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Abstract

Graph signal processing (GSP) has become an important tool in many areas such as image pro-

cessing, networking learning and analysis of social network data. In this paper, we propose a broader

framework that not only encompasses traditional GSP as a special case, but also includes a hybrid

framework of graph and classical signal processing over a continuous domain. Our framework relies

extensively on concepts and tools from functional analysis to generalize traditional GSP to graph signals

in a separable Hilbert space with infinite dimensions. We develop a concept analogous to Fourier

transform for generalized GSP and the theory of filtering and sampling such signals.

Index Terms

Graph signal proceesing, Hilbert space, generalized graph signals, F-transform, filtering, sampling

I. INTRODUCTION

Since its emergence, the theory and applications of graph signal processing (GSP) have rapidly

developed (see for example, [1]–[10]). Traditional GSP theory is essentially based on a change

of orthonormal basis in a finite dimensional vector space. Suppose G = (V,E) is a weighted,

undirected graph with V the vertex set of size n and E the set of edges. Recall that a graph

signal f assigns a complex number to each vertex, and hence f can be regarded as an element of

Cn, where C is the set of complex numbers. The heart of the theory is a shift operator AG that is

usually defined using a property of the graph. Examples of AG include the adjacency matrix and

the Laplacian matrix of G. Graph shift operators are typically chosen to be symmetric. By the
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spectral theorem, all the eigenvalues of AG are real and Cn has an orthonormal basis consisting

of eigenvectors of AG. Therefore, one can define the notion of vertex and frequency domains,

on which the rest of the theory builds upon.

However, instead of assigning a complex number at each vertex, one can assign mathematical

objects with richer structures to each vertex of a graph. An example of such a mathematical

object comes from a Hilbert space. In particular, it would be of interest to assign an L2 function

over a finite closed interval [a, b] to each vertex of a graph. Such a consideration is not just a

plain generalization, as it has important practical applications in for example, sensor networks

and social networks, where each node in the network is observing a time-varying continuous

signal. We have the following considerations.

Example 1.

(a) The case where each vertex signal is a complex number belongs to the traditional GSP

framework, which has been extensively studied in [1]–[10].

(b) An extension of traditional GSP to the case where each vertex signal is a finite-length

discrete time series is proposed in the time-vertex GSP framework [8]. Such a vertex signal

is from a Hilbert space Cm for some m ≥ 1. The assumption here is that all the time series

at different vertices share the same time indices.

(c) The case where the signal at each graph vertex v ∈ V is itself a graph signal on a finite

graph Gv has not been studied in the literature, to the best of our knowledge. In this case,

each vertex signal is from Cm for some m ≥ 1, but unlike the time-vertex GSP framework,

the underlying graph topology can be more general (the time-vertex GSP framework is

equivalent to using a path graph with m vertices). Furthermore, different vertices can have

different underlying graphs for their signals, and the correspondence between the vertices

in Gv and those in Gu for v 6= u need not be one-to-one.

Applications include relating the signals in one social network to another social network,

or in problems where the underlying graph at each vertex of G is varying (cf. Section VI-D).

For example, when studying signals on time-varying adaptive networks ( [11]–[14]), which

includes social networks, biological networks and neural networks, we may let G be a path

graph representing a finite portion of the time line. The signal ft at each node t is a vector

in Cm. Due to the additional local structures in the signal, it is usually advantageous to

consider these structures when performing signal analysis. Thus, we can regard ft as a
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graph signal corresponding to time t. Furthermore, multiple graph signals ft from different

networks can be related to each other, forming yet another underlying graph at each time t.

(d) The case where the signal at each vertex is drawn from an infinite dimensional Hilbert space

has again never been studied. An example is continuous time signals that are not bandlimited

(in the time direction). In this case, from the Shannon-Nyquist Theorem [15], it is impossible

to recover the full undistorted signal using a finite sampling rate (cf. Section VI-B). Thus,

the time-vertex GSP framework, which requires discrete time series at all graph vertice,

would introduce errors in the inference procedure. Furthermore, signals may not be sampled

synchronously in a sensor network (sensor synchronization usually requires additional effort

[16]–[18]) so that the time-vertex GSP framework may not be the best approach. A more

general GSP framework is thus needed to address many practical engineering scenarios.

In addition, a Hilbert space, such as the space of L2 functions over an appropriate domain

Ω, usually has rich internal structures. The usual GSP framework takes a “snapshot picture"

by looking at the graph signal at x ∈ Ω one by one. This approach may easily disregard

the internal relations among the points in Ω. In this paper, the proposed framework avoids

such a local consideration entirely, and fuses the graph operators with operations on L2(Ω)

for signal processing to achieve minimal information loss. For example, to study continuous

time graph signals mentioned above, it can be more beneficial to consider the graph signal

to be a function belonging to L2(R), such that we may apply operations such as continuous

Fourier transform and wavelet transforms in conjunction with graph based transforms. We

shall demonstrate this by the example of information propagation on social networks in

Section VI-B.

In this paper, we propose and develop a Hilbert space theory of generalized GSP that can

handle all the above cases. To do that, it is inevitable that the theory is based on an abstract

foundation, which requires the reader to have a good grasp of functional analysis concepts and

tools. For these, we refer the reader to [19], [20]. We shall constantly refer back to Example 1

to illustrate and explain theoretical results.

We shall develop the theory parallel to classical signal processing and GSP. Important notions

such as convolution filters and bandlimitedness are best understood when signals are viewed in

the frequency domain. Therefore, defining what constitutes the frequency domain is a hallmark

of both classical signal processing and traditional GSP. In the same spirit, we first define the
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frequency domain for the generalized GSP framework using the spectral theory of compact

operators on Hilbert spaces. We then proceed to discuss filtering and sampling. A preliminary

version of this paper was presented in the conference paper [21], which introduced some of the

basic concepts in this paper without proof.

The rest of the paper is organized as follows. In Section II, we set up the framework by defining

graph signals in a separable Hilbert space. In Section III, we introduce the notion of frequency.

Based on this, we develop the concepts of filtering and sampling in Section IV and Section V.

We present numerical results in Section VI and conclude in Section VII. Throughout, we provide

examples to highlight situations where the framework of the paper is not only applicable but

also necessary.

Notations. We use R and C to denote the real and complex fields, respectively, while Z denotes

the set of integers. The symbol ⊗ denotes tensor product, ◦ is function composition, and ∼=
denotes isomorphic equivalence. Id is the identity operator and i =

√
−1. Cn is equipped with

an inner product 〈·, ·〉Cn with corresponding norm ‖·‖Cn . The space L2(Ω) = L2(Ω,F , µ) with

(Ω,F , µ) a measure space, is the collection of functions f : Ω 7→ C such that
∫

Ω
|f |2dµ <∞.

II. GENERALIZED GRAPH SIGNALS

Let G = (V,E) be a simple finite undirected weighted graph and X be a metric space. In this

paper, when we talk about a vector space, we always assume that the base field is the complex

numbers C, unless otherwise stated. In traditional GSP, the signals on the vertices of G are

assumed to be real or complex. We generalize this as follows.

Definition 1. Suppose H is a Hilbert space (i.e., a complete inner product space). A graph signal

in H is a function f : V → H. The space of graph signals in H is denoted by S(G,H).

With a few examples below, we demonstrate why this generalized notion is versatile. In

short, Hilbert spaces include both the more familiar finite dimensional cases and also infinite

dimensional cases that can represent more realistic signals in practice.

Example 2.

(a) Suppose that H = C, then f ∈ S(G,H) is a traditional graph signal where f(v) ∈ C for

each v ∈ V . This case has been extensively studied in [1] and the references therein.

(b) Suppose H = L2([a, b]), the space of complex-valued L2 functions over a finite closed

interval [a, b], with the Lebesgue measure (cf. Example 1(d)). A graph signal f in H assigns
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an L2 function on [a, b] to each vertex of G. Alternatively, we can view f as a function

assigning a complex number to each point in V ×[a, b] (where × denotes the usual Cartesian

product). Consequently, as G is a finite graph, S(G,H) = L2(V × [a, b]). If b > a ≥

0, S(G,H) can be viewed as a family of traditional graph signals parametrized by a

continuous time domain [a, b]. To deal with such an H, one may use finite dimensional

subspaces, e.g., polynomials of bounded degree, for approximations. However, there are

continuous functions that render such a strategy a failure (cf. Theorems 5.4 and 5.5 in

[22]). Therefore, it is useful to have a framework that encompasses such signals from

infinite dimensional Hilbert spaces.

(c) Suppose H = L2(G′) with discrete measure, where G′ = (V ′, E ′) is a finite graph (possibly

directed). By finiteness, H is the space of finite complex graph signals on G′. We define the

graph structure for the product G×G′ as follows (see Fig. 1 for an example): (v1, u1) is

connected to (v2, u2) in V × V ′ if either v1 = v2 and (u1, u2) ∈ E ′ with the edge weight

the same as the weight of (u1, u2), or u1 = u2 and (v1, v2) ∈ E with the edge weight the

same as the weight of (v1, v2). Therefore, S(G,H) can be identified with complex signals

on the graph G×G′. In particular, if G′ is a path graph, S(G,H) corresponds to the time-

vertex GSP framework of [8]. Strictly speaking, as we may view S(G,H) as traditional

GSP signals on the graph G×G′, this example remains within the framework of [1] in this

respect.

G

G′
G×G′

v1

u1 u2

v2

(v1, u1)

(v1, u2)

(v2, u1)

Fig. 1. An example of G×G′.

In the following, we first review some basic facts about Hilbert spaces (cf. Chapter 6 of [19]).



6

By definition, a Hilbert space H is equipped with an inner product, denoted by 〈·, ·〉H. A Hilbert

space is separable if it has a countable orthonormal basis. Throughout this paper, we assume

that H is separable, which is the case for most physical signals. Since H is separable, without

loss of generality, we can assume H = L2(Ω) for some measurable space Ω with a measure µ

[20, Theorem 3.4.27]. For each f ∈ S(G,H) and u ∈ V , we then have f(u) ∈ L2(Ω) and

f(u)(x) ∈ C for each x ∈ Ω. A useful point of view is that we can treat f as a function of two

variables and write f(u, x) for f(u)(x).

Recall that for a finite dimensional Euclidean vector space Cn, we may form the tensor product

(cf. [23, Chapter IV.5]) Cn ⊗H as the set of finite linear sums
∑n

i=1 vi ⊗ hi, with vi ∈ Cn and

hi ∈ H for all i = 1, . . . , n, such that the following holds for any v1, v2, v ∈ Cn and any

h1, h2, h ∈ H:

(a) v1 ⊗ h+ v2 ⊗ h = (v1 + v2)⊗ h;

(b) v ⊗ h1 + v ⊗ h2 = v ⊗ (h1 + h2);

(c) rv ⊗ h = v ⊗ rh for r ∈ C.

The tensor product Cn ⊗H is equipped with an inner product 〈·, ·〉Cn⊗H induced (linearly) by:

〈v1 ⊗ h1, v2 ⊗ h2〉Cn⊗H = 〈v1, v2〉Cn〈h1, h2〉H, (1)

which defines a metric on Cn⊗H. As Cn is finite dimensional, Cn⊗H is complete and hence

a Hilbert space. Suppose Φ = {φi}1≤i≤n is an orthonormal basis of Cn and Ξ = {ξj}j≥1 is

an orthonormal basis of H. Then Φ ⊗ Ξ = {φi ⊗ ξj}1≤i≤n,j≥1 forms an orthonormal basis of

Cn ⊗H.

Using the tensor product construction, we have the following alternative description of S(G,H),

which shows that S(G,H) is a separable Hilbert space.

Lemma 1. S(G,H) is a vector space and there is an isomorphism between S(G,H) and Cn⊗H

given by

ψ(f) =
∑
v∈V

v ⊗ f(v) (2)

for f ∈ S(G,H), where V is identified with the standard basis of Cn.

Proof: The vector space structure of S(G,H) comes from that of H: for f, g ∈ S(G,H),

u ∈ V and r ∈ C, we have (f + g)(u) = f(u) + g(u) ∈ H and (rf)(u) = rf(u).



7

It is clear that ψ is an injective mapping from S(G,H) to Cn⊗H. For the inverse, each a ∈

Cn⊗H can be written in the form a =
∑

v∈V v⊗hv, where hv ∈ H. We define ψ−1(a)(v) = hv

so that ψ−1(a) ∈ S(G,H) and is the inverse map of ψ. Hence ψ is an isomorphism and the

proof is complete.

In the rest of this paper, we will always identify V with the standard basis of Cn. Then,

Lemma 1 gives a map ψ that identifies S(G,H) with Cn ⊗H, so that we may carry structures

on Cn ⊗ H to S(G,H). In particular, S(G,H) is a Hilbert space and we can define an inner

product for f, g ∈ S(G,H) as

〈f, g〉 = 〈ψ(f), ψ(g)〉Cn⊗H. (3)

Since S(G,H) ∼= Cn⊗H, we will often abuse notations by treating f ∈ S(G,H) as an element

of Cn ⊗H, keeping in mind the isomorphism map ψ. Furthermore, one can extend f : V 7→ H

uniquely to a linear transformation Cn 7→ H, i.e., f(u, x) =
∑

v∈V u(v)f(v, x) is uniquely

defined for all u ∈ Cn and x ∈ Ω. Here, u(v) = 〈u, v〉Cn is the v-th component of u in Cn.

III. F -TRANSFORM

To give an overview, in the same spirit as traditional GSP, we introduce the notion of Fourier

transformation for the generalized GSP framework. We refer to this as simply the F-transform.

In doing so, we are able to introduce the notion of a frequency domain for generalized GSP.

The interplay between the graph domain and the frequency domain plays an essential role in

signal processing. As signals from a Hilbert space H have their own transform space, we can

decompose the F-transform into simpler pieces, called partial F-transforms, which we also

introduce in this section.

Fix orthonormal bases Φ of Cn and Ξ of H. We have seen that Φ⊗ Ξ forms an orthonormal

basis of S(G,H). For each f ∈ S(G,H), φ ∈ Φ and ξ ∈ Ξ, the joint F-transform is defined as:

Ff (φ⊗ ξ) = 〈f, φ⊗ ξ〉 , 〈ψ(f), φ⊗ ξ〉Cn⊗H, (4)

where ψ is the isomorphism map in Lemma 1 and the inner product on the right-hand side of

(4) is as defined in (1). Note that
∑

φ⊗ξ |Ff (φ⊗ ξ)|2 <∞ for all f ∈ S(G,H).

Since we have identified V with the standard basis of Cn, we write f(·, x) =
∑

v∈V f(v, x)v ∈

Cn. The partial F-transforms are defined as:

H-transform: Hf (ξ)(v) = 〈f(v, ·), ξ〉H, (5)

G-transform: Gf (φ)(x) = 〈f(·, x), φ〉Cn , (6)
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for every v ∈ V and x ∈ Ω. Since Φ⊗Ξ is an orthonormal basis, given a sequence of numbers

g = (g(φ⊗ ξ))φ,ξ such that
∑

φ,ξ |g(φ⊗ ξ)|2 <∞, the inverse F-transform is given by

F−1
g =

∑
φ,ξ

g(φ⊗ ξ) · φ⊗ ξ. (7)

Clearly, if g = Ff , then F−1
g = f, and vice versa.

The definitions above do not involve the graph G. It appears in the following way: the

orthonormal basis Φ is usually chosen as a set of eigenbasis of a symmetric graph shift operator

AG. Common choices of AG include the adjacency matrix and the Laplacian matrix of G. In

the same spirit as [10], the inner product 〈·, ·〉Cn and the basis Φ (hence AG) can be chosen

judiciously depending on the application.

Example 3.

(a) In Example 2(a), H = C, which in our terminology, can be identified with L2({0}). In

this example, we simply use r ∈ C to represent each element in H so that Ξ = {1} and

Hf (1)(v) = f(v) for each v ∈ V . The H-transform is thus simply the graph signal itself.

We also have Gf (φ) = 〈f, φ〉Cn for each φ in the eigenbasis of a graph shift operator.

The G-transform, and hence the F-transform, are both equivalent to the traditional graph

Fourier transform in [1].

(b) In Example 2(b), H = L2([0, 2π]) (cf. Example 1(d)). Using the basis {exp(imx)/
√

2π :

m ∈ Z} for H, we see that the H-transform of f(v) for each v ∈ V is simply its Fourier

transform. For each x ∈ [0, 2π], the G-transform of f(·, x) is the traditional graph Fourier

transform of the graph signal {f(v, x) : v ∈ V }. The F-transform however does not have

any equivalence in traditional GSP (which deals with finite-dimensional spaces) as [0, 2π]

is a continuous domain with H being infinite dimensional. For such an H, there is an

abundant family of signals (e.g., rectangular pulse functions [24]) whose F-transforms

cannot be described by traditional GSP Fourier transforms at finite samples.

(c) In Example 2(c), G′ = (V ′, E ′) is another graph and we have taken H = L2(G′). In this

case, S(G,H) = L2(G × G′). Then each φ ⊗ ξ is an eigenvalue of the matrix AG ⊗ AG′ .

The joint F-transform is nothing but the graph Fourier transform of signals on G × G′,

which is the same as the joint Fourier transform defined in [8].

Since we identify V with the standard basis of Cn, we can write Hf (ξ) =
∑

v∈V Hf (ξ)(v)v ∈

Cn for each ξ ∈ Ξ. Note also that for each φ ∈ Φ, Gf (φ) is a mapping Ω 7→ C and from the
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Cauchy-Schwarz inequality, we have∫
Ω

|Gf (φ)(x)|2dµ(x) ≤
∫

Ω

‖f(·, x)‖2
Cndµ(x)

=

∫
Ω

∑
v∈V

|f(v, x)|2dµ(x) =
∑
v∈V

∫
Ω

|f(v, x)|2dµ(x) <∞,

where the first equality follows from Parseval’s formula, and the last inequality is because

f(v, ·) ∈ H = L2(Ω) and V is finite. Therefore, Gf (φ) ∈ H.

Lemma 2. For any φ ∈ Φ, ξ ∈ Ξ and f ∈ S(G,H), we have

Hf (ξ) =
∑
φ′∈Φ

Ff (φ′ ⊗ ξ)φ′, (8)

Gf (φ) =
∑
ξ′∈Ξ

Ff (φ⊗ ξ′)ξ′, (9)

and

Ff (φ⊗ ξ) = 〈Hf (ξ), φ〉Cn = 〈Gf (φ), ξ〉H. (10)

Proof: For any φ ∈ Φ, we have

〈Hf (ξ), φ〉Cn =

〈∑
v

Hf (ξ)(v)v, φ

〉
Cn

=
∑
v

Hf (ξ)(v)〈v, φ〉Cn

=
∑
v

〈f(v), ξ〉H〈v, φ〉Cn from (5)

=
∑
v

〈v ⊗ f(v), φ⊗ ξ〉Cn⊗H from (1)

= 〈f, φ⊗ ξ〉 from (2) and (4)

= Ff (φ⊗ ξ),

which proves the first equality in (10). Since Φ is an orthonormal basis for Cn, (8) follows. The

other identities follow similarly and the proof is complete.

As Φ ⊗ Ξ is an orthonormal basis, each f ∈ S(G,H) can be written as f =
∑

φ⊗ξ Ff (φ ⊗

ξ) · φ⊗ ξ. The terms Ff (φ⊗ ξ) are square summable. On the other hand, suppose we are given

a mapping L on S(G,H) into C such that L(φ ⊗ ξ) is square summable, from the inverse

F-transform, we can view L as an element of S(G,H) given by
∑

φ,ξ L(φ ⊗ ξ) · φ ⊗ ξ. An
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immediate example is Ff can be identified with f when viewed as an element of S(G,H). This

point of view is useful when we discuss convolution later on.

For a general H, an important source of orthonormal basis comes from the eigenvectors of

a family of bounded linear operators. More specifically, recall that a bounded linear operator A

on a Hilbert space H is called compact [19, Chapter 21.1] if the image of the closed unit ball

has a compact closure. It is moreover self-adjoint if 〈Ax, y〉H = 〈x,Ay〉H for any x, y ∈ H. The

spectral theorem (see [19, Chapter 28]) in this case says that if A is compact and self-adjoint,

then all the eigenvalues of A are real and H has an orthonormal basis consisting of eigenvectors

of A. For the rest of this paper, we assume the following.

Assumption 1. The following are given:

(a) AG is a self-adjoint graph shift operator on G.

(b) A is a compact, self-adjoint and injective operator on H.

(c) Φ is an orthonormal basis of Cn consisting of the eigenvectors of AG. Ξ is an orthonormal

basis of H consisting of the eigenvectors of A.

Assumption 1(b) may be further generalized in some cases to allow the operator A to be

different for different vertices of G. We discuss this generalization in Section IV-E.

For φ ∈ Φ and ξ ∈ Ξ, we use λφ and λξ to denote their corresponding eigenvalues. Now we

can make the following definition.

Definition 2. For f ∈ S(G,H), the frequency range of f is defined to be {(λφ, λ−1
ξ ) ∈ R×R :

Ff (φ⊗ ξ) 6= 0, φ ∈ Φ, ξ ∈ Ξ} for Φ and Ξ in Assumption 1.

We use λ−1
ξ in Definition 2, which is more convenient when we deal with the notion of

bandlimitedness in Section IV-D. We also motivate using λ−1
ξ instead of λξ in Example 4(b)

below.

Example 4.

(a) In the case of H = C, every operator A(a) = Aa, where A ∈ C\{0}, is compact, self-

adjoint and injective. Then the frequency range of f is {(λφ, 1/A) : 〈f, φ〉C 6= 0, φ ∈ Φ},

which is equivalent to the frequency range in traditional GSP since A is a constant.

(b) Suppose H is the subspace of L2([0, 2π]) consisting of f such that f(0) + f(2π) = 0

(cf. Example 1(d)). It is a closed subspace of L2([0, 2π]) and hence it is also a Hilbert
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space. Consider the differential operator D = −i d

dx
. The eigenvectors of D given by

Ξ = {ξm = exp(i(m + 1/2)x)/
√

2π : m ∈ Z} forms an orthonormal basis of H where

the eigenvalue of ξm is m + 1/2. Note that Ξ is a variant of the standard Fourier basis.

However, D is not well-defined on all of H. To fit into our framework, we define

A(f)(x) =
i

2

(∫ x

0

f(t)dt−
∫ 2π

x

f(t)dt

)
,

for all f ∈ H. It is compact, self-adjoint and injective, with eigenvectors Ξ and correspond-

ing eigenvalues {(m+ 1/2)−1 : m ∈ Z} because the composition A ◦D is the identity map

on the domain of D. Since Ξ is a basis, we can write

f(x) =
∑
m∈Z

am√
2π
ei(m+1/2)x, am ∈ C for all m ∈ Z.

In traditional Fourier series, if the coefficient am of ξm = exp(i(m+ 1/2)x)/
√

2π is non-

zero, we say m+1/2 belongs to the frequency range of f . However, m+1/2 is an eigenvalue

of D and not A. Instead, due to the fact that A ◦D is the identity map, (m+ 1/2)−1 is an

eigenvalue of A with the same eigenvector ξm. Therefore, since we want to use eigenvalues

of the compact operator A to describe the notion of frequency, we take the reciprocal of

(m+1/2)−1, i.e., m+1/2, to be in the frequency range. This makes our definition consistent

with definitions from traditional Fourier series. This example thus motivates our use of λ−1
ξ

in Definition 2.

For a specific illustration, suppose that G is the undirected path graph with three ver-

tices u1, u2, u3 shown in Fig. 2. Let AG be its Laplacian matrix, whose eigenvalues and

eigenvectors are given by:

λφ1 = 0, φ1 =
1√
3

[1, 1, 1]T ,

λφ2 = 1, φ2 =
1√
2

[0,−1, 1]T ,

λφ3 = 3, φ3 =
1√
6

[−2, 1, 1]T .

Consider f ∈ S(G,H) that assigns f(u2, x) = 2 cos(x/2) to the central node, and f(u1, x) =
√

2 sin(1
2
x − π

4
) and f(u3, x) =

√
2 sin(1

2
x + π

4
) to the side nodes. It can be verified that
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Ff (φ ⊗ ξ) 6= 0 only for φ ⊗ ξ ∈ {φ2 ⊗ ξ−1, φ2 ⊗ ξ0, φ3 ⊗ ξ−1, φ3 ⊗ ξ0}. For example, by

Lemma 2, we obtain

Ff (φ2 ⊗ ξ−1) = 〈Gf (φ2), ξ−1〉H

=

∫ 2π

0

1√
2

(0− 2 cos
x

2
+
√

2 sin(
x

2
+
π

4
)) · 1√

2π
eix/2dx

= −
√
π

2
+ i

√
π

2
.

Hence, the frequency range of f is {(1,−1/2), (1, 1/2), (3,−1/2), (3, 1/2)}.

Fig. 2. Illustration of Example 4(b). Each red curve depicts the signal at each node of G, which is a function in L2([0, 2π]).

IV. FILTERING

In this section, we consider filtering of generalized graph signals. We focus on filters defined

based on F-transforms. Filters can have several different uses, to name a few: they can be used

remove noise in signals, describe inherent relations between datasets and transform a signal into

a different domain that is more convenient for analysis. Our generalized GSP filtering theory

have parts similar to traditional GSP and signal processing over C, while additional new features

present due to the richer structure in a general H. We discuss a few general families of filters

that are related with each other and illustrate them with examples. We also point out why some

of them are particularly useful.

Definition 3. A filter is a bounded linear transformation L : S(G,H)→ S(G,H).

Since S(G,H) is a Hilbert space, any filter L is continuous as it is bounded. From isomor-

phism, we equivalently regard any filter L on S(G,H) to be a filter on Cn ⊗H.
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A. Shift Invariant Filters

For the two operators AG and A in Assumption 1, we can form their tensor product: AG⊗A

induced (linearly) by AG ⊗A(v ⊗ h) = AG(v)⊗A(h). Note that AG ⊗A is an operator on the

Hilbert space S(G,H) ∼= Cn ⊗H. As both AG and A are compact (AG is compact because all

operators on the finite dimensional space Cn are) and self-adjoint, so is AG⊗A. The orthonormal

basis Φ⊗ Ξ consists of the eigenvectors of AG ⊗ A.

We can define AG ⊗ Id and Id⊗ A, and abbreviated as AG and A if no confusion arises. If

H is also finite dimensional, then AG ⊗ A is the Kronecker product of matrices AG and A.

Definition 4. A filter L is called shift invariant if both AG ◦L = L◦AG and A◦L = L◦A hold

for AG and A in Assumption 1. It is weakly shift invariant if (AG ⊗ A) ◦ L = L ◦ (AG ⊗ A).

These concepts reduce to the traditional notion of shift invariance in GSP if H = C given in

[1] since A is trivial in that case. The following is an example of a shift invariant filter that we

will frequently refer to in the sequel.

Example 5. Let P (x) = a0 + a1x + . . . + apx
p be a polynomial of degree p < ∞. Then,

P (AG ⊗A) commutes with both AG and A and is thus shift invariant. Polynomials on AG ⊗A

give an important family of shift invariant filters, which can be used to approximate other filters

due to the Stone-Weierstrass Theorem.

Shift invariant filters also appear in a large array of applications such as data compression,

customer behavior prediction [2] and machine learning models such as graph convolutional

networks [25], [26], in which polynomials of the shift operators are used.

In general, a weakly shift invariant filter is not necessarily shift invariant. For a simple example,

let A = B =

1 0

0 2

 . Then

A⊗B =


1 0 0 0

0 2 0 0

0 0 2 0

0 0 0 4

 and A⊗ Id =


1 0 0 0

0 1 0 0

0 0 2 0

0 0 0 2

 .
It is easy to see that as long as the top row, bottom row, left-most column and right-most column

of L are zero, then L commutes with A⊗ B, i.e., L is weakly shift invariant. However, as the
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second and third diagonal entries of A⊗ Id are distinct, some of these Ls do not commute with

A⊗ Id. We next describe situations where these two notions are equivalent.

Proposition 1. Suppose L is a filter on S(G,H).

(a) If L is shift invariant, then it is also weakly shift invariant.

(b) If Φ⊗ Ξ in Assumption 1 consists of eigenvectors of L, then L is shift invariant.

(c) The eigenspace of each eigenvalue λ 6= 0 of AG ⊗ A is of finite dimension mλ. If mλ = 1

for all λ, then a weakly shift invariant filter is shift invariant.

(d) Suppose L is self-adjoint. Then L is weakly shift invariant if and only if L is shift invariant.

Proof:

(a) Suppose L is shift invariant. We verify that

(AG ⊗ A) ◦ L = (AG ⊗ Id) ◦ (Id⊗ A) ◦ L

= (AG ⊗ Id) ◦ L ◦ (Id⊗ A)

= L ◦ (AG ⊗ Id) ◦ (Id⊗ A)

= L ◦ (AG ⊗ A).

(b) Since Φ ⊗ Ξ is a basis, its vectors are also eigenvectors to both AG ⊗ Id and Id ⊗ A and

shift invariance of L follows from Defintion 4.

(c) As AG ⊗ A is compact, from [19, Chapter 21.2, Theorem 6]), for λ 6= 0,mλ is finite.

If mλ = 1 for all λ, then all eigenvalues are non-zero and each eigenspace Vλ is one

dimensional. Suppose L is weakly shift invariant. Then each eigenspace Vλ of AG ⊗ A

is an invariant subspace of L, i.e., L(Vλ) ⊂ Vλ. As each Vλ is one dimensional for each

eigenvalue λ and the basis vectors in Φ⊗ Ξ are the eigenvectors of AG ⊗A, they are also

the eigenvectors of L. Therefore, L is shift invariant from (b).

(d) Suppose L is weakly shift invariant. Then, from [19, Chapter 28 Theorem 7], the basis

Φ⊗ Ξ contains the eigenvectors of L and (b) shows that L is shift invariant. The converse

follows from (a).

If each eigenspace of A is one dimensional, we hope the same holds of AG ⊗ A so that by

Proposition 1(c), all weakly shift invariant filters are shift invariant. We have the following result.
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Proposition 2. Suppose that the graph G has at least 3 nodes. Furthermore, each edge weight

of G is chosen randomly according to a distribution absolutely continuous with respect to (w.r.t.)

the Lebesgue measure. Consider AG and A in Assumption 1. If each eigenspace of A is one

dimensional, then the following holds with probability one:

(a) If AG is the adjacency matrix of G, then AG⊗A is injective and each eigenspace of AG⊗A

has dimension 1.

(b) If AG is the Laplacian matrix of G, then the eigenspace corresponding to the eigenvalue 0

of AG ⊗ A is isomorphic to H. Moreover, for each eigenvalue λ 6= 0, the eigenspace has

dimension mλ = 1.

Proof: The proof of this result is technical and can be found in Appendix A.

If AG is the Laplacian matrix, the eigenspace V0 of AG⊗A corresponding to the eigenvalue 0 is

infinite dimensional ifH is infinite dimensional. If L is weakly shift invariant, then the orthogonal

complement H′ of V0 is an invariant subspace of L. To overcome the infinite dimensionality of

V0 so that Proposition 1 is still applicable, we may consider the restriction of AG ⊗ A to H′.

In this case, from Proposition 2, each eigenspace of AG ⊗ A on H′ is one dimensional with

probability one if the edge weights of G are chosen randomly according to a probability density

function.

We end this subsection by providing examples of filters when H is infinite dimensional.

Example 6. If L can be decomposed as a tensor product L = A′G⊗A′, then L is shift invariant

if and only if A′G is shift invariant w.r.t. AG and A′ is shift invariant w.r.t. A.

Similar to Example 4(b), consider H = L2([−1, 1]) and A is the operator

A(f)(x) =

∫ x

−1

f(t)dt−
∫ 1

x

f(t)dt.

Let A′ be the operator on H defined as

A′(f)(x) =

 f(x+ 1) for −1 ≤ x ≤ 0

0 for 0 < x ≤ 1.

Although A′ looks like a shift, L = AG ⊗A′ is not shift invariant w.r.t. AG ⊗A. To see this, we

verify that A◦A′ 6= A′◦A. Consider f(x) = x on [−1, 1]. It is easy to verify that A◦A′(f)(x) > 0

for 0 ≤ x ≤ 1. However, A′ ◦ A(f)(x) = 0 for 0 ≤ x ≤ 1.
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As explained above, polynomials on AG ⊗ A are shift invariant. However, due to infinite

dimensionality, not every shift invariant filter is a polynomial filter as shown in the following

example.

Example 7. Consider H a infinite dimensional Hilbert space and A is as in Assumption 1.

Suppose a ∈ R is a positive real number larger than all the eigenvalues of A. Then A′ =

(1 − a−1A)−1 is a bounded linear transformation. It has a convergent power series expansion

in A, hence A′ ◦A = A ◦A′. If we let L = AG ⊗A′, then L is shift invariant. However, it is in

general not a polynomial in AG ⊗ A.

This does not happen if H is finite dimensional, as 1−a−1A is invertible in the polynomial ring

generated by A (i.e., A′ is a polynomial in A), due to the existence of the minimal polynomial.

B. Compact and Finite Rank Filters

Similar to the definition of a compact operator on the Hilbert space H, a filter L on S(G,H)

is compact if its image of the closed unit ball has compact closure. A filter is of finite rank if

its image is finite dimensional.

In Example 5, if H is infinite dimensional, the filter P (AG ⊗ A) is shift invariant but not

compact if the polynomial P has a non-zero constant term a0. If P does not have any constant

terms, then P (AG ⊗ A) is a compact filter since AG ⊗ A is compact. On the other hand, it is

also easy to construct a compact filter that is non-shift invariant (see comment at beginning of

Example 6).

Corollary 1.

(a) If L is a finite rank filter, then it is a finite sum of compact filters.

(b) If L is a compact filter, then it is the limit (in operator norm) of finite rank filters. More

precisely, suppose we give an ordering {w1, . . . , wi, . . .} of Φ⊗ Ξ and define Li to be the

projection of the image of L to the finite dimensional subspace Si spanned by {w1, . . . , wi}.

Then Li converges to L in operator norm as i→∞.

Proof: The claims (a) and (b) follow from [20, Theorem 4.8.11] and [27, Theorem 4.4],

respectively.

Consequently, to understand a compact filter L, we may instead study the finite rank approx-

imations Li as in Corollary 2(b). Suppose AG ⊗ A has no repeated eigenvalues and L is shift
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invariant. Consider Si in the corollary and let Fi = AG ⊗ A �Si : Si 7→ Si to be the restriction

of AG ⊗ A on Si. Since Si is an invariant subspace of L, abusing notations, we use the same

notation Li : Si 7→ Si for the restriction of Li to Si. Then, we have the standard observation as

[2]: Li is a polynomial in Fi with degree at most dim(Si)− 1 [28].

C. Convolution Filters

Suppose we fix a g ∈ S(G,H). For each f ∈ S(G,H), the element g ∗ f defined by Fg∗f =

FgFf is an element of S(G,H), i.e.,

g ∗ f =
∑
φ⊗ξ

Fg(φ⊗ ξ)Ff (φ⊗ ξ) · φ⊗ ξ, (11)

where
∑

φ⊗ξ |Fg(φ⊗ ξ)|2 <∞ since g ∈ S(G,H). It is easy to verify that g ∗ satisfies

g ∗ (af + h) = ag ∗ f + g ∗ h

for a ∈ C, f, g ∈ S(G,H). Moreover, g ∗ : S(G,H) → S(G,H) is a bounded map (bounded

by supφ⊗ξ |Fg(φ⊗ ξ)| <∞). Therefore, g ∗ is a filter. We call it a convolution filter. In the case

H = C, we are in the situation of traditional GSP. The notion of convolution filter agrees with

the one given in [1].

For each f = φ⊗ξ with φ ∈ Φ and ξ ∈ Ξ, it follows from definition that g∗f = Fg(φ⊗ξ)·φ⊗ξ.

Hence φ⊗ ξ is an eigenvector of g ∗ with eigenvalue Fg(φ⊗ ξ). From Proposition 1(b), g ∗ is a

shift invariant operator. Moreover, since
∑

φ⊗ξ |Fg(φ⊗ ξ)|2 <∞, g ∗ is also a Hilbert-Schmidt

operator [19, Chapter 30.8], which leads to the following corollary.

Corollary 2. The filter L = g ∗ is compact and is the limit (in operator norm) of finite rank

filters.

Proof: As L = g ∗ is Hilbert-Schmidt, it is compact (cf. [19, Chapter 30.8, Exercise 11(g)]).

Therefore, from Corollary 1(b), it is the limit of finite rank filters.

If H is infinite dimensional, a polynomial filter P (AG ⊗A) as in Example 5 is non-compact

if it has a non-zero constant term a0, and is thus not a convolution filter. This differs from

traditional GSP where all shift invariant filters are convolution filters (when AG does not have

repeated eigenvalues) since in traditional GSP, shift invariant filters are polynomials of AG [3]

and H = C is finite dimensional.
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D. Bandlimited Signals and Band Pass Filters

A signal f ∈ S(G,H) is said to be bandlimited if its frequency range (cf. Definition 2) is a

bounded subset of R×R. For any set K ⊂ R×R, we use SK(G,H) to denote the set of signals

whose frequency range belongs to K. As a special example, if G is a point and H = L2([a, b]),

the notion of bandlimitedness agrees with its classical counterpart in the setting of Fourier series.

Lemma 3.

(a) f is bandlimited if and only if its frequency range is a finite set.

(b) If K is bounded, then SK(G,H) is a finite dimensional subspace of S(G,H).

Proof:

(a) As A is compact, the eigenvalues of A is bounded and accumulate only at 0 (cf. [19, Chapter

21.2 Theorem 6]). Therefore, the set {(λφ, λ−1
ξ )} is a discrete subset of R × R and f is

bandlimited if and only if its frequency range is a finite set.

(b) The claim follows immediately from (a).

For each f ∈ S(G,H) and K ⊂ R× R, we define the band pass filter as a projection

PK(f) =
∑

(λφ,λ
−1
ξ )∈K

Ff (φ⊗ ξ) · φ⊗ ξ. (12)

In the F-transform domain, PK is nothing but multiplying with the characteristic function of K.

We have the following observation regarding PK . Note that a band-pass filter is not convolutional

if K is not bounded.

Corollary 3. For any K ⊂ R× R, PK is shift invariant. Furthermore, it is a convolution filter

if and only if K is bounded.

Proof: As each φ ⊗ ξ ∈ Φ ⊗ Ξ is an eigenvector of PK , it is shift invariant from Propo-

sition 1(b). Moreover, it is a convolution filter if and only if the characteristic function of K

is square summable on the discrete set {(λφ, λ−1
ξ ) : φ ∈ Φ, ξ ∈ Ξ}, i.e., K being finite. By

Lemma 3(a), K is finite if and only if it is bounded.

Based on the discussions in this section, we encounter a few scenarios in which finite dimen-

sional subspaces of S(G,H) are useful. This motivates the next section on sampling, in which

we use a collection of points on V × Ω to describe these subspaces.
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E. Adaptive Polynomial Filters

We devote this last subsection to GSP with signals belonging to adaptive networks (Exam-

ple 1(c)) by extending Example 5 to allow different operators A for different vertices in G.

Let m > 0 be a fixed integer. Suppose that at each node u ∈ V , there is a graph Gu with

m vertices. For different nodes u, the graphs Gu might be different (cf. Example 1(c)). The

generalized signal at each node u is defined as a graph signal on Gu. In this case, we can let

H = Cm. Let Au be a filter of the graph signals on Gu, e.g., the Laplacian of Gu. Each Au can

be viewed as an m ×m matrix. A filter M on S(G,C) can similarly be viewed as an n × n

matrix for a fixed ordering of the vertices in V .

We call a filter F an adaptive polynomial filter with respect to (w.r.t.) M and {Au}u∈V if

there are polynomials P1 and P2 such that F =
∑

u∈V P1(M)u ⊗ P2(Au), where P1(M)u has

the same u-th column as P1(M) and 0 elsewhere. Here, ⊗ is the matrix Kronecker product.

Consider now the special case where M and Au are adjacency matrices or Laplacian matrices

of the graphs G and Gu, respectively. Furthermore, suppose both P1 and P2 are degree 1

polynomials. Then, for any signal f ∈ S(G,H), the i-th component of F (f) at a node u

takes contribution from the j-th component of the signal at node v if (u, v) is an edge in G and

(i, j) is an edge in the graph Gv at node v.

Fig. 3. Example to illustrate the action of the adaptive filter given in Example 8. The j-th component of the graph signal at

node u contributes to the i-th component of the graph signal at node v, although i and j may not be connected by an edge in

the graph at node v.

Example 8. Consider Fig. 3. The graph G is a path graph consisting of three nodes u1, u2, u3.

At each node ui, the graph Gui has 4 nodes with different edge connections. Suppose M is the
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adjacency matrix of G and Aui is the Laplacian matrix of Gui for each i = 1, 2, 3. Let P1(x) =

a1x+ b1, P2(x) = a2x+ b2, and F =
∑3

i=1 P1(M)i ⊗ P2(Aui) as above. Let f ∈ S(G,C4). As

an illustration, to evaluate F (f) at (u2, v1), we have

F (f)(u2, v1) = a1

(
a2(f(u1, v1)− f(u1, v3)) + b2f(u1, v1)

)
+ b1

(
a2(f(u2, v1)− f(u2, v2)) + b2f(u2, v1)

)
+ a1

(
a2(f(u3, v1)− f(u3, v2) + f(u3, v1)− f(u3, v4)) + b2f(u3, v1)

)
,

i.e., a1 weights the contribution from Gu1 and Gu3 , b1 weights the contribution from Gu2 , a2

weights contribution of neighbors of v1 in each Gui , and b2 weights contribution of v1 in each

Gui . From this example, we see that the filter F gives a weighted average of the signals in a

neighborhood of each node in a neighborhood of graphs.

From the above example, we see that an adaptive polynomial filter F captures the hidden

structures in C4 given by the graphs at each vertex. The modeling of such relationships is

simplified by using the tools developed in Section II for representing generalized graph signals.

Note that in practice, G and each Gui can have different physical meanings and scales (e.g.,

G can be used to represent time while each Gui represents the correlations between node

observations at time instant ui in Example 1(c)). It is inappropriate to then embed them in

a big ambient graph and perform traditional GSP. This is an important reason for our proposed

framework.

Finally, to conclude this section, we summarize the previous definitions of different filter

families as a Venn diagram in Fig. 4. Convolution filters and bandlimited filters are shift invariant

filters that can be approximated by finite rank filters. Thus, they are particularly useful and they

can be approximated by polynomials on AG⊗A, which can then be learned with an appropriate

optimization procedure from observed signal samples.

V. SAMPLING

In the general setting of this paper, the Hilbert space H usually consists of certain functions

on a domain Ω. Sampling in this context has two stages: choose a subset of nodes V ′ of G, and

for each v ∈ V ′, choose a finite subset from Ω. The second stage can be both synchronous or

asynchronous, depending on whether the sample set can be decomposed into a product V ′×Ω′

for some finite subset Ω′ ⊂ Ω. The need for asynchronous sampling is multi-folded, for example:
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Fig. 4. Summary of various filter families described in this section.

(a) As we have explained in the introduction (cf. Example 1(d)), it is not always easy to achieve

synchronous sampling.

(b) In the case of adaptive networks (Examples 1(c) and 8), the Hilbert space H = Cn is fixed,

however, the coupled transform Av of H at each node v of G changes. Therefore, we may

need to sample differently at different nodes of G.

Our generalized GSP framework allows us to develop a sampling theory that encompasses

asynchronous sampling.

In this section, we make additional assumptions regarding H = L2(Ω). We assume that Ω is

a compact subset of a finite dimensional Euclidean space Rr for some r ≥ 1, and whose interior

is non-empty and connected (for example, a finite closed interval), and H is equipped with the

usual Lebesgue measure. As we pointed out earlier, each f ∈ S(G,H) ∼= Cn⊗H can be viewed

as a function on V × Ω. A discussion of the case H = L2(R) is deferred to Appendix C.

Suppose V is a subspace of S(G,H) with finite dimension dV . We want to choose a finite

subset W ⊂ V ×Ω of size dV such that each f ∈ V is uniquely determined by its values at W .

We say that such a W determines V . For each v ∈ V , let kv(W ) be the number of points of

({v} × Ω) ∩W .

To determine V , W cannot be formed in a completely random way. For example, in general,

we cannot expect that choosing dV points in {v}×Ω for a single v ∈ V does the job. However,
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we have a slightly weaker statement in Theorem 1. Before stating the theorem, recall that a

function g : Ω → C is analytic if g can be extended to a connected open neighborhood U of

Ω such that g has a convergent Taylor series expansion in an open neighborhood of x0 for any

x0 ∈ U . A large family of common functions are analytic such as the polynomial functions,

exponential functions and trigonometric functions.

Theorem 1 (Asynchronous sampling). Suppose H = L2(Ω) where Ω ⊂ Rr is compact, V =

V ′ ⊗H′ is a finite dimensional subspace of S(G,H), where V ′ ⊂ Cn, H′ ⊂ H is spanned by

analytic functions, and W determines V . If W ′ is formed by randomly choosing, according to

a distribution absolutely continuous w.r.t. the Lebesgue measure, kv(W ) points in {v} × Ω for

each v ∈ V , then W ′ determines V with probability one.

Proof: See Appendix B.

Intuitively, the theorem says that if one sampling scheme determines V , then almost every

other sampling scheme with the same number of sampled points at each vertex v achieves the

same effect. This observation makes particular use of the properties of Ω. An illustration is

shown in Fig. 5.

Fig. 5. Consider the graph G = (V,E) with 4 nodes and 4 edges shown in (a) and suppose H = L2([a, b]). Suppose we want

to construct W that determines V = span(Φ′ ⊗ Ξ′) with |Φ′| = 2 and |Ξ′| = 10. In (b), we show the domain [a, b] for each

vertex together with the sampling locations. By Example 9 and Corollary 3(c), we can choose W consisting of 5 points for

each v ∈ V as shown by the red disks in (b). However, according to Theorem 1, to determine V , we can choose W ′ consisting

of red circles, which is a perturbation of W , and W ′ almost surely determines V .
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Before proceeding further, we make the following definition.

Definition 5. Consider k linearly independent vectors Ψ = {ψ1, . . . , ψk} in Cn with k ≤ n.

For each subset I ⊂ {1, . . . , n}, let ψi,I ∈ C|I| be the vector formed by taking the components

of ψi indexed by I . Moreover, use ΨI to denote {ψ1,I , . . . , ψk,I}. Define δ(Ψ) to be the largest

integer t such that there is a partition {1, . . . , n} = I1 ∪ . . . ∪ It into disjoint subsets, and each

ΨIj , 1 ≤ j ≤ t consists of linearly independent vectors.

Consider Φ′ ⊂ Φ of size k. Clearly, δ(Φ′) ≤ bn/kc. In fact, it can be shown using a similar

proof as that of Proposition 2, if the edge weights are chosen according to a distribution absolutely

continuous w.r.t. the Lebesgue measure, then for any k ≤ n and |Φ′| = k, δ(Φ′) = bn/kc with

probability one. The choice of I in Definition 5 corresponds to a choice of vertices VI from V .

Therefore, δ(Φ′) is the maximum number of disjoint subsets of vertices one can form so that

Φ′I has full column rank for each of the subsets I (by definition, we have |I| ≥ |Φ′| for each

I), i.e, if the signals {f(v, x) : v ∈ VI} at the vertices VI for x ∈ Ω are known, then f(v, x) is

uniquely determined for all v ∈ V .

Example 9. Let AG be the Laplacian matrix of an unweighted, undirected cycle graph with 4

nodes. One finds an orthonormal basis Φ = {(1, 1, 1, 1), (−1, 0, 1, 0), (0,−1, 0, 1), (−1, 1,−1, 1)}.

It is easy to verify the following from definition: for any subset Φ′ ⊂ Φ of size 2, δ(Φ′) = 2. For

example, if Φ′ = {(1, 1, 1, 1), (−1, 0, 1, 0)}, we can choose the partition {1, 2, 3, 4} = I1∪I2 with

I1 = {1, 2}, I2 = {3, 4}. As a consequence, ΦI1 = {(1, 1), (−1, 0)} and ΦI2 = {(1, 1), (1, 0)},

and both consist of linearly independent vectors.

We consider the case where V is the span of Φ′ ⊗ Ξ′, with Φ′ and Ξ′ being finite subsets of

Φ and Ξ respectively. To perform sampling, we have two useful extreme cases: (a) we choose a

small subset of V ′ ∈ V and sample only at {v} × Ω for v ∈ V ′; (b) we sample at {v} × Ω for

each v ∈ V with reduced amount of sample points. Case (a) corresponds to the situation where

we make observations only at a small part of the graph; and case (b) corresponds to the situation

where we make limited number of observations at each vertex. In the notation of Theorem 1,

we have the following result regarding the two sampling schemes (see also Fig. 5).

Proposition 3. Assume the same conditions in Theorem 1. Suppose Φ′ and Ξ′ are finite subsets

of Φ and Ξ respectively and V is the span of Φ′ ⊗ Ξ′.
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(a) Any W that determines V has |W | ≥ |Φ′| · |Ξ′|.
(b) We can find V ′ ⊂ V of size |Φ′| such that a set W determines V with kv(W ) = |Ξ′| for each

v ∈ V ′. For a fixed ordering of the vertices V = {v1, . . . , vn}, a specific choice of V ′ is

given by {vi1 , . . . , vi|Φ′|}, which are the vertices corresponding to |Φ′| linearly independent

rows of the matrix whose columns are formed by Φ′.

(c) We can find W that determines V with kv(W ) < |Ξ′|/δ(Φ′) + 1 for each v ∈ V , and∑
v∈V kv(W ) = |Ξ′|.

Proof: See Appendix B.

Proposition 3 together with Theorem 1 provides a simple sampling procedure: Proposition 3(b)

tells us how to choose a sample set of graph vertices V ′ and {kv(W ) : v ∈ V ′} while Proposi-

tion 3(c) allows us to choose kv(W ) = b|Ξ′|/δ(Φ′)c+ 1 for all v ∈ V (in particular, if the edge

weights of G are randomly distributed according to a probability density function, we can choose

kv(W ) = b|Ξ′| · |Φ′|/nc+1). Then Theorem 1 allows us to randomly sample kv(W ) points from

Ω for each v ∈ V ′ or V , using a probability density function. Note that Proposition 3(c) says that

by utilizing the bandlimitedness of the underlying graph, we can use a sampling rate lower than

the Nyquist rate to recover each graph vertex’s signal from its samples. Consider Example 4(b):

if each f(v, ·), v ∈ V , is bandlimited to a frequency band [−B,B] in the classical Fourier series

sense, then it is spanned by the set Ξ′ = {exp(i(m + 1/2)x)/
√

2π : m + 1/2 ∈ [−B,B]} of

eigenvectors. From the Shannon-Nyquist Theorem [15], to recover f(v, ·) for each v individually,

one needs at least 2B samples in [0, 2π]. However, if we further know that {f(v, ·) : v ∈ V } is

bandlimited in the graph dimension and spanned by Φ′ with δ(Φ′) > 1, then a reduced number

of samples (≈ 2B/δ(Φ′) for each vertex) is sufficient to recover all the vertex signals.

We remark that for applications like learning the polynomial form of a finite rank filter (cf.

end of Section IV-B), choosing different sample sets corresponds to a base change. Therefore,

it does not affect the coefficients of the polynomial.

VI. APPLICATIONS AND NUMERICAL RESULTS

In this section, we discuss a few applications and present numerical results. A thorough

discussion of each individual problem can be lengthy and thus beyond the scope of this paper.

We shall make a few simplifying assumptions, focus on how to apply the framework of the paper

and demonstrate why the generalized GSP framework can be useful. In all the applications, we

take AG to be the adjacency matrix and 〈·, ·〉Cn to be the standard dot product in Cn.
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A. Asynchronous Sampling

Consider the asynchronous sampling given by the red circles in Fig. 5. In that example, the

generalized graph signal f ∈ span(Φ′ ⊗ Ξ′) with |Φ′| = 2 and |Ξ′| = 10. We see that although

there are 20 samples in total, it is impossible to recover either f(v, ·) or f(·, x) for each v ∈ V

and x ∈ H individually. This makes it impossible to apply the time-vertex GSP framework as it

requires uniform sampling. However, our asynchronous sampling results in Section V show that

there are enough samples to recover the signal f . To do that, we require the generalized GSP

framework introduced in this paper.

To illustrate this, we consider signal recovery from samples picked “randomly”. More specif-

ically, we choose two images (with the same size) of distinct digits. The graph G is thus the

2D-grid in which each vertex corresponds to a pixel. We take H = L2([−1, 1]) with Chebyshev

polynomials of the first kind {Pj}j≥0 as the basis. A signal f ∈ S(G,H) is chosen such that:

(a) The graph signals f(·, 1) and f(·,−1) correspond to the two chosen digit images.

(b) For each x ∈ [−1, 1], f(·, x) is graph bandlimited to the first k = 300 eigenvalues of the

graph Laplacian matrix. Furthermore, for each node v, the continuous signal f(v, ·) is in

the span of the first B = 8 Chebyshev polynomials.

Essentially, the signal f depicts a smooth change from the first image to the second. Furthermore,

we add white Gaussian noise with SNR= 10B to obtain f̃ .

According to Theorem 1 and Proposition 3, we can expect a recovery by sampling 2k nodes

and B/2 random positions on [−1, 1] for each node. We chose the random positions following a

normal distribution with mean 0 and variance 0.5. Thus, we expect samples to concentrate near

0 and become sparse towards the end points −1 and 1. Such a random procedure means that

with probability one, for each x ∈ [−1, 1], at most one sampled pixel of f̃(·, x) is observed. We

divide [−1, 1] into 4 equal sub-intervals of size 0.5 each, and superimpose the sampled signals

for each interval. They are shown as the first 4 images of Fig. 6. Though the digits are barely

observable from these samples, we indeed see that the two middle images carry more samples.

A basis of the space from which f is chosen is {φi ⊗ Pj}i≤k,0≤j<B, where φi is an eigen-

vector of AG corresponding to the i-th smallest eigenvalue. Denote the samples by W =

(vm, xn)1≤m≤2k,1≤B/2 and f̃(W ) = (f̃(vm, xn))1≤m≤2k,1≤B/2. Then, each f̃(vm, xn) is a noisy

version of ∑
i≤k,0≤j<B

yi,jφi(vm)Pj(xn)
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Fig. 6. The top 4 images are obtained from superimposed signals at the sample nodes and sample positions from

[−1,−0.5], [−0.5, 0], [0, 0.5], [0.5, 1] respectively. The bottom two images are the recovered digits: 0 and 6.

for some y = (yi,j)i≤k,0≤j<B. Let M be the corresponding transformation matrix with entries

φi(vm)Pj(xn). We recover y by solving the optimization:

arg min
y=(yi,j)i≤k,0≤j<B

∥∥∥My − f̃(W )
∥∥∥

2
.

The pixel values of the recovered images are obtained respectively as∑
i≤k,0≤j<B

yi,jPj(−1)φi and
∑

i≤k,0≤j<B

yi,jPj(1)φi.

The recovered images are shown in Fig. 6 and we can see the digits 0 and 6 clearly.

B. Network Information Propagation and Spectral Analysis

In this example, we illustrate the flexibility of generalized GSP over the time-vertex GSP

proposed in [8]. The time-vertex GSP framework of [8] is briefly described in Example 2(c),

and is equivalent to H = L2(G′), where G′ is a finite path graph, in our generalized GSP

framework. This restricts signals at each vertex of G to be a time series over a discrete set

of time indices. Furthermore, to use the joint time-vertex Fourier transform (denoted as TV-

transform for convenience) in [8], the time index set of every vertex needs to be the same.

In this example, we study graph signals generated from information propagation over a

network G (cf. [29]–[34]). Various infections spreading models have been considered under

the independent cascade framework depending on whether an infected node can recover and

become re-infected subsequently. For the Susceptible-Infected (SI) model, any infected node has

a positive probability to infect its neighbors, and remains infected indefinitely. On the other hand,

in the Susceptible-Infected-Recovered (SIR) model, an infected node has a probability to recover,
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afterwhich it cannot be infected again. Finally, in the Susceptible-Infected-Recovered-Infected

(SIRI) model, any infected node can recover and become re-infected again. The difference in

these spreading models results in different dynamical behaviors. For the SI model, all the nodes

become infected almost surely; while for the SIR and SIRI models, it can happen that all the

nodes are recovered if the recovery rate is high and infection rate is low.

(a) Enron email network.

(b) Facebook network.

Fig. 7. The F-transform (top row) and TV-transform (bottom row) spectrum plots for information cascade on the Enron

email and Facebook networks. The horizontal axis shows the graph eigenvalues and the vertical axis shows the Fourier series

frequencies. The plots correspond to (from left to right): SI model (λI = 1), SIR model (λI = 1, λR = 1/5), SIRI model

(λI = 1, λR = 1/2) and SIR model (λI = 1, λR = 1). A lighter color corresponds to a higher magnitude.

Suppose that we use 0 to represent the uninfected status and 1 to represent the infected status
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at each node. Then the infection status of each node v ∈ V follows a step function f(v, ·), which

is L2 if we restrict to a finite observation period. The generalized GSP framework allows us to

perform joint and partial F-transforms on the generalized graph signal f directly. On the other

hand, to apply the time-vertex framework, one needs to perform uniform discrete sampling for

each f(v, ·), which may result loss of information since each f(v, ·) is unbandlimited. Spectral

analysis is a convenient mean to summarize signal features, and in the simulation below, we

perform and compare spectral analysis of f using both the F-transform and TV-transform.

For the simulation setup, we use all three information propagation models (SI, SIR, SIRI) over

the Enron email network (500 nodes and average degree 12.6) and a Facebook1 (1034 nodes

and average degree 32.4) network. The time-stamp of the occurrence of an infection or recovery

event is generated using exponential distributions with means λI or λR, respectively. Let [0, T ]

be the time interval during which observations are made. For each node v ∈ V , we obtain a step

function f(v, ·) ∈ L2([0, T ]).

We compute the joint F-transform and the TV-transform of f . For the F-transform, we first

compute the H-transform (partial F-transform in the time direction), by noting that the Fourier

transform of the standard rectangular function is the sinc function. For the TV-transform, we

divide [0, T ] into uniform time slots and record the status of each node at the beginning of the slot

as the graph signal for that time slot. Note that f(v, ·) for each v ∈ V is not a bandlimited signal

in the time direction. Therefore, taking discrete samples of f(v, ·) at a finite rate cannot recover

the original graph signal. We plot the results in Fig. 7a and Fig. 7b, where the horizontal axis

shows the graph eigenvalues and vertical axis shows the time-direction Fourier series frequencies.

For a fixed λI , it is more difficult for the infection to spread across the network if λR increases.

Therefore, there is a gradual increase in difficulty in the diffusion process for the plots from left

to right in Fig. 7a and Fig. 7b. If the diffusion process is fast, the initial spiky signal disappears

fast in both the graph and time components. Therefore, we expect to see a smaller high intensity

region. This agrees with what we see from Fig. 7a and Fig. 7b: we observe a clear spreading

out of the higher energy part of the spectrum in the F-transform as we go from the leftmost to

the rightmost plot. This phenomenon is less discernible for the TV-transform. Moreover, for the

TV-transform, a common spectral phenomenon is less obvious for different propagation types on

the two networks. This is because the the F-transform utilizes the full time series information at

1https://snap.stanford.edu/data/egonets-Facebook.html
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each graph vertex (i.e., the infection and recovery time stamps) whereas the TV-transform uses

only the aggregated information in each discrete time slot.

C. Learning a Shift Invariant Filter

Consider G with a time series over [0, T ] associated with each vertex. Suppose that the time

interval [0, T ] can be divided into q sub-intervals of equal size T0. The graph time series has

auto-regressive behavior from one sub-interval to the next via a shift invariant filter F . Therefore,

under the generalized GSP framework, we consider H = L2([0, T ]), and the time series for the

i-th sub-interval is denoted as f (i). Our goal is to learn the filter F , where f (i+1) = F (f (i)), for

1 ≤ i < q.

We assume that the signals {f (i)} are bandlimited, i.e., there are numbers B and k such that

each f (i) is bandlimited in the time direction by B, and the graph components are from the span

of the first k eigenvectors of the graph adjacency matrix AG. We shall take the shift invariant

filter F = AG⊗P2(L) where P2 is a degree 2 polynomial and L is the translation by T0 operator

on the interval [0, T ] (with wrap around). We assume uniform sampling where the samples are

chosen from a subset of vertices V ′ according to Proposition 3(b). Let the samples in the i-th

time sub-interval [(i− 1)T0, iT0] be denoted as a |V ′| × B matrix h(i). We further add noise to

each sample to obtain h̃(i). Our objective is to learn P2 from {h̃(i)}.

We perform simulations on different graphs: random ER graphs (1000 nodes), the Enron Email

graph2 (500 nodes), and a synthetic company staff network (80 nodes, [35]). Let T0 = 2π and

q = 5. For each experiment, we consider both B = 10 and B = 20, and set k = 0.4|V |. We

randomly generate coefficients of the polynomial P2 uniformly from [0, 1]. The initial signal f (1)

is generated as follows: we first generate real graph signals in the span of the first k eigenvectors

of AG with uniformly randomly chosen coefficients in [0, 1]. Then, we use each component of

these vectors as Fourier coefficients to generate a generalized signal at the corresponding vertex.

We choose a subset of vertices V ′ satisfying Proposition 3(b) and sample B time samples from

the vertices in V ′ in each sub-interval [(i− 1)T0, iT0], 1 ≤ i ≤ q. Independent Gaussian noise is

then added to each sample h(i) to give a sequence of noisy (matrix) samples {h̃(i) : 1 ≤ i ≤ q},

from which we learn P2.

The recovery of F preceeds in two steps (both involves an L2 optimization):

2https://snap.stanford.edu/data/email-Enron.html
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Fig. 8. Plot of the prediction error against the SNR (in dB).

(a) For the t-th sample time in [(i−1)T0, iT0] for 1 ≤ i ≤ q, we recover the entire graph signal

at that sample time from the samples of V ′ as follows. Let M be the matrix with k columns

corresponding to the sub-collection of eigenvectors of AG generating the signals. Let MV ′

be formed by taking rows corresponding to indices of V ′. The graph signal f (i)(·, t) is

recovered by finding:

f̃ (i)(·, t) = M · arg min
x

∥∥∥MV ′x− h̃(i)(·, t)
∥∥∥

2
,

where h(i)(·, t) is the t-th column of h(i).

(b) Find P2 by solving (‖·‖F below is the Frobenius norm):

min
P2

∑
1≤i≤q

∥∥∥AG ⊗ P2(L)(f̃ (i))− f̃ (i+1)
∥∥∥2

F
.

The performance is evaluated by computing the prediction error, i.e.,∥∥∥(AG ⊗ P̂2(L))(h(m))− h(m+1)
∥∥∥
F

‖h(m+1)‖F
,

where P̂2 is the estimated P2. In Fig. 8, we plot the prediction error against the signal to noise

ratio (SNR) in dB. We see that our procedure can learn F well, and the performance improves

with less noise.
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D. Adaptive Graph Signals

In the third case study, we consider time series of graph signals with evolving graphs. In

practice, a graph can evolve over time. Therefore even though a time series of graph signals

belong to (the common) H = Cn, it can be inappropriate to disregard the underlying graphs

that evolve over time. Application examples include sensor networks deployed in a dynamic

environment like on the ocean surface, and social networks that evolve over time due to joining

and leaving of users.

Consider Example 8, where G = (V,E) is a path graph representing the time line with

V = {1, 2, . . . , n} being the time indices, and each Gt for t ∈ V represents a graph with m

vertices at time t. With an initial graph G0, we generate a sequence of graphs according to the

evolution model proposed in [11]. For each t = 1, . . . , n, let At be the adjacency matrix of Gt,

which is assumed to be known.

At each time or vertex t, we have a graph signal f(t) ∈ H = Cm, which we assume to be

generated from a known base signal g ∈ S(G,H) and a polynomial filter F , i.e., f = F (g) in

S(G,H). The filter F has the form F =
∑

1≤t≤n P1(AG)t ⊗ P2(At), where both P1 and P2 are

degree 1 polynomials. In other words, there are parameters a0, a1, b0, b1 such that

f(t) = a0 (b1Atg(t) + b0g(t)) + a1 (b1At−1g(t− 1) + b0g(t− 1)) .

In our experiments, we observe f̃(t) = f(t) + N(t) for odd time indices, where N(t) is an

additive white Gaussian noise. Our objective is to infer F (i.e, the parameters a0, a1, b0, b1) from

the noisy samples {f̃(t) : t odd} by solving the optimization problem:

min
∑

t≥3, odd

∥∥∥F (g)(t)− f̃(t)
∥∥∥2

2
.

The performance is evaluated by computing the recovery error of f1 at even time slots:

∑
t≥2, even

∥∥∥F̂ (g)(t)− f(t)
∥∥∥

2

‖f(t)‖2

,

where F̂ is the estimated F . We perform simulations by choosing the initial graph G0 to be

the synthetic company staff network (80 nodes), grid (400 nodes), and the Enron Email graph

(500 nodes). We summarize the results in Fig. 9. The optimization is non-convex, and may yield

larger error with more noise. However, the procedure can learn F well with less noise.
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VII. CONCLUSION

In this paper, we have introduced the notion of graph signals in a separable Hilbert space,

which we called generalized graph signals. We demonstrated how to define F-transform as an

analogy to the classical Fourier series and Fourier transform in traditional GSP. This leads to the

notion of frequency. We developed theories on filtering and sampling, which find applications in

reducing signals in infinite continuous domains to more manageable finite domains. We presented

several scenarios in which the generalized GSP framework is more applicable than the traditional

or time-vertex GSP frameworks.

The generalized GSP framework and its corresponding theory discussed in this paper is not

only mathematically elegant but practical. We have only scratched the surface of utilizing this

framework in different applications due to space constraint. In future work, it would be of

interest to apply our framework to real datasets and to develop adaptations to different scenarios

of interest. Another future direction involves developing a statistical signal processing theory on

top of the generalized GSP framework.
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APPENDIX A

PROOF OF PROPOSITION 2

(a) We first show that with probability one, AG is injective. We notice that AG is a symmetric

matrix with 0’s along the diagonal. Such matrices are parametrized by the upper triangular

entries θ = (AG(i, j))1≤i<j≤n. The determinant of AG is a (multi-variate) polynomial

M in θ. As the adjacency matrix of the complete graph has non-zero determinant, the

polynomial M is not identically 0. In view of the parametrization, the set A0 of adjacency

matrices with zero determinant is a codimensional 1 closed submanifold of the space of

all adjacency matrices. Hence, the measure of A0, for any measure absolutely continuous

w.r.t. the Lebesgue measure, is zero. This implies that AG⊗A is injective with probability

one since A is assumed to be injective.

We next show that each eigenspace of AG ⊗ A has dimension 1 with probability one.

From Assumption 1 and the proposition hypothesis, the set of eigenvalues λ(A) of A is

countable and each of its eigenspaces is one dimensional. Let A be the set of injective

adjacency matrices AG such that AG ⊗ A has repeated non-zero eigenvalues. It suffices to

show the (product) Lebesgue measure, parametrized by the strict upper triangular entries,

of A is 0. We may further decompose A = A1 ∪ A2 as follows:

(i) AG is in A1 if AG itself has repeated eigenvalues.

(ii) There are λ1, λ2 ∈ λ(A), λ1 6= λ2 such that λ1AG and λ2AG has one common eigenvalue.

The set of such AG is denoted by A2,λ1,λ2 . The set A2 = ∪λ1,λ2A2,λ1,λ2 is a countable

union.

We show that both A1 and A2 have zero Lebesgue measure. In addition to the strict upper

triangular entries θ, we introduce one more parameter µ for an eigenvalue of AG. In the

case of A1, if ν is a repeated eigenvalue of AG, then the parameters (θ, ν) satisfy two

conditions simultaneously:

(i) P (θ, ν) = 0, where P = det(νId− AG) is the characteristic polynomial of AG.

(ii) P ′(θ, ν) = 0, where P ′ is the partial derivative of P w.r.t. ν.

As there are AG such that P and P ′ do not vanish simultaneously, the intersection of the

two locus P = 0 and P ′ = 0 defines a codimension ≥ 1 locus in the space of adjacency

matrices (having µ adds one dimension and two independent relations remove two degrees

of freedom). Therefore, A1 has Lebesuge measure 0.
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For A2, we work with the countable union⋃
λ1 6=λ2∈λ(A)

A2,λ1,λ2 .

By countable subadditivity of measure, it suffices to show that each A2,λ1,λ2 has measure 0.

In this case, we use ν to parametrize the common eigenvalue of λ1AG, λ2AG. The parameters

(θ, ν) again satisfy 2 conditions:

(i) P (θ, ν/λ1) = 0, where P is the characteristic polynomial.

(ii) P (θ, ν/λ2) = 0.

We need to show that P (θ, ν/λ1) and P (θ, ν/λ2) are independent (the locus of one is not

contained in the locus of the other). As above, we need to find AG such that P (θ, ν/λ1)

and P (θ, ν/λ2) do not vanish simultaneously. We shall briefly indicate how such AG is

chosen and omit the details. If λ1/λ2 6= −1 and n is even, AG can be chosen with 1 at

AG(i, n + 1 − i) and 0 otherwise. If λ1/λ2 6= −1 and n is odd, we let the top-left 3 × 3

block being the adjacency matrix of the size 3 complete graph and let the bottom-right

n − 3 × n − 3 block be chosen as the even case above. If λ1/λ2 = −1, we choose three

adjacency matrices (randomly choosing edge weights usually suffices) AG1 , AG2 , AG3 of

size 3 × 3, 4 × 4, 5 × 5 respectively, such that the absolute value of their eigenvalues are

all distinct. Now for any n ≥ 3, we can build up an n× n adjacency matrix by combining

copies of AG1 , AG2 and AG3 along the diagonal blocks. By our choice, P (θ, ν/λ1) = 0 and

P (θ, ν/λ2) = 0 do not have common solutions. Therefore, by the same reasoning as above,

the measure of A2,λ1,λ2 is 0. This proves the claim.

(b) By the similar argument as to (a) on the injectivity part (by considering the derivative of

the characteristic polynomial at 0), with probability one , the 0-eigenspace V0 of AG is one

dimensional (consisting of vectors with the same entry in every row). Hence V0 ⊗H ∼= H.

The rest is a statement on the restriction of AG ⊗ A to the orthogonal complement of V0;

and the proof is similar to (a).

APPENDIX B

PROOFS OF RESULTS IN SECTION V

A. Proof of Theorem 1

Let W =
⋃
v∈V {(v, xv,t)}1≤t≤kv . Suppose we form W ′ by randomly choosing kv = kv(W )

points in {v} × Ω, denoted by {(v, yv,t)}1≤t≤kv . Let k be the dimension of V , which is not
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more than
∑

v kv. We may re-order and re-label W = (wl)1≤l≤k = ((vl, xl))1≤l≤k and W ′ =

(w′l)1≤l≤k = ((vl, yl))1≤l≤k such that wl and w′l belong to the same {vl} × Ω.

Suppose (gi)1≤i≤k forms a basis of V , where for each i = 1, . . . , k, gi =
∑

j ei,j ⊗ fi,j ,

ei,j ∈ Cn, and fi,j ∈ H are analytic for all j. Then each f ∈ V takes the form
∑

1≤i≤k aigi.

The coefficient system (ai)1≤i≤k is uniquely determined if and only if the k × k square

matrix MW ′ = (gi(w
′
l))1≤i,l≤k is invertible, i.e., it has non-zero determinant. For W , let MW =

(gi(wl))1≤i,l≤k.

Consider w′l = (vl, yl) and gi(w
′
l) =

∑
j ei,j(vl)fi,j(yl). The factor ei,j(vl) is common for the

(i, l)-th entries of both MW and MW ′ . Therefore, the determinant det(MW ′) is a polynomial in

{fi,j(yl)}, and hence analytic in the variables {yl}. It is known that, by analyticity, the following

holds: the subset Y ⊂ Ωk of (yl)1≤l≤k making det(MW ′) = 0 either has zero Lebesgue measure

or Y is the entire Ωk. However, the existence of {xl}1≤l≤k (coming from {wl}1≤l≤k) shows that

the latter case is not possible. As a consequence, Y has zero measure for any measure absolutely

continuous w.r.t. the Lebesgue measure.

B. Proof of Proposition 3

Claim (a) follows directly from f =
∑

Φ′⊗Ξ′ Ff (φ⊗ ξ) · φ⊗ ξ for any f ∈ V .

We next show claims (b) and (c). Let V = {v1, . . . , vn}, 1 ≤ t ≤ δ(Φ′), and {1, . . . , n} =

I1 ∪ . . . ∪ It a union of disjoint subsets such that each Φ′Ij consists of linearly independent

column vectors (cf. Definition 5). Therefore, |Ij| ≥ |Φ′| for all j = 1, . . . , t. Since Φ′Ij viewed as

a |Ij| × |Φ′| matrix contains at least |Φ′| linearly independent rows, we can choose row indices

il ∈ Ij , l = 1, . . . , |Φ′|, corresponding to linearly independent rows. Let VIj = {vi1 , . . . , vi|Φ′|} ⊂

V be the corresponding graph vertices. Then, for any x ∈ span(Ξ′), u ∈ VIj and f ∈ V , we

have

f(u, x) =
∑
φ∈Φ′

φ(u)f(φ, x),

and {f(φ, x) : φ ∈ Φ′} is uniquely determined by the values {f(u, x) : u ∈ VIj}. Therefore,

f(v, x) is uniquely determined for all v ∈ V since f ∈ V = span(Φ′ ⊗ Ξ′).

Since |Ξ′| is finite, by a standard induction argument (identical to the proof that a n × k

rank k matrix has k independent rows), we can find |Ξ′| points Ω′ ⊂ Ω such that for each

v ∈ V and f(v, ·) ∈ span Ξ′, f(v, ·) is uniquely determined by its values at Ω′. For any partition

Ω′ =
⋃

1≤j≤t Ωj into t disjoint subsets, we can construct W as follows: if i ∈ Ij, then W ∩
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({vi} × Ω) = {vi} × Ωj . Then, for each x ∈ Ωj , v ∈ V and f ∈ V , we have shown above that

f(v, x) is uniquely determined. As Ω′ = ∪1≤j≤tΩj , f is uniquely determined.

The claims (b) and (c) correspond to t = 1 and t = δ(Φ′) respectively, where in case (c), we

choose |Ωj| < |Ξ′|/t+ 1 for each j ≤ t.

APPENDIX C

SQUARE INTEGRABLE FUNCTIONS OF THE LINE

In this section, we present analogous discussion for the case H = L2(R). In this case, the

classical Fourier transform

f(v, x) 7→ f̂(v, ·)(ω) =

∫ ∞
−∞

f(v, x)e−iωxdx (13)

for f(v, ·) ∈ H can no longer be viewed as a base change as the functions e−iωx are not square

integrable (a unified approach requires the duality theory of locally compact abelian groups,

which we would like to avoid). However, most parts of the theory can be developed in a parallel

way. We will point out the differences in due course.

Same as in Assumption 1, Φ is an orthonormal basis consisting of the eigenvectors of the graph

shift operator. For f ∈ S(G,H), φ ∈ Φ and ω ∈ R, we may still define the joint F-transform as

Ff (φ, ω) =
∑
v∈V

f̂(v, ·)(ω)φ(v).

and the partial F-transforms as

Hf (ω)(v) = f̂(v, ·)(ω), Gf (φ)(x) = 〈f(·, x), φ〉Cn .

so that

Ff (φ, ω) = 〈Hf (ω)(·), φ〉Cn = Ĝf (φ)(ω).

We can similarly define the frequency range of f as {(λφ, ω) : Ff (φ, ω) 6= 0, φ ∈ Φ},

where λφ is the eigenvalue of φ. It is bandlimited if its frequency range is bounded. We can

then define a band-pass filter by removing frequency components outside a designated frequency

range. To define convolution filters, we can make use of the convolution operator on H. Suppose

g ∈ S(G,H) is such that g(v) ∈ L2(R)∩L1(R) for each v ∈ V (e.g., if g is compactly supported).

For f ∈ S(G,H), we define the convolution g ∗ f ∈ S(G,H) be such that

Fg∗f (φ, ω) = Fg(φ, ω)Ff (φ, ω)
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for φ ∈ Φ, ω ∈ R.

A discrete subset W of V ×R is of sample rate r if for each connected interval I ⊂ R of size

l, the shifted interval Ix = {x + y : y ∈ I} satisfy |(V × Ix) ∩W | = rl for all x large enough.

Suppose we have a closed subspace V of S(G,H), which is bandlimited. There is a bounded

subset K ⊂ C × R such that the frequency range of each f ∈ V is contained in K. We say a

countable discrete subset W ⊂ V × R with positive sample rate determines V if each f ∈ V is

uniquely determined by its values at W as long as the values at W are square summable.

Let l2(W ) be the space of square-summable sequences (xw)w∈W indexed by W . We give W

the discrete topology and define the (evaluation) map

eW : V → l2(W )

such that the component of the sequence eW (f) ∈ l2(W ) at the index w = (v, x) ∈ W is

eW (f)w = f(v, x). Suppose W determines V . Then, eW is injective. For each w ∈ W , let χw

be the characteristic sequence indexed by W that has value 1 at w and 0 at w′ ∈ W\{w}.

The standard basis of l2(W ) is given by (χw)w∈W . Let fw = e−1
W (χw). We say that W has a

rapidly vanishing standard basis if for every pair t, t′ ∈ R and v ∈ V , the sum
∑

w∈W |fw(v, t)−

fw(v, t′)|2 <∞.

An example of a W with a rapidly vanishing standard basis is W consists of uniform samples

at each vertex so that fw, w ∈ W , are uniform translates of the sinc function. We have the

following version of the asynchronous sampling theorem, which says by perturbing a finite

subset of W that determines V still determines V . Changing finitely many sample points does

not change the sample rate.

Theorem 2 (Asynchronous sampling for H = L2(R)). Suppose V ⊂ S(G,H) is a closed

subspace that is bandlimited and W determines V with a rapidly vanishing standard basis. Let

W1 be any finite subset of W . Let W2 be W such that each w ∈ W1 is replaced by r(w) such

that both w and r(w) belong to {v}×R for the same graph node v ∈ V , and r(w) 6= r(w′) for

any w 6= w′. Then, W2 determines V .

Proof: By the construction of W2 from W , we have a bijection W → W2, w 7→ r(w) such

that w = r(w) for w /∈ W1. Let r(W1) = {r(w) : w ∈ W1}. By composing eW2 with e−1
W , we

obtain a linear map:

ψ = eW2 ◦ e−1
W : l2(W )→ l2(W2).
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To prove the theorem, it suffices to show that ψ is invertible.

By assumption, {fw = e−1
W (χw) : w ∈ W} is rapidly vanishing. The image ψ(χw) =

(fw(w′))w′∈W2 is a series that is 0 except at r(W1) ∪ {r(w)}. It can be verified that:∥∥ψ(χw)− χr(w)

∥∥2

2
=
∑
x∈W1

|fw(r(x))− fw(x)|2.

We then have ∑
w∈W

∥∥ψ(χw)− χr(w)

∥∥2

2
=
∑
w∈W

∑
x∈W1

|fw(r(x))− fw(x)|2.

By our assumption, for each pair x and r(x), there is v ∈ V such that x = (v, t) and r(x) = (v, t′)

with t, t′ ∈ R. Therefore, we have∑
w∈W

∥∥ψ(χw)− χr(w)

∥∥2

2
=
∑
w∈W

∑
(v,t)∈W1

|fw(v, t′)− fw(v, t)|2

=
∑

(v,t)∈W1

∑
w∈W

|fw(v, t′)− fw(v, t)|2. (14)

Therefore, the right-hand side of (14) is finite as W1 is finite. As {χr(w) : r(w) ∈ W2} forms an

orthonormal basis of l2(W2), by a result due to Paley and Wiener [19, Chapter 22.5, Theorem 7],

we know that {ψ(χw) : w ∈ W} forms a basis of l2(W2) and the proof is complete.

REFERENCES

[1] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The emerging field of signal processing on

graphs: Extending high-dimensional data analysis to networks and other irregular domains,” IEEE Signal Process. Mag.,

vol. 30, no. 3, pp. 83–98, May 2013.

[2] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on graphs,” IEEE Trans. Signal Process., vol. 61, no. 7,

pp. 1644–1656, April 2013.

[3] ——, “Big data analysis with signal processing on graphs: Representation and processing of massive data sets with irregular

structure,” IEEE Signal Process. Mag., vol. 31, no. 5, pp. 80–90, Sept 2014.

[4] A. Gadde, A. Anis, and A. Ortega, “Active semi-supervised learning using sampling theory for graph signals,” in Proc.

ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, New York, NY, USA, 2014, pp. 492–501.

[5] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, “Learning Laplacian matrix in smooth graph signal representations,”

IEEE Trans. Signal Process., vol. 64, no. 23, pp. 6160–6173, Dec 2016.

[6] H. E. Egilmez, E. Pavez, and A. Ortega, “Graph learning from data under Laplacian and structural constraints,” IEEE J.

Sel. Top. Signal Process., vol. 11, no. 6, pp. 825–841, Sept 2017.

[7] R. Shafipour, S. Segarra, A. G. Marques, and G. Mateos, “Network topology inference from non-stationary graph signals,”

in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, March 2017, pp. 5870–5874.

[8] F. Grassi, A. Loukas, N. Perraudin, and B. Ricaud, “A time-vertex signal processing framework: Scalable processing and

meaningful representations for time-series on graphs,” IEEE Trans. Signal Process., vol. 66, no. 3, pp. 817–829, Feb 2018.



39
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