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Robustness of Two-Dimensional Line Spectral
Estimation Against Spiky Noise
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Abstract—The aim of two-dimensional line spectral estimation
is to super-resolve the spectral point sources of signal from time
samples. In many associated applications such as radar and sonar,
due to cut-off and saturation regions in electronic devices, some of
the number of samples are corrupted by spiky noise. To overcome
this problem, we present a new convex program to simultaneously
estimate spectral point sources and spiky noise in two dimension.
To prove uniqueness of the solution, it is sufficient to show that a
dual certificate exists. Construction of the dual certificate imposes
a mild condition on the separation of the spectral point sources.
Also, the number of spikes and detectable sparse sources are
shown to be a logarithmic function of the number of time samples.
Simulation results confirm the conclusions of our general theory.

Index Terms—Two-dimensional, line Spectral estimation, total
variation norm, continuous dictionary, convex optimization.

I. INTRODUCTION

Multiple-dimensional line spectral estimation (LSE) has
received much attention in signal processing society in recent
years. It is a fundamental concern of many applications such
as Multiple-Input Multiple-Output (MIMO) radar [1], super-
resolution imaging [2] and channel estimation in wireless
communications [3]. Specifically, in the MIMO radar, there
exist multiple transmit antennas which emit probing signals
to the target, a reflected version of these signals is then
received by multiple receiver antennas. One can super-resolve
the triples relative angle, Doppler shifts, and delay to estimate
the location and velocities of the targets. In the LSE setting,
a linear combination of r sinusoidal with arbitrary complex
amplitude should be observed. In practice, a subset of the
observations is corrupted by spiky noise due to cut-off and
saturation in electronic devices. In this paper, we address the
two-dimensional LSE problem in the presence of spiky noise.

Parametric approaches in the LSE problem are based on
dividing the observation space into signal subspace and noise
subspace by singular value decomposition [4], [5]. Although
the computational complexity of these approaches is low, the
sensitivity to additive perturbation is high. Also, they can
not determine the location of spiky noise and require prior
knowledge of number of spectral sources.

In another field of study, known as compressive sensing,
an exact solution can be achieved in an underdetermined
linear system by assuming that the signal of interest is sparse
in a known discrete dictionary [6], [7], here the Fourier
domain. Therefore, `1 minimization can be used to recover
the support of the signal on DFT basis. However, in many
practical applications such as radar and sonar, the spectral
sources belong to a continuous dictionary. Thereby, mismatch
between the actual sources and DFT basis is inevitable [8] [9].

In [10], it is shown that refining the grid exceedingly raises
computational complexity. Further, `1 minimization dose not
achieve an exact solution in the ultrahigh-dimensional setting.

The LSE model incorporates a two-dimensional spectral
matrix X ∈ Cn1×n2 , given by

Xk =

r∑
i=1

die
j2πfT

i k, k ∈ N , (1)

where d is the complex amplitude vector, di = |di|ejφi , φi ∼
U(0, 2π), |di| ∼ δ0.5 + X 2(1), r is the degree of sparsity,
fi ∈ [0, 1]2 and N = {1, · · · , n} × {1, · · · , n} is the two-
dimensional integer square that indicates time indices.

In [11], Candes and Fernandez have proposed a non-
parametric approach to super-resolve the inherent frequencies
in (1) for one and two dimensional cases. Their approach
is based on Total-Variation (TV) norm minimization which
is used to promote the sparsity of a continuous function.
It has been shown that a linear combination of the fourth
power of Dirichlet kernel and its derivatives can be used to
construct a valid certificate to this problem. This construction
imposes a minimum separation 4/n and 4.76/n between the
frequency sources in one and two dimensions, respectively.
To achieve sharp bound on minimum separation in one-
dimensional case, [12] has constructed the dual certificate by
three Dirichlet kernels with different cut-off frequencies. Also,
[13] has extended this kernel to two-dimensional situation.
The imposed minimum separations respectively are 2.52/n
and 3.36/n. In [14], one-dimensional signal is observed in
a random subset of time instances. Tang et.al. have proved
that under a mild assumptions on the minimum separation and
with O(r log r log n) partial time samples, one can always find
the random trigonometric polynomial that estimates the point
sources. Their approach has been extended to two-dimensional
case in [15].

Additive noise is inevitable in most of the mentioned
applications. Recently, a significant line of study is focused
on support stability of TV norm minimization when the
measurements are corrupted by additive perturbation [16].
Establishing a trade-off between noise power and TV norm,
known as BLASSO, is a common way to deal with such a
problem [17], [18]. [19] made a precise comparison between
robustness of optimization based methods and conventional
approaches dealing with additive noise. Due to sensor failure,
another kind of corruption that may appear in the applications
is spiky noise. Subspace decomposition approaches are not
able to estimate the sources’ frequencies when a subset of
time samples is corrupted by spiky noise. Precisely, they are
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designed to overcome Gaussian-like noise and are relatively
ill-positioned in front of spiky noise.

[20] has suggested a convex optimization program that
incorporates the sparsity feature of spiky noise in the cost
function in order to simultaneous estimation of both spec-
tral sources and spiky noise in a one-dimensional situation.
Although many related works in the literature have revolved
around one dimension, but many applications such as super-
resolution imaging and MIMO radar require multi-dimensional
analysis.

In this paper, our main contribution is to construct a valid
dual certificate for two-dimensional case. Our certificate is a
two-dimensional trigonometric low-pass polynomial that inter-
polates any sign pattern of the signal. Further, its coefficients
belong to relative interior of sub-differential of `1 norm. It
is shown that if the number of the spectral sources and the
spiky noise samples is restricted by a logarithmic function of
the number of samples, our semidefint programing achieves an
exact solution under mild condition on the separation between
the spectral sources. [21] has proposed an innovative approach
based on matrix completion that simultaneously super-resolves
the spectral sources and detects spiky noise in two-dimensional
case. It also proved that Enhanced Matrix Completion (EMaC)
achieves an exact solution if the sample complexity exceeds
O(r2 log3 n2), under some incoherence conditions.

The inherent infinite dimension of the LSE problem is
apparently an enormous challenge. One can approximate the
problem on a fine grid [22] or solve the TV norm minimization
directly by linear programing [23]. [11] has converted the
dual of TV norm minimization to linear matrix inequality
(LMI) using positive trigonometric polynomial (PTP) theory
[24]. The magnitude of the trigonometric polynomial in each
subband of its frequency domain is controllable by the coef-
ficients that are obtained from PTP theory [25]–[27]. Finally,
we present numerical simulations to justify our results.

The rest of the paper is organized as follows. The problem
is formulated in Section II. Penalized TV norm minimization
and our main theorem in two-dimensional case are presented
in section III. Construction of dual certificate and implemen-
tation of the dual problem are given in Sections IV and V,
respectively. Section VI is devoted to numerical experiments.
Finally, conclusions are discussed in Section VII.

Notation. Throughout the paper, scalars are denoted by
lowercase letters, vectors by lowercase boldface letters, and
matrices by uppercase boldface letters. The ith element of
the vector x and the k = (k1, k2) element of the matrix X
are given by xi and Xk, respectively. | · | denotes cardinality
of sets, absolute value for scalars and element-wise absolute
value for vectors and matrices, also ‖z‖∞ = max

i
|zi|. For

a function f and a matrix A, ‖f‖∞, ‖A‖∞, ‖A‖ and ‖A‖1
are defined as sup

t
|f(t)|, sup

‖x‖∞≤1

‖Ax‖∞ = max
i

∑
j |Ai,j |,

sup
‖z‖2≤1

‖Az‖2 and
∑
i,j

|A(i, j)|, respectively. relint(C) denotes

relative interior of a set C. ∂f(·)(x) denotes sub-differential of
function f at point x. f i(t) and f i1i2(t) denote ith derivate and
i1, i2 partial derivatives of one-dimensional function f(t) and
two-dimensional function f(t := (t1, t2)), respectively. (·)T

and (·)∗ show transpose and hermitian of a vector, respectively.
sgn(x) denotes the element-wise sign of the vector x. Also,
vec(X) denotes the columns of X being stacked on top of
each other. The inner product between two functions f and
g is defined as 〈f, g〉 :=

∫
f(t)g(t)dt and 〈·, ·〉 denotes the

real part of Frobenius product. ⊗ is Kronecker product and
the adjoint of a linear operator F is denoted by F∗.

II. PROBLEM FORMULATION

In the spectral domain the signal in (1) is a linear combi-
nation of Dirac delta functions:

µ =
∑
fi∈T

diδ(f − fi), (2)

where T is support of the signal and δ(f − fi) denotes the
Dirac delta function located in fi. The main goal in LSE is to
recover the location and amplitude of each delta by finite time
samples. As mentioned in the introduction, many practical
applications such as radar and sonar suffer from spiky noise
due to their electrical instruments, so we going to investigate
the two-dimensional LSE when a subset of time samples is
completely corrupted by spiky noise. Assume that spiky noise
is added to the signal (1) as:

Yk = Xk + Zk, k ∈ N , (3)

where Zk is an element of the sparse two-dimensional noise
matrix Z ∈ Cn×n with s non-zero entries. The observation
model can be written in the matrix form:

Y = Fµ+Z, (4)

where F(·) is a linear operator that maps a continuous-indexed
function in the frequency domain to two-dimensional integer
square N in time domain. The problem is to simultaneously
estimate the spectral sources and the location of spiky noise
form Y .

III. ROBUST TOTAL VARIATION MINIMIZATION

The spectral sparsity is not sufficient to tackle this problem.
In fact, if sources are located too close to each other,it would
be impossible to resolve them [11].

Definition 3.1: Let T2 be two-dimensional torus obtained
by identifying the endpoints on [0, 1]2. For each set of points
T ⊂ T2, the minimum separation is defined as:

∆(T ) := inf
ti,tj∈T, ti 6=tj

‖ti − tj‖∞

= inf
i 6=j

max{|t1i − t1j |, |t2i − t2j |}, (5)

where |t1i − t1j |, |t2i − t2j | denote wrap-around distances on
the unit circle.
`1 minimization is not suitable for LSE problem, due to

the discretization of spectral domain. Whereas, TV norm can
promote the sparsity of continuous functions and defined as
‖ν‖TV := supρ

∑
E∈ρ |ν(E)|. Indeed, TV norm maximizes

the disjoint sum of positive measures |ν(·)| over all partitions
ρ of square [0, 1]2. In the special case of (2), ‖µ‖TV =∑r
i=1 |ci|.
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Most inverse problems are solved by minimizing a cost
function that promotes an inherent structure [28]. This concept
emerges in compressed sensing [6] and matrix completion
[29]. The cost function may also include a specific penalty
term to perform side tasks. For instance, [30] has shown
that penalizing `1 norm with an `2 error term is an efficient
way for denoising. The observation model (4) is sum of two
sparse signals in different domains. [20] balances the TV
norm of spectral sources and the `1 norm of spiky noise for
one-dimensional case. We generalize this approach to two-
dimensional case by introducing the following optimization
problem:

PTN : min
µ̃,Z̃

‖µ̃‖TV + λ‖Z̃‖1 subject to Y = Fµ̃+ Z̃,

where λ > 0 is a regularization parameter that makes a
trade-off between TV norm of spectral spikes and `1 norm
of spiky noise. The first goal of this paper is to prove that
PTN achieves exact recovery and the second is to provide
a valid semidefinite programming to solve this problem. The
following theorem states that the solution of PTN is exact,
under specific conditions.

Theorem 3.1: Let J = {1, · · · , n} × {1, · · · , n} be the set
of observed entries in the matrix,

Y = Fµ+Z, (6)

where each element of the noise matrix is independently non-
zero with probability s

n2 supported on Ω (|Ω| = s). Also, the
support of

µ =
∑
fi∈T

diδ(f − fi), (7)

obeys

∆(T ) ≥ 3.36

n− 1
, (8)

where fi ∈ [0, 1]2 and |T | = r. If r + s ≤ n2,

r ≤ Cr
(

log
n2

ε

)−2
n2, s ≤ Cs

(
log

n2

ε

)−2
n2,

n ≥ 4× 103, λ =
1√
n2
, (9)

then, the exact solution of PTN is (µ,Z) with probability
1−ε for any ε > 0 and numerical constants Cr and Cs. Using
Theorem 3.1 one can estimate the spectral sources and spiky
noise samples up to logarithmic functions of the number of
time samples under a mild condition on the separation of the
spectral sources.

IV. CONSTRUCTION OF THE DUAL CERTIFICATE

The following proposition justifies that if there exists a
low-pass trigonometric polynomial with coefficients in relative
interior of sub-differential of `1 norm which interpolates any
signal sign pattern in T , then it is a sufficient certificate for
Theorem 3.1.

Proposition 4.1: If the conditions of Theorem 3.1 hold, for
any sign patterns h ∈ C|T | and r ∈ C|Ω| such that |hi| = 1

and |rl| = 1, for all i and l, then there exists two-dimensional
low-pass trigonometric polynomial

F∗C = Q(f) =
∑
k∈J

Cke
−j2πfTk, (10)

such that

Q(fi) = hi, ∀fi ∈ T, (11)
|Q(f)| < 1, ∀f /∈ T, (12)
Ckl

λ
= rl, ∀kl ∈ Ω, (13)

|Ck| < λ, ∀k /∈ Ω, (14)

where fi = (f1i, f2i) and kl = (k1l, k2l).
(11) and (12) state that Q(f) ∈ relint(∂(‖ · ‖TV(µ))), so for
any measure µ̂

‖µ+ µ̂‖TV ≥ ‖µ‖TV + 〈Q, µ̂〉. (15)

Similarly, it can be deduced from (13) and (14) that C
λ ∈

relint(∂(‖ · ‖1(µ))), so for any Ẑ we have

‖Z + Ẑ‖1 ≥ ‖Z‖1 + 〈C
λ
, Ẑ〉. (16)

Let µ̄ = µ+ µ̂ and Z̄ = Z + Ẑ as a feasible point such that
Y = F2Dµ̄+ Z̄:

‖µ̄‖TV + λ‖Z̄‖1 ≥ ‖µ‖TV + λ‖Z‖1 + 〈Q, µ̄− µ〉

+ λ〈C
λ
, Z̄ −Z〉F ≥ ‖µ‖TV + λ‖Z‖1

+ 〈C,F∗(µ̄− µ) + Z̄ −Z〉F ≥ ‖µ‖TV + λ‖Z‖1. (17)

Proposition 4.1 guarantees existence and uniqueness of the so-
lution (µ,Z). The following section shows that the coefficient
of Q(f) can be obtained by solving the dual problem of PTN.

V. THE DUAL PROBLEM

The main goal of this section is to suggest a positive
semidefinite programming that estimates the location of the
frequency sources and the spiky noise. More precisely, we
want to convert the infinite dimensional PTN into a tractable
problem. At the first step, the dual problem of PTN can be
written using Lagrangian theorem. Then, the results of the PTP
theory are applied to convert the explicit constraint of the dual
problem into LMI.

Lemma 5.1: (Proof in Section XV-E ). The dual problem of
PTN is given by

max
C∈Cn×n

〈C,Y 〉

subject to ‖F∗C‖∞ ≤ 1, ‖C‖∞ ≤ λ, (18)

where C is the dual variable. Due to establishment of Slater’s
condition, there is no gap between the objective value of dual
and primal problems [31]. Therefore:

〈Ĉ,Y 〉 = 〈Ĉ,Fµ+Z〉 = ‖µ‖TV + λ‖Z‖1,
〈F∗Ĉ,µ〉+ 〈Ĉ,Z〉 = 〈sgn(µ),µ〉+ λ〈sgn(Z),Z〉. (19)
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(a) (b)

Fig. 1: 1(a) shows the magnitude of the dual polynomial corresponding the dual solution of (20). Also, the support of spectral
point sources and estimated sources are represented by blue and red lines, respectively.1(b) demonstrates the magnitude of
dual solution of (20) in blue line and the support of spiky noise in red star.

(a) (b) (c)

(d) (e) (f)

Fig. 2: Grayscale images show the empirical rate of success of (20) over 10 trials under the fix minimum separation condition
3

n−1 . First and second rows are corresponding to n2 = 64 and n2 = 81, respectively. Also, each column from left to right
respectively show results for λ = 0.1, λ = 0.125 and λ = 0.2.

.

Consequently, |F∗Ĉ| = 1 and |Ĉk| = λ if f ∈ T and k ∈ Ω,
respectively. this provides a strategy to recover the support of
spectral sources and spiky noise (see Fig 1).

The magnitude of the trigonometric polynomial can be
controlled by LMI using the results of PTP theory [24].
Therefore, one can reformulate the dual problem to positive
semidefinite programing as below:

max
C,Q0

〈Y ,C〉

subject to δk = tr[ΘkQ0], k ∈ N , Q0 vec(C)

(vec(C))H 1

 � 0, ‖C‖∞ ≤ λ, (20)

where Q0 ∈ Cn2×n2

is a Hermitian matrix that Q0 � 0,
Θk = Θk2 ⊗ Θk1 , Θk ∈ Cn×n is an elementary Toeplitz
matrix with ones on it’s k-th diagonal and zeros else where,
δ0 = 1 and δk = 0 if k 6= 0. In the next section we present
numerical experiments to justify (20).

VI. EXPERIMENT

In this section we present numerical experiments for the ob-
servation signal (4) to investigate the performance of proposed
positive semidefint programing (20). At the first experiment,
we randomly generate r = 7 frequency sources in [0, 1]2

without any separation condition, s = 7 spiky noises in
{1, · · · , n}×{1, · · · , n} and also the coefficients of each sinu-
soidal is generated with random magnitude form δ0.5 +X 2(1)
and random phase form U(0, 2π). We implement (20) using
CVX [32] and leverage the mentioned technique in section
V to recover the support of frequency sources and spiky
noise. Fig. 1 demonstrates that local extremums of |F∗Ĉ|
that achieve one and the locations of Ĉ that achieve λ are
associated with inherent frequencies of (1) and locations of
spiky noises.

In the second experiment, we investigate the phase transition
of proposed approach for different amounts of the regulariza-
tion parameter λ, under the fix minimum separation condition

3
n−1 . Indeed, we vary the regularization parameter when
varying k and s (Fig. 2). As mentioned, λ makes a balance
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between the sparsity of two different components. Small λ
more strongly penalizes TV norm of spectral spikes than `1
norm of spiky noise. This leads to a cost function which is
more appropriate to promote the time domain sparsity and vice
versa. Fig. 2 verifies the claim when we change λ from small
to large values. First and second rows in Fig. 2 are receptively
related to different numbers of measurements n2 = 64 and
n2 = 81. The estimation is considered successful if the
normalized mean squared error ‖X̄ − X̂‖2/‖X̄‖2 ≤ 10−3,
where X̄ and X̂ are associated with X and reconstructed
data when we omit the corresponding indices of spiky noise,
respectively. Grayscale images show the empirical rate of
success and each point of those are related to (k, s, n2).

VII. CONCLUSION

In this work we investigate two-dimensional LSE problem,
when a subset of time domain samples is corrupted by spiky
noise. In addition, we proposed a semidefinite programming
that achieves the exact solution under mild conditions on the
number of spiky noise and the number and separation of
spectral sources. One can extend our approach to arbitrary
dimensions which is fundamental concern of many applica-
tions such as MIMO radar [1]. It is also worth mentioning
that one could consider the model (3) in compressed sensing
regime, namely, in case a random subset of time samples is
only observed.

VIII. APPENDIX

A. Deterministic Certificate

Without loss of generality, Assume that J =
{−m, · · · ,m} × {−m, · · · m} where m = n−1

2 and
m = n

2 − 1 if n is odd or even, respectively. For dual
certificate construction, consider the LSE problem in the
noiseless case. [11] has shown that the following polynomial
can estimate the frequency sources under a mild condition on
their separations:

Q̄(f) =
∑
k∈J

C̄ke
−j2πfTk, (21)

such that

Q̄(fi) = hi, ∀fi ∈ T, (22)
|Q̄(f)| < 1, ∀f /∈ T. (23)

To ensure that |Q̄(f)| < 1 in the off-support, we follow the
same approach in [11] and [13] to construct a deterministic
dual certificate

Q̄(t) =
∑
fi∈T

ᾱiK̄(f − fi) + β̄1iK̄
10(f − fi)

+β̄2iK̄
01(f − fi), (24)

where ᾱ, β̄1 and β̄2 are interpolation vectors. To meet (22)
and (23), the following conditions are sufficient

Q̄(fi) = hi, fi ∈ T, (25)
∇Q̄(fi) = 0, fi ∈ T. (26)

[13] suggested

K̄(f) = K̄γ(f1)K̄γ(f2), (27)

for construction, in which

K̄γ(f) =

3∏
i=1

K(γim, f) =

m∑
k=−m

cke
j2πkf , (28)

where K(m̄, f) = 1
2m̄+1

∑m̄
k=−m̄ e

j2πkf is known as Dirichlet
kernel, γ1 = 0.247, γ2 = 0.339, γ3 = 0.414, and c ∈ Cn
is the convolution of the Fourier coefficients of k(γ1m, f),
k(γ2m, f), and k(γ3m, f). (25) and (26) can be reformulated
as a matrix equation Ē00 κĒ10 κĒ01

−κĒ10 −κ2Ē20 −κ2Ē11

−κĒ01 −κ2Ē11 −κ2Ē02


︸ ︷︷ ︸

Ē

 ᾱ
κ−1β̄1

κ−1β̄2

 =

h0
0

 , (29)

where (Ēi1i2)`,j = K̄(i1i2)(f` − fj) and κ := 1√
|K′′ |(0)

. We

borrow two bounds on ‖c‖∞ and κ form [12] which are useful
in advancing our proof

‖c‖∞ ≤
1.3

m
, (30)

0.467

m
≤ κ ≤ 0.468

m
, for m ≥ 2× 103. (31)

B. Random Certificate

Spiky noise randomly corrupts a subset of time samples,
it is similar to random sampling in compressed sensing lit-
erature [14]. [20] uses the same technique to incorporate the
randomness of spiky noise into dual certificate construction.
We follow this approach to construct a valid certificate for
two-dimensional case when a subset of time samples dose not
follow the exponential structure. First, Q(f) is divided into
two terms

Q(f) := Qaux(f) +R(f), (32)

where

Qaux(f) :=
∑
k∈Ωc

Cke
−j2πfTk, (33)

R(f) :=
1√
n2

∑
kl∈Ω

rle
−j2πfTkl . (34)

The coefficients of the first term are restricted to Ωc and the
coefficients of the second term are in Ω. From the definitions,
it is obvious that (13) is satisfied and R(f) has no degree of
freedom. So, we construct Qaux(f) to guarantee other condi-
tions in proposition 4.1. The inequality |Q(f)| ≤ 1, ∀fi ∈ T
is satisfied by setting to zero the partial derivatives at T . So

Qaux(fi) = hi −R(fi), ∀fi ∈ T, (35)
∇Qaux(fi) = −∇R(fi), ∀fi ∈ T. (36)

Define a restricted version of K̄ on Ωc

K(f) :=
∑
k∈Ωc

ck1ck2e
j2πfTk =

∑
k∈J

δΩc(k)ck1ck2e
j2πfTk,

(37)
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where δΩc(k) = 1 if k = Ωc, δΩc(k) = 0 otherwise. Under
the noise condition of Theorem 3.1, these are independent
Bernoulli random variables with parameter n2−s

n2 . So the
expectation of K(f) can be written as:

E(K(f)) =
n2 − s
n2

∑
k∈J

ck1ck2e
j2πfTk =

n2 − s
n2

K̄(f).

(38)

The mean of partial derivatives of K(f) can be obtained by
the same technique. we construct Qaux by a linear combination
of K(f) and its partial derivatives:

Qaux(t) =
∑
fi∈T

αiK(f − fi) + β1iK
10(f − fi)

+β2iK
01(f − fi), (39)

where α, β1 and β2 ∈ C|T | are interpolation coefficient
vectors. (35) and (36) can be recast in matrix form as follows E00 κE10 κE01

−κE10 −κ2E20 −κ2E11

−κE01 −κ2E11 −κ2E02


︸ ︷︷ ︸

 α
κ−1β1

κ−1β2


E

=

h0
0

− 1√
n2
BΩr

(40)

where (Ei1i2)`,j = K(i1i2)(f` − fj) and 1√
n2
BΩr can be

written versus the components of R(f) and their partial
derivatives

1√
n2
BΩr =

[
R(f1)...R(fk), R10(f1)...R10(fk),

R01(f1)...R01(fk)
]T
. (41)

Define

BΩ :=
[
b(ki1), · · · , b(kis)

]
, Ω = {i1, · · · , is},

b(k) =

 1
−j2πκk1

−j2πκk2

⊗
e−j2πfT

1 k

·
e−j2πf

T
r k

 , (42)

where ki1 , · · · ,kis are associated with k ∈ Ω. Interpolation
vectors can be computed by solving the linear system (40), so

Q(f) = w00(f)TE−1

(h0
0

− 1√
n
BΩr

)
+R(f), (43)

where wi1i2(f) for i1, i2 ∈ {0, 1, 2} is defined

wi1i2(f) := κi1+i2

[
Ki1i2(f − f1), · · · ,Ki1i2(f − fk),

κKi1+1,i2(f − f1), · · · , κKi1+1,i2(f − fk)

κKi1,i2+1(f − f1), · · · , κKi1,i2+1(f − fk)

]T
. (44)

The following Lemma establishes an upper bound on the `2
norm of b(k).

Lemma 8.1: If m ≥ 2× 103, then

‖b(k)‖22 ≤ 21 r, for k ∈ J. (45)

Proof.

‖b(k)‖22 ≤ r
(

1 + max
|k1|≤m

(2πk1κ)2 + max
|k2|≤m

(2πk2κ)2
)

≤ 21r. (46)

The following lemma establishes an upper bound on the
operator norm of BΩ with certain probability.

Lemma 8.2: (proof in section IX). If the conditions of
Theorem 3.1 hold, the event

εB :=

{
‖BΩ‖ > CB(log

n2

ε
)−1/2

√
n2

}
, (47)

happens with probability ε
5 in which numerical constant CB

is defined in (127).
The following lemma sates that wi1i2(f) is concentrated
around the scales version of

w̄i1i2(f) := κi1+i2

[
K̄i1i2(f − f1) ... K̄i1i2(f − fk)

κK̄i1+1,i2(f − f1) ... κK̄i1+1,i2(f − fk)

κK̄i1,i2+1(f − f1) ... κK̄i1,i2+1(f − fk)

]T
, (48)

on a fine grid with high probability.
Lemma 8.3: (Proof in section XV-B). Let G ⊂ [0, 1]2 be a

two-dimensional equispaced 800n4 grid that discretizes [0, 1]2.
If the conditions of Theorem 3.1 hold, then the event

εv :=

{∥∥∥∥wi1i2(f)− n2 − s
n2

w̄i1i2(f)

∥∥∥∥
2

> Cv(log
n2

ε
)−1/2

}
,

(49)

happens with probability ε/5 for all f ∈ G, i1, i2 ∈ {0, 1, 2, 3}
and numerical constant Cv in (131).

C. Proof of Proposition 4.1

In the first step, we seek to determine the uniqueness
of the solution of linear system (40). The following lemma
shows that E is concentrated around Ē with high probability.
Consequently, E is invertible and one can bound the operator
norm of its inverse.

Lemma 8.4: (Proof in section XIII). If the conditions of
Theorem 3.1 hold, then the event

εE :=

{∥∥∥E−n2 − s
n2

Ē
∥∥∥

≥ n2 − s
4n2

min

{
1,
CD
4

}(
log

n2

ε

)−1
2

}
,

(50)

happens with probability ε/5. Also, under the event εcE , E is
invertible and∥∥E−1

∥∥ ≤ 8,∥∥∥E−1 − n2

n2 − s
Ē−1

∥∥∥ ≤ CD( log
n2

ε

)−1
2 , (51)

where CD is the numerical constant which is defined by (134).
Indeed, this Lemma states that, under the event εcD, the linear
system (40) has an stable solution. So Q(f) is well defined and
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(11) holds. In order to meet (12), it is sufficient to show that
Q(f) is concentrated around Q̄(f) on a fine gird. After that,
using Bernstein’s inequality, we demonstrate that this holds
on the whole [0, 1]2. Finally we borrow some bound on Q̄(f)
and its partial derivative from [13] to complete the proof.

Lemma 8.5: (Proof in section XV). If the conditions of
theorem 3.1 hold, then

|Q(f)| < 1, for f /∈ T, (52)

with probability 1− ε/5 under the event εcB ∩ εcE ∩ εcv .
The last to show is (14). The following lemma states that under
the event εcB ∩ εcE ∩ εcv , one can control the magnitude of dual
polynomial’s coefficients with high probability.

Lemma 8.6: (Proof in section XV-D). If the conditions of
Theorem 3.1 hold, then

|Ck| <
1√
n2
, for k ∈ Ωc, (53)

under the event εcB ∩ εcD ∩ εcv .
Finally, we use the same technique in [20] to complete the
proof. Consider εQ and εq as the events, such that (12) and
(14) hold, respectively. By De Morgan’s laws and union bound
we have

P((εQ ∩ εq)c) = P(εcQ ∪ εcq)
≤ P(εcQ ∪ εcq|εcB ∩ εcD ∩ εcv) + P(εB ∩ εE ∩ εv)
≤ P(εcQ|εcB ∩ εcD ∩ εcv) + P(εcq|εcB ∩ εcD ∩ εcv)
+ P(εB) + P(εE) + P(εv)

≤ ε, (54)

which holds by the fact that for any pair of events εA and
εB we have P(εA) ≤ E(εA|εcB) + E(εB). On the other hand,
via Lemmas 8.6, 8.6, 8.4, 8.3 and 8.2, it is shown that the
construction is valid with probability at least 1− ε.

IX. PROOF OF LEMMA 8.2
In order to obtain an upper bound on the operator norm of

BΩ, under the assumption of theorem 3.1, we show that

H := BΩB
∗
Ω =

∑
k∈Ω

b(k)b∗(k), (55)

is concentrated around
s

n2
H̄ =

s

n2

∑
k∈J

b(k)b∗(k). (56)

Using the following lemma, we can compute an upper bound
on the operator norm of H̄ .

Lemma 9.1: (Proof in section X). If the conditions of
Theorem 3.1 hold, then

‖H̄‖ ≤ 223707 n2 log2 k. (57)

Regarding the fact that s ≤ Csn
2
(

log2 k log n2

ε

)−1
in

Theorem 3.1 we have

‖ s
n2
H̄‖ ≤ C2

B

2
n2
(

log
n2

ε

)−1
, (58)

if we set CB small enough. One can demonstrate that H
concentrates around the scaled version of H̄ using matrix
Bernstein inequality.

Lemma 9.2: (Proof in section XI). If the conditions of
Theorem 3.1 hold, then

‖H − s

n2
Ĥ‖ ≤ C2

B

2
n2
(

log
n2

ε

)−1
(59)

with probability at least 1− ε/5.
Consequently, one can bound the operator norm of BΩ by
triangle inequality

‖BΩ‖ ≤
√
‖H‖ ≤

√
‖ s
n2
H̄‖+ ‖H − s

n2
H̄‖

≤ CB
√
n2
(

log
n2

ε

)−1/2
, (60)

which happens with probability at least 1− ε/5.

X. PROOF OF LEMMA 9.1
Consider two-dimensional Dirichlet kernel

K̄(f) :=
1

n2

∑
k∈J

ej2πf
Tk = K̄(f1)K̄(f2), (61)

where K̄m(f) := 1
n

∑
k∈{−m,...,m} e

j2πfk is known as Dirich-
let kernel. H̄ can be recast in matrix form using K̄(f) as

H̄ := n2

 H̄00 κH̄10 κH̄01

−κH̄10 −κ2H̄20 −κ2H̄11

−κH̄01 −κ2H̄11 −κ2H̄02

 (62)

where (H̄i1i2)`,j = K̄i1i2(f` − fj). A uniform bound on the
magnitude of the Dirichlet kernel is obtained by Bernstein’s
polynomial inequality in [12]

|K̄`
m(f)| ≤ (2m)`. (63)

So we can uniformly bound the magnitude of K̄(f) and its
partial derivatives using this bound and (61)

|K̄i1i2(f)| ≤ (2m)i1+i2 . (64)

There is another bound on the magnitude of Dirichlet kernel
and its derivatives which holds for m ≥ 103 and f ≥ 80/m

|K̄`
m(f)| ≤ 1.1 2`−2π`m`−1

f
(65)

(See section C.4 for proof). Similar to (61), we have

|K̄i1i2(f)| ≤ (1.1)2 2i1+i2−4πi1+i2mi1+i2−2

f1f2
, (66)

for the domain in which min(|f1|, |f2|) ≥ 80/m.
These bounds can be used for bounding sum of magnitudes

of K̄(f) and its partial derivatives. Assume that fi ∈ T is
fixed. There are at most 952 other frequency sources that are
in square ‖f −fi‖∞ ≤ 80/m with respected to the minimum
3.36
m . Now we are able to bound those terms as below

sup
fi

k∑
j=1

κi1+i2 |K̄i1i2(fi − fj)| ≤ 952κi1+i2 sup
f
|K̄i1i2(f)|

+ κi1+i2

k∑
j=1

sup
min(|f1|,|f2|)≥j∆min

|K̄i1i2(f)| ≤ 952

+
(1.1)2

mi1+i2

k∑
i=1

k∑
j=1

πi1+i2mi1+i2−2

16 ij∆2
min

≤ 74569 log2 k, (67)
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for k ≥ 2 and i1, i2 ∈ {0, 1, 2, 3}. The last inequality is
obtained by ∆min = 1.68/m,

∑k
i=1

1
i ≤ 1 + log k ≤ 2 log k,

(31), and the fact that 9025 + 108 log2 k ≤ 74569 log2 k. It
is possible to bound the eigenvalue of H̄ using Gershogrin’s
disk theorem which leads to a bound on the operator norm of
H̄ .

‖H̄‖ ≤ n2 max
i

{ k∑
j=1

|K̄(fi − fj)|+ 2

k∑
j=1

κ|K̄10(fi − fj)|,

k∑
j=1

κ |K̄10(fi − fj)|+
k∑
j=1

κ2|K̄20(fi − fj)|

+

k∑
j=1

κ2|K̄11(fi − fj)|
}
≤ 223707 n2 log2 k. (68)

This concludes the proof.

XI. PROOF OF LEMMA 9.2
Lemma 11.1: (Bernstein’s matrix inequality [33]). Let

X(1), · · · ,X(L) be independent zero-mean self-adjoint ran-
dom matrices of dimension d × d. If ‖X(k)‖ ≤ B ∀k, we
have

P
{∥∥ L∑

k=1

E
[
X(k)

]∥∥ ≥ t} ≤ 2d exp
( −t2/2
σ2 +Bt/3

)
, (69)

for any t ≥ 0 and σ2 :=
∥∥∑L

k=1 E
[
X(k)XT (k)

]∥∥.
Consider a finite sequence of independent adjoint zero-mean
random matrices of the form

X(k) :=
(
δΩ(k)− s

n2
)b(k)b∗(k), k ∈ J. (70)

The aim is to show that H concentrates around s
n2 H̄ with

high probability. We can write

H − s

n2
H̄ =

∑
k∈J

X(k). (71)

One can bound the operator norm of X by Lemma 8.1

‖X(k)‖ ≤ max
k∈J
‖b(k)‖22 ≤ B := 21r. (72)

Also,

σ2 :=
∥∥∥∑
k∈J

‖b(k)‖22 b(k)b∗(k)E
[(
δΩ(k)− s

n2

)2]∥∥∥
≤ 21rs

n2
‖H̄‖ ≤ 21C2

Bn
2r

2

(
log

n2

ε

)−1

, (73)

where the last inequality comes from (58), the second from
Lemma 8.1 and the first stems from the variance of Bernoulli
model with parameter s

n2 . Assume t :=
C2

Bn
2

2

(
log n2

ε

)−1

in
Lemma 11.1 for simplicity, so σ2 := 21rt. We can write

P
[
‖H− s

n2
H̄‖ ≥ t

]
≤ 3r exp

( −3t

168r

)
. (74)

The lower bound of the probability is equal to ε/5 under the
condition

r ≤ 3C2
Bn

2

336

(
log

n2

ε
log

15r

ε

)−1

. (75)

This criterion is satisfied by setting Cr in Theorem 3.1 small
enough.

XII. PROOF LEMMA 8.3
Lemma 12.1: (Vector Bernstein’s inequality [34]). Let

u(1), · · · ,u(L) be independent zero-mean random vectors of
dimension d. If ‖u(k)‖2 ≤ B ∀k, we have

P
{ L∑
k=1

‖u(k)‖2 ≥ t
}
≤ exp

(
− t2

8σ2
+

1

4

)
, (76)

for any 0 ≤ t ≤ σ2 where
∑L
k=1 E

[
‖u(k)‖22

]
≤ σ2.

Let us write w̄i1i2(f) and wi1i2(f) in the term of b using the
definition of K̄(f) and K(f)

w̄i1i2(f) =
∑
k∈J

(j2πκ)i1+i2ki11 k
i2
2 ck1ck2e

j2πfTkb(k),

wi1i2(f) =
∑
k∈J

δΩc(k)(j2πκ)i1+i2ki11 k
i2
2 ck1ck2e

j2πfTkb(k),

(77)

where δΩc is iid Bernoulli random variable with parameter
p := n2−s

n2 . We apply the result of the vector Bernstein
inequality in Lemma 12.1 to the finite sequence of zero-mean
random vectors of the form

ui1i2(k) := (δΩc(k)− p)(j2πκ)i1+i2ki11 k
i2
2 ck1ck2e

j2πfTkb(k),
(78)

to demonstrate that the deviation between wi1i2(f) and the
scaled version of w̄i1i2(f) is small enough with high proba-
bility for i1, i2 ∈ {0, 1, 2, 3}. We can write

wi1i2(f)− pw̄i1i2(f) =
∑
k∈J

u(k). (79)

To calculate B in Lemma 12.1, one can obtain an upper bound
on `2 norm of u

‖u(k)‖2 ≤ πi1+i2‖c‖2∞ sup
k∈J
‖b(k)‖2

≤ B :=
7745

m2

√
r, (80)

where the last inequality comes from (31) and (30), and i1 =
i2 = 3. Also, To compute σ2 in Lemma 12.1 we have∑
k∈J

E‖ui1i2(k)‖22 =
∑
k∈J

c2k1c
2
k2‖b(k)‖22

· (2πκ)2i1+2i2k2i1
1 k2i2

2 E
[
(δΩc(l)− p)2

]
≤ 21r(2m+ 1)2π2i1+2i2‖c‖4∞ ≤ σ2 :=

240× 106r

m2
, (81)

where the first inequality is obtained from Lemma (8.1), (31),
and the fact that variance of Bernoulli model is equal to p(1−
p) ≤ 1. The second inequality comes from (30) for i1 = i2 =
3. By leveraging the result of the vector Bernstein inequality
in Lemma 12.1, we have

P
[

sup
f∈G
‖wi1i2(f)− w̄i1i2(f)‖2 ≥ t, i1, i2 ∈ {0, 1, 2, 3}

]
≤ 9|G| exp(

−t2

8σ2
+

1

4
), for 0 ≤ t ≤ σ2

B
, (82)

by union bound. The lower bound of probability is equal to
ε/5, if we set t as

t := σ

√
8(

1

4
+ log

45|G|
ε

). (83)



9

In the following, we show that this choice of t satisfies 0 ≤
t ≤ σ2

B ,

t

σ
=

√
8(

1

4
+ log

45|G|
ε

) ≤
√

86 + 32 log n+ 8 log
1

ε

≤ 0.4
√
n+

√
8 log

1

ε
, (84)

where the last inequality comes from the fact that√
86 + 32 log n ≤ n for n ≥ 13, consequently, t ≤ σ2

B if
we set Cr and Cs small enough in Theorem 3.1. The desired
result is obtained for√

768× 107r

n2

(1

4
+ log

36× 103n4

ε

)
≤ t ≤ Cv

(
log(

n2

ε
)
)−1

2 ,

(85)

if we set Cr small enough in Theorem 3.1.

XIII. PROOF OF LEMMA 8.4
The proof involves the same techniques which were first

proposed in [14]. In the following Lemma, we demonstrate
that the matrix Ē is similar to the identity matrix and conse-
quently is invertible.

Lemma 13.1: (Proof in section XIV). If the conditions of
Theorem 3.1 hold, then

‖I − Ē‖ ≤ 0.24, ‖Ē‖ ≤ 1.24, (86)

‖Ē−1‖ ≤ 1.32. (87)

It is possible to write Ē and E in terms of the matrix bb∗.
By the definition of K̄2D and K2D, we have

Ē :=
∑
k∈J

ck1ck2b(k)b∗(k), (88)

E :=
∑
k∈J

δΩc(k)ck1ck2b(k)b∗(k), (89)

One can show that E is concentrated around n2−s
n2 Ē with high

probability. We first define the self-adjoint zero mean matrix
X as below

X(k) := (p− δΩc(k))ck1ck2b(k)b∗(k), (90)

where

E(X(k)) = (p− E(δΩc(k)))ck1ck2b(k)b∗(k) = 0. (91)

One can bound the the operator norm of X using Lemma 8.1
and the upper bound on the maximum of the vector c

‖X(k)‖ ≤ max
k∈J
‖ck1ck2b(k)b∗(k)‖

≤ ‖c‖2∞max
k∈J
‖b(k)‖22 ≤ B :=

36r

m2
. (92)

Also,∑
k∈J

E
(
X(k)XT (k)

)
=∥∥∥∥∑

k∈J

c2k1c
2
k2‖b(k)‖22b(k)b∗(k)E

[
(δΩc − p)2

]∥∥∥∥
≤ 21rp(1− p)‖c‖2∞

∑
k∈J

ck1ck2b(k)b∗(k)

≤ 36rp

m2
‖Ē‖ ≤ σ2 :=

45rp

m2
. (93)

where the first inequality uses the variance of the Bernoulli
model with parameter p and Lemma 8.1, the second stems
from (30) and the definition of Ē and the last one is the
result of Lemma 13.1. We set t = p

4Cmin

(
log n2

ε

)− 1
2 where

Cmin := min{1, CD

4 } for simplicity. By matrix Bernstein
inequality (Lemma 11.1), we can write

E

{∥∥∥E−1 − pĒ−1
∥∥∥ ≥ t} ≤

6r exp

(
−pC2

minm
2

32r

(
45 log

n2

ε
+ 3Cmin

√
log

n2

ε

)−1
)

≤ 6r exp

(
−C ′D(n2 − s)
r log n2

ε

)
, (94)

for numerical constant C ′D. The lower bound on this proba-
bility is ε/5 under the conditions

r ≤ C ′Dn
2

2

(
log

30r

ε
log

n2

ε

)−1

, s ≤ n2

2
, (95)

which hold under the assumption of Theorem 3.1, if we set
Cr and Cs small enough.

Consequently, the lower bound on the smallest singular
value of E can be obtained by triangle inequality,

σmin(E)

p
≥ σmin(I)− ‖I − Ē‖ − 1

p
‖E − pĒ‖ ≥ 0.51. (96)

Therefore, E is invertible. [14, Appendix E] states that for
any matrices A and B so that B is invertible and ‖A −
B‖‖B−1‖ ≤ 1

2 one can write

‖A1‖ ≤ 2‖B−1‖,
‖A−1 −B−1‖ ≤ 2‖B−1‖2‖A−B‖. (97)

Consider A := E and B := pĒ. Using Lemma (13.1) and
(94), we have

‖E − pĒ‖
∥∥(pE)−1

∥∥ ≤ 1

2
, (98)

with probability at least 1 − ε/5. Based on this and Lemma
13.1, and event (94) we also have

‖E−1‖ ≤ 2
∥∥(pĒ)−1

∥∥ ≤ 4

p
,∥∥E−1 − (pĒ)−1

∥∥ ≤ 2
∥∥(pĒ−1)

∥∥2‖E − pĒ‖

≤ CD
2p

(
log

n2

ε

)−1
2 , (99)

with the same probability. Regarding the conditions of Theo-
rem 3.1 s ≤ n2

2 , therefore 1
p ≤ 2. This concludes the proof.

XIV. PROOF OF LEMMA 13.1
We borrow some bound on the sub-matrices of Ē from [13]

under the minimum separation condition 1.68
m .

Lemma 14.1: ( [13, Lemma B.1]). If the conditions of
Theorem 3.1 hold, then

‖I − Ē00‖∞ ≤ 3.17× 10−2, ‖κĒ10‖∞ ≤ 4.35× 10−2,

‖κ2Ē11‖∞ ≤ 4.6× 10−2, ‖I − κ2Ē20‖∞ ≤ 0.15,
(100)
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where the inequalities are obtained by (31). Gershgorin’s disk
theorem allows to bound the operator norm of the matrix I−Ē

‖I − Ē‖ ≤ ‖I − Ē‖∞

≤ max

{
‖I − Ē00‖∞ + ‖κĒ01‖∞ + ‖κĒ10‖∞

, ‖κĒ10‖∞ + ‖κ2Ē11‖∞ + ‖I − κ2Ē20‖∞
}
≤ 0.24,

(101)

where the last inequality comes from (31) and the results of
the Lemma 14.1. Consequently,

‖Ē‖ ≤ 1 + ‖I − Ē‖∞ ≤ 1.24, (102)

and also,

‖Ē−1‖ ≤ 1

1− ‖I −E‖∞
≤ 1.32. (103)

XV. PROOF OF LEMMA 8.5

It is possible to express Qi1i2(f) and Q̄i1i2(f) in terms of
h and r:

κi1+i2Q̄i1i2(f) = w̄i1i2(f)T Ē−1

h0
0

 , (104)

κi1+i2Q(f) = wi1i2(f)TE−1

(h0
0

− 1√
n2
BΩr

)
+ κi1+i2Ri1i2(f). (105)

Qi1i2(f) and Q̄i1i2(f) are related to each other as

κi1+i2Qi1i2(f) = κi1+i2Q̄i1i2(f) + κi1+i2Ri1i2(f)

+ Ii1i21 (f) + Ii1i22 (f) + Ii1i23 (f), (106)

in which

Ii1i21 (f) :=
−1√
n2
wi1i2(f)TE−1BΩr, (107)

Ii1i22 (f) :=

(
wi1i2(f)− n2 − s

n2
w̄i1i2(f)

)T
E−1

h0
0

 , (108)

Ii1i23 (f) :=
n2 − s
n2

w̄i1i2(f)T
(
E−1 − n2

n2 − s
Ē

)h0
0

 . (109)

In the following Lemma, we show that there exists a bound on
these terms on two-dimensional grid G with high probability.

Lemma 15.1: (Proof in section XV-A). If the conditions of
Theorem 3.1 hold, then the events

εR :=

{
sup
f∈G

∣∣κi1+i2Ri1i2(f)
∣∣ ≥ 10−2

8
, i1, i2 ∈ {0, 1, 2, 3}

}
,

(110)

and

εi :=

{
sup
f∈G

∣∣Ii1i2i (f)
∣∣ ≥ 10−2

8
, i1, i2 ∈ {0, 1, 2, 3}

}
,

(111)

for i ∈ {0, 1, 2, 3} and two-dimensional equispaced gird G
with set size 800n4, happen with probability at most ε/5 under
the condition εcB ∩ εcD ∩ εcv .

Consequently, by triangle inequality we have

sup
f∈G

∣∣κi1+i2Qi1i2(f)− κi1+i2Q̄i1i2(f)
∣∣ ≤ 10−2

2
, (112)

with probability at least 1 − ε/5 under the condition εcB ∩
εcD ∩ εcv .
We have already shown that the deviation between Qi1i2(f)
and Q̄i1i2(f) is small on a fine grid. Now we will extend this
concept on the whole [0, 1]2.

Lemma 15.2: (Proof in section XV-C). If the conditions of
Theorem 3.1 hold, then

κi1+i2 |Qi1i2(f)− Q̄i1i2(f)| ≤ 10−2, i1, i2 ∈ {0, 1, 2, 3}.
(113)

We divide [0, 1]2 to two domains

Snear =
{
f | ‖f − fi‖∞ ≤ 0.09

}
,

Sfar = [0, 1]2 \ Snear. (114)

[13] has demonstrated that |Q̄(f)| ≤ 0.9866 for f ∈ Sfar. One
can leverage the result of Lemma 15.2 and triangle inequality
to obtain

|Q(f)| ≤ |Q̄(f)|+ 10−2 ≤ 1, (115)

for f ∈ Sfar.
Also, [13] has shown that the following Hessian matrix is
negative definite in domain f ∈ Snear, so |Q̄(f)| ≤ 1 in this
domain,

H̄ =

[
Q̄20(t) Q̄11(t)
Q̄11(t) Q̄02(t)

]
. (116)

More precisely, Q̄20 ≤ −1.4809m2, Q̄02 ≤ −1.4809m2 and
|Q̄11| ≤ 1.4743m2. It is possible to rewrite the elements of
the matrix H̄ for Q(f) then using the result of Lemma 15.2

Q20(f) ≤ −1.5209m2, |Q11(f)| ≤ 1.5143m2, (117)

by (31). If the matrix H is concave, then Q(f) < 1. The
sufficient condition for concavity of this matrix is Tr(H) < 0
and det(H) > 0, where

Tr(H) = Q20(f) +Q02(f),

det(H) = |Q20(f)||Q02(f)| − |Q11(f)|2. (118)

By (117), it is easy to see that Tr(H) < 0 and det(H) > 0,
so the Hessian matrix H is negative definite in the domain
Snear. This concludes the proof.

A. Proof of Lemma 15.1

We follow a technique first proposed in [20] to prove this
lemma.

Lemma 15.3: (Hoeffdings Inequality [35]). If the elements
of ũ are sampled independently and identically distributed
from a symmetric distribution on the complex unit circle, then
for any t and vector u one can write

E(|〈ũ,u〉| ≥ t) ≤ 4 exp(
−t2

4‖u‖22
). (119)
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Consequently, the event

ε =

{
(|〈ũ,u〉| ≥ 10−2

8
) ∀u ∈ U

}
, (120)

where U is a finite collection of vectors with size 9|G| =
72× 102n4, happens with probability at most ε/20 under the
condition

‖u‖22 ≤ C2
U

(
log

n2

ε

)−1

, CU = 1/5000. (121)

The proof follows from the union bound and the fact that(
log 576×102n4

ε

)−1
<
(

log n2

ε

)−1
.

To bound P(εR|εcB ∩ εcE ∩ εcv), one can use the following
vector

ui1i2(f) :=
κi1+i2

√
n2

[
(j2π)i1+i2ki111

ki212
ej2πf

Tk1 · · ·

(j2π)i1+i2ki1s1k
i2
s2e

j2πfTks

]T
, i1, i2 ∈ {0, 1, 2, 3}

(122)

in which f belongs to G, so that |U| = 9|G| and also
κi1+i2Ri1i2(f) = 〈r,ui1i2(f)〉. In the following, we show
that ‖ui1i2(f)‖2 satisfy the criterion of Lemma 15.3

‖ui1i2(f)‖22 ≤
s(2πmκ)2i1+2i2

n2

≤ sπ12

n2
≤ C2

U

(
log

n2

ε

)−1

, (123)

where the first inequality stems from the union bound, the
second one from (31), and the last one is obtained if we set
Cs small enough in the conditions of Theorem 3.1.

To bound P(ε1|εcB ∩ εcE ∩ εcv), we write

Ii1i21 (f) = 〈ui1i2(f), r〉 (124)

in which ui1i2(f) := −1√
n2
B∗ΩE

−1wi1i2(f) for i1, i2 ∈
{0, 1, 2, 3}, and also f ∈ G, so |U| = 9|G|.

One can obtain a bound on ‖ui1i2(f)‖2 using a bound on
‖wi1i2(f)‖22 and Lemma 8.3. The following Lemma provides
a bound on `2 norm of wi1i2(f)

Lemma 15.4: (Proof in section XV-B). If the conditions of
Theorem 3.1 hold, then

‖w̄i1i2(f)‖2 ≤ Cv̄, (125)

where Cv̄ is a fixed numerical constant. Consequently,

‖wi1i2(f)‖2 ≤ Cv̄ + Cv, (126)

where we have used εcv in Lemma 8.3 and triangle inequality
and the facts that n

2−s
n2 ≤ 1 and

(
log n2

ε

)− 1
2 ≤ 1. Combining

this and the result of Lemma 94,

‖ui1i2(f)‖2 ≤
1√
n2
‖BΩ‖‖E−1‖‖wi1i2(f)‖2

≤ 8(Cv + Cv̄)‖BΩ‖√
n2

(127)

under the condition εcD ∩ εcv . If

‖BΩ‖ ≤ CB
(

log
n2

ε

)−1
2
√
n2, CB :=

Cv
8(Cv + Cv̄)

, (128)

then the desired bound in Lemma 15.3 is obtained for numer-
ical constant CU . The condition on ‖BΩ‖ is satisfied by εcB
in Lemma 8.2.

To bound P(ε2|εcB ∩ εcE ∩ εcv), we consider

Ii1i2(f) = 〈ui1i2(f),h〉

ui1i2(f) := PE−1
(
wi1i2(f)− n2 − s

n2
w̄i1i2(f)

)
, (129)

where P ∈ Rr×3r is a projection matrix that takes the first
r entries in a vector. One can obtain an upper bound on `2
norm of ui1i2(f) using Lemma 94 in εcD as follow

‖ui1i2(f)‖2 ≤ ‖P ‖‖E−1‖
∥∥∥∥wi1i2(f)− n2 − s

n2
w̄i1i2(f)

∥∥∥∥
2

≤ 8

∥∥∥∥wi1i2(f)− n2 − s
n2

w̄i1i2(f)

∥∥∥∥
2

, (130)

where the last inequality comes from the fact that ‖P ‖ = 1
and it is valid for f ∈ G, so that |U| = 9|G|. If

∥∥∥∥wi1i2(f)− n2 − s
n2

w̄i1i2(f)

∥∥∥∥
2

≤ Cv
(

log
n2

ε

)−1
2

,

Cv :=
CU
8
. (131)

Then the desired bound in Lemma 15.3 is achieved for the
numerical constant Cv . The condition on the deviation of
wi1i2(f) and n2−s

n2 wi1i2(f) holds with respected to εcv in
Lemma 8.3.

Finally, we bound P(ε3|εcB ∩ εcE ∩ εcv). Let

Ii1i23 (f) = 〈ui1i2(f),h〉,

ui1i2(f) :=
n2 − s
n2

P

(
E−1 − n2

n2 − s
Ē−1

)
w̄i1i2(f).

(132)

One can bound `2 norm of ui1i2(f) ∀f ∈ G for i1, i2 ∈
{0, 1, 2, 3}, so |U| = 9|G|

‖ui1i2(f)‖2 ≤ ‖P ‖
∥∥E−1 − n2

n2 − s
Ē−1

∥∥‖w̄i1i2(f)‖2

≤ Cv̄
∥∥E−1 − n2

n2 − s
Ē−1

∥∥, (133)

where the last inequality comes from Lemma 15.4 and ‖P ‖ =
1. If

∥∥E−1 − n2

n2 − s
Ē−1

∥∥ ≤ CD( log
n2

ε

)−1
2

, CD :=
CU
Cv̄

,

(134)

then the desired bound in Lemma 15.3 is obtained for the
numerical constant CD. The condition on the deviation of E
and n2

n2−sĒ
−1 is satisfied by εcD in Lemma 94.
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B. Proof of Lemma 15.4

Regarding the fact that ‖ · ‖2 ≤ ‖ · ‖1, we have

‖w̄i1i2(f)‖2 ≤ ‖w̄i1i2(f)‖1

=

k∑
i=1

κi1+i2 |K̄i1i2(f − fi)|+
k∑
i=1

κi1+i2+1|K̄i1+1,i2(f − fi)|

k∑
i=1

κi1+i2+1|K̄i1,i2+1(f − fi)|. (135)

We first borrow the result of Lemma H.10 from [12] to bound
the magnitude of two-dimensional kernel in unit square

Lemma 15.5: ( [12, Lemma H.10])

κ`|K̄`(f)| ≤
{

C1 |f | ≤ 80
m ,

C2m
−3|f |−3 80

m ≤ |f | ≤
1
2 ,

(136)

where C1 and C2 are numerical constants.
Since K̄(f1, f2) = k̄(f1)k̄(f2), one can extend the mentioned
Lemma to two-dimensional case. Without loss of generality,
let us map the unit square to [− 1

2 ,
1
2 ]2, so we have

κi1+i2 |K̄i1,i2(f)| ≤

{
C2

1 a : ‖f‖∞ ≤ 80
m ,

C2
2m
−6|f1|−3|f2|−3 [− 1

2 ,
1
2 ]2 \ a

(137)

for i1, i2 ∈ {0, 1, 2, 3}, where C1 and C2 are numerical
constants defined in Lemma 15.5.
The minimum separation condition implies that there exist at
most 952 support elements in the square ‖f−fi‖∞ ≤ 80

m . We
bound those elements by C2

1 and use the decreasing bound to
handle the remaining components
k∑
i=1

κi1+i2 |K̄i1i2(f − fi)| ≤
∑

b:‖f−fi‖∞≤ 80
m

C2
1

+
∑

[− 1
2 ,

1
2 ]2\b

C2
2

m6|f1 − f1i|3|f1 − f1i|3
≤ 952C2

1

+ 4C2
2

( ∞∑
i=1

1

m3(i∆min)3

)2

≤ 952C2
1 + 0.18C2

2ζ
2(3), (138)

where ζ(3) :=
∑∞
i=1

1
i3 is known as Apery’s constant which

can be bounded by 1.21. Consider Cv̄ = 952C2
1 + 0.27C2

2 , so
the proof is complete.

C. Proof of Lemma 15.2

We first use the bound on the deviation between Qi(f) and
Q̄i(f) from [12]

κi|Qi(f1)−Qi(f2)| ≤ n2|f1 − f2|,
κi|Q̄i(f1)− Q̄i(f2)| ≤ n2|f1 − f2|, (139)

for any f1, f2 ∈ [0, 1] and i ∈ {0, 1, 2, 3}. Also, consider
another useful bound κi|K̄(f)| ≤ Cn2 where C is a numerical
constant. One can extend this concept to two-dimensional case
using Bernstein’s polynomial inequality as below,

κi1+i2 |Q(f1)−Q(f2)| ≤ κi1+i2
(
|Q(f1)−Q(f11, f22)|

+ |Q(f11, f22)−Q(f2)|
)
≤ C2n4|f12 − f22|

+ C2n4|f11 − f21| ≤ 2C2n4‖f1 − f2‖∞. (140)

[15] has done a similar analysis in the proof of Lemma 7.
For any f ∈ [0, 1]2 there exists two-dimensional grid point
fG such that the maximum distances between two points is
smaller than the step size (800C2n4)−1. So, Lemma 15.1 and
triangle inequality lead to

κi1+i2
∣∣Qi1i2(f)− Q̄i1i2(f)

∣∣
≤ κi1+i2

∣∣Qi1i2(f)−Qi1i2(fG)
∣∣

+ κi1+i2
∣∣Qi1i2(fG)− Q̄i1i2(fG)

∣∣
+ κi1+i2

∣∣Q̄i1i2(fG)− Q̄i1i2(f)
∣∣

≤ 4C2n4‖f − fG‖∞ + 5× 10−3 ≤ 10−2. (141)

And the proof is complete.

D. Proof of Lemma 8.6
One can recast the coefficient Ck in terms of h and r. Let

k be an arbitrary element of Ωc

Ck = ck1ck2

(
r∑
i=1

αie
j2πfT

i k

+ i2πκk1

r∑
i=1

β1ie
i2πfT

i k + i2πκk2

r∑
i=1

β2ie
i2πfT

i k

)

= ck1ck2b(k)∗

αβ1

β2

 = ck1ck2b(k)∗E−1

(h0
0

− 1√
n2
BΩr

)

= ck1ck2

(
〈pE−1b(k),h〉+

1√
n2

〈B∗ΩE−1b(k), r〉
)
,

(142)

where P ∈ Rr×3r is the projection matrix that retains the first
r entries of a vector.
To bound |Ck|, we first obtain a bound on PE−1b as below

‖PE−1b(k)‖22 ≤ ‖P ‖2‖E−1‖2‖b(k)‖22

≤ 1344r ≤ 0.072n2

log 40
ε

, (143)

where the last inequality is obtained under the conditions of
Theorem 3.1 when we set Ck small enough and the second
one is a combination of Lemmas 8.1 , 8.4 and the fact that
‖P ‖2 = 1. Also, we have

‖B∗ΩE−1b(k)‖22 ≤ ‖BΩ‖2‖E−1‖2‖b(k)‖22

≤ 1344rn2C2
B ≤

0.072n2

log 40
ε

, (144)

where the second inequality stems from Lemmas 8.1 and 8.2
and the last one comes from the assumption of Theorem 3.1
if we set Cr small enough.
One can obtain ε/10 for the minimum probability of the
following events by Hoeffding’s inequality

|〈PE−1b(k),h〉| > 0.07
√
n2,

|〈B∗ΩE−1b(k), r〉| > 0.07n2. (145)

Using ‖c‖∞ ≤ 1.3
m and the union bound, we have

|Ck| ≤
2.62

n2

(
0.07
√
n2 + 0.07

√
n2
)
≤ 1√

n2
, (146)

with probability at least 1− ε/5. This concludes the proof.
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E. Proof of Lemma 5.1

Consider C ∈ Cn×n as the dual variable. By Lagrangian
theorem we have

L(µ̃, Z̃,C) = ‖µ̃‖TV + λ‖Z̃‖1 + 〈Y −Fµ̃− Z̃,C〉F

= ‖µ̃‖TV

(
1− 〈F

∗C, µ̃〉
‖µ̃‖TV

)
+ λ‖Z‖1

(
1− 〈C,Z〉

λ‖Z̃‖1

)
+ 〈C,Y 〉. (147)

One can minimize this function with respect to µ̃ and Z̃
simultaneously, then maximize over dual variable C [31]. At
the first. by Holder’s inequality, we have

〈F∗C, µ̃〉
‖µ̃‖TV

≤ ‖F∗C‖∞,
〈C,Z〉
‖Z̃‖1

≤ ‖C‖∞. (148)

If ‖F∗C‖∞ ≤ 1 and ‖C‖∞ ≤ λ, then the minimum occurs
at 〈C,Y 〉 otherwise, the problem is unbounded below. For
second, we should maximize this term on C as below

max
C∈Cn×n

{
〈C,Y 〉 if ‖F∗C‖∞ ≤ 1, ‖C‖∞ ≤ λ;
−∞ otherwise.

(149)

Converting the implicit conditions into explicit conditions
concludes the proof.
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