 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


