
1

Robust Matrix Completion via Maximum
Correntropy Criterion and Half Quadratic

Optimization
Yicong He, Fei Wang, Member, IEEE, Yingsong Li, Member, IEEE, Jing Qin, Member, IEEE Badong Chen,

Senior Member, IEEE

Abstract—Robust matrix completion aims to recover a low-
rank matrix from a subset of noisy entries perturbed by complex
noises, where traditional methods for matrix completion may
perform poorly due to utilizing l2 error norm in optimization.
In this paper, we propose a novel and fast robust matrix
completion method based on maximum correntropy criterion
(MCC). The correntropy based error measure is utilized instead
of using l2-based error norm to improve the robustness to
noises. Using the half-quadratic optimization technique, the
correntropy based optimization can be transformed to a weighted
matrix factorization problem. Then, two efficient algorithms are
derived, including alternating minimization based algorithm and
alternating gradient descend based algorithm. The proposed
algorithms do not need to calculate singular value decomposition
(SVD) at each iteration. Further, the adaptive kernel selection
strategy is proposed to accelerate the convergence speed as well
as improve the performance. Comparison with existing robust
matrix completion algorithms is provided by simulations, showing
that the new methods can achieve better performance than
existing state-of-the-art algorithms.

I. INTRODUCTION

Matrix completion is a novel technique that can fulfill
the missing entries of a partially observed low-rank matrix
[1], [2], [3]. Matrix completion takes advantages of low-rank
properties of the matrix, which is always available in the
fields such as computer vision [4], [5], recommender systems
[6] and machine learning [7], where the data can always be
well approximated by low-rank representation or structure. A
typical application of matrix completion is the recommender
system [8]. In the recommender system, how to guide users’
behavior based on existing data is a crucial problem that
should be considered. For example, Netflix–the world’s largest
online movie renter, which wants to recommend movies that
might be of interest to users based on their behavior (ratings
of various types of movies). User behavior consistency can be
expressed by low rank property, thus matrix completion can
be applied to predict the missing ratings of the users [9], [10].

Yicong He, Fei Wang and Badong Chen are with the Institute of Arti-
ficial Intelligence and Robotics, Xi’an Jiaotong University, China, e-mails:
heyicong@stu.xjtu.edu.cn, wfx@xjtu.edu.cn, chenbd@xjtu.edu.cn.

Yingsong Li is with the College of Information and Communication Engi-
neering, Harbin Engineering University, Harbin 150001, China and National
Space Science Center, Chinese Academy of Sciences, Beijing 100190, China,
e-mail: liyingsong@ieee.org

Jing Qin is with the Center of Smart Health, School of Nurs-
ing, The Hong Kong Polytechnic University, Hongkong, China. e-
mail:harryqinjingcn@gmail.com

Although matrix completion is, in general, an NP-hard
problem, in the last decades various algorithms have been
proposed to tackle this problem and show accurate reconstruc-
tion performance. In particular, by formulating the problem as
a constrained rank (or nuclear norm) minimization problem,
several algorithms have been developed including normalized
iterative hard thresholding (NIHT) [11], iterative soft thresh-
olding (IST) [12], singular value thresholding (SVT) [13] and
fixed point continuation (FPC) [14]. These algorithms need
to calculate full or truncated singular value decomposition
(SVD) at each iteration, which may cause high computational
complexity especially when the data scale is large. To reduce
the performance degradation caused by SVD computation,
recently the matrix factorization model is applied to solve
the matrix completion problem [3], [15], [16], [17]. In matrix
factorization, the target matrix is represented as a multiple of
two matrices so that the low-rank property can be guaranteed.
Thus algorithms based on matrix factorization can naturally
overcome the drawback of low efficiency in SVD computation.
The representative algorithms include Power factorization (PF)
[18], Low-rank Matrix Fitting (LMaFit) [19] and alternating
steepest descent (ASD) [20].

Traditional matrix completion often utilizes l2 error norm in
optimization, which can perform well under Gaussian noise as-
sumption. However, in real applications, the observations may
contain outliers. For example, in the recommender systems,
the rate may exist human errors which is unreliable. In this
case, the l2 error norm may not properly represent the error
statistics and the performance of traditional matrix completion
algorithms may degrade. To improve the robustness against
outliers, several robust matrix completion algorithms have
been proposed. In [21], the authors utilize lp error norm-
based the cost function and solve the optimization problem by
lp regression and alternating direction method of multipliers
(ADMM). In [22], the authors propose two new robust loss
functions and utilize a distributed optimization framework [23]
to solve the problem in parallel.

In recent years, an information theoretic learning (ITL) [24]
measure called correntropy has been proposed to deal with the
robust learning problem [25], [26]. Correntropy is a smooth
local similarity measure, which has its root in Renyi’s entropy
[27]. With a Gaussian kernel, correntropy involves all the
even moments of the error and is insensitive to large outliers
[28]. Compared with l1 norm, correntropy based methods can
achieve better performance especially when the outliers are

ar
X

iv
:1

90
3.

06
05

5v
1

 [
cs

.I
T

]
 1

4
M

ar
 2

01
9

2

large [29], [30]. Applying correntropy to matrix completion,
the correntropy based iterative soft and hard thresholding
strategies have been proposed [31]. However, as mentioned
before, the iterative thresholding based algorithms need to
compute the SVD and will suffer from high computational
cost when data scale is large.

In the present paper, we combine correntropy with matrix
factorization method and propose a new cost function for
robust matrix completion. The correntropy measure is utilized
instead of using l2 norm, thus the negative effects of outliers
can be alleviated. Using matrix factorization, there is no need
to compute the SVD at each iteration. Further, to efficiently
solve the correntropy based optimization, the half-quadratic
(HQ) technique is adopted [32]. Using HQ, the complex
optimization problem can be transformed into a quadratic op-
timization, and the traditional quadratic optimization method
can be applied.

Based on HQ, we propose two algorithms for robust ma-
trix completion. The first algorithm utilizes the traditional
alternating minimization method [17]. At each minimization
step, the correntropy based optimization is transformed to a
weighted least squares problem so that the solution can be
iteratively obtained. The second algorithm directly transforms
the correntropy based cost to a weighted matrix completion
problem and then utilize the alternating steepest descend
(ASD) method [20]. Both algorithms utilize HQ technique but
in different ways for optimization. Moreover, taking advantage
of the properties of correntropy, we propose an adaptive
kernel width selection strategy for the proposed algorithms
to improve the convergence speed as well as reconstruction
accuracy. In summary, the main contributions of this paper
are:

1) A new cost function for robust matrix completion is
proposed.

2) Two efficient algorithms are developed via HQ tech-
niques.

3) Extensive simulations demonstrate the superior perfor-
mance of the proposed algorithms compared with other state-
of-the-art algorithms.

The paper is organized as follows. In section II we briefly
review the concept of matrix completion and maximum corren-
tropy criterion. In Section III we propose the new correntropy
based matrix completion cost and propose two HQ based
algorithms. In Section IV, simulation results are presented to
demonstrate the reconstruction performance. Finally, conclu-
sion is given in Section VI.

II. PRELIMINARIES

A. Matrix completion

Consider a low-rank matrix X ∈ Rm×n where only a
subset of entries can be observed. In particular, by defining
the observed subset matrix Ω ∈ Rm×n where

Ωi,j =

{
1, (i, j) ∈ Ω
0, (i, j) /∈ Ω

(1)

the observed matrix can be represented as Ω ◦X , where ◦
denotes the Hadamard product. The goal of matrix completion

is to recover the whole entries of X based on observed entries
Ω◦X and low rank property. In detail, the matrix completion
can be formulated as the following constrained minimization
problem

min
M

rank(M) s.t. Ω ◦M = Ω ◦X (2)

where M is the recovered matrix and ◦ denotes the Hadamard
product.

The above optimization is an NP-hard and non-convex prob-
lem. In the last decade, various methods have been proposed
to deal with the above matrix completion problem. Typically,
there are three approaches, which are shown as follows:

1) Direct approach: Although Eq.(2) is NP-hard, methods
based on iterative hard thresholding (IHT) technique [33] can
still be directly applied to the optimization problem. Similar
to compressive sensing, at each iteration, the IHT approach
utilizes gradient descent to decrease a measurement fidelity
objective and then perform the best rank-R approximation.
Note that the to obtain the largest R singular values at each
iteration, the truncated SVD should be performed. Moreover,
the normalized IHT (NIHT) [11] has also been introduced to
matrix completion, which shows better performance than IHT.

2) Convex relaxation: A popular method for solving a
non-convex optimization problem is to relax the nonconvex
optimization to a convex problem. In particular, the convex
nuclear norm is always used to replace the nonconvex rank
minimization, i.e.

min
M
‖M‖∗ s.t. Ω ◦M = Ω ◦X (3)

where ‖M‖∗ denotes the sum of all singular values of M .
The semidefinite programming (SDP) [34] and iterative soft
thresholding (IST) [12] algorithms can be applied to solve
Eq.(3) Note that to obtain the singular values, the SVD still
should be performed at each iteration.

3) Matrix factorization: The above methods are both SVD
based methods, and may suffer from high computational com-
plexity when dealing with large scale data. Matrix factorization
is a simple way to tackle this problem. Specifically, the
recovered matrix M is factorized to multiple of two matrices
U ∈ Rm×r and V ∈ Rr×n where r is the rank of M .
The matrix factorization then solves the matrix completion
by utilizing following objective function

min
U ,V
‖Ω ◦ (X −UV) ‖2F (4)

where ‖X‖F denotes the Frobenius norm of matrix X . The
solution of (1.3) can be solved via alternating optimization
methods. The representative algorithms include PowerFactor-
ization (PF) [18], low-rank Matrix Fitting (LMaFit) [19] and
alternating steepest descent (ASD) [20].

B. Maximum Correntropy Criterion

Correntropy is a local and nonlinear similarity measure
between two random variables within a ”window” in the joint
space determined by the kernel width. Given two random
variables X and Y , the correntropy is defined by [28]

V (X,Y) = E[κ(X,Y)] =

∫
κ(x, y)dFXY (x, y) (5)

3

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
e

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
J

MSE
C-loss =0.5
C-loss =0.2

Fig. 1. Curves of J versus error e under different cost functions

where κσ is a shift-invariant Mercer kernel, and FXY (x, y)
denotes the joint distribution function of (X,Y). Given a
finite number of samples {xi, yi}Ni=1, the correntropy can be
approximated by

V̂ (X,Y) =
1

N

N∑
i=1

κ(xi, yi) (6)

In general, the kernel function of correntropy κ(x, y) is the
Gaussian kernel

κ(x, y) = Gσ(e) = exp(− e2

2σ2
) (7)

where e = x− y and σ is the kernel width.
Compared with the l2 norm based second-order statistics

of the error, correntropy involves all the even moments of
the difference between X and Y and is insensitive to outliers.
Replacing the second-order measure with correntropy measure
leads to the maximum correntropy criterion (MCC) [35]. The
MCC solution is obtained by maximizing the following utility
function

Jmcc = E [Gσ(e(i))] (8)

Moreover, in practice, the MCC can also be formulated as
minimizing the following correntropy-induced loss (C-loss)
function [36], [37]

JC−loss =
1

M

M∑
i=1

σ2 (1−Gσ(e(i))) (9)

The above cost function is closely related to the Welsch’s cost
function originally introduced in [38]. The C-loss function
with different kernel width σ are shown in Fig.1. One can
observe that the C-loss function can effectively alleviate the
impact of large errors. Moreover, selecting different kernel
widths can adjust the range of sensitivity to outliers, while the
error measure near zero will not be highly affected.

III. PROPOSED ALGORITHMS

In this section, we combine matrix factorization with cor-
rentropy measure and propose a new objective function. Then

we propose two efficient algorithms to solve the optimization
problem.

Eq.(4) can be further rewritten as the sum of weighted
squared residuals

min
U ,V

J2(U ,V) =

n∑
i=1

m∑
j=1

Ωi,j

(
Xi,j − (UV)i,j

)2

(10)

where Ai,j denotes the {i, j}-th entry of matrix A. When the
observed entryXi,j contain large outliers, the l2 error measure
may not work well because the outliers may highly bias the
optimization. To improve the robustness, in this paper we
introduce the correntropy as the error measure. In particular,
by replacing the l2 error measure with correntropy, one can
obtain the following new optimization problem:

min
U ,V

JGσ (U ,V)=

n∑
i=1

m∑
j=1

Ωi,jσ
2
(

1−Gσ
(
Xi,j−(UV)i,j

))
(11)

The above equation can also be simplified as the following
representation

min
U ,V

JGσ (U ,V) = ‖Ω ◦ (X −UV) ‖Gσ (12)

The formulation of the above correntropy based optimization
is closely related to [39] and [40]. In particular, when matrix
X is fully observed (i.e. Ωi,j = 1 for all i, j), Eq.. equals to
the optimization of robust PCA based on MCC [39]. Further,
when continues to impose constrains that both U and V
are non-negative matrices, the optimization in Eq.(12) can
be equivalent to the correntropy based nonnegative matrix
factorization problem [40]. Certainly, due to existence of
observation matrix Ω in Eq.(12), the solution in [39] and [40]
will no longer suitable for matrix completion. Thus one should
seek new approaches to solve Eq.(12).

A. Optimization via half-quadratic

In general, the correntropy based objective function in
Eq.(12) is difficult to be minimized directly. To tackle this
problem, the half-quadratic (HQ) technique has been applied
to optimize these correntropy based cost functions [39], [40],
[41], [42]. By introducing additional auxiliary variable, HQ
reformulates a nonquadratic cost function as an augmented
objective function in enlarged parameter space.

According to half quadratic theory [43], for Gσ(e) there
exists a convex conjugated function ϕ so that

Gσ(e) = max
t

(
e2t

σ2
− ϕ(t)

)
(13)

where t ∈ R and the maximum is reached at t = −Gσ(e).
Eq.(13) can be further rewritten as

σ2(1−Gσ(e)) = min
t

(
−e2t+ σ2ϕ(t)

)
(14)

By defining s = −t and φ(s) = σ2ϕ(−s), the above equation
can be further derived as

min
e
σ2(1−Gσ(e)) = min

e,s

(
e2s+ φ(s)

)
(15)

4

Thus, as shown above, minimizing the nonconvex C-loss
function in terms of e is equivalent to minimizing an aug-
mented cost function in an enlarged parameter space {e, s}.
Therefore, by substituting Eq.(15) to Eq.(11), the correntropy
based objective function JGσ (U ,V) can be further formulated
as

JGσ (U ,V)

= min
W

n∑
i=1

m∑
j=1

(
Wi,jΩi,j

(
Xi,j − (UV)i,j

)2

+ Ωi,jφ (Wi,j)

)
(16)

Further, by defining the augmented cost function

JHQ(U ,V ,W) = ‖
√
W ◦Ω ◦ (X −UV) ‖2F + Ω ◦ φ (W)

(17)
where φ (W) =

∑n
i=1

∑m
j=1 φ (Wi,j), we have the following

relation

min
U ,V

JGσ (U ,V) = min
U ,V ,W

JHQ(U ,V ,W) (18)

and the correntropy based optimization problem can be formu-
lated as a half-quadratic based optimization. Similar to [21],
treating U and V as a whole, the optimization can be solved
with following alternating minimization procedure:

1) optimizingW : from Eq.(13) and Eq.(15) one can observe
that given a certain e, the minimum is reached as s = Gσ(e).
Therefore, given the fixed U and V , the optimal solutions of
Wi,j can be obtained as

Wi,j = Gσ

(
Xi,j − (UV)i,j

)
, (i, j) ∈ Ω (19)

We should note that when (i, j) /∈ Ω, optimal Wi,j is unavail-
able. However, computing Wi,j for (i, j) /∈ Ω do not affect
solution of Eq.(12) and Eq.(17) because of multiplication with
Ω. To simplify the expression, in the following we directly use
Wi,j for full matrix W . In practical application, one just need
to calculate Wi,j for (i, j) ∈ Ω.

2) Given a fixed W , Eq.(17) becomes a weighted matrix
completion optimization problem

min
U ,V
‖
√
W ◦Ω ◦ (X −UV) ‖2F (20)

The weighting matrix W assigns different weights based
on error residuals. According to the property of Gaussian
function, a large error will assign small weight, such that the
negative impact of outliers may be greatly reduced. So far,
there are no existing algorithms to directly solve Eq.(17). In
the following, we follow two methods of traditional matrix
completion and propose two efficient algorithms to solve the
above weighted matrix completion optimization.

B. Correntropy based power factorization algorithm

In this part, we utilize the alternating minimization method
to solve the correntropy based matrix completion problem.
Alternating minimization is a widely used method for solv-
ing matrix factorization based optimization problem, and the
representative algorithm is the Power factorization (PF). In
particular, PF alternately minimizes U and V at each iteration
for Eq.(4), i.e. fix one factored matrix and optimize the

other. Similar to the traditional PF, for correntropy based
optimization in Eq.(12), we can also alternatively optimize
U and V as follows

U t+1 = argmin
U

‖Ω ◦
(
X −UV t

)
‖Gσ (21)

V t+1 = argmin
V

‖Ω ◦
(
X −U t+1V

)
‖Gσ (22)

where t denotes the iteration number. Then, the HQ techniques
can be utilized for each minimization step in Eq.(21) or
Eq.(22). In particular, similar to Eq.(18), given a fixed V t,
Eq.(21) can be further rewritten as

U t+1 = argmin
U ,W

‖
√
W ◦Ω ◦

(
X −UV t

)
‖2F + Ω ◦ ϕ (W)

(23)
The above minimization problem can be solved by alternating
minimization described in the previous subsection. To distin-
guish the iteration procedure in Eq.(21) and Eq.(22), we denote
the alternating minimization for U t+1 in Eq.(23) as the inner
iteration, while the iteration in Eq.(21) and Eq.(22) are outer
iteration. Therefore, at each inner iteration k, we first obtain
optimal W from Eq.(19) and then solve

Uk = argmin
U

‖
√
W k ◦Ω ◦ (X −UV) ‖2F (24)

Due to existence of Ω, Eq.(24) do not has explicit solution.
To solve this problem, similar to [21], by defining

U = [uT1 u
T
2 ... uTm]T ,X = [xT1 x

T
2 ... xTm]T

S =
√
W ◦Ω,S = [sT1 s

T
2 ... sTm]T

(25)

Eq.(24) can be optimized by solving the following m subprob-
lems:

uki = argmin
u

∥∥∥diag(ski)
(
xi − V Tu

)∥∥∥2

2
, i = 1, ...,m (26)

diag(ski) denotes the diagonal matrix whose entries are com-
posed by elements of ski . For each subproblem, by dropping
the zero diagonal entries of ski , one can finally obtain

uki = argmin
u

∥∥∥√Φk
(
xθi − V

T
θiu
)∥∥∥2

2
(27)

where θi denotes the index set of non-zero entries of ski , such
that xθi ∈ R|ski |×1 and V θi ∈ Rr×|ski | where |ski | is the
cardinality of ski . Φk is a diagonal matrix with entries

Φk
j,j = Gσ

((
xθi − V

T
θiu
)
j

)
, j = 1, 2, ..., |ski | (28)

Eq.(27) is essentially a weighted least squares problem and
has a explicit solution

uki =
(
V T
θiΦ

kV θi

)−1

V T
θiΦ

kxθi (29)

Thus each ui can be obtained by alternating calculate Eq.(28)
and Eq.(29) until convergence. The same iteration procedure
can be applied for Eq.(22) with fixed U .

The above algorithm is called the half-quadratic based
powerfactorization (HQ-PF) algorithm. In the following we
give two propositions for HQ-PF.

5

Proposition 1: For a non-increasing σ, the sequence
{JGσ (U t,V t), t = 1, 2, ...} generated by HQ-PF will con-
verge.

Proof: According to properties of alternating minimization,
for a fixed σ we can obtain

JGσ (U t+1,V t+1) ≤ JGσ (U t+1,V t) ≤ JGσ (U t,V t) (30)

Moreover, considering the following function in terms of σ

f(σ) = σ2(1−Gσ(x)) (31)

Taking derivative of Eq.. we can obtain

∂f(σ)

∂σ
= 2σ(1− (1 +

x2

2σ2
) exp(− x2

2σ2
))

(a)
> 0 (32)

The (a) holds since ey > y + 1 for y > 0. Therefore f(σ)
monotonically increases as σ increases, and then for σ1 < σ2

JGσ1 (U t+1,V t+1) ≤ JGσ2 (U t+1,V t+1) ≤ JGσ2 (U t,V t)

will always satisfied. Thus, for a non-increasing σ, the
sequence {JGσ (U t,V t), t = 1, 2, ...} monotonically non-
increases . It can be also verified that JGσ (U t,V t) is always
below-bounded for arbitrary t. Thus, {JGσ (U t,V t), t =
1, 2, ...} will converge.

Proposition 2: When σ →∞, the HQ-PF is equal to PF.
Proof: one can observe that when the kernel width σ tends

to infinity, the equation

lim
σ→+∞

−2σ2 exp

(
− x2

2σ2

)
+ 2σ2 = x2 (33)

will hold. Therefore, for sufficient large σ, the correntropy
based optimization in Eq.(21) and Eq.(22) becomes equal to
l2 error norm based optimization

U t+1 = argmin
U

‖Ω ◦
(
X −UV t

)
‖2F (34)

V t+1 = argmin
V

‖Ω ◦
(
X −U t+1V

)
‖2F (35)

which is the typical iteration procedure of PF. Moreover, as
σ → ∞, Gσ(e) will be equal to 1, and Φk becomes the
identity matrix. The ui, i = 1, ...,m and vj , j = 1, ..., n can
be directly obtained by

ui =
(
V T
θiV θi

)−1

V T
θixθi (36)

vj =
(
UT
θjUθj

)−1

UT
θjxθj (37)

and the inner iteration number becomes 1. The solution
coincides with the solution of PF [18].

As shown in Fig.1, the kernel width σ of Gaussian kernel
function affects the range of sensitivity to outliers. Lots of
works of literature have shown that relatively small σ can
offer more accurate performance but also suffers from low
convergence speed [44]. A practical way is to use adaptive
kernel width [44], [27]. On the other hand, in the field of online
adaptive filtering, many algorithms utilize the LS method at
the first several iterations to speed up the convergence. In
this work, to improve both the efficiency and accuracy, we
combine the above two methods and propose a new kernel

width selection strategy for HQPF. In particular, by defining
the error residual matrix Et at iteration t with

Et = X −U tV t (38)

we measure the convergence speed using the relative change
of ‖Et‖F , i.e. ‖Et+1‖F −‖Et‖F . At the initial iterations, we
directly utilize l2 norm based PF solution in Eq.(36) to update
U and V to speed up the initial convergence speed. When the
convergence speed is slow, i.e. ‖Et+1‖F−‖Et‖F < ε1 where
ε1 is the free threshold parameter, the optimization is switched
to correntropy based optimization in Eq.(21) and Eq.(22). The
adaptive kenrel width σt at t-th iteration is selected using the
following strategy

σt = max(η
(
etΩ(0.75) − e

t
Ω(0.25)

)
, ξ) (39)

where eΩ ∈ R|Ω|×1 denotes the vector composed by elements
of all non-zero entries ofEt, and y(q) denotes the q-th quantile
of y. η is the parameter controls the kernel width, and ξ is the
lower bound of σ. Finally, if ‖Et+1‖F −‖Et‖F is less than a
sufficient small value ε2, we consider the algorithms converge
to a local minimum, and the iteration procedure terminates.

For optimization of Eq.(24), the selection of kernel width
σin for inner iteration also affects the performance. Too small
σin at initial iteration may lead to near-zero W , and may
cause the singularity problem. Therefore, we also utilize the
adaptive kernel selection method to update σin at each inner
iteration. In particular, σkin is initialized to a sufficient large
value (i.e.,10000) at k = 1 and then update as follows for
k > 1:

σkin =

{ ∥∥∥ 1
2|si|

(
xsi − V

T
siu

k
i

)∥∥∥
2

, ‖uki − u
k−1
i ‖2 > ε

σt , ‖uki − u
k−1
i ‖2 < ε

(40)
where ε is the threshold parameter. The norm of relative error
vector ‖uki − u

k−1
i ‖2 is also utilized as the stop criterion for

inner iteration.
The pseudocode of HQPF algorithm with adaptive kernel

selection is summarized in Algorithm 1. Note that in each
alternating minimization step, m (or n) subproblems are
actually independent with each other. Thus one can further
utilize a distributed system to solve the subproblems in parallel
and speed up the computation.

C. Correntropy based alternating steepest descent algorithm
HQ-PF is an extension of the traditional PF algorithm.

Although HQ-PF is a distributable algorithm which can im-
prove computation efficiency, the whole computational cost
is still much higher than l2 based algorithm since at each
iteration the weighted LS optimization should be applied.
Recently, an alternating steepest descent (ASD) method is
proposed for matrix completion task. ASD directly applies
gradient descend method and shows faster performance than
alternating minimization based algorithms. Inspired by ASD,
in this section we introduce the gradient descent method to
solve Eq.(12) and derive a more efficient algorithm.

As described in subsection A, we first optimize W accord-
ing to Eq.(19) Then, unlike alternating minimization, we di-
rectly apply the gradient descent method to alternative update

6

Algorithm 1 HQ-PF for robust matrix completion
Input: Ω, Ω ◦X and r

%Initialization
initial matrices U0 and V 0, E0 = 0, t = 0
%Computation using l2 norm based solution
repeat

solve ut+1
i , i = 1, ...,m using (36)

solve vt+1
i , i = 1, ..., n using (37)

t = t+ 1
until ‖Et‖F − ‖Et−1‖F < ε1

%Computation using correntropy based solution
repeat

compute σt according to (39)
solve ut+1

i , i = 1, ...,m alternatively computing (28) and
(29) until convergence
solve vt+1

i , i = 1, ..., n using the same method with ui
until convergence
t = t+ 1

until ‖Et‖F − ‖Et−1‖F < ε2

Output: M = U tV t

U and V only one step at each iteration. For further derivation,
we add a coefficient to Eq.(20) so that the minimization
becomes

min
U ,V

1

2
‖
√
W ◦Ω ◦ (X −UV) ‖2F (41)

then, based on Eq.(25), for a fixed V , Eq.(41) can be rewritten
as the function in terms of U :

fV (U) =
1

2

n∑
i=1

(xi − V Tui)Σi(xi − V Tui)
T (42)

where Σi = diag(s2
i). Thus the gradient of Eq.(42) at each

element uij can be derived as

∂fV (U)

∂uij
= −(xiΣiV)j + (uiV ΣiV)j

= −(W ◦Ω ◦XV)ij + (W ◦Ω ◦ (UV)V)ij

= −(W ◦Ω ◦ (X −UV)V)ij
(43)

hence the gradient descent of fV (U) along U can be obtained
as

gU =
∂fV (U)

∂U
= −W ◦Ω ◦ (X −UV)V T (44)

Further, the gradient descent step size µU is selected by
solving the following optimization problem

µU = argmin
µ
‖
√
W ◦Ω ◦ (X − (U − µgU)V) ‖2F

=
‖gU‖2F

‖
√
W ◦Ω ◦ (gUV) ‖2F

(45)

Similar to Eq.(44) and Eq.(45), for a fixed U , we can obtain
the gradient descent along V and the corresponding step size
as

gV = −UT (W ◦Ω ◦ (X −UV)) (46)

µV =
‖gV ‖2F

‖
√
W ◦Ω ◦ (UgV) ‖2F

(47)

Therefore, the matrices U and V can be alternated update
using gradient descend method, i.e. for each iteration t.

U t+1 = U t − µtUgtU
V t+1 = V t − µtV gtV

(48)

The algorithm with update above is called the half-quadratic
alternating steepest descend (HQASD) algorithm. The follow-
ing proposition guarantees the convergence of the JGσ (U ,V)
using the above gradient descend method.

Proposition 3: For a non-increasing σ, the sequence
{JGσ (U t,V t), t = 1, 2, ...} generated by HQASD will con-
verge.

Proof: according to properties of alternating descend, for a
fixed σ we can obtain

JHQ(U t+1,V t+1,W t+1) ≤ J(U t+1,V t+1,W t)

≤ JHQ(U t+1,V t,W t)

≤ JHQ(U t,V t,W t)

(49)

Since JHQ is bounded below, one can obtain [32]

JGσ (U t+1,V t+1) ≤ JGσ (U t,V t)

Moreover, according to proof of proposition 1, for σ1 < σ2

JGσ1 (U t+1,V t+1) ≤ JGσ2 (U t,V t)

will always satisfied. Thus, the sequence {JGσ (U t,V t), t =
1, 2, ...} generated by HQ-ASD will converge for non-
increasing σ .

Proposition 4: When σ →∞, the HQ-PF is equal to PF.
Proof: As σ → ∞, Gσ(e) will be equal to 1, thus all the

entries of W becomes 1. The W in Eq.(19) does not need
to be optimized, and Eq.(44)-(47) will be the same as the
algorithm for ASD in [20].

In [20], the author also proposed the scaled ASD
(ScaledASD) algorithm to improve the convergence speed and
recover performance. Similar to ScaledASD, we can further
scale the gradient descent directions in Eq.(44) and Eq.(46)
by (V V T)−1 and (UTU)−1, respectively, i.e.

ĝU =
gU

(V V T)−1

ĝV =
gV

(UTU)−1

(50)

the corresponding step sizes are obtained as

µ̂U =
tr{gTU ĝU}

‖
√
W ◦Ω ◦ (ĝUV) ‖2F

µ̂V =
tr{gTV ĝV }

‖
√
W ◦Ω ◦ (UĝV) ‖2F

(51)

and the gradient update of U and V can be then derived as

U t+1 = U t − µ̂tU ĝ
t
U

V t+1 = V t − µ̂tV ĝ
t
V

(52)

Since ScaledASD has been proved to show better performance
than ASD [20]. Thus, we can conduct that Scaled HQ-ASD
will also perform better than Scaled HQ-ASD. Therefore, for
simplicity, in the following part we directly utilize Eq.(52) as
the update of HQ-ASD.

7

Similar to HQPF, we also apply the adaptive selection of
kernel width σ to improve the convergence speed and per-
formance of HQASD. In particular, at first several iterations,
the kernel width σt is fixed to sufficient large value (or
equivalently set W to an all one matrix and use ASD update
procedure). When ‖Et+1‖F −‖Et‖F < ε3 , the optimization
is switched to correntropy based optimization and the HQASD
with adaptive kernel width in Eq.(39) is applied.

The pseudocode of HQASD is summarized in Algorithm 2.

Algorithm 2 HQASD for robust matrix completion
Input: Ω, Ω ◦X and r

%Initialization
initial matrices U0 and V 0, E0 = 0, t = 0, σ0 = 10000
%Computation using ASD (i.e. sufficient large σ)
repeat
σt = 10000
compute U t+1,V t+1 using (52)
t = t+ 1

until ‖Et‖F − ‖Et−1‖F < ε3

%Computation using correntropy based solution
repeat

compute σt according to (39)
compute U t+1,V t+1 using (52)
t = t+ 1

until ‖Et‖F − ‖Et−1‖F < ε4

Output: M = U tV t

D. Complexity analysis

In this part, we discuss the complexity of the two pro-
posed algorithms. For HQPF, at each minimization step of
Eq.(HQPFU) and Eq.(22), the complexity is o(|Ω|r2NHQ)
where NHQ is the number of outer iteration. For the inner
iteration of HQPF, we consider two cases. When utilizing PF
at first several iterations (denoted as K2), the least squares
solution can be directly obtained, such that NHQ = 1.
When applied weighted least squares for HQPF, an iteration
procedure should be performed, and the inner iteration number
is denoted as KHQ. Therefore, the final complexity of HQPF
is o(|Ω|r2(K2 + NHQKHQ)). One can observe that the
complexity is closely related to the percentage of observations
and rank of r. Larger rank or larger amount of observed entries
may both increase the computational cost of HQPF. Moreover,
as mentioned in Section B, HQPF is friendly to multicore
and distributed systems. In particular, subproblems for solving
ui, i = 1, ...,m and vi, i = 1, ..., n are independent and can be
applied in a parallel way. Therefore, for a distributed system
with p workers, the complexity of each worker will be reduced
to o(|Ω|r2(K2 +NHQKMCC)/p).

The complexity of HQASD is similar to ASD [20]. In par-
ticular, the complexity per iteration without W can be directly
obtained from the complexity of ASD, i.e. the complexity
is o(|Ω|r). When taking computation of W into considera-
tion, the complexity of MCC-ASD at each iteration becomes
o(|Ω|r + 1). Therefore, the overall complexity of MCC-ASD

is o((|Ω|r + 1)KASD) where KASD is the iteration number.
As can be seen, the complexity of HQASD is also positively
correlated to the percentage of observations and rank of X .
Moreover, compared with HQPF, the complexity of HQASD
per iteration is much smaller especially when rank r or matrix
size is large (large matrix size will lead to large NHQ).
Certainly, the gradient descend based HQASD may need a
larger number of iterations than HQPF. The final computation
cost comparison will be verified by simulations.

IV. SIMULATIONS

In this section, we carry out simulations to verify the
performance of the proposed two algorithms.

We compare the performance with existing state-of-the-art
robust matrix completion methods including l1 based alternat-
ing minimization via PowerFactorization (l1-PF), Quadratic
Programming (QP) with the loss function f(x) = 1/β ·
log((eβx + e−βx)/2) (BMFC) and correntropy based iterative
hard thresholding (CIHT). In particular, to ensure fairness in
comparison, the kernel width adaptation method proposed in
this paper is also applied to CIHT in the simulations. All the
algorithms are implemented in MATLAB r2017b on a 2.6-
GHz and 16-GB memory computer without any acceleration.
The completion performance is evaluated by normalized mean
square error (NMSE) defined by

NMSE =

E

[∥∥∥M̂ −X
∥∥∥2

F

]
‖X‖2F

(53)

In the simulation, the expectation in Eq.(53) is approximated
by

E

[∥∥∥M̂ −X
∥∥∥2

F

]
≈ 1

T

T∑
mc=1

‖M̂
mc
−X‖

2

F

where T is the number of Monte Carlo runs.
In the simulation, the typical two-component Gaussian

mixture model (GMM) is utilized as the non-Gaussian noise
model. The probability density function (PDF) of GMM is
defined as

pv(i) = (1− c)N(0, σ2
A) + cN(0, σ2

B) (54)

where N(0, σ2
A) represents general noise disturbance with

variance σ2
A, and N(0, σ2

B) stands for outliers that occur
occasionally with a large variance σ2

B . The variable c controls
the occurrence probability of outliers.

For all algorithms, similar to HQPF and HQASD, we utilize
the relative change of the current and previous iterations
‖Et‖F − ‖Et−1‖F as the stop criterion, and the threshold
parameter is set specific to each algorithm. During all the sim-
ulations, without explicitly mentioned, the threshold parameter
ε2 for stop criterion is set to 10e−3 for BMFC, l1-PF, HQ-PF,
and 10e−7 for HQASD and CIHT. The threshold parameter
ε1 for adaptive kernel width strategy is set to 10e−2, 10e−4

and 10e−3 for HQ-PF, HQASD and CIHT, respectively. The
inner iteration threshold ε for weighted LS is set to 10e−8 for
both l1-PF and HQPF. Other parameters are tuned to achieve
the best during each simulation.

8

-30-28-26-24-22-20-18-16-14-12-10

A
2

-26

-24

-22

-20

-18

-16

-14

-12
N

M
S

E
(d

B
)

BMFC
l1PF
CIHT
HQPF
HQASD

Fig. 2. Curves of NMSE with different σ2
A(dB).

σ
B
2 (dB)

0 2 4 6 8 10 12 14 16 18 20

N
M

S
E

(d
B

)

-24

-23

-22

-21

-20 BMFC
l1PF
CIHT
HQPF
HQASD

Fig. 3. Curves of NMSE with different σ2
B(dB).

A. Random matrix completion

We first compare the performance on the synthetic random
data. The matrix X with rank r is generated by multiplying
two matrices U and V . The observation matrix Ω with the
percentage of observation p is generated by randomly assign
p% of the entries of Ω with value 1. In this part, without ex-
plicitly mentioned, we set the matrix X as the squared matrix
and the dimension is set to m = n = 256. The parameters of
GMM noise are set as σA = 0.01, σB = 1, c = 0.1. The rank
is set to r = 5. The percentage of observation is fixed at 60%.

c
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

N
M

S
E

(d
B

)

-25

-24

-23

-22

-21

-20

-19

-18

BMFC
l1PF
CIHT
HQPF
HQASD

Fig. 4. Curves of NMSE with different c.

The parameter a for BMFC is set to 6. For each simulation,
the NMSE is obtained via 200 Monte Carlo runs with different
realizations of X , Ω, U0, V 0 and noises.

First, we compare the performance under different noise
environments. We gradually increase the variance σ2

A, σ2
B , c

and calculate the NMSE values. The curves of NMSE with
different noise distributions are shown in Fig.2-4. One can
observe that the performance of all algorithms degrade as σ2

A

and c increases, while the performance is slightly changed with
different levels of outliers (i.e. σ2

B). In particular, all algorithms
achieve comparable performance except l1-PF, which is mainly
caused by nonsmooth of l1 norm near zero error.

Second, the performance with different sizes ofX are inves-
tigated. Fig.5 shows the curves of NMSE in terms of different
matrix sizes m, and Fig.6 shows the corresponding average
running times for a single matrix completion procedure. As
can be seen, as the size of the matrix increases, the NMSE
values of all algorithms decrease, while the time costs increase
significantly for all algorithms. The proposed two algorithms
HQPF and HQASD achieve comparable lower NMSE than
other algorithms, and HQASD runs much faster than other
algorithms. In particular, HQASD can run as fast as about 3
orders of magnitude than l1-PF and BMFC when the matrix
size is larger than 700.

Third, we explore the largest recoverable rank of X under
different percentage of observed entries p, which is also called
the phase transition. The rank r and the percentage p are set
within [2,30] and [0,100], respectively. For each selection of r
and p, 200 Monte Carlo runs are performed, and the recovery
is judged to be successful if the NMSE is lower than 10e−1.
The phase transition image for different algorithms is shown in
Fig.7. The shade of the color block represents the probability
of success, i.e. the percentage of successful recovery in 200
Monte Carlo runs. One can observe that the white region of
HQASD and HQPF is larger than other algorithms, which
shows that the proposed algorithms can afford larger rank
or lower percentage of observations. Meanwhile, the corre-
sponding average running times and NMSE values curves
for each algorithm are shown in Fig.8 and Fig.9. Note that
only corresponding data with white blocks in Fig.7 are shown
in Fig.8 and Fig.9. As seen, the proposed HQASD achieve
lowest NMSE as well as lowest computational cost among all
algorithms. HQPF and CIHT achieve similar low NMSE with
HQASD but need more time for completion. Moreover, among
all distributable algorithms, the HQPF performs the best.

It is known that for correntropy based algorithms, the kernel
width highly affects the performance. Thus, here we also
analyze the sensitivity of kernel parameters. As shown in
Eq.(39), in kernel adaptation strategy, the kernel width σ is
determined by the choice of η and ξ. Thus we select different
values of η and ξ and then obtain the corresponding NMSE
over 200 Monte Carlo runs. The NMSE curves versus different
η are shown in Fig.10. As can be seen, the algorithms can work
well in a wide range of values of η and ξ. In particular, when
η > 2, the NMSE increases as η grows, while the NMSE will
not highly be affected when selecting different values of ξ.
When the η and ξ are both selected as the too small values,
the kernel width σ is too small and the algorithms may not

9

100 200 300 400 500 600 700 800 900 1000
m

-24

-23

-22

-21

-20

-19

-18

-17
N

M
S

E
(d

B
)

BMFC
l1PF
CIHT
HQPF
HQASD

Fig. 5. Curves of NMSE under different matrix sizes m.

100 200 300 400 500 600 700 800 900 1000
m

10-1

100

101

102

103

104

105

tim
e(

s)

BMFC
l1PF
CIHT
HQPF
HQASD

Fig. 6. Curves of average running times versus matrix size m.

converge to local minima.

B. Image Inpainting

In this part, we compare the performance of algorithms
on image inpainting tasks with non-Gaussian noise. Image
inpainting aims to fill in the unknown pixels of an image
from an incomplete image. Because the most image can be
well approximated by low-rank representation, image inpaint-
ing can be seen as a matrix completion task. Moreover, to
evaluate the performance under non-Gaussian noise, we select
a mixture of Gaussian and Salt-and-pepper noise as the noise
model. Gaussian noise is a typical normal image noise caused
by electronic components. Salt-and-pepper noise is another
noise produced in errors in the analog-to-digital converter or
bit transmission caused by sudden intense interference, such
that the noise value with 0 or 1 sparsely occurs on the image.
We utilize the popular peak signal to noise ratio (PSNR) to
evaluate the performance, which is defined as

PSNR =
nm

‖M̂ −X‖
2

F

A higher PSNR represents better recovery performance.

We select the 512 × 512 Lena and Palace image as the
test images. Lena image (Fig.11(a)) is a popular image for
performance evaluation, while Palace image (fig.12(a)) con-
tains duplicate patterns which is always utilized for image
inpainting test. Each image is compressed via best rank-
50 approximation (see. Fig.11(b) and Fig.12(b)) so that the
low rank property is guaranteed. Then the two images are
masked in a ”cross pattern” and a ”stamp mark”, respectively.
Finally, the observed pixels of images are added with Gaussian
noise with variance 0.0001, and then 10% of the observed
pixels are also disturbed by salt-and-pepper noise. During
the simulations, 100 Monte Carlo runs are performed for
each recovery task. The algorithms parameters for HQPF an
HQASD are tuned as ε1 = 10000. For BMFC, to obtain better
performance, the parameter a is set to 6 and 20 for Gaussian
and non-Gaussian noise, respectively.

Table.1 lists the average recovery PSNR and the correspond-
ing average running times under noiseless and noisy envi-
ronments. One can see that the proposed HQASD algorithm
achieves the best performance in all simulations. In particular,
HQASD obtains the highest PSNR as well as lowest running
times. Moreover, HQPF obtains the comparable PSNR for
Palace image, while the performance is worse than HQASD
for Lena image. Nevertheless, HQPF still achieves the best
performance among distributable algorithms.

To further demonstrate the recovery performance, sam-
ples of images recovered by different algorithms under non-
Gaussian noise are shown in Fig.11 and Fig.12. The enlarge
view of part of recovered images are also depicted to evidently
show the recovery differences. One can see that when filling
missing entries of the face region in Lena image, fringes
are produced in all of the recovered images. In particular,
BMFC and MCCIHT have the most obvious fringes, while
HQASD has the least visible fringes. Moreover, l1-PF and
HQPF fail to accurately recover the left eye, which is probably
caused by converging to a wrong local minimum perturbed by
non-Gaussian noise via alternative minimization. Furthermore,
for the palace image, the recovered image of BMFC and
MCCIHT still have visible reconstruction error. l1-PF, HQPF
and HQASD can successfully recover the image. From the
enlarged view, one can see that the recovered image of HQPF
and HQASD are slightly clear than l1-PF, especially for object
edges.

C. Experiments on MovieLens dataset

In this part we evaluate the proposed algorithm on the real
data set. MovieLens is a widely used dataset for recommender
system. Firstly, similar to experiments in [22], [21], we carry
out the experiment on MovieLens-100K data set. MovieLens-
100K consists of 100,000 ratings (1-5) from 943 users on
1682 movies, and the percentage is observed data about 6%. It
also provide 5 splits of training data Xtrain and testing data
Xtest, where Xtrain and Xtest account for 80% and 20% of
the observed data, respectively. We perform the test on both
noiseless case and noisy case. In noisy case, 10% of the rating
value 1 are replaced by 5, and 10% of the rating value 5 are

10

10 20 30 40 50 60 70 80 90 100
missing percentage (%)

(a)

30

26

22

18

14

10

6

2

ra
nk

 r

10 20 30 40 50 60 70 80 90 100
missing percentage (%)

(b)

30

26

22

18

14

10

6

2

ra
nk

 r

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90 100
missing percentage (%)

(c)

30

26

22

18

14

10

6

2

ra
nk

 r

10 20 30 40 50 60 70 80 90 100
missing percentage (%)

(d)

30

26

22

18

14

10

6

2

ra
nk

 r

10 20 30 40 50 60 70 80 90 100
missing percentage (%)

(e)

30

26

22

18

14

10

6

2

ra
nk

 r

Fig. 7. Phase transition image for different algorithms. (a) BMFC, (b) l1-PF, (c) CIHT, (d) HQPF, (e) HQASD.

TABLE I
IMAGE INPAINTING PERFORMANCE COMPARISON: PSNR AND AVERAGE RUNNING TIMES

Method
Lena+low rank Lena+low rank+noise Palce+low rank Palce+low rank+noise

PSNR(dB) Time(s) PSNR(dB) Time(s) PSNR(dB) Time(s) PSNR(dB) Time(s)

BMFC 13.81 1459.8 35.18 1374.3 18.71 706.3 22.2 1331.1
l1-PF 76.90 1752.9 34.65 2575.3 87.59 568.3 42.5 1839.7
CIHT 60.33 188.8 32.81 62.58 26.55 194.23 31.6 62.2
HQPF 75.33 465.2 36.93 181.34 88.60 77.8 45.3 130.3

HQASD 92.88 27.5 42.44 5.75 88.84 3.7 45.3 3.6

30

20

rank r

10-26

-24

0.1

-22

0.2

percentage c

-20

0.3 0.4

-18

N
M

S
E

(d
B

)

0.5

-16

0.6 0.7 0

-14

0.8 0.9

-12

-10

BMFC
l1PF
CIHT
HQPF
HQASD

Fig. 8. Surfaces of NMSE with different rank r and observation percentage
p.

replaced by 1, too. The performance is evaluated using the
root mean square error (RMSE) defined as [22]

RMSE =

√√√√√E

[∥∥∥Ωtest ◦
(
M̂ −Xtest

)∥∥∥2

F

]
card(Ωtest)

where Ω ∈ Rm×n is a logical matrix for testing data
where the each entry Ωi,j ∈ 0, 1 denotes whether the i, j-
th entry of testing data Xtest is observed. The expectation is
approximated by 10 Monte Carlo realizations.

In this experiment, we set ε1 = 10000 for HQPF and
HQASD. For CIHT and HQASD, the threshold ε2 is set to
10e−3. Fig.13 and Fig.14 depict the RMSE results for all
algorithms with different values of rank r under the noiseless
and noisy case, respectively. As seen, all algorithms work

10-1

0 30

100

0.2

101

tim
e(

dB
)

200.4

102

percentage c rank r

0.6

103

10
0.8

1 0

BMFC
l1PF
CIHT
HQPF
HQASD

Fig. 9. Surfaces of average running times with different rank r and
observation percentage p.

well when r = 1 or 2 in both noiseless and noisy case.
While when r > 2, all algorithms suffer from different
degrees of performance degradation. In particular, HQASD can
maintain good performance when r is as large as 5. On the
contrary, the performance of alternative minimization based
l1-PF and HQPF algorithms degrades seriously when r > 2.
Furthermore, we list the average RMSE and corresponding
average running times under r = 2 in Table II. Here we also
add traditional l2-based PF algorithm for comparison. One can
observe that the HQASD achieves the lowest RMSE in both
noiseless and noisy cases. HQASD also runs much faster than
other robust methods.

To further demonstrate the advantage of proposed algo-
rithms in computational cost, we also carry out the com-
parison on the more challenging MovieLens-1m dataset. The

11

0.1

0.08

0.06

0.04

ǫ

0.02

00
1

η

2
3

4
5

6

-21

-22

-23

-24

-19

-20

N
M

S
E

(d
B

)
HQPF
HQASD
MCCIHT

Fig. 10. Surfaces of NMSE with different η and ξ.

MovieLens-1m dataset contains 1,000,209 anonymous ratings
of approximately 3,900 movies made by 6,040 users. The ob-
servation percentage is only 4%, and the matrix size is 15 times
larger than MovieLens-100K. We evaluate the performance of
all algorithms on MovieLens-1m under noiseless and noisy
cases similar to experiments on MovieLens-100K. The noise
and algorithm settings are the same as the previous simulation.
Table II shows the average RMSE and corresponding average
running times. One can observe that the cost times increase
greatly compared with MovieLens-100K for all algorithms.
The RMSE also increases compare to MovieLens-100K. In
particular, HQASD still achieves much more fast performance
than other robust algorithms, and HQPF obtains the best
performance among distributable algorithms.

V. CONCLUSION

In this paper, we proposed two novel efficient and ro-
bust matrix completion algorithms. The algorithms apply
correntropy as the error measure to improve the robustness.
To overcome the complicated computation of non-quadratic
correntropy based optimization, we utilize the half-quadratic
technique to efficiently solve the problem. The two proposed
algorithms, HQPF and HQASD, adopt the same half-quadratic
method but are developed in different ways. HQPF is derived
from traditional alternating minimization method and can be
processed in parallel. HQASD is obtained by gradient descend
method and has much lower computational cost. Further,
an adaptive kernel width selection strategy is proposed to
speed up the convergence of the new algorithms. Extensive
simulations and real-world data experiments are conducted,
demonstrating that the proposed algorithms can achieve better
performance than existing state-of-the-art methods.

ACKNOWLEDGEMENTS

This work was supported by 973 Program
(No.2015CB351703), National NSF of China (No.61273366
and No.91648208) and National Science and Technology
support program of China (No.2015BAH31F01).

REFERENCES

[1] E. J. Candes and B. Recht, “Exact matrix completion via convex
optimization,” Foundations of Computational Mathematics, vol. 9, no. 6,
p. 717, 2009.

[2] E. J. Candes and Y. Plan, “Matrix completion with noise,” Proceedings
of the IEEE, vol. 98, no. 6, pp. 925–936, 2010.

[3] R. H. Keshavan, A. Montanari, and S. Oh, “Matrix completion from a
few entries,” IEEE transactions on information theory, vol. 56, no. 6,
pp. 2980–2998, 2010.

[4] H. Ji, C. Liu, Z. Shen, and Y. Xu, “Robust video denoising using low
rank matrix completion,” in Computer Vision and Pattern Recognition,
2010.

[5] L. Wu, A. Ganesh, B. Shi, Y. Matsushita, Y. Wang, and Y. Ma, “Robust
photometric stereo via low-rank matrix completion and recovery,” in
Asian Conference on Computer Vision. Springer, 2010, pp. 703–717.

[6] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, no. 8, pp. 30–37, 2009.

[7] R. Cabral, F. De la Torre, J. P. Costeira, and A. Bernardino, “Matrix com-
pletion for weakly-supervised multi-label image classification,” IEEE
transactions on pattern analysis and machine intelligence, vol. 37, no. 1,
pp. 121–135, 2015.

[8] F. Isinkaye, Y. Folajimi, and B. Ojokoh, “Recommendation systems:
Principles, methods and evaluation,” Egyptian Informatics Journal,
vol. 16, no. 3, pp. 261–273, 2015.

[9] S. Funk, “Netflix update: Try this at home,” 2006, p. [Online]. Available:
http://sifter.org/ simon/journal/20061211.html.

[10] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan, “Large-scale parallel
collaborative filtering for the netflix prize,” in International Conference
on Algorithmic Applications in Management. Springer, 2008, pp. 337–
348.

[11] J. Tanner and W. Ke, “Normalized iterative hard thresholding for matrix
completion,” Siam Journal on Scientific Computing, vol. 35, no. 5, pp.
S104–S125, 2013.

[12] WRIGHT, J. Stephen, NOWAK, D. Robert, FIGUEIREDO, and A. T.
Mario, “Sparse reconstruction by separable approximation,” IEEE Trans-
actions on Signal Processing, vol. 57, no. 7, pp. 2479–2493, 2009.

[13] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding al-
gorithm for matrix completion,” SIAM Journal on Optimization, vol. 20,
no. 4, pp. 1956–1982, 2010.

[14] S. Ma, D. Goldfarb, and L. Chen, “Fixed point and bregman iterative
methods for matrix rank minimization,” Mathematical Programming,
vol. 128, no. 1-2, pp. 321–353, 2011.

[15] R. Sun and Z. Q. Luo, “Guaranteed matrix completion via non-convex
factorization,” in Foundations of Computer Science, 2015.

[16] M. Hardt, “Understanding alternating minimization for matrix comple-
tion,” in Foundations of Computer Science (FOCS), 2014 IEEE 55th
Annual Symposium on. IEEE, 2014, pp. 651–660.

[17] P. Jain, P. Netrapalli, and S. Sanghavi, “Low-rank matrix completion
using alternating minimization,” in Proceedings of the forty-fifth annual
ACM symposium on Theory of computing. ACM, 2013, pp. 665–674.

[18] J. P. Haldar and D. Hernando, “Rank-constrained solutions to linear
matrix equations using powerfactorization,” IEEE Signal Processing
Letters, vol. 16, no. 7, pp. 584–587, 2009.

[19] Z. Wen, W. Yin, and Y. Zhang, “Solving a low-rank factorization
model for matrix completion by a nonlinear successive over-relaxation
algorithm,” Mathematical Programming Computation, vol. 4, no. 4, pp.
333–361, 2012.

[20] J. Tanner and K. Wei, “Low rank matrix completion by alternating steep-
est descent methods,” Applied and Computational Harmonic Analysis,
vol. 40, no. 2, pp. 417–429, 2016.

[21] W. J. Zeng and H. C. So, “Outlier-robust matrix completion via `p -
minimization,” IEEE Transactions on Signal Processing, vol. 66, no. 5,
pp. 1125–1140, 2018.

[22] L. Zhao, P. Babu, and D. Palomar, “Efficient algorithms on robust low-
rank matrix completion against outliers,” IEEE Transactions on Signal
Processing, vol. 64, no. 18, pp. 4767–4780, 2016.

[23] G. Scutari, F. Facchinei, P. Song, D. P. Palomar, and J.-S. Pang,
“Decomposition by partial linearization: Parallel optimization of multi-
agent systems,” IEEE Transactions on Signal Processing, vol. 62, no. 3,
pp. 641–656, 2014.

[24] J. C. Principe, Information theoretic learning: Renyi’s entropy and kernel
perspectives. Springer Science & Business Media, 2010.

[25] S. Zhao, B. Chen, and J. C. Prncipe, “Kernel adaptive filtering with
maximum correntropy criterion,” in International Joint Conference on
Neural Networks, 2011, pp. 2012–2017.

12

(a) Original Image (b) Image approximated with r=50 (c) Low rank image with noise (d) BMFC

(f) l1PF (g) CIHT (h) HQPF (i) HQASD

Fig. 11. Image inpainting sample of Lena image under mixture of Gaussian and Salt-and-pepper noise.

(a) Original Image (b) Image approximated with r=50 (c) Low rank image with noise (d) BMFC

(f) l1PF (g) CIHT (h) HQPF (i) HQASD

Fig. 12. Image inpainting sample of Palace image under mixture of Gaussian and Salt-and-pepper noise.

[26] B. Chen, X. Liu, H. Zhao, and J. C. Principe, “Maximum correntropy
kalman filter,” Automatica, vol. 76, pp. 70–77, 2017.

[27] J. C. Principe, Information Theoretic Learning: Renyi’s Entropy and
Kernel Perspectives. Springer Publishing Company, Incorporated, 2010.

[28] W. Liu, P. P. Pokharel, and J. C. Prı́ncipe, “Correntropy: Properties and
applications in non-gaussian signal processing,” IEEE Transactions on
Signal Processing, vol. 55, no. 11, pp. 5286–5298, 2007.

[29] B. Chen, L. Xing, H. Zhao, N. Zheng, and J. C. Principe, “Generalized
correntropy for robust adaptive filtering,” IEEE Transactions on Signal
Processing, vol. 64, no. 13, pp. 3376–3387, 2016.

[30] W. Ma, H. Qu, G. Gui, L. Xu, J. Zhao, and B. Chen, “Maximum
correntropy criterion based sparse adaptive filtering algorithms for robust
channel estimation under non-gaussian environments,” Journal of the
Franklin Institute, vol. 352, no. 7, pp. 2708–2727, 2015.

[31] Y. Yang, Y. Feng, and J. Suykens, “Correntropy based matrix comple-
tion,” Entropy, vol. 20, no. 3, p. 171, 2018.

[32] M. Nikolova and M. K. Ng, “Analysis of half-quadratic minimization

methods for signal and image recovery,” SIAM Journal on Scientific
Computing, vol. 27, no. 3, pp. 937–966, 2005.

[33] T. Blumensath and M. E. Davies, “Iterative hard thresholding for
compressed sensing,” Applied and computational harmonic analysis,
vol. 27, no. 3, pp. 265–274, 2009.

[34] Z. Liu and L. Vandenberghe, “Interior-point method for nuclear norm
approximation with application to system identification,” Siam Journal
on Matrix Analysis & Applications, vol. 31, no. 3, pp. 1235–1256, 2009.

[35] A. Singh and J. C. Principe, “Using correntropy as a cost function
in linear adaptive filters,” in International Joint Conference on Neural
Networks, IJCNN 2009, Atlanta, Georgia, Usa, 14-19 June, 2009, pp.
2950–2955.

[36] A. Singh, R. Pokharel, and J. Principe, “The c-loss function for pattern
classification,” Pattern Recognition, vol. 47, no. 1, pp. 441–453, 2014.

[37] G. Xu, B.-G. Hu, and J. C. Principe, “Robust c-loss kernel classifiers,”
IEEE transactions on neural networks and learning systems, vol. 29,
no. 3, pp. 510–522, 2018.

13

TABLE II
MOVIELENS DATASET PERFORMANCE COMPARISON: RMSE AND AVERAGE RUNNING TIMES

Method
MovieLens100K MovieLens100K+noise MovieLens1M MovieLens1M+noise

RMSE Time(s) RMSE Time(s) RMSE Time(s) RMSE Time(s)

l2-PF 0.9494 9.1 0.9776 18.6 1.1419 162.7 1.1457 122.4
BMFC 0.9849 104.2 1.0080 118.7 1.1516 2185.7 1.1751 2042.3
l1-PF 0.9912 242.4 1.0009 213.6 1.1955 5734.8 1.2045 5024.1
CIHT 0.9916 434.4 1.0012 412.8 1.1411 18694.0 1.1417 17295.2
HQPF 0.9506 42.4 0.9745 64.6 1.1441 3058.3 1.1437 2550.0

HQASD 0.9395 25.6 0.9541 18.5 1.1342 445.5 1.1356 358.7

1 2 3 4 5 6 7 8 9 10
rank r

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

R
M

S
E

BMFC
l1PF
CIHT
HQPF
HQASD

Fig. 13. RMSE curves with different rank r without noise.

1 2 3 4 5 6 7 8 9 10
rank r

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

R
M

S
E

BMFC
l1PF
CIHT
HQPF
HQASD

Fig. 14. RMSE curves with different rank r under noisy environment.

[38] J. E. D. Jr and R. E. Welsch, “Techniques for nonlinear least squares
and robust regression,” Communication in Statistics- Simulation and
Computation, vol. 7, no. 4, pp. 345–359, 1978.

[39] R. He, B.-G. Hu, W.-S. Zheng, and X.-W. Kong, “Robust principal
component analysis based on maximum correntropy criterion,” IEEE
Transactions on Image Processing, vol. 20, no. 6, pp. 1485–1494, 2011.

[40] L. Du, X. Li, and Y.-D. Shen, “Robust nonnegative matrix factorization
via half-quadratic minimization,” in 2012 IEEE 12th International
Conference on Data Mining. IEEE, 2012, pp. 201–210.

[41] R. He, W.-S. Zheng, T. Tan, and Z. Sun, “Half-quadratic-based iterative
minimization for robust sparse representation,” IEEE transactions on
pattern analysis and machine intelligence, vol. 36, no. 2, pp. 261–275,

2014.
[42] Y. Wang, Y. Y. Tang, and L. Li, “Correntropy matching pursuit with

application to robust digit and face recognition,” IEEE transactions on
cybernetics, vol. 47, no. 6, pp. 1354–1366, 2017.

[43] M. Nikolova and R. H. Chan, “The equivalence of half-quadratic
minimization and the gradient linearization iteration,” IEEE Transactions
on Image Processing, vol. 16, no. 6, pp. 1623–1627, 2007.

[44] F. Huang, J. Zhang, and S. Zhang, “Adaptive filtering under a variable
kernel width maximum correntropy criterion,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 64, no. 10, pp. 1247–1251,
2017.

	I Introduction
	II Preliminaries
	II-A Matrix completion
	II-B Maximum Correntropy Criterion

	III Proposed Algorithms
	III-A Optimization via half-quadratic
	III-B Correntropy based power factorization algorithm
	III-C Correntropy based alternating steepest descent algorithm
	III-D Complexity analysis

	IV Simulations
	IV-A Random matrix completion
	IV-B Image Inpainting
	IV-C Experiments on MovieLens dataset

	V Conclusion
	References

