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Computation Scheduling for Distributed Machine

Learning with Straggling Workers
Mohammad Mohammadi Amiri and Deniz Gündüz

Abstract—We study scheduling of computation tasks across n
workers in a large scale distributed learning problem with the
help of a master. Computation and communication delays are
assumed to be random, and redundant computations are assigned
to workers in order to tolerate stragglers. We consider sequential
computation of tasks assigned to a worker, while the result of
each computation is sent to the master right after its completion.
Each computation round, which can model an iteration of the
stochastic gradient descent (SGD) algorithm, is completed once
the master receives k distinct computations, referred to as the
computation target. Our goal is to characterize the average
completion time as a function of the computation load, which
denotes the portion of the dataset available at each worker, and
the computation target. We propose two computation scheduling
schemes that specify the tasks assigned to each worker, as well as
their computation schedule, i.e., the order of execution. Assuming
a general statistical model for computation and communication
delays, we derive the average completion time of the proposed
schemes. We also establish a lower bound on the minimum
average completion time by assuming prior knowledge of the
random delays. Experimental results carried out on Amazon EC2
cluster show a significant reduction in the average completion
time over existing coded and uncoded computing schemes. It
is also shown numerically that the gap between the proposed
scheme and the lower bound is relatively small, confirming the
efficiency of the proposed scheduling design.

I. INTRODUCTION

The growing computational complexity and memory re-

quirements of emerging machine learning applications involv-

ing massive datasets cannot be satisfied on a single machine.

Thus, distributed computation across tens or even hundreds

of computation servers, called workers, has been a topic of

great recent interest [1], [2]. A major bottleneck in distributed

computation is that the overall performance can significantly

deteriorate due to slow servers, referred to as stragglers.

To mitigate the limitation of stragglers, coded computation

techniques, inspired by erasure codes against packet losses,

have been proposed recently [3]–[8]. With coded computation,

computations from only a subset of non-straggling workers

are sufficient to complete the computation task, thanks to

redundant computations performed by the faster workers. In

[3] the authors employ a maximum-distance separable (MDS)

code-inspired distributed computation scheme in a distributed

matrix-vector multiplication problem. A more general dis-

tributed gradient descent (DGD) problem is considered in

[4], where labeled dataset is distributed across workers, each

evaluating the gradient on its own partition. Various coding
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schemes have been introduced in [4]–[8], that assign redundant

computations to workers to attain tolerance against strag-

glers. Coded distributed computation has also been studied

for matrix-matrix multiplication, where the labeled data is

coded before being delivered to workers [9]–[11], and for

distributed computing of a polynomial function [12]. Also, for

a linear regression problem, a polynomially coded approach

is proposed in [13], where the data is encoded and distributed

across the workers to compute the gradient of the loss function.

Most existing coded computation techniques are designed

to tolerate persistent stragglers, and discard computations

performed by stragglers. However, in practice we often en-

counter non-persistent stragglers, which, despite being slower,

complete a significant portion of the assigned tasks by the

time faster workers complete all their tasks [14]. Recently,

there have been efforts to exploit the computations carried

out by non-persistent stragglers at the expense of increasing

the communication load from the workers to the master [14]–

[18]. Techniques studied in [14]–[17] are based on coding

with associated encoding and decoding complexities, which

require the availability and processing of all the data points

at the master. In [17] a linear regression problem is studied,

and the scheme in [13] is extended by allowing each worker

to communicate multiple computations sequentially, where the

computations are carried out using coded data. The authors in

[14] propose to split the computation tasks into multiple levels,

and code each level using MDS coding. However, the coding

scheme depends on the statistical behavior of the stragglers,

which may not be possible to predict accurately in practice.

Distributed matrix-vector multiplication is studied in [15]. It is

shown that, by performing random coding across the dataset,

the results can be obtained from a subset of all the tasks

assigned to the workers with high probability, where each

completes the assigned tasks sequentially. To execute the tasks

which are linear functions of their arguments, e.g., matrix-

vector multiplication, rateless codes are used in [16], requiring

a large number of data points assigned to each worker to

guarantee decodability of the target function at the master.

While significant research efforts have been invested in

designing coded computation [4]–[13] techniques, we argue

in this paper that uncoded computing and communication can

be even more effective in tackling stragglers and reducing

the average computation time. We consider computation of

an arbitrary function over a dataset, and introduce a central-

ized scheduling strategy for uncoded distributed computation,

where the tasks are assigned to the workers by the master.

Each worker can compute a limited number of tasks, referred

to as the computation load. Computations are carried out

sequentially, and the result of each computation is sent to
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the master right after it is completed. Communication delay

from the workers to the master is also taken into account.

We assume that both the computation and communication

delays are independent across the workers, but may be cor-

related for different tasks carried out at the same worker.

This sequential computation and communication framework

allows the master to exploit partial computations by slow

workers. The computation is assumed to be completed when

the master receives sufficient number of distinct computations,

referred to as the computation target. Unlike coded compu-

tation, uncoded computing approach does not introduce any

encoding and decoding delays and complexities; hence, can

be particularly efficient for edge learning where the data is

inherently distributed [19]. It also allows partial decoding,

which can be exploited to reduce the communication load

for distributed learning [20]–[22]. An uncoded computation

approach is also considered in [18], where the dataset is

split into a limited number of mini-batches, and each worker

is randomly assigned a mini-batch of data. This approach

requires a large number of workers compared to the number of

mini-batches to ensure that the master can recover all the data

from the workers with high probability. The authors in [23]

study dynamic computation allocation across the workers with

feedback providing information about the workers’ speeds.

The proposed uncoded computation approach in this paper

does not impose any constraint on the number of workers,

and is designed without any prior knowledge or feedback on

the computation and communication delays at the workers.

The problem under consideration is similar to the well-

known job scheduling problem [24], in which a set of tasks

are to be executed by multiple workers given a partial ordering

of task execution and the delay associated with each task. The

goal is to find a schedule minimizing the total delay, which is

shown to be NP-complete [25]. This problem has been studied

under different constraints for different applications, such as

cloud computing [26]–[28], edge computing [29], [30], and

dispersed computing [31], [32]. Our problem differs from the

job scheduling one, since no ordering of task execution is

imposed, and each task can be executed by an arbitrary number

of workers. Also, in our model, the scheduling is designed

without having any prior knowledge about the computation

and communication delays of the tasks.

Assuming that the computation and communication delays

are random variables, our goal is to characterize the minimum

average completion time as a function of the computation load

and computation target. We first provide a generic expression

for the average completion time as a function of the computa-

tion schedule, which specifies both the tasks assigned to each

worker and their computation order. We propose two differ-

ent computation scheduling schemes, and obtain closed-form

expressions for their average completion times for a general

statistical model of the random delays, which upper bound

the minimum average completion time. We also establish a

lower bound on the minimum average completion time. The

experiments on Amazon EC2 cluster illustrate a substantial

reduction in the average completion time with the proposed

uncoded computing schemes with task scheduling compared to

coded computation schemes and uncoded computation without

scheduling of the tasks at the workers [18]. We highlight that

the numerical results are obtained without taking into account

the encoding and decoding delays at the master.

The organization of the paper is as follows. We present

the system model in Section II. In Section III, we analyze

the performance of the minimum average completion time for

the general case. We provide an upper and a lower bound

on the minimum average completion time in Section IV and

Section V, respectively. In Section VI, we overview some

of the alternative approaches in the literature, and compare

their performances with the proposed uncoded schemes nu-

merically. Finally, the paper is concluded in Section VII.

Notations: R and Z represent sets of real values and

integers, respectively. For i, j ∈ Z, j ≥ i, [i : j] denotes set

{i, i+ 1, ..., j}. For i ∈ Z
+, we define [i] , [1 : i]. N

(

0, σ2
)

denotes a zero-mean normal distribution with variance σ2, and,

for a, b ∈ R, U (a, b) denotes a uniform distributed over [a, b].
A(i, j) represents (i, j)-th entry of matrix A.

II. SYSTEM MODEL

We consider distributed computation of a function h over

a dataset X = {X1, ..., Xn} across n workers. Function h :
V → U is an arbitrary function, where V and U are two vector

spaces over the same field F, and data point Xi is an element

of V, i ∈ [n]. The dataset X is distributed across the workers

by the master, and a maximum number of r ≤ n data points

are assigned to each worker, referred to as the computation

load. We denote by Ei the indices of the data points assigned

to worker i, i ∈ [n], where Ei ⊂ [n], |Ei| ≤ r.

The computations of the tasks assigned to each worker are

carried out sequentially. We define the task ordering (TO)

matrix C as an n×r matrix of integers, C ∈ [n]n×r, specifying

the assignment of the tasks to the workers E , {Ei}ni=1, as

well as the order these tasks are carried out by each worker

O , {Oi}ni=1, where Oi denotes the computing order of the

tasks assigned to worker i, i ∈ [n]. Each row of matrix C
corresponds to a different worker, and its elements from left

to right represent the order of computations. That is, the entry

C(i, j) ∈ Ei denotes the index of the element of the dataset

that is computed by worker i as its j-th computation, i.e.,

worker i first computes h(XC(i,1)), then computes h(XC(i,2)),
and so on so forth until either it computes h(XC(i,r)), or

it receives the acknowledgement message from the master,

and stops computations, i ∈ [n], j ∈ [r]. Note that the task

assignment E and the order of computations O are specified

by a unique TO matrix C. While any C matrix is a valid TO

matrix, it is easy to see that the optimal TO matrix will have

r distinct entries in each of its rows.

The computations start at time t = 0 at all the workers,

and each worker sends the result of each assigned task to the

master right after its computation. We denote the time worker

i spends to compute h (Xj) by T
(1)
i,j , and the communication

delay for sending h (Xj) to the master by T
(2)
i,j , j ∈ Ei, i ∈ [n].

Thus, the total delay of receiving h (Xj) from worker i is

T
(1)
i,j + T

(2)
i,j , j ∈ Ei, i ∈ [n]. If j /∈ Ei, we set T

(l)
i,j = ∞,

∀l ∈ [2], i ∈ [n]. We assume that the computation and com-

munication delays, T
(1)
i,j and T

(2)
i,j , ∀i, j ∈ [n], are independent.

We further assume that computation (communication) delays
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at different workers are independent. On the other hand, the

computation (communication) delays associated with the tasks

at the same worker can be dependent, and we denote the

joint cumulative distribution function (CDF) of T
(l)
i,1 , . . . , T

(l)
i,n

by F
(l)
i,[n], and the joint probability density function (PDF)

by f
(l)
i,[n], i ∈ [n], l ∈ [2]. We note that the statistical

model of the computation (communication) delays at each

worker do not depend on any specific order of computing

(communicating) tasks, since we assume that the size and

complexity of computing (communicating) each data point

(computation) is the same.

Fig. 1 illustrates a graphical representation of a realization

of the computation and communication delays from worker

i to the master. Let ti,j denote the time the master receives

h(Xj) from worker i, for i, j ∈ [n], where we set ti,m = ∞
if m /∈ Ei. Then, the total computation delay of computing

h(XC(i,1)), h(XC(i,2)), . . . , h(XC(i,j)) sequentially plus the

communication delay for receiving h(XC(i,j)) is

ti,C(i,j) =
∑j

m=1
T

(1)
i,C(i,m) + T

(2)
i,C(i,j), i, j ∈ [n], (1)

As a result, the master receives computation h(Xj) at time

tj , mini∈[n] {ti,j} , j ∈ [n] (2)

where the minimization is over the workers.

Example 1. Consider the TO matrix C for n = 4 and r = 3:

C =









1 2 3
3 2 1
3 4 1
4 3 1









, (3)

which dictates the following computation schedule:

• Worker 1 first computes h (X1), then h (X2), and h (X3).
• Worker 2 first computes h (X3), then h (X2), and h (X1).
• Worker 3 first computes h (X3), then h (X4), and h (X1).
• Worker 4 first computes h (X4), then h (X3), and h (X1).

Each worker sends the result of each computation to the master

immediately after its completion. Accordingly, we have

t1,1 = T
(1)
1,1 + T

(2)
1,1 , t1,2 = T

(1)
1,1 + T

(1)
1,2 + T

(2)
1,2 ,

t1,3 = T
(1)
1,1 + T

(1)
1,2 + T

(1)
1,3 + T

(2)
1,3 , t1,4 = ∞, (4a)

t2,3 = T
(1)
2,3 + T

(2)
2,3 , t2,2 = T

(1)
2,3 + T

(1)
2,2 + T

(2)
2,2 ,

t2,1 = T
(1)
2,3 + T

(1)
2,2 + T

(1)
2,1 + T

(2)
2,1 , t2,4 = ∞, (4b)

t3,3 = T
(1)
3,3 + T

(2)
3,3 , t3,4 = T

(1)
3,3 + T

(1)
3,4 + T

(2)
3,4 ,

t3,1 = T
(1)
3,3 + T

(1)
3,4 + T

(1)
3,1 + T

(2)
3,1 , t3,2 = ∞, (4c)

t4,4 = T
(1)
4,4 + T

(2)
4,4 , t4,3 = T

(1)
4,4 + T

(1)
4,3 + T

(2)
4,3 ,

t4,1 = T
(1)
4,4 + T

(1)
4,3 + T

(1)
4,1 + T

(2)
4,1 , t4,2 = ∞. (4d)

For any TO matrix, the computation is considered com-

pleted once the master recovers k distinct tasks, referred to as

the computation target. We allow partial computations, i.e., k
can be smaller than n. Once the computation target is met, the

master sends an acknowledgement message to all the workers

Fig. 1: Illustration of the computation and communication

delays for the computations carried out by worker i.

to stop computations. Given the TO matrix C, we denote

the completion time; that is, the time it takes the master to

receive k distinct computations, by tC(r, k), which is a random

variable. We define the average completion time as

tC(r, k) , E [tC(r, k)] , (5)

where the randomness is due to the delays. We define the

minimum average completion time

t
∗
(r, k) , minC

{

tC(r, k)
}

, (6)

where the minimization is taken over all possible TO matrices

C. The goal is to characterize t
∗
(r, k).

Remark 1. We have defined each Xi ∈ V as a single data

point, and assumed that the result of h(Xi) at a worker

is transmitted immediately to the master. It is possible to

generalize this model by considering N data points instead,

with N ≫ n, and grouping them into n mini-batches, such that

each Xi in our model corresponds to a mini-batch of ⌈N/n⌉
data points. A worker sends the average of the gradients for all

the data points in a mini-batch after computing all of them.

For a mini-batch size of c data points, this corresponds to

communicating once every c computations.

Remark 2. Most coded computation schemes in the literature,

mainly targeting DGD, require the master to recover the gradi-

ents (or, their average) for the whole dataset at each iteration.

However, convergence of stochastic gradient descent (SGD) is

guaranteed even if the gradient is computed for a random

portion of the dataset at each iteration [20], [22], [33]–

[38]. This is indeed the case for the random straggling model

considered here with k < n, where the straggling workers;

hence, the uncomputed gradients, vary at each iteration.

Remark 3. When k < n, in order to prevent bias in the

SGD algorithm, we need to make sure that the first k distinct

computations received by the master are uniformly random

across the mini-batches. If a few workers are significantly

faster than the others, we may end up receiving computations

corresponding to a few batches assigned to these workers.

Alternatively, we can periodically re-index the mini-batches

and their corresponding labels randomly after a fixed number

of iterations, and provide the workers with the new mini-

batches while the TO matrix is fixed. This introduces additional

communication from the master to the workers to deliver the

missing mini-batches after re-indexing.

III. AVERAGE COMPLETION TIME ANALYSIS

Here we analyze the average completion time tC(r, k) for

a given TO matrix C.
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Theorem 1. For a given TO matrix C, we have

Pr {tC(r, k) > t} = 1− FtC (t)

=
∑n

i=n−k+1
(−1)n−k+i+1

(

i− 1

n− k

)

∑

S⊂[n]:|S|=i
Pr {tj > t, ∀j ∈ S} , (7)

which yields

tC(r, k) =
∑n

i=n−k+1
(−1)n−k+i+1

(

i− 1

n− k

)

∑

S⊂[n]:|S|=i

ˆ ∞

0

Pr {tj > t, ∀j ∈ S} dt. (8)

Note that the dependence of the completion time on the TO

matrix in (7) and (8) is through the statistics of tj .

Proof. The event {tC(r, k) > t} is equivalent to the union of

the events, for which the time to complete any arbitrary set of

at least n− k + 1 distinct computations is greater than t, i.e.,

Pr {tC(r, k) > t} = Pr

{

⋃

G⊂[n]:n−k+1≤|G|≤n

{

tj > t,

tj′ ≤ t, ∀j ∈ G, ∀j′ ∈ G′
}

}

, (9)

where we define G′ , [n]\G. Since the events

{tj > t, tj′ ≤ t, ∀j ∈ G, ∀j′ ∈ G′}, for all distinct sets G ⊂
[n], are mutually exclusive (pairwise disjoint), we have

Pr {tC(r, k) > t} =
∑n

i=n−k+1

∑

G⊂[n]:|G|=i
Pr

{

tj > t,

tj′ ≤ t, ∀j ∈ G, ∀j′ ∈ G′
}

=
∑n

i=n−k+1

∑

G⊂[n]:|G|=i
HG,G′ , (10)

where, for S1 ⊂ [n] and S2 ⊂ [n], we define

HS1,S2
, Pr {tj1 > t, tj2 ≤ t, ∀j1 ∈ S1, ∀j2 ∈ S2} . (11)

Lemma 1. Given a particular set G ⊂ [n], |G| = i, for i ∈
[n− k + 1 : n], we have

HG,G′ =
∑n

m=i
(−1)i+m

∑

Ĝ⊂G′:|Ĝ|=m−i
HG∪Ĝ,∅

=
∑n

m=i
(−1)i+m

∑

Ĝ⊂G′:|Ĝ|=m−i
Pr

{

tj > t, ∀j ∈ G ∪ Ĝ
}

.

(12)

The proof of Lemma 1 can be found in Appendix A, where

we use the fact that, for any g ∈ G′, we have

HG,G′ = HG,G′\{g} −HG∪{g},G′\{g}. (13)

According to Lemma 1, for i ∈ [n− k + 1 : n], we have
∑

G⊂[n]:|G|=i
HG,G′

=
∑

G⊂[n]:|G|=i

∑n

m=i
(−1)i+m

∑

Ĝ⊂G′:|Ĝ|=m−i
HG∪Ĝ,∅

=
∑n

m=i
(−1)i+m

∑

G⊂[n]:|G|=i

∑

Ĝ⊂G′:|Ĝ|=m−i
HG∪Ĝ,∅

(a)

=
∑n

m=i
(−1)i+m

(

m

i

)

∑

S⊂[n]:|S|=m
HS,∅, (14)

where (a) follows since, for each set S = G∪Ĝ with |S| = m,

there are
(

m
i

)

sets G ∪ Ĝ. Plugging (14) into (10) yields

Pr {tC(r, k) > t}

=

n
∑

i=n−k+1

n
∑

m=i

(−1)i+m

(

m

i

)

∑

S⊂[n]:|S|=m

HS,∅. (15)

For a particular set S ⊂ [n] with |S| = s, for some s ∈
[n− k + 1 : n], the coefficient of HS,∅ in (15) is given by

∑s

i=n−k+1
(−1)i+s

(

s

i

)

=
∑s

i=0
(−1)i+s

(

s

i

)

−
∑n−k

i=0
(−1)i+s

(

s

i

)

= 0− (−1)n−k+s

(

s− 1

n− k

)

= (−1)n−k+s+1

(

s− 1

n− k

)

, (16)

which results in

Pr {tC(r, k) > t}

=

n
∑

i=n−k+1

(−1)n−k+i+1

(

i− 1

n− k

)

∑

S⊂[n]:|S|=i

HS,∅. (17)

According to the definition of HS,∅, (17) concludes the proof

of (7). Furthermore, since tC(r, k) ≥ 0, we have

tC(r, k) =

ˆ ∞

0

(1− FtC (t)) dt, (18)

which yields the expression in (8).

Remark 4. For k = n, we have

Pr {tC(r, n) > t}
=

∑n

i=1
(−1)i+1

∑

S⊂[n]:|S|=i
Pr {tj > t, ∀j ∈ S} , (19)

and

tC(r, n) =
∑n

i=1
(−1)i+1

∑

S⊂[n]:|S|=i

ˆ ∞

0

Pr {tj > t, ∀j ∈ S} dt. (20)

The minimum average completion time t
∗
(r, k) can

be obtained as a solution of the optimization problem

t
∗
(r, k) = minC tC(r, k). Providing a general characterization

for t
∗
(r, k) is elusive. In the next section, we will propose two

specific computation task assignment and scheduling schemes,

and evaluate their average completion times.

IV. UPPER BOUNDS ON THE MINIMUM AVERAGE

COMPLETION TIME

In this section we introduce two computation task assign-

ment and scheduling schemes, namely cyclic scheduling (CS)

and staircase scheduling (SS). The average completion time

for these schemes will provide upper bounds on t
∗
(r, k).

A. Cyclic Scheduling (CS) Scheme

The CS scheme is motivated by the symmetry across the

workers when we have no prior information on their com-

putation speeds. CS makes sure that each computation task



5

has the same order at different workers. This is achieved by a

cyclic shift operator. The TO matrix is given by

CCS(i, j) = g(i+ j − 1), for i ∈ [n] and j ∈ [r], (21)

where function g : Z → Z is defined as follows:

g(m) ,











m, if 1 ≤ m ≤ n,

m− n, if m ≥ n+ 1,

m+ n, if m ≤ 0.

(22)

Thus, we have

CCS =











g(1) g(2) . . . g(r)
g(2) g(3) . . . g(r + 1)

...
...

. . .
...

g(n) g(n+ 1) . . . g(n+ r − 1)











, (23)

which, for i ∈ [n] and j ∈ [r], results in

ti,g(i+j−1) =
∑j

m=1
T

(1)
i,g(i+m−1) + T

(2)
i,g(i+j−1). (24)

For i ∈ [n], we can re-write (24) as follows:

tg(i−j+1),i

=

{

∑j
m=1 T

(1)
g(i−j+1),g(i−j+m) + T

(2)
g(i−j+1),i, if j ∈ [r],

∞, if j /∈ [r],

(25)

which results in

ti = min
j∈[r]

{

j
∑

m=1

T
(1)
g(i−j+1),g(i−j+m) + T

(2)
g(i−j+1),i

}

. (26)

Example 2. Consider n = 4 and r = 3. We have

CCS =









1 2 3
2 3 4
3 4 1
4 1 2









, (27)

and

t1,1 = T
(1)
1,1 + T

(2)
1,1 , t1,2 = T

(1)
1,1 + T

(1)
1,2 + T

(2)
1,2 ,

t1,3 = T
(1)
1,1 + T

(1)
1,2 + T

(1)
1,3 + T

(2)
1,3 , t1,4 = ∞, (28a)

t2,2 = T
(1)
2,2 + T

(2)
2,2 , t2,3 = T

(1)
2,2 + T

(1)
2,3 + T

(2)
2,3 ,

t2,4 = T
(1)
2,2 + T

(1)
2,3 + T

(1)
2,4 + T

(2)
2,4 , t2,1 = ∞, (28b)

t3,3 = T
(1)
3,3 + T

(2)
3,3 , t3,4 = T

(1)
3,3 + T

(1)
3,4 + T

(2)
3,4 ,

t3,1 = T
(1)
3,3 + T

(1)
3,4 + T

(1)
3,1 + T

(2)
3,1 , t3,2 = ∞, (28c)

t4,4 = T
(1)
4,4 + T

(2)
4,4 , t4,1 = T

(1)
4,4 + T

(1)
4,1 + T

(2)
4,1 ,

t4,2 = T
(1)
4,4 + T

(1)
4,1 + T

(1)
4,2 + T

(2)
4,2 , t4,3 = ∞, (28d)

B. Staircase Scheduling (SS) Scheme

We can observe that CS imposes the same step size and

direction in computations across all the workers. Alternatively,

here we propose the SS scheme, which introduces inverse

computation orders at the workers. The entries of the TO

matrix CSS for the SS scheme are given by, for i ∈ [n], j ∈ [r],

CSS(i, j) = g(i+ (−1)i−1(j − 1)). (29)

It follows that

CSS =










g(1) g(2) . . . g(r)
g(2) g(1) . . . g(3− r)

...
...

. . .
...

g(n) g(n+ (−1)n−1) . . . g(n+ (−1)n−1(r − 1))











,

(30)

which, for i ∈ [n] and j ∈ [r], results in

ti,g(i+(−1)i−1(j−1)) =
∑j

m=1
T

(1)
i,g(i+(−1)i−1(m−1))

+ T
(2)
i,g(i+(−1)i−1(j−1)). (31)

For i ∈ [n], we can re-write (31) as follows:

tg(i+(−1)i+j−1(j−1)),i =


















j
∑

m=1
T

(1)

g(i+(−1)i+j−1(j−1)),g(i+(−1)i+j−1(j−m))

+T
(2)

g(i+(−1)i+j−1(j−1)),i, if j ∈ [r],

∞, if j /∈ [r],

(32)

which results in

ti = min
j∈[r]

{

∑j

m=1
T

(1)
g(i+(−1)i+j−1(j−1)),g(i+(−1)i+j−1(j−m))

+ T
(2)
g(i+(−1)i+j−1(j−1)),i

}

. (33)

Example 3. Consider n = 4 and r = 3. We have

CSS =









1 2 3
2 1 4
3 4 1
4 3 2









, (34)

and

t1,1 = T
(1)
1,1 + T

(2)
1,1 , t1,2 = T

(1)
1,1 + T

(1)
1,2 + T

(2)
1,2 ,

t1,3 = T
(1)
1,1 + T

(1)
1,2 + T

(1)
1,3 + T

(2)
1,3 , t1,4 = ∞, (35a)

t2,2 = T
(1)
2,2 + T

(2)
2,2 , t2,1 = T

(1)
2,2 + T

(1)
2,1 + T

(2)
2,1 ,

t2,4 = T
(1)
2,2 + T

(1)
2,1 + T

(1)
2,4 + T

(2)
2,4 , t2,3 = ∞, (35b)

t3,3 = T
(1)
3,3 + T

(2)
3,3 , t3,4 = T

(1)
3,3 + T

(1)
3,4 + T

(2)
3,4 ,

t3,1 = T
(1)
3,3 + T

(1)
3,4 + T

(1)
3,1 + T

(2)
3,1 , t3,2 = ∞, (35c)

t4,4 = T
(1)
4,4 + T

(2)
4,4 , t4,3 = T

(1)
4,4 + T

(1)
4,3 + T

(2)
4,3 ,

t4,2 = T
(1)
4,4 + T

(1)
4,3 + T

(1)
4,2 + T

(2)
4,2 , t4,1 = ∞, (35d)

Remark 5. The main difference between CS and SS is that

with CS all the workers have the same step size and direction

in their computations, while with SS workers with even and

odd indices have different directions (ascending and descend-
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ing, respectively) in the order they carry out the computations

assigned to them, but the same step size in their evaluations.

We highlight that the CS and SS schemes may not be the

optimal schedules for certain realizations of the straggling

behaviour, but our interest is in the average performance. We

will see in Section VI that both perform reasonably well, and

neither scheme outperforms the other at all settings.

C. Average Completion Time Analysis

Here we analyze the performance of CS and SS providing

upper bounds on t
∗
(r, k). We represent the average completion

time of CS and SS by tCS(r, k) and tSS(r, k), respectively. In

order to characterize these average values through (8), we need

to obtain HS,∅ = Pr {ti > t, ∀i ∈ S}, for any set S ⊂ [n],
n− k + 1 ≤ |S| ≤ n, where t1, . . . , tn are given in (26) and

(33), for CS and SS, respectively. For ease of presentation, we

denote HS,∅ for CS and SS by HCS
S,∅ and HSS

S,∅, respectively.

For S ⊂ [n] with n− k + 1 ≤ |S| ≤ n, we have

HCS
S,∅ = Pr

{

∑j

m=1
T

(1)
g(i−j+1),g(i−j+m) + T

(2)
g(i−j+1),i > t,

∀j ∈ [r], ∀i ∈ S
}

= Pr
{

T CS
S (t)

}

, (36)

where we define

T
CS
S (t) , Pr

{

(

T
(1)
1,1 , . . . , T

(1)
n,n, T

(2)
1,1 , . . . , T

(2)
n,n

)

:

∑j

m=1
T

(1)

g(i−j+1),g(i−j+m)
+ T

(2)

g(i−j+1),i
> t,∀j ∈ [r], ∀i ∈ S

}

.

(37)

Similarly, for any set S ⊂ [n], n− k + 1 ≤ |S| ≤ n, we have

HSS
S,∅ = Pr

{

∑j

m=1
T

(1)
g(i+(−1)i+j−1(j−1)),g(i+(−1)i+j−1(j−m))

+ T
(2)
g(i+(−1)i+j−1(j−1)),i > t, ∀j ∈ [r], ∀i ∈ S

}

= Pr
{

T SS
S (t)

}

(38)

where we define

T SS
S (t) , Pr

{

(

T
(1)
1,1 , . . . , T

(1)
n,n, T

(2)
1,1 , . . . , T

(2)
n,n

)

:

∑j

m=1
T

(1)
g(i+(−1)i+j−1(j−1)),g(i+(−1)i+j−1(j−m))

+ T
(2)
g(i+(−1)i+j−1(j−1)),i > t, ∀j ∈ [r], ∀i ∈ S

}

. (39)

It follows that, for X ∈ {CS, SS},

HX
S,∅ =

ˆ

· · ·
ˆ

T X
S

(t)

f
(1)
1,[r]

(

α
(1)
1

)

· · · f (1)
n,[r]

(

α(1)
n

)

f
(2)
1,[r]

(

α
(2)
1

)

· · · f (2)
n,[r]

(

α(2)
n

)

dα
(1)
1 · · · dα(1)

n dα
(2)
1 · · · dα(2)

n . (40)

By plugging (40) into (8), we can obtain, for X ∈ {CS, SS},

tX(r, k) =
∑n

i=n−k+1
(−1)n−k+i+1

(

i− 1

n− k

)

·
∑

S⊂[n]:|S|=i

ˆ ∞

0

HX
S,∅dt. (41)

Fig. 2: Illustration of the arrival times of computations from

the workers to the master.

Note that we have obtained a general characterization of

the average completion time of CS and SS in terms of the

CDFs of the delays associated with different tasks at different

workers. The numerical evaluation of the performances of CS

and SS and the lower bound will be presented in Section VI.

V. LOWER BOUND

Here we present a lower bound on t
∗
(r, k) by considering

an adaptive model. Note that the TO matrix, in general, may

depend on the statistics of the computation and communication

delays, i.e., F
(l)
i,[n], ∀l ∈ [2], but not on the realization of

T
(l)
i,C(i,j), i ∈ [n], j ∈ [r]. Let T̂

(1)
i,j and T̂

(2)
i,j , respectively,

represent the computation and communication delays associ-

ated with the task worker i executes with its j-th computation,

i ∈ [n], j ∈ [r]. We note that T̂
(l)
i,j is a random variable

independent of the TO matrix, i ∈ [n], j ∈ [r], l ∈ [2]. We

define

T ,

(

T̂
(1)
1,1 , T̂

(2)
1,1 , . . . , T̂

(1)
1,r , T̂

(2)
1,r , . . . , T̂

(1)
n,1, T̂

(2)
n,1, . . . ,

T̂ (1)
n,r , T̂

(2)
n,r

)

. (42)

For each realization of T, we allow the master to employ a

distinct TO matrix CT, and denote the completion time by

tCT
(T, r, k), which is a random variable due to the randomness

of T. We define

tLB(T, r, k) , minCT
{tCT

(T, r, k)} , (43)

and

tLB(r, k) , E [tLB(T, r, k)] , (44)

where the expectation is taken over T. It is easy to verify that

t
∗
(r, k) =minC {E [tC(r, k)]}

≥ E [minCT
{tCT

(T, r, k)}] = tLB(r, k). (45)

Remark 6. We remark that T does not depend on any specific

order of computing and communicating tasks; that is, any

realization of
(

T̂
(1)
i,1 , T̂

(2)
i,1 , . . . , T̂

(1)
i,r , T̂

(2)
i,r

)

, i.e., the delays at

worker i, is independent of any specific value C(i, j) (index

of the j-th task worker i computes), for i ∈ [n], j ∈ [r]. This

is because we assume that the size and complexity associated

with the computation of each data point are the same.

We denote by t̂i,j the time at which the master receives the

task computed by worker i with its j-th computation, i ∈ [n],
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j ∈ [r]. It follows that

t̂i,j =
∑j

l=1
T̂

(1)
i,l + T̂

(2)
i,j . (46)

Fig. 2 illustrates the time instances computations from

the workers are received by the master. For a realiza-

tion of T, tLB(T, r, k) is the k-th order statistics of
{

t̂1,1, . . . , t̂1,r, . . . , t̂n,1, . . . , t̂n,r
}

, i.e., the k-th smallest value

among
{

t̂1,1, . . . , t̂1,r, . . . , t̂n,1, . . . , t̂n,r
}

, denoted by t̂T,(k).

To prove that tLB(T, r, k) = t̂T,(k), we note that tLB(T, r, k)
cannot be smaller than t̂T,(k), since, according to the definition,

for any time before t̂T,(k) master has not received k computa-

tions. Also, since master receives the k-th computation exactly

at time t̂T,(k), knowing the realization of T, one can design the

TO matrix CT such that the first k computations received by

the master are all distinct. Since finding the statistics of t̂T,(k)

is analytically elusive, we obtain the lower bound on t
∗
(r, k)

through Monte Carlo simulations.

VI. PERFORMANCE COMPARISONS

In this section, we evaluate the average completion time of

the proposed CS and SS schemes, and compare them with

different results in the literature. We will focus on distributed

linear regression as the reference scenario.

A. Problem Scenario

We would like to compare the performance of the pro-

posed uncoded computation schemes with coded computation

techniques that have received significant interest in recent

years. We will consider, in particular, the polynomially coded

(PC) scheme [13] and the polynomially coded multi-message

(PCMM) scheme [17]. PC and PCMM focus exclusively on

linear computation tasks; and hence, we also consider a linear

regression problem, in which the goal is to minimize

F (θ) =
1

N
‖Xθ − y‖22 , (47)

where θ ∈ R
d is the model parameter vector, X ∈ R

N×d is

the data matrix, and y ∈ R
N is the vector of labels. We split

X into n disjoint sub-matrices X = [X1 · · ·Xn]
T

, where

Xi ∈ R
d×N/n, and y =

[

yT1 · · · yTn
]T

, where yi ∈ R
N/n,

i ∈ [n]. The gradient of loss function F (θ) is given by

∇F (θ) =
2

N
XT (Xθ − y) =

2

N

∑n

i=1

(

XiX
T
i θ −Xiyi

)

.

(48)

We perform gradient descent to minimize (47), in which the

model parameters at the l-th iteration, θl, are updated as

θl+1 = θl − ηl · ∇F (θl)

= θl − ηl ·
2

N

∑n

i=1

(

XiX
T
i θl −Xiyi

)

, (49)

where ηl is the learning rate at iteration l. We consider a DGD

algorithm, in which the computation of ∇F (θ) is distributed

across n workers, and the master updates the parameter

vector according to (49) after receiving enough computations

from the workers, and sends the updated parameter vector to

the workers. In the following, we describe the computation

tasks carried out by the workers and the master for different

schemes, where for the l-th iteration, we set

h(Xi) = XiX
T
i θl, for i ∈ [n]. (50)

Since XTy =
∑n

i=1 Xiyi remains unchanged over iterations,

we assume that its computation is carried out only once by

the master node at the beginning of the learning task.

B. Distributed Computing Schemes

PC scheme [13]: At the l-th iteration of DGD, the task of

computing XTXθl =
∑n

i=1 XiX
T
i θl is distributed across the

workers. For a computation load r ≥ 2, worker i stores r dis-

tinct matrices X̃i,1, . . . , X̃i,r, where X̃i,j ∈ R
d×N/n is a linear

combination of X1, . . . , Xn, i.e., X̃i,j =
∑n

m=1 ai,j,mXm,

ai,j,m ∈ R, j ∈ [r], i ∈ [n]. Worker i, i ∈ [n], then

computes X̃i,jX̃
T
i,jθl, ∀j ∈ [r], and sends their sum, i.e.,

∑r
j=1 X̃i,jX̃

T
i,jθl, to the master. Thus, having set h(X̃i,j) =

X̃i,jX̃
T
i,jθl, the computation task assigned to worker i is

∑r
j=1 h(X̃i,j), and we denote the computation delay at worker

i by T
(1)
PC,i, i ∈ [n]. We also denote the communication delay

from worker i to the master by T
(2)
PC,i, i ∈ [n]. The master

receives the computation carried out by worker i at time

tPC,i = T
(1)
PC,i + T

(2)
PC,i, for i ∈ [n]. (51)

The PC scheme allows the master to recover XTXθl after

receiving and processing the results from any 2 ⌈n/r⌉ −
1 workers [13]. Thus, the completion time of PC is the

(2 ⌈n/r⌉−1)-th order statistics of {tPC,1, . . . , tPC,n} denoted

by tPC,(2⌈n/r⌉−1). The average completion time of the PC is

tPC(r, n) = E
[

tPC,(2⌈n/r⌉−1)

]

, (52)

where the expectation is taken over the computation and

communication delay distributions. We note that, for PC, the

master needs to further process the received computations to

retrieve XTXθl. This additional decoding delay is not taken

into account here, but it can be significant.

Example 4. Consider n = 4 and r = 2. The following

matrices are stored at worker i, for i ∈ [4],

X̃i,1 = −(i− 2)X1 + (i − 1)X3, (53a)

X̃i,2 = −(i− 2)X2 + (i − 1)X4. (53b)

Worker i, i ∈ [4], computes (X̃i,1X̃
T
i,1 + X̃i,2X̃

T
i,2)θl, which

is equivalent to evaluating a degree-2 polynomial

φ1(x) =(X1X
T
1 +X2X

T
2 )θl(x − 2)2

+ (X3X
T
3 +X4X

T
4 )θl(x− 1)2

− 2(X1X
T
3 +X2X

T
4 )θl(x − 1)(x− 2) (54)

at point x = i. The master can interpolate polynomial φ1(x)
after receiving computations from 3 workers. It then evaluates

φ1(1) + φ1(2) =
∑4

i=1
XiX

T
i θl = XTXθl. (55)

PCMM scheme [17]: PC is extended in [17] to exploit

the partial computations carried out by the workers. For a
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computation load r ≥ 2, worker i stores r distinct matrices

X̂i,1, . . . , X̂i,r, where X̂i,j =
∑n

m=1 bi,j,mXm, bi,j,m ∈ R,

j ∈ [r], i ∈ [n]. Unlike PC, with PCMM proposed in [17],

worker i, i ∈ [n], computes h(X̂i,1), . . . , h(X̂i,r) sequentially,

and sends the result of each computation to the master right

after its execution, where h(X̂i,j) = X̂i,jX̂
T
i,jθl. We denote

the delay of computing task h(X̂i,j) and transmitting the

computation to the master by T
(1)
PCMM,i,j and T

(2)
PCMM,i,j ,

respectively, for j ∈ [r] and i ∈ [n]. As a result, the master

receives computation h(X̂i,j), j ∈ [r], i ∈ [n], at time

tPCMM,i,j =
∑j

m=1
T

(1)
PCMM,i,m + T

(1)
PCMM,i,j . (56)

It is shown in [17] that the master can recover XTXθl

after receiving and processing 2n− 1 computations. Thus, the

completion time of PCMM is the (2n− 1)-th order statistics

of {tPCMM,i,j , ∀j ∈ [r], ∀i ∈ [n]} denoted by tPCMM,(2n−1).

The average completion time of the PC is given by

tPCMM(r, n) = E
[

tPCMM,(2n−1)

]

. (57)

Similarly to PC, PCMM also introduces an additional decod-

ing delay, which will be ignored in our numerical comparisons.

Example 5. Consider n = 4 and r = 2. The following

matrices are stored at worker i, for i ∈ [4] and j ∈ [2],

X̂i,j =
∑4

i=1
Xi

∏4

m=1,m 6=i

βi,j −m

i−m
, (58)

where βi,j , ∀i ∈ [4], ∀j ∈ [2], are different real values.

Worker i, i ∈ [4], computes X̂i,1X̂
T
i,1θl and X̂i,2X̂

T
i,2θl

sequentially, and sends the result of each computation right

after its completion. Computing X̂i,jX̂
T
i,jθl, i ∈ [4], j ∈ [2],

is equivalent to evaluating a degree-6 polynomial

φ2(x) =

(

∑4

i=1
Xi

∏4

m=1,m 6=i

x−m

i−m

)

(

∑4

i=1
XT

i

∏4

m=1,m 6=i

x−m

i−m

)

θl (59)

at point x = βi,j . The master can interpolate polynomial

φ2(x) after receiving 7 computations from the workers. Having

obtained φ2(x), the master evaluates

∑4

i=1
φ2(i) =

∑4

i=1
XiX

T
i θl = XTXθl. (60)

Uncoded computing: Next, we focus on uncoded compu-

tation schemes. For a computation target k, the master updates

the parameter vector after receiving k distinct computations,

denoted by h(Xp1
), . . . , h(Xpk

), according to

θl+1 = θl − ηl ·
2n

kN

∑k

i=1
(h (Xpi

)−Xpi
ypi

) , (61)

where we allow updating the parameter vector with partial

computations, and if k = n, the update is equivalent to

θl+1 = θl − ηl ·
2

N

∑n

i=1
(h (Xi)−Xiyi) . (62)

If k < n, the master stores Xiyi, ∀i ∈ [n], and at the l-
th iteration computes

∑k
i=1 Xpi

ypi
to update the parameter

vector as in (61). Whereas, if k = n, the master computes
∑n

i=1 Xiyi once, and updates the parameter vector as in (62).

We first consider the random assignment (RA) scheme

[18]. For fairness of comparison, we assume that the training

samples are divided into n batches. The computation load r for

RA is r = n, i.e., the entire dataset is available at each worker.

Each worker picks a distinct task (without replacement) inde-

pendently at random, and sends its computation to the master

immediately after its completion. In other words, each row

of the TO matrix of RA, denoted by CRA, is a random

permutation of vector [1 · · ·n]. For a computation target k,

the master updates the parameter vector according to (61)

after receiving k distinct computations, and the corresponding

average completion time is denoted by tRA(n, k).

Example 6. Consider n = r = 4. Assume the RA scheme

results in the following TO matrix:

CRA =









2 1 4 3
2 4 1 3
1 4 3 2
4 3 1 2









. (63)

We have

t1,2 = T
(1)
1,2 + T

(2)
1,2 , t1,1 = T

(1)
1,2 + T

(1)
1,1 + T

(2)
1,1 ,

t1,4 = T
(1)
1,2 + T

(1)
1,1 + T

(1)
1,4 + T

(2)
1,4 ,

t1,3 = T
(1)
1,2 + T

(1)
1,1 + T

(1)
1,4 + T

(1)
1,3 + T

(2)
1,3 , (64a)

t2,2 = T
(1)
2,2 + T

(2)
2,2 , t2,4 = T

(1)
2,2 + T

(1)
2,4 + T

(2)
2,4 ,

t2,1 = T
(1)
2,2 + T

(1)
2,4 + T

(1)
2,1 + T

(2)
2,1 ,

t2,3 = T
(1)
2,2 + T

(1)
2,4 + T

(1)
2,1 + T

(1)
2,3 + T

(2)
2,3 , (64b)

t3,1 = T
(1)
3,1 + T

(2)
3,1 , t3,4 = T

(1)
3,1 + T

(1)
3,4 + T

(2)
3,4 ,

t3,3 = T
(1)
3,1 + T

(1)
3,4 + T

(1)
3,3 + T

(2)
3,3 ,

t3,2 = T
(1)
3,1 + T

(1)
3,4 + T

(1)
3,3 + T

(1)
3,2 + T

(2)
3,2 , (64c)

t4,4 = T
(1)
4,4 + T

(2)
4,4 , t4,3 = T

(1)
4,4 + T

(1)
4,3 + T

(2)
4,3 ,

t4,1 = T
(1)
4,4 + T

(1)
4,3 + T

(1)
4,1 + T

(2)
4,1 ,

t4,2 = T
(1)
4,4 + T

(1)
4,3 + T

(1)
4,1 + T

(1)
4,2 + T

(2)
4,2 , (64d)

The TO matrices for CS and SS are given in (23) and (30),

respectively. At the l-th iteration of the DGD, the parameter

vector is updated by the master according to (61).

Remark 7. An alternative approach to tackle the linear

regression problem is that, besides XTy, the master computes

W , XTX once at the beginning of the learning task.

Accordingly, the problem reduces to computing matrix-vector

multiplication Wθl at the l-th iteration in a distributed

manner, and after recovering Wθl the master updates the

model parameter vector by

θl+1 = θl − ηl ·
2

N

(

Wθl −XTy
)

. (65)

In this case, the proposed CS and SS schemes can be updated

accordingly to compute Wθl in a distributed manner. To the

best of our knowledge, the coded computing scheme tolerating
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TABLE I: Characteristics of different schemes under consideration while performing iteration l of DGD.

Scheme
Computation

load
Worker i

Computation

target

Completion

criteria
Master

• Cyclic

Scheduling (CS)

• Staircase

Scheduling (SS)

X ∈ {CS, SS}

1 ≤ r ≤ n

1. computes

h(XCX(i,1))
and sends it

2. computes

h(XCX(i,2))
and sends it

. . .

1 ≤ k ≤ n
receiving

k distinct

computations

θl − 2ηl

k

k
∑

i=1

(h (Xpi
)−Xpi

ypi
)

Random

Assignment (RA)
r = n

1. computes

h(XCRA(i,1))
and sends it

2. computes

h(XCRA(i,2))
and sends it

. . .

1 ≤ k ≤ n
receiving

k distinct

computations

θl − 2ηl

k

k
∑

i=1

(h (Xpi
)−Xpi

ypi
)

Polynomially

Coded (PC)
r ≥ 2

1. computes
∑r

j=1 h(X̃i,j)

and sends it

k = n
receiving

2 ⌈n/r⌉ − 1
computations

1. retrieves XTXθl

2. θl − 2ηl

N

(

XTXθl −XTy
)

Polynomially

Coded

Multi-Message

(PCMM)

r ≥ 2

1. computes

h(X̂i,1)
and sends it

2. computes

h(X̂i,2)
and sends it

. . .

k = n
receiving

2n− 1
computations

1. retrieves XTXθl

2. θl − 2ηl

N

(

XTXθl −XTy
)
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Fig. 3: Histogram of computation and communication delays of three different workers.

the highest number of straggling workers for the problem of

computing Wθl distributively is the one proposed in [11]. Due

to limited space we do not present the results for this setting

here; however, the proposed CS and SS schemes outperform

the coded computing scheme in [11] and approach the lower

bound similarly to the results presented next.

We have summarized the characteristics of each of the

schemes considered above in Table I, including the com-

putation tasks conducted by the workers and the master.

We note that the computational complexity of the CS, SS,

PCMM, and RA schemes at the worker is the same, since with

each of the schemes workers need to perform matrix-matrix-

vector multiplications sequentially with dimensions d×N/n,

N/n×d, and d, respectively. In the PC scheme, in addition to

the matrix-matrix-vector multiplications, each worker needs to

sum its results, r vectors of dimension d. With all the schemes,

the master first needs to retrieve XTXθl, and then computes

θl− 2ηl

N (XTXθl−XTy). With the CS, SS, and RA schemes,

the master retrieves XTXθl by adding n d-dimensional

vectors h(X1), . . . , h(Xn) (for fairness, we assume k = n),

which can be done in an online fashion as the computations

from the workers arrive. With the PC scheme, the master
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(b) Scenario 2

Fig. 4: Average completion time versus computation load, r ≥ 2, for the truncated Gaussian delay model in (66).

should wait until it receives 2 ⌈n/r⌉−1 computations, and, in

order to retrieve XTXθl, it needs to interpolate d polynomials

of degree 2 ⌈n/r⌉ − 2, then evaluate it at ⌈n/r⌉ points, and

finally sum up the results from these ⌈n/r⌉ points, each a

vector of dimension N/n. Also, with PCMM, the master

should first receive 2n − 1 computations, then interpolate d
polynomials of degree 2n − 2, next evaluate it at n points,

and finally sum up the results from these n points, each a

vector of dimension N/n, to retrieve XTXθl. Accordingly,

it can be concluded that the computational complexity at the

master for the coded computing schemes is much higher than

the uncoded ones. It is worth noting that, for this study, we

do not take into account the computation delay at the master

while evaluating the average completion time.

C. Numerical Experiments

For the numerical experiments we generate each entry

of data matrix X independently according to distribution

N (0, 1). We also generate the labels as yi = (Xi + Z)TU ,

where Z ∈ R
d×N/n, with each entry distributed independently

according to N (0, 0.01), and U ∈ R
d with each entry

distributed independently according to U(0, 1). For fairness

we use the same dataset for all the schemes.

We train a linear regression model using the DGD algorithm

described above with a constant learning rate ηl = 0.01. We

run experiments on an Amazon EC2 cluster over t2.micro

instance with n + 1 servers, where one of the servers is

designated as the master and the rest serve as workers. We

implement different schemes in Python and employ MPI4py

library for message passing between different nodes.

At each iteration of the DGD algorithm, we measure the

computation and communication delays of each task at each

worker. We can then obtain the completion time of each

scheme according to its completion criteria. We obtain the

average completion time over 500 iterations.

In Fig. 3, we investigate the histograms of computation

and communication delays experienced by three different

workers. We carried out the experiment on an Amazon EC2

cluster with N = 900, d = 500, n = 3, and set r = 1

and k = n so that the master waits until it receives the

computations from all the workers. Observe that both the

computation and communication delays are not highly skewed

across different workers. We also plotted the quantized PDF

of a truncated Gaussian distribution modelling the delays at

each worker. As it can be seen, truncated Gaussian distribution

provides a reasonably good estimate of the statistics of both

computation and communication delays at different workers.

Note that the communication delay at each worker is on

average much higher than its computation delay, which verifies

that the communication is the major bottleneck in distributed

computation and learning [19], [20], [22], [33]–[38].

We first evaluate and compare the performances of different

schemes assuming that both the computation and communica-

tion delays follow truncated Gaussian distributions. For sim-

plicity, we assume that the computation and communication

delays of different tasks at the same worker are independent,

i.e., f
(l)
i,[n] =

∏n
j=1 f

(l)
i,j , where f

(l)
i,j denotes the PDF of T

(l)
i,j ,

for i, j ∈ [n], l ∈ [2]. For t ∈ [µ
(l)
i − a

(l)
i , µ

(l)
i + b

(l)
i ], f

(l)
i,j is

given by

f
(l)
i,j (t) =

φ
(

(t− µ
(l)
i )/σ

(l)
i

)

σ
(l)
i

(

Φ
(

b
(l)
i /σ

(l)
i

)

− Φ
(

−a
(l)
i /σ

(l)
i

)) , (66a)

and f
(l)
i,j (t) = 0, otherwise, for i, j ∈ [n], l ∈ [2], where

φ(t) ,
1√
2π

e−t2/2, (66b)

Φ(t) ,
1

2

(

1 + erf(t/
√
2)
)

. (66c)

For PC, we assume that T
(1)
PC,i follows the same PDF as

∑r
j=1 T

(1)
i,j , for i ∈ [n], where there is no loss of generality

since the delays are independent and identically distributed

(i.i.d.). We further assume that delays T
(1)
PCMM,i,j′ , ∀j′ ∈ [r],

follow PDF f
(1)
i,j , j ∈ [n], for i ∈ [n]. Also, T

(2)
PC,i and

T
(2)
PCMM,i,j′ , ∀j′ ∈ [r], have PDF f

(2)
i,j , j ∈ [n], for i ∈ [n].

For simplicity, we assume symmetric distributions for the
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Fig. 5: Average completion time of different schemes with

respect to computation load, r ≥ 2.

delays, where a
(l)
i = b

(l)
i , i ∈ [n], l ∈ [2]. We consider

two scenarios in our simulations, and for both scenarios

we set a
(1)
i = 3E5, σ

(1)
i = 1E4, a

(2)
i = 2E4, and

σ
(2)
i = 2E4, ∀i ∈ [n], where, for α, β ∈ R, we used

the notation αEβ to denote α × 10−β. In Scenario 1, we

set µ
(1)
i = 1E4 and µ

(2)
i = 5E4, ∀i ∈ [n]. In Scenario

2, {µ(1)
1 , . . . , µ

(1)
n } is set as a random permutation of set

{1E4, 43E4, . . . , 2+n
3 E4}, and {µ(2)

1 , . . . , µ
(2)
n } is a random

permutation of set {5E4, 5.5E4, . . . , 9+n
2 E4}. We note that,

compared to Scenario 1, the computation and communication

delays across the workers are more diverse in Scenario 2. In

Fig. 4 we compare the performances of different schemes for

the truncated Gaussian model with n = 16 workers and k = n.

For both scenarios, SS slightly improves upon CS, and both CS

and SS schemes outperform the coded schemes PC and PCMM

for the whole range of r. PCMM performs better than PC, and

the improvement is less pronounced in Scenario 2, in which

the delays are more diverse. Also, compared to Scenario 1, the

gap between CS/SS and the coded schemes is less in Scenario

2, and for small r values, the superiority of CS/SS over

PCMM is more pronounced. For r = n, t̄RA(n, n) = 0.86
and t̄RA(n, n) = 1.64 milliseconds in Scenarios 1 and 2,

respectively. SS reduces these average delays by %19.45 and

%16.32 for Scenarios 1 and 2, respectively, showing that an

efficient computation schedule for uncoded computing can

reduce the latency.

Next, we present the results of experiments carried out on

Amazon EC2 cluster. We compare the average completion

time of different schemes with respect to the computation

load r, r ≥ 2, in Fig. 5, where n = 15, d = 400, and

N = 900. As it can be seen, CS and SS outperform PC

and PCMM significantly; while PCMM improves upon PC.

This result shows that standard coded computation framework

cannot fully exploit the computing capabilities in the network,

and splitting the computational tasks assigned to each worker

and receiving partial computations performed by each worker

can reduce the average completion time significantly. We also

observe that the average completion time of PC increases with
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Fig. 6: Average completion time of different schemes with

respect to the number of workers, 10 ≤ n ≤ 15.

r. This is because the delays at different workers are not

significantly different; and thus, increasing the computation

load to reduce the number of received computations from

different workers can increase the total delay. This is another

limitation of the coded computation framework, as it requires

careful tuning of the parameters based on the statistics of

the delays in the system. We observe that the gap between

the average completion time of SS and the lower bound is

relatively small for the entire range, and reduces with r, and

SS outperforms CS with the improvement slightly increasing

with r. The average completion time of RA, which requires

r = n, is t̄RA(n, n) = 0.895 millisecond, while SS achieves

t̄SS(n, n) = 0.64 millisecond, i.e., around %28.5 reduction.

Thus, designing the TO matrix, rather than random compu-

tations, can provide significant improvement in computation

speed. We observe that the average completion time of each

scheme considered in Figures 4 and 5 follows a similar pattern.

This verifies that the truncated Gaussian model can reasonably

capture the statistical behaviour of the delays.

In Fig. 6, we compare the performances of different schemes

with respect to the number of workers, n. We consider

d = 500, N = 1000, and r = n. When N/n is not an integer,

we zero-pad the dataset. We observe that, except PCMM, the

average completion time of different schemes reduce slightly

with n when N is fixed. For PC, when r = n, the computation

received from the fastest worker determines the completion

time, and, with all other parameters fixed, the computation

delay at each worker depends mostly on N . Thus, by intro-

ducing new workers when N is fixed, the average completion

time is expected to decrease. Whereas, with PCMM, although

the computation time of each task is expected to decrease

with n, the average completion time increases. This is due to

the increase in the number of communications required by a

factor of two as we have tPCMM(r, n) = E
[

tPCMM,(2n−1)

]

.

For uncoded computing schemes, RA, CS and SS, the average

completion time decreases with n, as they allow a better uti-

lization of the computing resources. As before, we observe that

CS and SS improve the average completion time significantly
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Fig. 7: Average completion time of different schemes with

respect to the computation target, 2 ≤ k ≤ n.

compared to PC and PCMM. Also, based on the superiority

of the CS and SS over RA, we conclude that the TO matrix

design is essential in reducing the average delay of uncoded

computing schemes. CS outperforms SS for small n values, but

SS takes over as n increases. The relatively small gap between

the average completion times of CS and SS and the lower

bound illustrates their efficiency in scheduling the tasks despite

the lack of any information on the speeds of the workers.

In Fig. 7, we compare the performance of different uncoded

computation schemes and the lower bound with respect to the

computation target, k. We set n = 10, r = n, N = 1000,

and d = 800, and consider k ∈ [2 : n]. As expected, the

average completion time increases with k. The gap between

different schemes also increases with k, as the efficiency of

scheduling tasks is more distinguishable for higher values of k.

The average completion time of SS coincides with the lower

bound for small and medium k values k ∈ [2 : 6], and the

gap between the two is negligible even for higher k values.

Here we do not consider the coded computing schemes, PC

and PCMM, as they are designed only for k = n.

VII. CONCLUSIONS

We have studied distributed computation across inhomoge-

neous workers. The computation here may correspond to each

iteration of a DGD algorithm applied on a large dataset, and

it is considered to be completed when the master receives k
distinct computations. We assume that each worker has access

to a limited portion of the dataset, defined as the computation

load. In contrast to the growing literature on coded computa-

tion to mitigate straggling servers, here we have studied un-

coded computations and sequential communication to the mas-

ter in order to benefit from all the computations carried out by

the workers, including the slower ones. Since the instantaneous

computation speeds of the workers are not known in advance,

allocation of the tasks to the workers and their scheduling

become crucial in minimizing the average completion time. In

particular, we have considered the assignment of data points

to the workers with a predesigned computation order. Workers

send the result of each computation to the master as soon as it

is executed, and move on to compute the next task assigned to

them. Assuming a general statistics for the computation and

communication delays of different workers, we have obtained

closed-form expressions for the average completion time of

two particular computation allocation schemes, called CS and

SS. The CS scheme dictates the same computation order at

different workers, which is implemented by a cyclic shift

operator. With SS, we introduce inverse computation orders

at the workers. We have compared the performance of these

proposed schemes with the existing ones in the literature,

particularly the coded PC [13], PCMM [17], and uncoded RA

[18] schemes. The results of the experiments carried out on

Amazon EC2 cluster show that the CS and SS schemes provide

significant reduction in the average completion time over these

schemes. The poor performance of the PC scheme can be

explained by the fact that when the delays associated with

different workers are not highly skewed, utilizing the partial

computations by the slower workers becomes beneficial. The

superiority of CS and SS compared to the RA scheme, which

randomly schedules the tasks, illustrates the importance of task

scheduling in speeding up the computations.

We also remark that, unlike the proposed schemes, the PC

and PCMM schemes introduce additional encoding and decod-

ing complexities at the master, which have not been considered

in the evaluations here. Moreover, in the case of DSGD,

having computed the partial gradient on separate data points

may allow the workers to exploit more advanced methods to

reduce their communication load, such as compression [20] or

quantization [21], [22], and can be beneficial in the case of

communications over noisy channels [19], which may not be

applicable in the case of coded computations.

APPENDIX A

PROOF OF LEMMA 1

We prove the equation in (12) by induction. For the ease of

presentation, we define set Gi as Gi ⊂ [n] such that |Gi| = i,
and we denote G′

i = [n]\Gi, i ∈ [n]. We first show that the

equality in (12) holds for any G′
n−1 with

∣

∣G′
n−1

∣

∣ = 1 (note

that the proof is trivial for G′
n). According to (13), we have

HGn−1,G′

n−1
= HGn−1,∅ −H[n],∅, (67)

which is identical to the equality in (12). Then, assuming that

for any G′
i with |G′

i| = n− i, we have

HGi,G′

i
=

∑n

m=i
(−1)i+m

∑

Ĝ⊂G′

i
:|Ĝ|=m−i

HGi∪Ĝ,∅, (68)

we prove that

HGi−1,G′

i−1
=
∑n

m=i
(−1)i+m−1·
∑

Ĝ⊂G′

i−1
:|Ĝ|=m−i+1

HGi−1∪Ĝ,∅. (69)

Consider a fixed set Gi. For gi ∈ Gi, let Gi−1 = Gi\{gi},

which results in G′
i−1 = G′

i ∪ {gi}. From (13), we have

HGi−1,G′

i−1
= HGi−1,G′

i−1
\{gi} −HGi−1∪{gi},G′

i−1
\{gi}

= HGi\{gi},G′

i
−HGi,G′

i
. (70)
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According to (68), it follows that

HGi\{gi},G′

i

=
∑n−1

m=i−1
(−1)i+m−1

∑

Ĝ⊂G′

i
:|Ĝ|=m−i+1

HGi−1∪Ĝ,∅

=
∑n

m=i−1
(−1)i+m−1

∑

Ĝ⊂G′

i
:|Ĝ|=m−i+1

HGi−1∪Ĝ,∅,

(71)

and

HGi,G′

i
=

∑n

m=i
(−1)i+m

∑

Ĝ⊂G′

i
:|Ĝ|=m−i

HGi∪Ĝ,∅

=
∑n

m=i−1
(−1)i+m

∑

Ĝ⊂G′

i
:|Ĝ|=m−i

HGi∪Ĝ,∅

=
∑n

m=i−1
(−1)i+m

∑

Ĝ⊂G′

i
:|Ĝ|=m−i

HGi−1∪{gi}∪Ĝ,∅.

(72)

By plugging (71) and (72) in (70), we have

HGi−1,G′

i−1

=
∑n

m=i−1
(−1)i+m−1

(

∑

Ĝ⊂G′

i
:|Ĝ|=m−i+1

HGi−1∪Ĝ,∅

+
∑

Ĝ⊂G′

i
:|Ĝ|=m−i

HGi−1∪{gi}∪Ĝ,∅

)

=
∑n

m=i−1
(−1)i+m−1

∑

Ĝ⊂G′

i
∪{gi}:|Ĝ|=m−i+1

HGi−1∪Ĝ,∅

=
∑n

m=i−1
(−1)i+m−1

∑

Ĝ⊂G′

i−1
:|Ĝ|=m−i+1

HGi−1∪Ĝ,∅,

(73)

which provides the proof of the equality in (69). This com-

pletes the proof of (12).
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