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LDA via L1-PCA of Whitened Data
Rubén Martín-Clemente , Member, IEEE, and Vicente Zarzoso , Senior Member, IEEE

Abstract—Principal component analysis (PCA) and Fisher’s lin-
ear discriminant analysis (LDA) are widespread techniques in data
analysis and pattern recognition. Recently, the L1-norm has been
proposed as an alternative criterion to classical L2-norm in PCA,
drawing considerable research interest on account of its increased
robustness to outliers. The present work proves that, combined
with a whitening preprocessing step, L1-PCA can perform LDA in
an unsupervised manner, i.e., sparing the need for labelled data.
Rigorous proof is given in the case of data drawn from a mixture
of Gaussians. A number of numerical experiments on synthetic as
well as real data confirm the theoretical findings.

Index Terms—Fisher’s linear discriminant analysis, L1-norm,
principal component analysis.

I. INTRODUCTION

F ISHER’S linear discriminant analysis (LDA) and principal
component analysis (PCA) can be considered as two pillars

of data analysis [1]. Given a dataset with two classes, LDA finds a
projection of the data points onto a one-dimensional space where
the classes are well separated. When the two classes are Gaussian
with equal covariances, LDA yields the optimal Bayes classifier.
LDA is a supervised technique, whose performance depends
heavily on the availability of correctly labelled data [2]. On the
other hand, PCA finds the linear projection best fitting the data in
the least-squares sense, which is also the projection of maximum
variance of the dataset. As a fully data-driven technique, PCA
is unsupervised and does not require labelled samples [3].

Spurred by the versatility of PCA, the last decade has wit-
nessed a flurry of research into alternative criteria aimed at
enhancing its capabilities or alleviating its limitations in various
operating conditions. One such criterion, in particular, is based
on replacing the L2-norm of classical PCA by the L1-norm,
which is more robust against outliers, thus giving rise to L1-
PCA [4]. This technique, compared to other robust versions
of PCA [5]–[8], is particularly intuitive and simple, as well
as invariant to the rotation of the data, all of which justifies
its growing interest and use in a wide range of applications,
e.g., sensor-array processing, image fusion, video surveillance,
robust face recognition, et cetera [9]–[13]. In addition, a number

Manuscript received October 13, 2018; revised July 14, 2019; accepted
November 13, 2019. Date of publication November 25, 2019; date of current
version December 27, 2019. The associate editor coordinating the review of this
manuscript and approving it for publication was Prof. Yuantao Gu. This work
was supported by the Spanish Ministry of Economy and Competitiveness under
project TEC2017-82807-P. The work of R. Martín-Clemente was supported by
professorship at the I3S Laboratory in July 2018 funded by an IFA scholarship
from Université Côte d’Azur. (Corresponding author: Ruben Martin-Clemente.)

R. Martín-Clemente is with the Departamento de Teoría de la Señal y Co-
municaciones, Escuela Superior de Ingeniería, Universidad de Sevilla, Seville
41092, Spain (e-mail: ruben@us.es).

V. Zarzoso is with the Université Côte d’Azur, CNRS, I3S Laboratory, Sophia
Antipolis Cedex 06903, France (e-mail: vicente.zarzoso@univ-cotedazur.fr).

Digital Object Identifier 10.1109/TSP.2019.2955860

of efficient L1-PCA algorithms have been proposed in the recent
literature (see e.g. [14]–[18]).

Even though L1-PCA and LDA are apparently disparate
techniques with very different purposes, the present contribution
shows that a link actually exists between both approaches. We
prove that, for whitened (or sphered) data, L1-PCA can perform
LDA in an unsupervised fashion, that is, sparing the need for
training data. This result is of theoretical interest and opens
interesting research perspectives for performing LDA using L1-
PCA algorithms. A number of numerical experiments validate
the theoretical findings in a variety of simulation scenarios.

The paper is organized as follows. Section II reviews the
basics of Fisher’s LDA and PCA and other related approaches
such as kurtosis optimization. Section III analyzes the L1-LDA
criterion using a Gaussian assumption, and shows it to per-
form LDA in an unsupervised manner under certain prescribed
conditions. Links with other techniques are also established
and working algorithms reviewed. Generalization to more than
two classes is addressed in Section IV. Computer experiments
validating the theoretical findings on synthetic and real data are
reported in Section V. The concluding remarks of Section VI
bring the paper to an end.

The notation used in the paper is as follows. Lightface letters
(e.g., a, A) represent scalar quantities, which may be functions,
univariate random variables, deterministic constants or indices.
The distinction will be clear from the context. Boldface low-
ercase (x) and uppercase (X) letters, respectively, stand for
vectors and matrices, either deterministic or random depending
on the context.

II. BACKGROUND

This section reviews the basic concepts on LDA and PCA,
recalling some connections with other techniques. This material
will be useful for the analysis in Section III.

A. Assumptions

The following conditions are assumed throughout the paper.
Consider p-dimensional observations x ∈ R

p, where each ob-
servation x belongs to one of two classes C1 and C2. Suppose
that the two classes can be described by probability density
functionsf1 andf2, respectively. The prior probability of classCi
is denoted by πi, i = 1, 2, with π1 + π2 = 1. Distribution fi has
a mean µi = E{x | x ∈ Ci} and an invertible positive definite
covariance matrix V i = Cov(x | x ∈ Ci) = E{(x− µi)(x−
µi)

ᵀ | x ∈ Ci}, i = 1, 2, where E{·} is the expectation operator
and (·)ᵀ stands for transpose. The following typical assumption
can be made without loss of generality:

Assumption A1: The data have zero mean, i.e., µ = E{x} =
∑2

i=1 πiµi = 0.
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Under this assumption, one can easily show that:

µ1 = −π2Δµ (1a)

µ2 = π1Δµ (1b)

where Δµ = (µ2 − µ1).

B. LDA Formulation

LDA [1] aims at projecting the data along a direction a ∈ R
p,

resulting in the projection

y = aᵀx. (2)

A reasonable criterion is to select a vector a such that the cor-
responding projections y obtained from C1 and C2 are separated
as much as possible. To this end, the derivation of LDA involves
the so-called within-class scatter matrix, defined as

SW =

2∑

i=1

πiV i (3)

which quantifies the average variation of the data in the classes.
Similarly, the between-class scatter matrix

SB =

2∑

i=1

πiµiµ
ᵀ
i = π1π2ΔµΔµᵀ (4)

contains the distance between the class centers. Equation (1) has
been invoked to reach the last term of Eqn. (4). To find direction
a, LDA maximizes the Rayleigh quotient:

JLDA(a) =
aᵀSBa

aᵀSWa
(5)

which is simply obtained at [1]

SWa∗ = Δµ. (6)

The rationale behind LDA cost (5) can be explained by the
following: observe that the mean and variance of the projected
data of class Ci can be expressed, respectively, as

mi = aᵀµi and σ2
i = aᵀV ia i = 1, 2. (7)

Then simple algebra shows that

JLDA(a) =
π1π2(Δm)2

π1 σ2
1 + π2 σ2

2

with

Δm
def
= m2 −m1 = aᵀµ2 − aᵀµ1 = aᵀΔµ. (8)

From here it is apparent that LDA searches for a vector a
such that: (i) m1 and m2 are far apart from each other, and
(ii) the spread of the projections around m1 and m2 is small.
Both conditions try to prevent the overlapping and maximize
the separation of the projected classes, thereby easing their
discrimination.

To compute class statistics {µi,V i}2i=1, LDA needs labelled
data — also known as training data — where the class to which
each observed vector x belongs is known. This is why LDA is
a supervised classification technique.

1) Whitened Data: LDA admits an interesting interpretation
when the classes are whitened or sphered, as explained next. Let
us now consider the case in which the classes are homoscedastic,
i.e., they have the same covariance matrix, V 1 = V 2 = V ,
which is a commonly accepted assumption in LDA. Then,
Eqn. (3) reduces to SW = V and Eqn. (6) simplifies into

V a∗ = Δµ. (9)

The projection onto vector (9) gives

y = xᵀa∗ = ΔµᵀV −1x.

It is now useful to calculate the eigendecomposition of the
within-class covariance matrix, given by V = UDUᵀ. Then
we have V −1 = UD−1Uᵀ, and

y = Δµ̃ᵀx̃

where x̃ = D−1/2Uᵀx and Δµ̃ = D−1/2UᵀΔµ. This trans-
formation basically whitens (or spheres) the data because the co-
variance of x̃ is the identity matrix for both classes, Cov(x̃ | x ∈
Ci) = D−1/2UᵀV UD−1/2 = I , i = 1, 2. Therefore, LDA is
equivalent to whitening each class and then projecting the data
along the line joining the whitened class centroids, defined by
vector Δµ̃.

2) Kurtosis-Based Unsupervised LDA: The kurtosis, defined
as the fourth-order central moment divided by the squared vari-
ance, is a measure of the gaussianity, peakedness and bimodality
of a distribution [19]. We recall it here because the following
theorem, reproduced from [20] using our notation, shows that
LDA is also closely related to this statistic.

Theorem 1: Let x be a p-dimensional random variable dis-
tributed as π1 f1(x) + π2 f2(x), where π1 + π2 = 1 and fi,
i = 1, 2, is a Gaussian distribution with mean µi and covariance
matrix V i = V , the same for both distributions. Let a be a
unit-norm vector on R

p and y = aᵀx. If a satisfies

V a = Δµ (10)

then it maximizes the absolute kurtosis of y. Furthermore, these
directions minimize the kurtosis if |π1 − 1/2| < 1/

√
12, and

maximize it otherwise.
A related result for the case of different covariance matrices

can be also found in [20]. It is interesting to observe that (10) is
equivalent to (9) but can be obtained without prior knowledge
of the data allocation, i.e., without the need for training data.
This result opens the way for kurtosis-based unsupervised clas-
sification techniques [21]. The main drawback of this approach
is that kurtosis is very sensitive to outliers since, by raising the
projections to the fourth power, the effects of the data points far
from the nominal distribution can easily overshoot, leading to
poor results in the presence of faulty data.

3) Generalized LDA: Finally, the LDA solution (6) can be
also generalized to weighted within-class scatter matrices of the
form:

S̄W =

2∑

i=1

πiβiV i (11)

where βi, i = 1, 2, are constants such that S̄W is positive or
negative definite. Such weighted scatter matrices lead to admis-
sible LDA-type classifiers for multivariate normal distributions
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with different covariance matrices [22]. Notice that the L1-norm
based criterion studied in Section III will be shown to be a
particular generalized LDA classifier under certain conditions.

C. L2-PCA and L1-PCA

In its original formulation [3], classical PCA seeks directions
maximizing the variance of the projection (2) according to the
quadratic criterion:

max
a

E{y2} subject to ‖a‖2 = 1. (12)

This technique is also known as L2-PCA because, when oper-
ating on finite sample observations, the expectation in (12) is
usually replaced by the L2-norm of the vector of projected sam-
ples. PCA was originally developed for dimensionality reduction
of multivariate data, in general. The solution to problem (12)
can simply be computed as the dominant eigenvector of the
overall data covariance matrix, which under the assumptions
of Section II-A is given by

V 0 = E{xxᵀ} = SW + SB . (13)

If the classes are well separated, the between-class scatter typi-
cally dominates the within-class scatter, i.e.,

‖SW ‖Fro � ‖SB‖Fro (14)

where ‖ · ‖Fro represents the Frobenius norm, and then:

V 0 ≈ SB = π1π2ΔµΔµᵀ. (15)

As a result, L2-PCA defines a projection in the direction joining
the class centroids, Δµ. This result reminds us of the LDA
solution for whitened classes as presented in the previous section
but, in contrast to LDA, only in certain situations it provides a
good direction of projection for separating the two classes. For
the interested reader, a comparison between LDA and PCA in
image recognition tasks is given for example in [23].

Though mathematically appealing, the L2-norm is rather sen-
sitive to impulsive noise or outliers since squaring the projections
overemphasizes the effects of far-off data points. As presented
in [4], a natural extension of L2-PCA to deal with this drawback
is given by

max
a

E{|y|} subject to ‖a‖2 = 1. (16)

The absolute value in Eqn. (16) is replaced in practice by the
L1-norm of the vector of projected samples and thus the above
criterion is referred to as L1-PCA. Note that the above two PCA
criteria are not equivalent in general, though they can provide
similar results when the data contain no outliers [4], [16]. In
addition, note also that none of them require labeled training
data.

III. LINK BETWEEN L1-PCA AND LDA

Inspired by the results reviewed in the previous section, we
consider the following unsupervised criterion for linear discrim-
inant analysis:

max
a

E{|y|} subject to E{y2} = 1 (17)

with y = aᵀx and hence E{y2} = E{(aᵀx)2} = aᵀV 0a. Ob-
serve that the constraint differs from that used in L1-PCA

(‖a‖2 = 1) but still prevents E{|y|} from increasing by a mere
increase of the magnitude ofa. In the rest of the paper, the above
criterion is referred to as L1-norm based unsupervised LDA
(L1-uLDA). The L1-uLDA criterion is analyzed in the remainder
of this section. In particular, the unit-variance constraint is shown
to be the ingredient confering discriminative capabilities. The
L1-uLDA criterion is quite general in that it does not require
the data to be prewhitened. Without limiting the foregoing, it is
well-known that the unit-variance constraint equates to a unit-
norm constraint for whitened data, so that L1-uLDA becomes
L1-PCA in this case. This observation enables us to make the
link between L1-PCA and LDA explicit in Section III-D. It is
concluded that, for whitened data, L1-PCA can perform LDA in
an unsupervised fashion, without information about class labels.
For unwhitened data, which is the more general case, this result
still holds since a simple sphering or whitening preprocessing
step allows us to carry out L1-uLDA by L1-PCA.

A. Justification of the Criterion

An intuitive explanation of how the criterion (17) works is that
the absolute value can be considered as a measure of distance
from the origin; as a result, it seeks a direction maximizing
the average distance from zero of the projected data points,
which in the end, thanks to the zero-mean assumption, favours
the emergence of two distinct clusters on either side of the
origin. The second power used in L2-PCA (12) can also be
considered as another measure of distance from the origin but
it leads to the direction of maximum variability of the data,
which, as it is well-known, does not necessarily produce linear
discriminant results. The main point is that L1-PCA is endowed
with discriminative power thanks to the unit-variance constraint.
We will show that, after whitening the data, L1-PCA is able to
find the direction of the line joining the class centroids.

Furthermore, as previously shown in Section II-B2, there
exists a close connection between LDA and the optimization
of the kurtosis of the linearly projected data. An additional
motivation for criterion (17) lies in the fact that, as recently
shown in [24], the kurtosis is related to the mean of the absolute
value of the random variable. To see this, let us standardize
the random variable y to have zero mean and unit variance
and, assuming that moments exist up to order four, consider
the fourth-order Gram-Charlier expansion of its probability
density function [25]:

f(y) ≈ exp(−y2/2)√
2π

[

1 +
λ3

6
(y3 − 3y) +

κ4

24
(y4 − 6y2 + 3)

]

where λ3 = E{y3} and κ4 = (E{y4} − 3) denotes the excess
kurtosis (i.e., the kurtosis minus three) of y. Then, using that∫∞
0 yu exp(−y2/2)dy = 0.5−((u−1)/2)Γ((u+ 1)/2), Γ(·) be-

ing the Gamma function, some algebra shows that

E{|y|} =
∫ ∞

−∞
|y|f(y)dy =

√
2

π

(
1− κ4

24

)
. (18)

As a result, maximizing (resp. minimizing) E{|y|} is equivalent
to minimizing (resp. maximizing) the kurtosis. Although one
may question whether the Gram-Charlier expansion can rep-
resent adequately the distribution of the data, this equivalence
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Fig. 1. Plot of function g(α) defined by eqn. (23). The constant 1/
√
π and

the straight line y = α are represented by the dotted and dashed-dotted lines,
respectively.

together with Theorem 1 (Section II-B2) suggest exploring the
link between the averaged absolute value and LDA.

B. Theoretical Analysis in the Gaussian Case

As it is usual in the study of LDA, we assume that the clusters
are normally distributed, i.e.,x | Ci ∼ N (µi,V i), i = 1, 2. This
is a probabilistic model that has been extensively applied in
signal processing. It follows that the observations are distributed
as a mixture of Gaussians,x ∼∑2

i=1 πiN (µi,V i). Hence, any
linear projection as in Eqn. (2) will also be distributed according
to a Gaussian mixture model y ∼∑2

i=1 πiN (mi, σ
2
i ), with

probability density function

f(y) =

2∑

i=1

πi√
2πσ2

i

exp

(

− (y −mi)
2

2σ2
i

)

(19)

where mi and σ2
i are defined in (7). As a consequence of

Assumption A1, the mean value of y is also zero.
The objective function and the constraint can be expressed as

follows. The second-order moment of y is readily given by

E{y2} = aᵀV 0a (20)

where V 0 is the covariance matrix of x defined in (13). Next,
using the change of variable x = (y −mi)/σi and letting

αi =
mi√
2σi

(21)

some algebraic manipulations show that

E{|y|} =
∫ ∞

−∞
|y|f(y)dy =

√
2

2∑

i=1

πiσig(αi) (22)

with

g(αi) =
1√
π

exp(−α2
i ) + αi erf (αi) (23)

where the error function is defined as erf(z) = 2√
π

∫ z

0 e−t
2
dt. It

holds that (23) is an even function and that lim|α|→∞ g(α) = |α|.
Fig. 1 plots this function.

Appendix A shows that the stationary point of the constrained
optimization problem (17) is given by

S̄a = δΔµ (24)

where

S̄ =
2∑

i=1

πi βiV i (25a)

βi =

√
2/π

σi
exp(−α2

i )− E{|y|} i = 1, 2 (25b)

δ = π1 π2 (γ2 − γ1) (25c)

γi = miE{|y|} − erf(αi) i = 1, 2 (25d)

and αi, i = 1, 2, were defined in Eqn. (21).
Furthermore, it is important to point out that solution (24)

locally maximizes criterion (17) when |αi|, i = 1, 2, are suf-
ficiently large (see Appendix A). To shed some light on this
result, some comments are in order. Firstly, observe that when
|α1| and |α2| are large, the magnitude of the projected means
|mi| are large relative to the standard deviations σi. Therefore,
the projected data form clusters and, because of the zero-mean
assumption, one cluster is to the left and the other to the right of
the origin, which is the desirable outcome in linear discrimina-
tion [22].

Secondly, when |αi| is sufficiently large, exp(−α2
i ) ≈

0 and erf(αi) ≈ sign(αi). In that case, and recalling that
lim|α|→∞ g(α) = |α|, expression (22) simplifies to

E{|y|} ≈ π2|m2|+ π1|m1| = π2m2 − π1m1

= 2π1π2a
ᵀΔµ = 2π1π2Δm (26)

where we have assumed, without loss of generality, that m1 <
0 < m2. Observe that maximizing (26) with a unit-norm con-
straint, as in the original L1-PCA criterion (16), would yield a
projection on the direction of the line joining the class centroids,
Δµ, which is the direction of maximum variance: Section II-C
recalled that, under condition (14), L2-PCA also finds the
direction Δµ. It is the unit-variance constraint in L1-uLDA
variant (17) that endows L1-PCA with LDA’s discriminative
power, as shown throughout this paper.

C. Link With LDA

Now we are ready to establish the formal connection with
LDA. In general, if β1 and β2 in Eqns. (24)–(25) are both
positive (resp. negative) then S̄ is positive (resp. negative)
definite because V 1 and V 2 are both positive definite. In this
case, the L1-uLDA solution (24)–(25) is a particular instance of
LDA classifier (6) with generalized covariance (11). The only
additional requirement for (24) to define an LDA solution is that
δ �= 0, which, according to Eqns. (25c)–(25d), is equivalent to
the constraint:

Δm �= erf(α2)− erf(α1)

E{|y|} . (27)

Next, suppose that the projected data form clusters where the
mean is large relative to the standard deviation, in such a way that
|αi|, i = 1, 2, are sufficiently large (asymptotic regime). Hence,
the exponentials exp(−α2) vanish in (25b), yielding β1 = β2 ≈
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−E{|y|}. Then, the generalized covariance matrix (25a) can
readily be expressed as

S̄ ≈ −E{|y|}
2∑

i=1

πiV i ∝ SW

which leads to Fisher’s LDA solution (6). Taking into account
Eqn. (26), the condition on δ now becomes:

Δm �= 1√
π1π2

(28)

where we have supposed that m1 < 0 < m2 without loss of
generality. Appendix B proves that condition (28) is always
satisfied.

The discussion simplifies when the classes are homoscedastic,
i.e., V 1 = V 2 = V . Then, the L1-PCA scatter matrix (25a)
reads:

S̄ =

(
2∑

k=1

πk βk

)

V ∝ V

so that Eqn. (24) always turns out to be equivalent to Eqn. (9)
defining LDA in the homoscedastic scenario as recalled in
Section II-B. This result also coincides with Theorem 1 in
Section II-B2 for the kurtosis-based unsupervised classifier,
and provides additional evidence of the relation between the
proposed unsupervised criterion and LDA.

The above analysis can be summarized as follows:
i) The critical points of L1-uLDA criterion (17) present

the general form of solutions (6) with general covariance
given by Eqn. (25).

ii) The equivalence between L1-uLDA and LDA is exact if
the projection onto the directions they define produces
two sufficiently separated clusters on both sides of the
origin so that |αi|, i = 1, 2, are sufficiently large.

iii) Under this condition, LDA is obtained in an unsupervised
fashion by maximizing the proposed L1-uLDA criterion.

Note that the condition guaranteeing the equivalence between
LDA and L1-uLDA is mild, as it coincides with the condition for
LDA to yield proper discrimination results. A complementary
discussion on the conditions under which |αi|, i = 1, 2, can be
considered sufficiently large is given in Appendix C. Despite the
theoretical equivalence in ideal conditions, L1-uLDA operates
in an unsupervised fashion. This theoretical analysis will be put
to the test in the experimental analysis of Section V.

D. Algorithm

1) Derivation: We have seen that the unit-variance constraint
in (17) is crucial for L1-uLDA to yield discriminative solutions.
However, classical algorithms for L1-PCA work under a unit-
norm constraint, as in Eqn. (16). A sphering or whitening pre-
processing step transforms the variance constraint into the norm
constraint, thus enabling the use of classical algorithms for L1-
PCA. Given V 0, the covariance matrix of x, and its eigenvalue
decomposition (EVD) V 0 = QD0Q

ᵀ, consider the change
of variable z = D

−1/2
0 Qᵀx. This transformation spheres or

whitens the data, as the covariance matrix of z becomes the
identity. Letw = D

1/2
0 Qᵀa and observe that y = wᵀz = aᵀx,

implying that

E{y2} = wᵀE{zzᵀ}w = wᵀw = ‖w‖22.
As a result, for whitened data the proposed criterion (17) can be
rewritten as

max
w

E{|y|} subject to ‖w‖2 = 1 (29)

where y = wᵀz. Hence, the unit-power constraint on the pro-
jected data is transformed into a unit-norm constraint on the
projection vector. The constrained optimization problem (29) is
the basis of L1-PCA and has been studied in a number of recent
works [4], [16]. In particular, it can be shown that the fixed point
iteration

1) y = wᵀ
nz

2) wn+1 =
E{z sign(y)}
‖E{z sign(y)}‖2

monotonically increases the absolute value criterionE{|y|} after
each iteration [4], and so the algorithm converges at least to
a local maximum — similarly, given a set of unlabeled data
points x1, . . . ,xT sampled from the random variable x, step 2
transforms into

wn + 1 =

∑T
t = 1 ztsign(wᵀ

nzt)

‖∑T
t = 1 ztsign(wᵀ

nzt))‖2
.

The most notable feature of this simple algorithm is that no
parameters need to be tuned. Alternatively, one can use the
polynomial time approaches in [26]–[28]. L1-PCA algorithms
with guaranteed convergence to a global maximum have also
been proposed, although they come at the expense of increased
computational complexity [16], [29]. In addition, a simplified
and faster, yet suboptimal, version of [16] can be found in [17].

In summary, the algorithm (assuming unwhitened data) would
involve the following steps:

1) Compute and subtract the mean from the data.
2) Whitening: z ←D

−1/2
0 Qᵀx, where V 0 = QD0Q

ᵀ is
the EVD of the covariance matrix of x.

3) Solve (29) to obtain w∗. This step is the standard L1-PCA
of the sphered data and any of the above mentioned
algorithms (e.g., [4], [16], [17]) can be used for its com-
putation.

4) Undo whitening: return a∗ = QD
−1/2
0 w∗.

Interestingly, this algorithm has recently been shown to also
carry out independent component analysis (ICA) with increased
protection against outliers [24]. In other words, if the data
follow the ICA model, this algorithm can allow its estimation.
Otherwise, if the data have two classes, this same algorithm can
perform LDA.

2) Further Comments: After sphering, the data covariance
matrix equals the identity, i.e.,V 0 = E{xxᵀ} = I . SinceV 0 =
SW + SB , it follows that

SW = V 0 − SB = I − π1π2ΔµΔµᵀ

where we have invoked Eqns. (4) and (13). This matrix can
be easily inverted using the well-known Sherman-Morrison
formula, yielding:

S−1W = I − π1π2ΔµΔµᵀ

1 + π1π2‖Δµ‖2 .
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It follows that the optimal LDA projection is in the direction of
the line joining the class means:

a∗ = S−1W Δµ =
Δµ

1 + π1π2‖Δµ‖2 .

If the classes are well-separated, Δµ also coincides with the
direction of maximum variance (as recalled in Section II-C).
Consequently, we may think thatΔµ (and hencea) can be easily
estimated in an unsupervised manner by L2-PCA. However,
after data sphering all directions yield the same variance and
henceΔµ cannot be identified from a variance criterion. In other
words, L2-PCA becomes inoperative. To fix this problem, the
proposed L1-uLDA algorithm replaces L2-PCA with L1-PCA.
Having replaced the square by the absolute value in the objective
function, L1-PCA is able to identify Δµ as shown throughout
this section.

IV. THE MULTICLASS CASE

In the preceding section of the paper, the link between LDA
and the constrained L1-PCA giving rise to L1-uLDA has been
established in the binary (two-class) case. This section extends
these results to the general scenario where data may be composed
of more than two classes. We begin the derivations by recalling
LDA in the multiclass case.

1) Multiclass LDA: In the multiclass case, where x is drawn
from one of c classes C1, . . . , Cc, the between-class and within-
class scatter matrices are defined respectively as [30]:

Sc
B =

c∑

i=1

πi(µi − µ)(µi − µ)ᵀ =

c∑

i=1

πiµiµ
ᵀ
i

Sc
W =

c∑

i=1

πiV i.

where we have assumed again that the total mean vector of x
is zero, i.e., µ = E{x} = ∑c

i = 1 πiµi = 0, and maintained the
previous notation: µi = E{x | x ∈ Ci} is the mean of Ci, V i =
Cov(x | x ∈ Ci) = E{(x− µi)(x− µi)

ᵀ | x ∈ Ci} is the class
covariance matrix, and πi = P (x ∈ Ci) is the corresponding
a priori probability. Regardless of the value of c, it always
holds that the data covariance matrix V 0 = E{xxᵀ} can be
decomposed as

V 0 = Sc
B + Sc

W . (30)

Multiclass LDA addresses the more general problem of pro-
jecting the data onto a q-dimensional subspace, with q < p,
while also retaining as much of the class discriminating in-
formation as possible for the subsequent classification stage.
The LDA projection is given by y = Aᵀx, where A is the
(p× q) matrix whose columns are the dominant eigenvectors
of the matrix pencil (Sc

W ,Sc
B), given by the solutions of the

generalized eigenvalue (GEVD) problem [30]:

Sc
Wa = λSc

Ba. (31)

This can be seen as the solution of two coupled optimization
problems involving quadratic forms subject to the same unit
variance constraint. In the first place, because of relation (30),
the GEVD problem (31) can readily be expressed as:

Sc
Ba = λ′V 0a (32)

where λ′ def
= 1/(1 + λ). Some algebraic manipulations prove

that Eqn. (32) is the solution of the constrained problem:

max aᵀSc
Ba subject to E{y2} = 1 (33)

since E{y2} = E{(aᵀx)2} = aᵀV 0a. Likewise, problem (31)
can also be expressed as:

Sc
Wa = λ′′V 0a (34)

with λ′′ def
= λ/(1 + λ), which is the solution of

min aᵀSc
Wa subject to E{y2} = 1. (35)

Problems (32)–(33) and (34)–(35) are indeed inextricably inter-
twined because, under the unit-variance constraint:

argmax
a

aᵀSc
Ba = argmax

a
aᵀ(V 0 − Sc

W )a

= argmax
a

(1− aᵀSc
Wa)

= argmin
a

aᵀSc
Wa

andλ′ + λ′′ = 1. Therefore, the dominant eigenpairs of (32) and
the maxima of (33) are directly linked to the minor (least signif-
icant) eigenpairs of (34) and the minima of (35), respectively.
Finally, Eqn. (32) can be also expressed as

λ′V 0a = Sc
B a =

(
c∑

i=1

πiµiµ
ᵀ
i

)

a =

c∑

i=1

(πimi)µi, (36)

wheremi = µᵀ
i a. Hence, we see that the columns of the optimal

matrix A lie in the space spanned by µ1, . . . ,µc. In addition,
pre-multiplying Eqn. (36) by aᵀ and imposing the unit-variance
constraint shows that the dominant generalized eigenvector
of (32) is given by

λ′max = max aᵀSc
B a = max

c∑

i=1

πi(mi)
2. (37)

In other words, the LDA solution lies in the direction maximizing
the average squared means of the projected classes under the
unit-variance constraint. In a totally similar fashion, it is simple
to observe that the minor generalized eigenvector of (34) under
the unit-variance constraint is given by

λ′′min = min aᵀSc
W a = min

c∑

i=1

πiσ
2
i

which minimizes the average variance of the projected classes.
In summary, multiclass LDA tries to find projections maxi-

mizing the average squared mean while minimizing the average
variance of the projected classes under a unit-norm constraint
on the projected data. Inspired by this result, we show next that
L1-uLDA follows a related approach in the multiclass scenario.

2) Multiclass L1-Ulda in Low Dispersion Regime: A slight
variant of LDA is obtained by replacing the squares by absolute
values in Eqn. (37), yielding

max
c∑

i=1

πi|mi| subject to E{y2} = 1. (38)
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Some algebra shows that the solution fulfils

V 0a ∝
c∑

i=1

πisign(mi)µi (39)

which, as in classical LDA, lies in the subspace spanned by the
class means [cf. Eqn. (36)].

This alternative criterion remains supervised, since comput-
ing mi requires prior knowledge of the class labels. We now
prove that the L1-uLDA criterion optimizes (38) in an unsu-
pervised fashion when the data classes are tightly concentrated
around their means. To complete the link with LDA, the next sec-
tion will analyze the other extreme case where the within-class
spread is large.

Recall that the L1-uLDA criterion is given by

max E{|y|} subject to E{y2} = 1. (40)

We first consider the case where the classes are tightly con-
centrated around their means, i.e., trace(V i) ≈ 0 and σi → 0,
∀i = 1, 2, . . . , c. Hence, the probability density function (pdf)
of the projected data accepts the approximation:

fy(u) −→
σi→0

c∑

i=1

πiδ(u−mi).

Therefore:

E{|y|} =
∫ +∞

−∞
|u|fy(u)du

−→
σi→0

c∑

i=1

πi

∫ +∞

−∞
|u|δ(u−mi)du =

c∑

i=1

πi|mi|.

The L1-uLDA criterion (40) indeed asymptotically opti-
mizes (38) unsupervisedly, i.e., without requiring knowledge
of the class labels. Remark that this result is independent of the
underlying data distribution. The only requirement is that each
class be closely concentrated around its mean.

3) Multiclass L1-uLDA in High Dispersion Regime: We now
turn to the case where the within-class dispersion is large as
compared with the between-class dispersion. To address this
more involved scenario, the assumption is now made that the
data x from class Ci are Gaussian distributed. The pdf of x is
therefore x ∼∑c

i=1 πiN (µi,V i). Under this model it can be
shown that

E{|y|} =
∫ ∞

−∞
|y|f(y)dy =

√
2

c∑

i=1

πiσig(αi) (41)

where αi and g(αi) were respectively defined in Eqns. (21)
and (23), andσ2

i is the variance of the projected ith class. A series
of algebraic manipulations, similar to those for the two-class
case, yield that the stationary points of the L1-uLDA criterion
verify the equation

V 0a =
1

E{|y|}
c∑

i=1

πi

[ √
2/π

σi
e−α

2
iV ia+ erf(αi)µi

]

.

(42)
If the spread of the clusters is large in relation to their respec-
tive means, αi are close to zero, implying exp(−α2

i ) ≈ 1 and

erf(αi) ≈ 0. Then (42) can be rewritten as the GEVD problem

S̄
c
W a = λ′′′V 0a (43)

where

S̄
c
W =

c∑

i=1

πi βiV i, with βi =

√
2/π

σi
.

Equation (43) is the multiclass LDA solution with a generalized
weighted within-class scatter matrix. Furthermore, it becomes
equivalent to the traditional LDA solution (34) when all classes
have equal covariance matrices, V i = V , ∀i = 1, 2, . . . , c. On
the other hand, remark that in the low dispersion regime αi

become large and then exp(−α2
i ) ≈ 0 and erf(αi) ≈ sign(αi),

leading to the same conclusions as in the previous section.
We have established the link between LDA and L1-uLDA in

extreme cases of within-class dispersion. In the general case,
the actual solutions of the L1-uLDA criterion (40) will lie
somewhere between these two extremes, preserving in any case
the ability of multiclass LDA to distinguish between the different
classes, as demonstrated by the numerical experiments reported
next.

V. NUMERICAL EXPERIMENTS

A number of computer simulations in a variety of experimen-
tal conditions are performed to validate the theoretical study
developed in this paper and to test the equivalence to LDA while
sparing the need for labelled data (unsupervised operation).
Other techniques for unsupervised and semi-supervised LDA
have been proposed in the literature (see e.g. [31]–[33]). It
should be kept in mind, however, that to limit the scope of
the paper our focus is only on the connection between L1-
PCA and LDA, without claiming its potential superiority over
existing alternative techniques for classification or clustering.
A comparative performance analysis should be the topic of
future research. Note also that other complementary analyses of
L1-PCA (robustness against outliers, linear dimension reduction
capabilities, comparison with other robust PCA approaches,
etc.) can already be found in the cited literature (see e.g.
[4, 17]).

Our experiments include synthetically generated as well as
real data. For simplicity, we apply our tests to L1-uLDA, which is
carried out by applying L1-PCA to prewhitened data. To perform
L1-PCA in step 3 of the L1-uLDA optimization algorithm in
Section III-D, and unless otherwise stated, we employ the bit
flipping algorithm presented in [17]. A free MATLAB imple-
mentation of this algorithm is provided in [34].

A. Synthetic Data

Bivariate data can be easily visualized as points in a two-
dimensional scatter plot. For this reason, we use them to illustrate
the performance of L1-uLDA first before moving on to the
general case of more than two dimensions.

1) Finite Sample Size: The theoretical analysis of the pre-
vious section relies on an ensemble or distributional charac-
terization with the implicit assumption of infinite sample size.
The first experiment evaluates the ancillary L1-uLDA criterion
in short data records, and shows the existence of spurious
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Fig. 2. Equivalent L1-uLDA criterion (44) computed from a realization of
T = 200 points (red line) and T = 50 points (blue line) as a function of the
angle formed by the projection direction with the horizontal axis. Spurious local
maxima are clearly visible in the latter case.

local maxima for insufficient sample size. We generate two-
dimensional random samples from a mixture of two equiprob-
able (π1 = π2 = 0.5) Gaussian distributions with means µ1 =
−[1.5, 0]ᵀ and µ2 = [1.5, 0]ᵀ, and identical covariance matrix
V 1 = V 2 = I , where I is the identity matrix. Let y = a(θ)ᵀx
be the one-dimensional projection of the data vector x in the
direction a(θ) = [cos(θ), sin(θ)]ᵀ. It can be readily shown that
the L1-uLDA criterion (17) is also equivalent to maximizing the
unconstrained function

J(θ) =
E{|y|}
σy

(44)

where σy is the standard deviation of y. Indeed, the optimization
of a Rayleigh quotient as that of (44) is equivalent to optimizing
the numerator while constraining the denominator. The maxima
and the minima of (17) can be easily studied by plotting J(θ).
The red line in Fig. 2 plots function J(θ) estimated from a
realization of T = 200 data samples. The curve passes through a
global maximum at θ = 0 degrees, which is consistent with the
fact that the optimal direction resulting from Fisher’s discrim-
inant is parallel to the x1-axis as is easy to check (line joining
the means; see Eqn. (9)).

Next, the experiment is repeated, though this second time the
objective function is estimated from only the first 50 samples of
the previous 200-samples dataset. The corresponding objective
function is shown in the blue line of Fig. 2. Observe that
several spurious local maxima appear when reducing the sample
size. We conclude that it is convenient to carry out L1-PCA
using globally convergent algorithms such as that of [16] if the
sample size is small. The bit flipping algorithm of [17], though
suboptimal, achieves good convergence in all our experiments.

2) Comparison with LDA and L2-PCA: Since L1-PCA is
related with L2-PCA (Section II-C), one may naturally wonder
about their comparative behavior. To this end, Fig. 3 shows the
scatter plot of the T = 200 data points used in the previous
experiment, where data from class 1 and class 2 appear as red
crosses and blue circles, respectively. The red line marked ‘L1’ is
the direction of the optimal L1-uLDA projection. Projecting the
whole dataset onto this line gives the histogram plotted in Fig. 4,
clearly showing the clustered structure of the data. Similarly, the
black line labelled as ‘PCA’ in Fig. 3 is the direction of maximum

Fig. 3. Scatter plot of T = 200 samples from a mixture of Gaussian clusters.
Red line: direction of the optimal projection according to the proposed criterion
(L1-uLDA). Green line: optimal Fisher’s discriminant direction (LDA). Black
line: direction of maximum variance (L2-PCA).

Fig. 4. Histogram of the data projected onto the direction determined by L1-
uLDA in Fig. 3. The two modes point out the existence of two clusters.

variance of the data, constructed by classical L2-PCA, whereas
the green line marked ‘LDA’ represents Fisher’s discriminant
direction for this dataset.

Even though the three approaches present a similar behavior in
this example, strictly speaking classical L2-norm based PCA is
not a linear discrimination technique and, therefore, it may yield
different results in certain cases. Supporting this claim, Fig. 5
shows the projection directions obtained after repeating the
experiment under the same conditions except for the covariance
matrices, which are set to V 1 = V 2 = diag(1, 3), so that the
direction of maximum variance lies now along the x2-axis.

3) More Than Two Dimensions: Let us now extend the pre-
vious analysis to more than two dimensions. Consider data
from two classes with prior probabilities π1 = π2 = 1/2 in a
p-dimensional space, with p > 2. Data from class i, i = 1, 2,
are drawn from a Gaussian distribution N (µi,V i), with µ1 =
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TABLE I
ANGLES IN DEGREES BETWEEN LDA AND L1-uLDA DIRECTIONS (ΔθL1), AND LDA AND L2-PCA DIRECTIONS (ΔθL2). VALUES SHOWN REPRESENT MEAN ±
STANDARD DEVIATION OVER 10 INDEPENDENT REALIZATIONS OF T = 200p DATA SAMPLES. p: DATA DIMENSIONALITY; μ: DISTANCE BETWEEN CLASS MEANS

Fig. 5. Linear discrimination performance for classes with non-isotropic co-
variance matrices, under the same general conditions of the experiment of Fig. 3.
L2-PCA fails to find a discriminant solution, whereas L1-uLDA projector still
lies close to LDA’s.

−μ

2
e1,µ2 =

μ

2
e1, where e1 is the vector with 1 in the first

entry and 0’s elsewhere. Accordingly, parameter μ represents
the distance between the class means. The covariance matrices
are chosen either as (a): V 1 = V 2 = I , or (b): V 1 = V 2 =
diag(1, p, . . . , p). In both cases, the direction resulting from
Fisher’s discriminant is parallel to the x1-axis. In (b), the x1-axis
is also the direction of minimum variance of the classes. The
LDA projection vector (aLDA), the L2-PCA principal direction
of the data (aL2) and the proposed L1-uLDA projection vector
(aL1) are estimated from the same T = 200 p data points and
normalized to unit length. To compare Fisher’s discriminant
with the two other methods, the angles formed by the LDA
vector aLDA with aL1 and aL2 are calculated by the formula
Δθx = arccos(|aT

LDAax|), where x ∈ {L1,L2}, for different
parameter pairs (p, μ). The absolute value simply forces the
angle to lie in the first quadrant. Table I shows the mean angle
values ± standard deviations (in degrees) for 10 independent
data realizations. Observe that θL1 tends to 0◦ as μ increases,
which means thataL1 gradually aligns itself withaLDA, achiev-
ing a perfect fit when the clusters are well separated, as predicted
by our theoretical analysis. While the different approaches in-
deed become equivalent when the classes are clearly distinct,
L1-uLDA keeps closer to LDA than L2-PCA when the classes
tend to overlap. This observation is particularly evident in case
(b), where aL2 lies almost orthogonal to aLDA for small μ.

4) Data Corrupted With Outliers: Let us return to the
case p = 10 and μ = 5 with V 1 = V 2 = I of the previous

experiment. We replace the 20% of the data from each class by
outliers generated by raising normalized Gaussian random sam-
ples to the third power and centering them on the corresponding
class means. Some outliers considerably far from the clusters
are obtained in this manner. For the corrupted data, the mean
angle between the optimal L1-uLDA projection vector and the
horizontal axis, averaged over 10 independent experiments, is
equal to 8.8◦ with an standard deviation of 4.9◦. This mean angle
is equal to 9.4◦ for LDA applied on the same corrupted data
(standard deviation equal to 3.3◦). Both means are compared
with the aid of Student’s t-test and do not differ significantly
at the 5% level. For comparison, the angle is 75.9◦ (standard
deviation 1.4◦) when calculated by L2-PCA. This experiment
suggests that the proposed L1-uLDA method is as robust to
outliers as the original LDA method while operating in an
unsupervised manner.

5) Unbalanced Clusters: The L1-uLDA criterion may fail
when one of the classes is much more frequent than the other,
so that the cluster masses become too unbalanced. Consider
two-dimensional random samples from a mixture of two Gaus-

sian distributions with means µ1 = −μ

2
e1,µ2 =

μ

2
e1, where

e1 = [1, 0]ᵀ, and common covariance matrix V 1 = V 2 = I ,
where I is the identity matrix. Unlike the above experiments
for classes with the same prior probabilities π1 = π2 = 0.5,
now the clusters are not assumed to have a similar number
of points. Fig. 6a plots the objective function J(θ), defined
in Eqn. (44), for μ = 3 and different values of the class prior
probabilities π1 and π2, with π1 + π2 = 1. The plots show
that, for unevenly sized clusters (e.g., π1 = 0.1 or π1 = 0.2),
the maxima of J(θ) occur at θ = ±90◦, and hence L1-uLDA
would produce directions orthogonal to Fisher’s discriminant.
This outcome can be interpreted as follows. When the priors
πi are highly unbalanced, the zero-mean constraint forces the
distribution with larger mass to be concentrated around zero.
Therefore, the mean of the projected class is always close to
zero as well, no matter on which direction we project the data.
This prevents the projected data from forming a cluster where
the mean is large relative to the standard deviation, which is
required for L1-uLDA to work. Fig. 6b plots the new function
J(θ) obtained after setting μ = 14, resulting in a clearer cluster
separation. Observe that the curve π1 = 0.2 now passes through
a maximum at θ = 0◦, although it is not the global maximum.
Therefore, L1-uLDA may fail again in this case. See Appendix C
for a further explanation.

6) The Multiclass Case: Consider a p = 30–dimensional
data set, with c = 30 classes, and 500 samples per class (imply-
ing that the prior probabilities are the same for all classes). The
class means µi are generated from a normal distribution with
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Fig. 6. Objective function J(θ) [eqn. (44)] estimated from T = 200 samples
in the bivariate Gaussian case with identity covariance matrix for both classes
and different class priorsπ1 (π2 = 1− π1). Each curve is obtained by averaging
over 50 independent data realizations.

covariance matrix 4I30, where In is the identity matrix of order
n. We also assume equal class covariance matrices V i = I30

for i = 1, 2, . . . , 30. Under these conditions, we are not in the
high or the low dispersion regime, but somewhere in between.
In this experiment, we successively project the data onto � = 1
to 29 dimensions, using the matrices A ∈ R

30×� for which
the multiclass LDA criterion and the L1-uLDA criterion are
maximal. To generate several projection directions, we follow
the approach in [4], i.e., we run L1-PCA several times on the
whitened data with the additional constraint that the solution
found in the kth run had to be orthogonal to the previously
found (k − 1) solutions. Finally, to test the separability of the
projected samples, they are classified using the K-means algo-
rithm. Fig. 7 shows the accuracy of the classification averaged
over 100 independent experiments for multiclass LDA and for
the L1-uLDA criterion. As can be seen, both methods perform

Fig. 7. Classification accuracy as a function of the dimensionality of the
projected subspace, for 30 classes and 30 features. Solid line: L1-uLDA. Dashed
line: LDA.

similarly excepting for very low (1 to 5) dimensions, in which the
standard supervised criterion is superior to the unsupervised one.
This can be explained by the observed tendency of multiclass
L1-uLDA to form one-dimensional projections with only two
well-separated clusters, one on each side of the origin.

B. Experiments With Real Data

The theoretical analysis of Section III assumes that the density
is Gaussian for both classes. This section presents three addi-
tional experiments to test the behavior of the proposed method
when that assumption is violated, as is often the case when
analyzing real data. To this end, we use three classical datasets
with a deliberately small number of samples so that we can also
test the impact of short sample length.

1) Iris Dataset: Originally used by Fisher when introducing
LDA [35], this is perhaps the most famous dataset in the pattern
recognition literature. It contains the sepal and petal length and
width of 150 iris flowers from three different species (setosa,
versicolor and virginica). One of them (setosa) is linearly sep-
arable from the other two; the latter are not linearly separable
from each other. The dataset contains 50 samples from each of
the three species of iris. It can be downloaded from the UCI
Machine Learning Repository [36], [37].

The database can be written as a matrix X ∈ R
4×150, corre-

sponding to 4 measurements from 150 flowers. After centering
and sphering the data, we calculated the unit-norm L1-uLDA
projection vector aL1 ∈ R

4 of the data matrix. Fig. 8 plots
the probability density function, obtained by a kernel density
estimator method, of the projection of the data onto the direction
of aL1. The distribution is clearly bimodal, which suggests
that the sample is not homogeneous but arises from at least
two different populations [22]. In fact, the mode on the left
exclusively corresponded to the setosa individuals, while the
other mode represented the mixture of the other two classes.

Next, we separate the projected data into two groups using
as threshold the local minimum between the two peaks in the
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Fig. 8. Experiment on the Iris dataset. Histogram of the projection of the data
onto the L1-uLDA optimal direction.

Fig. 9. Experiment on the Iris dataset. Histogram of the projection of the
data containing only versicolor and virginica individuals (corresponding to the
right-hand mode of Fig. 8) onto the L1-uLDA optimal direction.

bimodal distribution. It is thus obtained one cluster that only
contains iris setosa and another cluster that only contains ver-
sicolor and virginica. Then we repeat the procedure (centering,
sphering and L1-PCA) on the cluster with the versicolor and
virginica individuals. A bimodal distribution is again apparent
as a result (see Fig. 9). Dividing these data once more into two
groups, using zero as threshold for deciding to which class each
flower is allocated, only three flowers are misclassified: one
virginica is misclassified as a versicolor and two versicolor are
misclassified as virginica. This 98% accuracy is achieved by
L1-uLDA in unsupervised operation, without knowledge of the
sample labels.

2) Wisconsin Diagnostic Breast Cancer Dataset: This
dataset is used for breast cancer diagnosis. It contains 569
instances of 30 real-valued features from images of a fine needle
aspirate of a breast mass, that describe the characteristics of the
cell nuclei present in the image. Of these 569 instances, 357

Fig. 10. Scatter plot of the three first principal components of the Wiscon-
sin Diagnostic Breast Cancer Dataset [38]. The plane represents the decision
boundary that partitions the space into positive and negative projections onto
the L1-uLDA optimal direction, which is plotted as a black line.

correspond to ‘benign’ (non-cancerous) cases while 212 are
‘malignant’ (cancerous). The dataset is downloaded from the
UCI Machine Learning Repository [36], [38].

First of all, as a preprocessing step, we standardize the 30
features to have zero mean and unit variance. Secondly, we
obtain the three major principal components from the standard-
ized features to aid visualization. Fig. 10 shows the scatter plot
of these three principal components. The first class, ‘benign,’
is represented as ‘crosses,’ and the second class, ‘malignant,’
as ‘circles’. Thirdly, the L1-PCA algorithm of [17] is applied
to these principal components (which are already sphered by
construction), and not to the original data.

The histogram of data projected onto the direction resulting
from L1-PCA again suggests that the sample arises from differ-
ent populations. The data are classified into two groups using
zero as threshold; the plane in Fig. 10 represents the correspond-
ing classification boundary. Interestingly, the sensitivity of this
classifier (i.e., the probability of a correct classification given
that the instance is ‘malignant’) is 0.91 while the specificity (i.e.,
the probability of a correct classification given that the instance
is ‘benign’) equals 0.90. For comparison, we also classify by
assigning each instance to the class with the closest mean using
the Malahanobis distance as a metric, which is equivalent to
Fisher’s linear classification rule [2]. In this case, the sensitivity
and specificity equal 0.98 and 0.87 respectively. As a further
experiment, we consider that training data often contain mis-
classified items, as a result of the mistakes made by annotators
who have performed the labelling. To model this effect, the data
are classified again with Fisher’s rule after having interchanged
the labels of the 56 individuals lying closer to the classification
boundary. Since most of them corresponded to ‘benign’ samples,
sensitivity is almost unaltered but specificity decreases to 0.74.
The results obtained by L1-uLDA are not affected since this
method, being unsupervised, does not make use of the data
labels.
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Fig. 11. Sample images of the AT&T face database.

3) Face Recognition Via Subspace Projection: 2D images
are usually vectorized by stacking their columns into a 1D
vector. Suppose that we are given a set {x1, . . . ,xT } of face
images xi ∈ R

p labeled with the person’s identity. Given an
unlabeled test image, the goal is to identify the featured per-
son. Dimension-reduction based techniques are an effective
approach to this problem. These techniques comprise in essence
the following steps: 1) transform the data to a space of fewer
dimensions, 2) project the training samples and the test image
into the low-dimensional space, 3) assign the projected test
image to the closest projected training image. The Eigenfaces
method described in [39], which is based in classical L2-PCA,
and the Fisherfaces method [40], inspired by Fisher’s LDA,
are among the most successful dimension reduction techniques
in this field. The aim of the present experiment is to test the
ability of L1-uLDA to solve image classification problems. After
sphering the data, the iterative L1-PCA algorithm of [4] is now
preferred over the bit flipping algorithm of [17] as the latter
becomes too costly in this experimental setting. To generate
several projection directions, we run L1-PCA several times with
the additional constraint that the solution found in the kth run
had to be orthogonal to the previously found (k − 1) solutions
(see [4] for details). The images are then projected onto the space
spanned by the dominant L1-PCA principal components.

This experiment uses the AT&T face dataset, which contains
10 facial images of each of 40 different subjects (400 images in
total). For a given subject, the facial images differ in lighting,
pose, expression (open / closed eyes, smiling / not smiling) and
details (glasses / no glasses). Each image is 92× 112pixels, with
256 grey levels per pixel. Fig. 11 shows some of the images of
the database.

Fig. 12 shows the recognition rate with 10-fold cross-
validation versus the dimension of the image projection sub-
space, where we use 90% of the images for training and 10% for
validation, with a slightly superior performance of the L2-PCA
based method. We repeat the experiment but, to generate data
far from the clusters, 10 images of the training dataset are
severely distorted by salt-and-pepper noise in this second case.
The result, shown in Fig. 13, illustrates again the robustness
of L1-principal subspaces against outliers. L1-uLDA reaches a
recognition performance up to the mark of LDA’s but with no
need for training data.

4) Face Recognition With CNNs: Convolutional Neural Net-
works (CNNs) constitute the state-of-the-art in the field of face

Fig. 12. Classification accuracy versus feature dimension in the AT&T
database.

Fig. 13. Classification accuracy versus feature dimension in the AT&T
database with outliers.

recognition. In these last experiments, we test the capabilities
of L1-uLDA for dimensionality reduction when applied to the
output of a ResNet network [41], which has been implemented
in the dlib C++ library [42], with 29 convolutional layers.
This CNN transforms the image of a human face into a 128 di-
mensional vector, where images of the same person are mapped
close to each other and images from different people become
separated far apart after the transformation.

The experiments are conducted on images from the database
“Faces in the wild” [43], which comprises a total of 13 233
labelled images of faces from 5 749 persons, albeit only the
3 023 photographs of the 65 people with more than 20 images
in the dataset are used in our experiments. The images vary
in height and length, and the faces appear in different angles
and scenarios. As a pre-processing, the Histogram of Oriented
Gradients (HOG) [44] technique was used to detect the location
of the faces, which is necessary before applying the CNN to
the pictures. It is empirically observed that about half of the
eigenvalues of the autocovariance matrix of the CNN outputs are
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Fig. 14. Classification accuracy versus feature dimension in the ‘Faces in
the wild” database when the dimensionality reduction is applied to the 128
dimensional outputs of a convolutional neural network.

negligible as compared with the others. This allows to replace
the CNN outputs with their low rank SVD reconstruction, which
filters the noise while preserving most of the data variance.

Similarly to the previous experiment, we project the
128-dimensional vectors onto a space of fewer dimensions,
using training samples to calculate the matrix of the linear
transformation by one of the above-referred techniques (i.e.
Fisher’s LDA, L2-PCA or L1-uLDA). We emphasize that neither
PCA nor L1-uLDA use for anything the ‘labels,’ or ‘names,’
of the persons in the images. Then, test images are projected
into the low-dimensional space and assigned to the label of the
closest projected training image. A simple K-nearest neigh-
bors algorithm (K-NN) is used to classify each unlabelled
face and determine to which person it belongs. Fig. 14 shows
the recognition rate with 10-fold cross-validation (90% of the
images for training and 10% for testing) versus the dimension
of the image projection subspace. As before, L2-PCA presents
a slightly better performance, and unsupervised L1-uLDA is
almost equivalent to supervised Fisher’s LDA.

VI. CONCLUSION

The present work has shown that L1-PCA of whitened data
can perform LDA in an unsupervised fashion, i.e., without the
need for training data. This connection between L1-PCA and
LDA had gone previously unnoticed. After whitening, L1-PCA
can be carried out with several efficient algorithms recently
proposed in the literature. We refer to this L1-PCA variant
as L1-uLDA. Compared with L2-PCA and kurtosis, L1-uLDA
offers enhanced robustness to outliers, which makes it par-
ticularly attractive when processing faulty or unreliable data
as confirmed by a variety of computer experiments. Further
theoretical research should explore its extension to scenarios
with possibly non-Gaussian data. Also, the technique presents
limitations in the presence of highly unbalanced clusters, a
challenging scenario that should be considered in future works.
Finally, our focus was on establishing the connection between
L1-PCA and LDA, and space lacked for a comparison with other

techniques for unsupervised and semi-supervised LDA, which
will be the topic of further investigations.

APPENDIX

A. Mathematical Derivation of Stationary Point Analysis

This appendix provides details about the stationary point
analysis of Section III-B. First, let us review some basic concepts
about function optimization with equality constraints, which can
be expressed as:

max
a

f(a) subject to h(a) = 0 (45)

where f, h : Rp → R. Let L(a, λ) = f(a) + λh(a) be the La-
grangian function and let L(a, λ) be the Hessian matrix of
L(a, λ) with respect to a, i.e.,

(L)ij =
∂2L

∂ai∂aj
(a, λ).

This matrix can also be decomposed as

L(a, λ) = F (a) + λH(a) (46)

where F and H are the Hessian matrices of f(a) and h(a),
respectively. In addition, the tangent space at a point a∗ on the
surface S = {a ∈ R

p : h(a) = 0} is defined as the set

T (a∗) = {v : vᵀ∇ah(a
∗) = 0}

where∇a represents the gradient operator. We have the follow-
ing generic result [45, Chap. 20]:

Theorem 2: Let a∗ be a local maximizer of f subject to
h(a) = 0. Then, there exits λ∗ ∈ R such that

C1) ∇af(a
∗) + λ∗ ∇ah(a

∗) = 0, and
C2) for all v ∈ T (a∗), we have vᵀL(a∗, λ∗)v < 0.
Let us particularize this generic result to our problem, where

we have f(a) = E{|y|} and h(a) = E{y2} − 1 = aᵀV 0a−
1. From Eqn. (20), we can write:

∇ah(a) = ∇aE{y2} = 2V 0a. (47)

Similarly, we can obtain the following formulas:

∇aσi =
1

σi
V ia

∇aαi =
µi√
2σi

− αi

σ2
i

V ia

g′(α) = erf(α).

The chain rule for differentiating (22) leads to:

∇af(a) =
2∑

i=1

πi

[ √
2/π

σi
e−α

2
iV ia+ erf(αi)µi

]

. (48)

The Lagrangian is, by definition, L(a, λ) = E{|y|}+
λ(E{y2} − 1), where λ is the Lagrange multiplier. The
stationary points of the problem verify

∇aE{|y|} = −λ∇aE{y2}. (49)

To find the value of λ, observe that aᵀ∇aE{|y|} = E{|y|} and
aᵀ∇aE{y2} = 2E{y2}. Therefore, premultiplying (49) by aᵀ
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we get E{|y|} = −2λE{y2} and therefore

λ∗ = −1

2

E{|y|}
E{y2} = −1

2
E{|y|}. (50)

Combining Eqns. (1a)–(1b), (13), (22) and (47)–(48) proves that
expression (49) can indeed be rewritten as in Eqns. (24)–(25).

To ascertain whether this solution is a maximizer of the
criterion, we need to consider the second-order condition C2.
Differentiating the gradient (48) with respect to the entries of a,
and after some tedious algebraic manipulations, we can express

F (a) =

√
2

π

2∑

i=1

πi
1

σi
exp(−α2

i )Gi(a) (51)

with

Gi(a) =
2α2

i − 1

σ2
i

(V ia)(V ia)
ᵀ + (V i + µiµ

ᵀ
i )

−
√
2
αi

σi

(
(V ia)µ

ᵀ
i + µi(V ia)

ᵀ).

On the other hand, from Eqn. (47) we can easily compute both
the Hessian of the constraint

H(a) = 2V 0 (52)

and the tangent space, T (a) = {v : vᵀV 0a = 0}, where V 0

is the covariance matrix of the data. Given the complexity of
F in Eqn. (51), checking condition C2 seems a daunting task.
But we can at least note that if |αi| are sufficiently large then
exp(−α2

i ) ≈ 0, i = 1, 2, and therefore Hessian (51) becomes
negligible relative to the Hessian of the constraint. As a result,
from Eqns. (46), (50) and (52), the Hessian matrix reduces to

L(a∗, λ∗) ≈ λ∗H(a∗) = −E{|y|}V 0

which is negative definite, thus fulfilling condition C2 and
showing that the stationary point is asymptotically a maximizer
of the criterion.

B. Proof that Condition (28) is Always Fulfilled

As shown in this paper, when the projected cluster means
are large relative to the corresponding standard deviations, the
L1-uLDA solution is of the form

a∗ = ηS−1W Δµ (53)

where η is a normalization constant ensuring the unit variance
constraint (20), i.e.,

aᵀV 0a = 1. (54)

Replacing (53) into (54), we readily obtain η2ΔµᵀS−1W

V 0S
−1
W Δµ = 1, where (S−1W )ᵀ = S−1W follows from the sym-

metry of SW . Therefore:

η =
1

√
ΔµᵀS−1W V 0S

−1
W Δµ

.

Invoking Eqns. (4) and (13), we readily obtain

η =
1√

κ+ π1π2κ2
with κ = ΔµᵀS−1W Δµ. (55)

Now, let us assume that condition (28) is not respected, so that

Δm =
1√
π1π2

. (56)

According to definition (8) and Eqn. (55):

Δm = Δµᵀa = ηΔµᵀS−1W Δµ = ηκ =

√
κ

1 + π1π2κ
.

Substituting this expression in (56) yields

κ

1 + π1π2κ
=

1

π1π2

or, equivalently, 1 + π1π2κ = π1π2κ, which leads to an absurd
solution. It follows that condition (28) is always fulfilled. The
case where m1 > m2 is totally analogous and yields the same
conclusion.

C. Lower Bound for the Required Separation Between Classes

This Appendix elaborates on the conditions under which
the asymptotic hypothesis made in Section III-C to ensure the
equivalence between L1-uLDA and LDA are fulfilled in the
binary case. We saw in that section that |αi|, i = 1, 2, must be
sufficiently large to guarantee the equivalence. Here we derive
a lower bound for the separation between classes quantifying
more precisely how large these terms must actually be. Although
derived under some simplifying assumptions, this bound turns
out to be consistent with the experimental results of Section V.

To start our derivation, we recall that the stationary points
of the constrained optimization problem satisfy Eqn. (24). This
equation is strongly nonlinear and, as such, may have more than
one solution. For mathematical tractactability, let us assume that
the classes have equal covariance matrices,V 1 = V 2 = V (ho-
moscedastic case). Under this assumption, Eqn. (24) simplifies
into

(
2∑

i=1

πi βi

)

V a = δΔµ. (57)

Clearly, the first type of solutions turns out to be equivalent to
traditional LDA:

a∗ = ηV −1Δµ (58)

where [cf. Eqn. (55)]

η =
1√

κ+ π1π2κ2
with κ = ΔµᵀV −1Δµ (59)

is a normalization constant ensuring the unit variance constraint
aᵀV 0a = 1. On the other hand, the second type of solutions
verifies

2∑

i=1

πi βi = 0 and δ = 0.

In particular, one can easily check that these conditions are
satisfied by a = V −1/2q, where q is any unit-norm vector
orthogonal to V −1/2Δµ. Indeed, this solution yields m1 =
m2 = 0, σ1 = σ2 = 1, β1 = β2 = 0 and δ = 0, while fulfilling
the unit-variance constraint. Clearly, this can be considered as
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a worst-case spurious solution, since the projected classes have
the same mean and variance, leading to fully overlapped clusters
and precluding their discrimination. For classes with Gaussian
distribution, we easily obtain from formula (22) that

E{|y|} =
√
2/π (60)

for these spurious solutions.
Now, intuitively we can consider that the asymptotic regime

leading to the equivalence between L1-uLDA and LDA occurs
when the cost function associated with the desired solution a∗

is larger than that of spurious solutions, that is:

E{|y|} >
√

2/π. (61)

Because g(x) ≥ |x| in (22) (as illustrated in Fig. 1), we can
lower-bound the L1-PCA criterion with unit-variance constraint
as

E{|y|} ≥
√
2

2∑

i=1

πiσi |αi| = π2|m2|+π1|m1|=2π1π2Δµᵀa

where the last equality holds from Eqn. (26). By replacing the
expression of the desired solution (58) and taking into account
Eqn. (55), we can write that, for a = a∗:

E{|y|} ≥ 2π1π2Δµᵀa∗ = 2π1π2

√
κ

1 + π1π2κ
. (62)

It follows that a sufficient condition to fulfil inequality (61) is

2π1π2

√
κ

1 + π1π2κ
>

√
2

π
(63)

or, equivalently,

κ >
1

ζ
with ζ

def
= 2π(π1π2)

2 − π1π2. (64)

Since κ represents the squared Mahalanobis distance between
the class means [see Eqn. (55)] and is thus a positive quantity,
we must have min(π1, π2) > 0.1986 to guarantee ζ > 0 and a
meaningful bound in Eqn. (64).

In summary, condition (64) imposes a minimum distance
between the classes for the solution of the L1-uLDA criterion
not to be spurious, and we argue that this will also be sufficient
for the solution to be the equivalent to LDA. Furthermore,
as ζ is a concave function attaining its maximum value at
π1 = π2 = 0.5, the separation increases when the classes are not
equiprobable. Although obtained under certain simplifications
(homoscedasticity and Gaussianity), these theoretical results
are corroborated by experiment 5 of Section V-A, showing in
particular that fulfilment of Eqn. (64) guarantees the equivalence
between L1-uLDA and LDA.
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