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On Low-complexity Lattice Reduction Algorithms

for Large-scale MIMO Detection: the Blessing of

Sequential Reduction
Shanxiang Lyu, Jinming Wen, Jian Weng and Cong Ling

Abstract—Lattice reduction is a popular preprocessing strategy
in multiple-input multiple-output (MIMO) detection. In a quest
for developing a low-complexity reduction algorithm for large-
scale problems, this paper investigates a new framework called
sequential reduction (SR), which aims to reduce the lengths of
all basis vectors. The performance upper bounds of the strongest
reduction in SR are given when the lattice dimension is no larger
than 4. The proposed new framework enables the implementation
of a hash-based low-complexity lattice reduction algorithm, which
becomes especially tempting when applied to large-scale MIMO
detection. Simulation results show that, compared to other reduc-
tion algorithms, the hash-based SR algorithm exhibits the lowest
complexity while maintaining comparable error performance.

Index Terms—lattice reduction, MIMO, large-scale, hash-
based.

I. INTRODUCTION

The number of antennas has been scaled up to tens or

hundreds in multiple-input multiple-output (MIMO) systems

to fulfill the performance requirements needed by the next

generation communication systems [1]. A critical challenge

that comes with very large arrays is to design reliable and

computationally efficient detectors. Though the well-known

maximum likelihood detector (MLD) provides optimal er-

ror performance, it suffers from exponential complexity that

grows with the number of transmit antennas [2]. In the

past two decades, lattice-reduction-aided suboptimal detec-

tion techniques have been well investigated [3]–[5], whose

instantaneous complexity does not depend on constellation

size and noise realizations, but collect the same diversity as

the MLD for MIMO systems [6]–[8]. Although conventional

lattice reduction algorithms suffice for small-scale MIMO

systems, there is still an avenue to pursue a more practical
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low-complexity reduction algorithm for large-scale systems.

Moreover, an efficient reduction algorithm for large-scale

problems may also find its applications to cryptanalysis [9]

and image processing [10].

The principle of designing a reduction algorithm varies

depending on the desired basis properties: to make all the

basis vectors short, or to make the condition number of the

reduced basis small. There are several popular types of lattice

reduction strategies, such as Minkowski reduction, Korkine-

Zolotareff reduction (KZ) [11], Gauss reduction [12], Lenstra–

Lenstra–Lovász (LLL) reduction [13], Seysen reduction [14],

etc. They yield reduced bases with shorter or more orthogonal

basis vectors, and provide a trade-off between the quality

of the reduced basis and the computational effort required

for finding it. In essence, a reduction algorithm aims to

find a unimodular matrix to transform an input basis into

another one with better property. The process involves a series

of elementary operations noted as reflection, swapping, and

translation. These operations vary for distinct algorithms.

Much work has been done to advance conventional reduc-

tion algorithms. Regarding KZ, refs. [15]–[17] give some prac-

tical implementations and improve the performance bounds.

As for blockwise KZ, its faster implementations and the

expected basis properties are given in [18]. Researchers have

also been constructing and analyzing the variants of LLL with

great effort. For instance, the size reduction step is optimized

in [16], [19], [20], the implementation order of swaps is

simplified in [21]–[23], and the fixed complexity versions of

LLL are given in [19], [22], [24]. In contrast, the direction on

Seysen reduction has few follow-up studies [25], [26], partly

because of the fact that Seysen reduction has unsatisfactory

performance in high dimensions.

While LLL and blockwise KZ are still the default choices in

cryptography to reduce a basis in hundreds of dimensions, the

element-based lattice reduction (ELR) proposed in [27] has

become more attracting in large MIMO, which preprocesses

a large basis with even lower complexity than LLL. Later

ref. [27] has been generalized to ELR+ [28] for small-scale

problems, but the theoretical characterization of ELR and

ELR+ has not been given a rigorous treatment, even for small

dimensions. It is noteworthy that ELR and ELR+ have totally

different structures with LLL variants, and one might be lured

into the belief that ELR and ELR+ can be tuned to arrive

at more sophisticated methods. Nevertheless, no analytical

skills can be inherited from LLL/KZ literature [12], [13],

which makes the performance analysis of the new algorithms

http://arxiv.org/abs/1912.06278v1
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complicated.

In this work, we investigate a general form of ELR and

ELR+ which we refer to as sequential reduction (SR). We

derive the objective function from a MIMO detection task,

and present the general form of an SR algorithm which can

solve/approximate the smallest basis problem. Unlike KZ or

Minkowski reduction, SR reduces the basis vectors by using

sub-lattices so as to avoid a basis expansion process. The

strongest algorithm in SR tries to minimize the length of basis

vectors with the aid of a closest vector problem (CVP) oracle.

We show bounds on the basis lengths and orthogonal defects

for small dimensions. After that, the feasibility of applying

SR to reduce a large dimensional basis is analyzed, and we

actually construct a hash-based algorithm for this task. Our

simulation results then show the plausibility of using SR in

large-scale MIMO systems.

Preliminary results of this work have been partly presented

in a conference paper [29]. Compared with [29], this work

contains the following new contributions:

• The performance bounds on small dimensional bases

are rigorously analyzed (Theorems 2 and 3). Unlike the

results in [29] that rely on an assumption about covering

radius, these bounds hold for all input bases.

• Comparisons with other types of strong&weak reduction

are made (Section III-B, Section IV-D), including η-

Greedy reduction, KZ and its variants, Minkowski reduc-

tion, LLL and its variants, and Seysen reduction.

• A Hash-based SR algorithm is constructed (Section IV).

More specifically, the nearest neighbor search problem is

approximately solved with the aid of hashing, and not

through a brute-force search.

• The theoretical studies are supported with more simula-

tion results (Section V), these include the comparisons

with major lattice-reduction-aided MIMO detection al-

gorithms, and the BER performance tested for various

channels .

• The types of bases feasible for using SR-Hash is dis-

cussed (Appendix A). We numerically show that the dual

of large-scale Gaussian random bases have dense pairwise

angles.

It is worth mentioning that SR is emerging as a new building

block in lattice-reduction-aided MIMO detection. Thus, the

proposed SR variants may also benefit list sphere decoding

[30] and Klein’s sampling algorithm [31].

The rest of this paper is organized as follows. Backgrounds

about lattices and lattice reduction in MIMO are reviewed in

Section II. The SR framework is subsequently introduced in

Section III. The low-complexity version of SR based on hash-

ing is given in Section IV. After that, Section V presents the

simulation results. Conclusions and possible future research

are presented in the last section.

Notation: Matrices and column vectors are denoted by

uppercase and lowercase boldface letters. The ith column

and (j, i)th entry of B are respectively denoted as bi and

bi,j . In and 0n respectively denote the n× n identity matrix

and n × 1 zero vector, and the operation (·)⊤denotes matrix

transposition. [n] denotes the set {1, . . . , n}. For a set Γ, BΓ

denotes the columns of B indexed by Γ. span(BΓ) denotes the

vector space spanned by vectors in BΓ. πBΓ(x) and π⊥
BΓ

(x)
denote the projection of x onto span(BΓ) and the orthogonal

complement of span(BΓ), respectively. ⌊x⌉ denotes rounding

x to the nearest integer, |x| denotes getting the absolute value

of x, and ‖x‖ denote the Euclidean norm of vector x. N and Z

respectively denotes the set of natural numbers and integers.

The set of n × n integer matrices with determinants ±1 is

denoted by GLn(Z).

II. PRELIMINARIES

A. Lattices

An n-dimensional lattice Λ is a discrete additive subgroup

in the real field R
n. Similarly to the fact that any finite-

dimensional vector space has a basis, a lattice has a basis.

To consider a square matrix for simplicity, a lattice generated

by basis B = [b1, ...,bn] ∈ R
n×n is defined as

Λ(B) =



v | v =

∑

i∈[n]

cibi ; ci ∈ Z



 .

The dual lattice of Λ is defined as Λ† =
{u ∈ Rn | 〈u,v〉 ∈ Z, ∀v ∈ Λ}. One basis of Λ† is given by

B−⊤.

The Gram-Schmidt (GS) basis of B, referred to as B∗, is

found by using b∗
i = π{b∗

1,...,b
∗
i−1}(bi) = bi −

∑i−1
j=1 µi,jb

∗
j ,

where µi,j = 〈bi,b
∗
j 〉/||b∗

j ||2.

The ith successive minimum of an n dimensional lattice

Λ(B) is the smallest real positive number r such that Λ
contains i linearly independent vectors of length at most r:

λi(B) = inf {r | dim(span((Λ ∩ B(0, r))) ≥ i} ,

in which B(t, r) denotes a ball centered at t with radius r.

The orthogonality defect (OD) can alternatively quantify the

goodness of a basis

η(B) =

∏n
i=1 ||bi||√
|det(BTB)|

. (1)

From Hadamard’s inequality, we know that η(B) ≥ 1. As

the determinant of a given basis is fixed, the parameter is

proportional to the product of the lengths of the basis vectors.

A necessary condition for reaching the smallest orthogonality

defect is to have a short basis length defined as l(B) =
maxi ‖bi‖.

The εCVP problem is, given a vector y ∈ Rn and a lattice

Λ(B), find a vector v ∈ Λ(B) such that:

‖y − v‖2 ≤ ε ‖y −w‖2 , ∀w ∈ Λ(B).

An algorithm that solves an εCVP problem is referred to as an

εCVP oracle. We write v = εCVP(y,B) or v = CVP(y,B)
if ε = 1.

B. Lattice-reduction-aided MIMO detection

We considered an uplink multiuser large MIMO system,

in which nT single-antenna users send data to a base station

with nR antennas, and both nT , nR are in the order of tens
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or hundreds. A received complex-valued signal vector at the

base station is written as:

yc = Bcxc +wc, (2)

where Bc ∈ C
nR×nT denotes a channel matrix perfectly

known at the base station, xc ∈ CnT refers to a signal

vector with entries drawn from a QAM constellation, and

wc ∈ CnR denotes a zero-mean additive noise vector with

entries independently and identically following the complex

normal distribution CN
(
0, σ2

w

)
.

To simplify the analysis we will focus on representations in

the real field, so (2) is transformed to an equivalent real value

system with

y = B̄x+w, (3)

where

B̄ =

[
ℜ(Bc) −ℑ(Bc)
ℑ(Bc) ℜ(Bc)

]
, (4)

and y =
[
ℜ(y)⊤,ℑ(y)⊤

]⊤
, x =

[
ℜ(x)⊤,ℑ(x)⊤

]⊤
, w =[

ℜ(w)⊤,ℑ(w)⊤
]⊤

are all real and imaginary compositions.

Here the noise variance of w becomes σ2 = σ2
w/2.

Lattice reduction is essentially multiplying a given basis

with a unimodular matrix U ∈ GLn(Z) to get a reduced

basis B̃ , B̄U. For a lattice-reduction-aided detector, we first

rewrite Eq. (3) as:

y = B̃(U−1x) +w.

To make the unimodular transform compact for the QAM

constellation, we need to scale and shift signal vector x to

get x ← (x + 1n×1)/2, so that the constraint on x become

a consecutive integer set Ξn. Let y ← (y + B̃U−11n×1)/2,

then the inferred signal vector is given by:

x̂ = 2QΞn(UQZn(E(y, B̃)))− 1n×1, (5)

where E(y, B̃) denotes a low-complexity detector that could

be zero-forcing (ZF) or successive-interference-cancellation

(SIC), and Q (·) denotes a quantization function with respect to

its subscript. Given certain information about the signal vector,

the detectors can be implemented under an minimum-mean-

square-error (MMSE) principle. The MMSE-based ZF/SIC

detectors are similarly given by extending the size of the

system: y ← [y⊤,01×n]
⊤, B̄ ← [B̄⊤, σ/σsIn]

⊤, with σ2
s

referring to the variance of a signal symbol.

C. The objective in lattice reduction

Hereby we explain the design criteria of lattice reduction

used in MIMO detection. For a set of linearly independent

vectors B̄ = [b̄1, . . . , b̄n], we define its fundamental paral-

lelepiped as

P(B̄) =

{
n∑

i=1

cib̄i | − 1/2 ≤ ci ≤ 1/2

}
.

Choosing E(y, B̃) as the SIC [32] detector, then the pairwise

error probability Pe based on (5) becomes

Pe = 1− Pr(w ∈ P(B̄∗))

= 1−
n∏

i=1

Pr(|w⊤b̄∗
i | <

∥∥b̄∗
i

∥∥2 /2)

= 1−
n∏

i=1

erf
( ∥∥b̄∗

i

∥∥
2
√
2σ

)

≤ 1−
n∏

i=1

erf
( 1

2
√
2σ ‖di‖

)
(6)

where the last inequality comes from
∥∥b̄∗

i

∥∥ =∥∥∥πb̄1,...,b̄i−1
(b̄i)

∥∥∥ ≥
∥∥∥πb̄1,...,b̄i−1,b̄i,...,b̄n

(b̄i)
∥∥∥ = 1/ ‖di‖,

and di is the ith vector in the dual basis of Λ†.

From (6), it becomes clear that the upper bound on Pe

is mainly controlled by the lengths of vectors in the dual

basis, i.e., ‖d1‖ , . . . , ‖dn‖. Based on this observation, we can

solve/approximate the following problem in the dual lattice

to attain better error rate performance for the above lattice-

reduction-aided SIC detector.

Definition 1 (SBP). The smallest basis problem (SBP) is,

given a lattice Λ, find the basis with the smallest orthogonality

defect.

To address SBP, a designed reduction algorithm should

make all basis vectors as short as possible. Moreover, since

the basis dimension is in the order of tens or hundreds in large

MIMO, we need a low-complexity lattice reduction algorithm

that reduces the basis with satisfactory performance.

III. SEQUENTIAL REDUCTION FRAMEWORK

The fundamental principle of sequential reduction is to

reduce a basis vector by using all other vectors that span

a sublattice. In the new method, given an input basis B1,

we sequentially solve si = εCVP(bi,B[n]\i) with [n] \i =
{1, ..., n}\ i. For each si, we test whether the residue distance

is shorter: ||bi − si||2 < τ ||bi||2, where τ ∈ (0, 1] 2 is a

parameter to control the complexity. If this holds, we update

bi by bi ← bi − si. Here both si = 0 and the si that

makes ‖bi − si‖ = ‖bi‖ are declared as ineffective attempts.

A threshold parameter m is set to count these useless trials.

The algorithm terminates if m > n, which means no more

vectors can be further reduced. The general form of sequential

reduction is summarized in Algorithm 1.

An SR algorithm maintains a lattice basis due to the

following reason. In round m, suppose
∑

k∈[n]\i ckbk is a

valid reduction on bi, then the lattice basis updating process

becomes B ← BTm, with Tm
k,k = 1 ∀ k ∈ [n], Tm

k,i =
−ck ∀ k ∈ [n] \i and all other entries are zeros. Since Tm

is an integer matrix with determinant 1, Tm is unimodular,

and the composition of the transform matrices from different

rounds maintains a unimodular matrix.

If an exact CVP oracle is chosen in line 4 of Algorithm 1,

we call the algorithm SR-CVP. By choosing other approximate

1Unless otherwise specified, B is chosen from the dual of a channel matrix.
2 Choosing τ > 1 may make the algorithm diverge.
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Algorithm 1: The general form of an SR algorithm.

Input: lattice basis B = [b1, . . . ,bn], complexity

threshold τ ;

Output: reduced lattice basis B.

1 i = 0, m = 1;

2 while m ≤ n do

3 i← (i mod n) + 1; ⊲ The column index;

4 si = εCVP(bi,B[n]\i); ⊲ Exact/approximated CVP

solvers;

5 if ||bi − si||2 < τ ||bi||2 then

6 bi ← bi − si;

7 m = 1;

8 else

9 m← m+ 1;

CVP solvers, we can obtain other variants that have lower

complexity. As shown in Fig. 1, SR encompasses SR-CVP, SR-

Pair and SR-Hash. The red box in the figure denotes SR, whose

SR-CVP, SR-Pair and SR-Hash algorithms feature decreasing

complexity. Their analogies in the conventional KZ framework

are shown in the black box.

KZ:

SR: SR-CVP SR-HashSR-Pair

KZ LLL LLL-variants

Complexity decreasing

Fig. 1: SR contains algorithms with different performance-

complexity trade-offs.

A. Basis properties of SR-CVP

We need to understand the performance limits of SR by first

analyzing SR-CVP. Hereby we set τ = 1 in the analysis for

brevity. When no more attempts using si = CVP(bi,B[n]\i)
can further reduce the basis in the algorithm, for all si ∈
Λ
(
B[n]\i

)
we have

‖bi‖2︸ ︷︷ ︸
term1

≤ ||bi − si||2

= ||π⊥
B[n]\i

(bi) + πB[n]\i
(bi)− si||2

=
∥∥∥π⊥

B[n]\i
(bi)

∥∥∥
2

︸ ︷︷ ︸
term2

+
∥∥πB[n]\i

(bi)− si
∥∥2

︸ ︷︷ ︸
term3

, (7)

where the second equality is due to Pythagoras’ theorem. Note

that SR-CVP provides the tightest constraint on term 3, and

approximations of CVP oracles also distinguish themselves

on the same term. Based on (7), we can prove the following

theorem that consists of upper bounds for the basis length and

the orthogonality defect.

Theorem 2. For any dimension n ≤ 4, an SR-CVP reduced

basis satisfies:

l(B) ≤
√

4n

5− n
λn(B), (8)

η(B) ≤
(

4

5− n

)n/2
λn
n(B)

λn
1 (B)

. (9)

Proof. We first show upper bounds for terms 2 and 3 in (7),

respectively. By constructing a sublattice Λ(B′) from vectors

with lengths λ1(B), ..., λn(B) in Λ(B), the covering radius

satisfies

ρ(B) = max
x

dist(x,Λ(B))

≤ max
x

dist(x,Λ(B′))

≤ 1/2

√√√√
n∑

i=1

λ2
i (B),

where the last inequality is obtained after applying Babai’s

nearest plane algorithm [33]. Since the residue distance of

CVP is upper bounded by the covering radius of the sublattice

Λ(B[n]\i), we have for term 3 that

∥∥πB[n]\i
(bi)− si

∥∥2 ≤ ρ2(B[n]\i)

≤ 1

4

∑

j 6=i

λ2
j (B[n]\i)

≤ 1

4

∑

j 6=i

‖bj‖2 . (10)

Regarding term 2, we use QR decomposition to

get
[
B[n]\i,bi

]
= QR, from which we obtain∥∥∥π⊥

B[n]\i
(bi)

∥∥∥ = |rn,n|. Now w.l.o.g. assume that the

successive minima λ1(B), ..., λn(B) come from vectors

v1 ,
[
B[n]\i,bi

]
c1, ...,vn ,

[
B[n]\i,bi

]
cn. To produce

n linearly independent vectors, there exists at least one

vector denoted as ck whose nth entry ck,n is nonzero.

Then we have ‖Rck‖2 = λ2
k(B) ≤ λ2

n(B). Together with

‖Rck‖2 = c2k,nr
2
n,n +

∑n−1
j=1 v2n,j ≥

∥∥∥π⊥
B[n]\i

(bi)
∥∥∥
2

, it arrives

at

∥∥∥π⊥
B[n]\i

(bi)
∥∥∥
2

≤ λ2
n(B). (11)

By substituting (10) and (11) to (7) for all basis vectors, we

have 



‖b1‖2 ≤ λ2
n(B) + 1

4

∑
j 6=1 ‖bj‖2 ,

...

‖bn‖2 ≤ λ2
n(B) + 1

4

∑
j 6=n ‖bj‖2 .

The sum of these n inequalities yields

n∑

i=1

‖bi‖2 ≤ nλ2
n(B) +

n− 1

4

n∑

i=1

‖bi‖2 .
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If n ≤ 4, we have

n∑

i=1

‖bi‖2 ≤
4n

5− n
λ2
n(B). (12)

Based on Eq. (12), the longest vector in the basis can be

trivially bounded as

l(B) ≤
√

4n

5− n
λn(B).

To analyze the orthogonal defect, we apply the arithmetic

mean-geometric mean inequality on (12) to get

n∏

i=1

||bi|| ≤
(
1

n

n∑

i=1

‖bi‖2
)n/2

≤
(

4

5− n

)n/2

λn
n(B).

(13)

Clearly the volume of the lattice is lower bounded by λn
1 (B)

for n ≤4, so along with (13) we obtain (9).

If we alternatively set τ < 1, then upon termination of SR

we have ||bi||2 ≤ 1/τ ||bi − si||2. Along with the techniques

used in Theorem 2, we obtain

l(B) ≤
√

4n

4τ − n+ 1
λn(B). (14)

Since we have to ensure that the denominator 4τ − n + 1 is

larger than 0, we claim that inequality (14) holds if n < 4τ+1.

If the CVP oracle is replaced by another suboptimal solver

referred to as εCVP, then when bounding term 3 we have
∥∥πB[n]\i

(bi)− si
∥∥2 ≤ ερ2(B[n]\i).

Similarly to the above, it yields

l(B) ≤
√

4n

4− εn+ ε
λn(B), (15)

in which n < 4/ε+ 1.

Let θi be the angle between bi and the subspace

span(B[n]\i), and define θmax , maxi θi. Such a maxi-

mum angle between basis vectors and subspaces can also be

bounded, as shown in the following theorem.

Theorem 3. An SR-CVP reduced basis satisfies cos2 θmax ≤
n−1
4 .

Proof: Based on (7) and (10) we have

‖bi‖2−
∥∥∥π⊥

B[n]\i
(bi)

∥∥∥
2

≤
∥∥πB[n]\i

(bi)− si
∥∥2 ≤ 1

4

∑

j 6=i

‖bj‖2 .

(16)

It then follows from ‖bi‖2 cos2 θi = ‖bi‖2 −
∥∥∥π⊥

B[n]\i
(bi)

∥∥∥
2

that

‖bi‖2 cos2 θmax ≤ ‖bi‖2 cos2 θi ≤
1

4

∑

j 6=i

‖bj‖2 .

Similarly to the techniques used in proving Theorem 2, we

sum (16) for i = 1, . . . , n to get

cos2 θmax ≤
n− 1

4
.

Clearly the above theorem is non-trivial when n ≤ 4, and

this will come in handy when attacking a counter example in

subsection IV-D.

B. Discussions

1) Comparison with η-Greedy reduction [34, Fig.5] (also

noted as ELR+-SLV in [28]). Rather than applying CVP

for all vectors, η-Greedy reduction only performs CVP

for the longest basis vector . According to its definition

[34], it is only a special case of SR-CVP and all SR-CVP

reduced basis must be greedy-reduced. For example,

consider the following basis




2 0 0 0 1
0 2 0 0 1
0 0 2 0 1
0 0 0 2 1
0 0 0 0 ε




with parameter ε ∈ (0, 1). The shortest vector[
0 0 0 0 ±2ε

]⊤
cannot be reached by greedy

reduction. Specifically, by using 1 × b5 as the query

point, η-Greedy cannot find 2b5 − b1 − b2 − b3 − b4

and −2b5 + b1 + b2 + b3 + b4. In contrast, SR-CVP

additionally considers the cases of using b1, b2, b3, and

b4 as query points. A shortest vector v =
∑n

i=1 cibi

with at least one coefficient ck = ±1 must be contained

in the SR-CVP reduced basis.

2) Comparison with KZ and its variants [16], [35]. Recall

that a basis B is called KZ reduced if it satisfies the

size reduction conditions, and π⊥
B[i−1]

(bi) is the shortest

vector of the projected lattice π⊥
B[i−1]

([bi, . . . ,bn]) for

1 ≤ i ≤ n [35]. For a KZ reduced basis, it satisfies

[35] ‖bi‖ ≤
√
i+3
2 λi(B), 1 ≤ i ≤ n. Though boosted

KZ [16] can solve the length increasing issue caused

by size reduction, tuning π⊥
B[i−1]

(bi) to be the shortest

vector in the projected lattice can still make the basis

longer. On the contrary, this issue is totally avoided in

SR-CVP.

3) Comparison with Minkowski reduction. Recall that a

lattice basis B is called Minkowski reduced if for any

integers c1, ..., cn such that ci, ..., cn are altogether

coprime, it has ‖b1c1 + · · ·+ bncn‖ ≥ ‖bi‖ for 1 ≤
i ≤ n [15]. For a Minkowski reduced basis, it satisfies

[15] ‖bi‖ ≤ max
{
1, (5/4)(i−4)/2

}
λi(B), 1 ≤ i ≤ n.

Whereas Minkowski reduction is optimal as it reaches

all the successive minima when n ≤ 4, our results in

Theorem 2 only show the SR-CVP reduced basis is

not far from the optimal one. Here we argue that SR-

CVP has simpler structure. While Minkowski reduction

requires solving integer least squares problems with

GCD constraints and delicate basis expansion, SR-CVP

only involves unconditional CVP solvers and its basis

expansion process is trivial. Moreover, the SR-CVP

algorithm can be approximately implemented by its

many low-complexity siblings in the SR family.
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C. Complexity of SR and SR-CVP

We argue that even when the threshold parameter τ =
1, the decrease from ||bi|| to ||bi − si|| can be finitely

counted because a lattice is discrete. Therefore we define

ǫ = sup
bi,si

||bi−si||
||bi|| which satisfies ǫ < 1. As

∑n
i=1 ‖bi‖2 is

no smaller than
∑n

i=1 λ
2
i (B) while this metric keeps decreas-

ing for every n iterations, the number of calls to the CVP

oracle is not larger than n log(
‖B‖2

F
∑

n
i=1 λ2

i
(B)

) with τ ≤ 1, where

‖B‖2F denotes the Frobenius norm of the input basis, and the

log function is over min {1/τ, 1/ǫ}. Therefore we conclude

that the number of iterations in SR is polynomial.

Regarding SR-CVP, since the reduction in each round is

quite strong, we can use the following heuristic implemen-

tation to minimize the number of iterations: first reduce the

longest vector (similarly to η-Greedy), then reduce other basis

vectors in descending order with n − 1 rounds of CVP.

Our simulation results show that this version of SR-CVP

is competitive with Minkowski reduction and boosted KZ

reduction.

While we can employ a state-of-the-art implementation

for CVP, its complexity for a random basis is exponential

[36]–[38]. In the next section, we will focus on approximate

versions of CVP.

IV. HASH-BASED APPROXIMATION: SR-HASH

A. The nearest neighbor problem in SR-Pair

When the εCVP subroutine is not implemented with an

exact CVP algorithm but rather a pairwise cancellation with

the following form:

bi = argmin ||b(j)
i ||, j = {1, . . . , N} \i, (17)

b
(j)
i = bi − ⌊〈bi,bj〉/〈bj ,bj〉⌉bj ,

we refer to the whole algorithm as SR-Pair. This algorithm

coincides with the element-based reduction in [27]. Although

this sub-routine only has a complexity in the order of O(nN),
reaching another variant with lower complexity is possible.

Recall the nearest neighbor problem in the field of large

dimensional data processing is: given a list of n-dimensional

vectors L = {v1,v2, . . . ,vN} ∈ Rn, preprocess L in such

a way that, when later given a target vector q /∈ L, one can

efficiently find an element v ∈ L which is almost the closest

to q. Since Eq. (17) exactly defines a search for the nearest

neighbor of bi among the vectors in B, then it motivates us

to reduce this complexity to O(n logN) based on locality-

sensitive-hashing (LSH) [39], [40].

Remark 4. If we choose SIC as the εCVP subroutine, then

along with LLL preprocessing we have [33]

∥∥bi − πB[n]\i
(bi)− si

∥∥ ≤ 2(2/
√
3)n−1ρ(B) (18)

for such an SR-SIC algorithm. However, the computation

complexity of this algorithm is still too high as it requires

the pre-processing by LLL.

B. Angular LSH

LSH roughly works as follows: first all N candidates

are dispatched to different buckets with labels, then when

searching the nearest neighbor of a query point q, we can

alternatively do this only for N ′ candidates that have the same

label with q, where N ′ ≪ N . There are label functions f
which map an n-dimensional vector v to a low-dimensional

sketch of v. For certain distance function D, vectors which

are nearby in the sense of D have a high probability of having

the same sketch, while vectors which are far away have a low

probability of having the same image under f .

To reach this property, we introduce the definition of an

LSH family F .

Definition 5. A family F = {f : Rn → N} of hash functions

is said to be (r1, r2, p1, p2)-sensitive for a similarity measure

D if for any u,v ∈ Rn, we have i) If D(u,v) ≤ r1,

then Prf∈F(f(u) = f(v)) ≥ p1; ii)If D(u,v) ≥ r2, then

Prf∈F(f(u) = f(v)) ≤ p2.

For the sake of constructing a hash family with p1 ≈ 1
and p2 ≈ 0, normally one first constructs p1 ≈ p2 and

then uses the so called AND- and OR-compositions to turn it

into an (r1, r2, p
′
1, p

′
2)-sensitive hash family F ′ with p′1 > p1

and p′2 < p2, thereby amplifying the gap between p1 and

p2. Specifically, by combining k AND-compositions and t
OR-compositions, we can turn an (r1, r2, p1, p2)-sensitive

hash family F into an (r1, r2, 1−
(
1− pk1

)t
, 1−

(
1− pk2

)t
)-

sensitive hash family F ′. As long as p1 > p2, we can always

find values of k and t such that 1 −
(
1− pk1

)t → 1 and

1−
(
1− pk2

)t → 0.

Note that if given a hash family H which is (r1, r2, p1, p2)-
sensitive with p1 ≫ p2, then we can use F to distinguish

between vectors which are at most r1 away from v, and

vectors which are at least r2 away from v with non-negligible

probability, by only looking at their hash values. Although

large values of k and t can amplify the gap between p1 and p2,

large parameters come at the cost of having to compute many

hashes and having to store many hash tables in memory. To

minimize the overall time complexity, we need the following

lemma that shows how to balance k and t. In practice, we can

further tune k and t to have the best performance.

Lemma 6 ([41], [42]). Suppose there exists an (r1, r2, p1, p2)-
sensitive family F . For a list L of size N , let

ρ =
log p−1

1

log p−1
2

, k =
logN

log p−1
2

, t = O(Nρ).

Then given a query point q, with high probability we can either

find an element v ∈ L such that D(q,v) ≤ r2, or conclude

that with high probability, no element v ∈ L with D(q,v) >
r1 exist, with the following costs: i) Time for preprocessing

the list: O(kN1+ρ); ii) Space complexity of the preprocessed

data: O(N1+ρ); iii) Time for answering a query: O(Nρ).

In the sequel, we examine the implementation of LSH based

on angular hashing. Angular hashing means generating random

hyperplanes h1, . . . ,hk, such that the whole space is sliced

into 2k regions. After that, to find the nearest neighbor of q,
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one only compares q to points in the same region R. Here we

introduce the angular distance similarity function

D(u,v) = arccos

(
u⊤v

‖u‖ ‖v‖

)
.

With this measure two vectors are nearby if their common

angle is small. Its corresponding hash family is defined by

F = {fa : a ∈ R
n, ‖a‖ = 1} , fa (v) =

{
1 if a⊤v ≥ 0;

0 if a⊤v < 0.

Intuitively, the space that is orthogonal to a defines a hy-

perplane, and fa maps the two regions separated by this

hyperplane to different bits. In particular, for any two an-

gles θ1 < θ2, the family F is (θ1, θ2, 1 − θ1
π , 1 − θ2

π )-
sensitive. Further with k AND- and t OR- compositions, we

have (θ1, θ2, 1 −
(
1−

(
1− θ1

π

)k)t
, 1 −

(
1−

(
1− θ2

π

)k)t
)-

sensitive hash family.

To illustrate LSH and in particular the angular LSH method

described above, Fig. 2 shows how hyperplane hashing might

work in a 2-D setting. In the figure, we have a list of 8
candidates: L = {b1, . . . ,b8}, and we use k = 2 hyperplanes

for t = 2 hash tables. Each table stores the hash keys (labels)

along with elements being placed in buckets, where elements

having the same keys will be placed in the same buckets.

In the two tables, the AND-compostions of 11 respectively

correspond to b1,b2,b3 and b1. Based on OR-composition,

the nearest neighbor of b1 is found inside {b2,b3}.

f1
f2

f2

0
1

0

1

01

f1

1

0

b

bb

b

b
b bb

b
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b
b bb
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b4 b5 b6
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BucketsLabels

b1 b2 b3
b8
b4
b5 b6 b70

1

0

0

1

1 0

1

BucketsLabels

b1
b3 b4b2

b8
b5 b6 b70

1

0

0

1

1 0

1

Fig. 2: Demonstration of LSH.

C. LSH-Based Reduction

Now we show how to incorporate LSH into the sequen-

tial reduction algorithm. The pseudo-codes of SR-Hash are

presented in Algorithm 2. It first hashes all vectors in lines

2-3. Then inside the loop of the element-based reduction,

the search for finding the nearest neighbor of bi is within

C = ∪tl=1Tl (fl (±bi)). Every time when a shorter bi is

found, its hash labels and positions in buckets are updated

in lines 11 and 13.

In summary, SR-Hash can be seen as a generalization of

the naive brute-force search inside SR-Pair for finding nearest

neighbors, as k = 0, t = 1 corresponds to checking all other

basis vectors for nearby vectors, while increasing both k and

t leads to fewer comparisons but a higher cost of computing

hash keys and checking buckets.

Algorithm 2: The SR-Hash algorithm.

Input: original lattice basis B = [b1, . . . ,bn],
complexity threshold τ , LSH parameters t, k.

Output: Reduced basis [b1, . . . ,bn] of Λ.

1 Initialize t empty hash tables (Tl)
t
l=1, each has k random

hash functions fl,1, . . . fl,k ∈ F ;

2 for i = 1 · · ·n do

3 Add bi to all hash tables (Tl)
t
l=1, with hash values

(fl (bi))
t
l=1 and vectors in the same bucket noted as

Tl (fl (bi));

4 i = 0, m = 1;

5 while m ≤ n do

6 i← (i mod n) + 1; ⊲ The column index;

7 Obtain the set of candidates C = ∪tl=1Tl (fl (±bi));

8 cl = argmincl∈C ‖bi − ⌊〈bi, cl〉/〈cl, cl〉⌉cl‖2;

9 si = ⌊〈bi, cl〉/〈cl, cl〉⌉cl;
10 if ||bi − si||2 < τ ||bi||2 then

11 Remove bi from all hash tables;

12 bi ← bi − si;

13 Add bi to all hash tables;

14 m = 1;

15 else

16 m← m+ 1;

D. Discussions

1) Comparison with SR-CVP. Here we emphasize that SR-

Pair/SR-Hash is only a weak approximation for SR-CVP,

and these low complexity algorithms may have quite in-

ferior performance. Consider the counter example given

for ELR [27] (the same as SR-Pair). Clearly SR-Pair/SR-

Hash is unable to reduce a basis whose Gram matrix is

G =




1 0.5− ν 0.5− ν
0.5− ν 1 −0.5 + ν
0.5− ν −0.5 + ν 1




with ν → 0. Under spherical coordinate system of

(r, ̺, ϕ) with r = 1, ̺ = π/3, and ϕ = π/2 − ν,

the lattice basis A corresponded to G (up to a unitary

transform) is given by

A =




sinϕ cos(π/3) − sinϕ cos(π/3) 1
sinϕ sin(π/3) sinϕ sin(π/3) 0

cosϕ − cosϕ 0


 .

(19)

This basis has an angle θi < ν → 0 between any ai and

span(A[3]\i), and η(A) =∞ if ν → 0. If A is reduced

by using SR-CVP, we have θmax ≥ π/4 according to

Theorem 3, so A is not a stable basis for SR-CVP.

Moreover, the actual reduced basis has the following

form:

Ã =




2 sinϕ cos(π/3)− 1 − sinϕ cos(π/3) 1
0 sinϕ sin(π/3) 0

2 cosϕ − cosϕ 0


 .
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Its OD is

η(Ã) =

√
4 cos2 ϕ+ sin2 ϕ− 2 sinϕ+ 1√

3 sinϕ cosϕ
;

when given ϕ = π/2 − 10−4, we have

η(Ã)|ϕ=π/2−10−4 = 1.1547. Therefore, the proposed

low-complexity SR algorithms are only feasible for

bases whose input vectors are dense in some directions.

Our simulation results and Appendix A will show that

the dual lattice basis in MIMO detection is one example

of this.

2) Comparison with LLL and its variants [19], [22], [24].

Note that the worst case complexity of LLL for bases

in the real field is unbounded [43], and the variants

that control the order of swaps or a selective imple-

mentation of size reduction cannot remove this curse.

On the contrary, SR variants with a polynomial time

εCVP routine can enjoy the overall polynomial-time

complexity. Regarding performance bounds, LLL and

its variants (the maintains the Siegel condition and size

reduction condition) often have bounds of the form

l (B) ≤ 2n−1λn (B), while SR-Pair and SR-Hash are

heuristic.

3) Comparison with Seysen reduction [14]. Rather than

minimizing the orthogonality defect of a basis, a metric

called Seysen’s measure can reflect whether both the pri-

mal and dual bases are short:
∑n

i=1 ‖bi‖2 ‖di‖2. Seek-

ing for the global minimum of this metric is extremely

hard; when referring to Seysen’s algorithm [25], it is the

one that finds a local minimum of
∑n

i=1 ‖bi‖2 ‖di‖2
without any theoretical performance guarantee. Sim-

ilarly to SR-Pair, Seysen’s algorithm performs basis

updates in a pair-wise manner:

bj = bj + ci,jbi, i 6= j,

with ci,j = ⌊ 12
(

〈di,dj〉
‖di‖2 − 〈bi,bj〉

‖bi‖2

)
⌉. Due to the ad-

ditional inner product calculation in the dual basis,

Seysen’s algorithm is more complicated than SR-Pair,

and it does not support the hash-based implementa-

tion. Moreover, in large (≥ 35) dimensions Seysen’s

algorithm often halts at a local minimum [14, P.375].

Since the error rate performance is only controlled by

the length of the dual basis, our empirical results also

show that Seysen’s algorithm is not competitive for large

dimensions.

V. SIMULATION RESULTS

A. Performance of SR-CVP

Hereby we employ the OD’s to compare SR-CVP with

other strong lattice reduction algorithms, including the boosted

Korkin-Zolotarev reduction noted as “bKZ”, the Minkowski

reduction noted as “Minkowski”, and the η-Greedy reduction

[34, Fig.5] noted as “η-Greedy”. Results are averaged over

1 × 104 Monte-Carlo runs, and SR-CVP is implemented by

the heuristic version in subsection III-C.

Fig. 3 plots dimension versus OD for distinct algorithms

for the primal and dual of a Gaussian random matrix with
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Fig. 3: The orthogonal defects of different types of strong

reduction.

entries from N (0, 1), respectively. The figure shows that

ODs of SR-CVP, bKZ and Minkowski reduced bases are

almost indistinguishable. η-Greedy has the worst performance

as expected, because it is not designed to minimized all

basis vectors. Since Minkowski reduction is the state-of-the-

art algorithm for generating the shortest basis in practice, our

results show that SR-CVP practically reaches optimality as

well.

Fig. 4 plots the averaged number of CVP runs in Fig. 3

when using η-Greedy and SR-CVP. It is known that both

Minkowski and bKZ cost around n oracles for the shortest

vector problem (SVP) or CVP. Fig. 4 reflects that SR-CVP

actually needs fewer than n rounds of CVP, and is only slightly

more complicated than η-Greedy.

B. SR-Hash vs. SR-Pair and LLL variants

In this subsection, we study the complexity/performance

tradeoffs of different types of weak lattice reduction. The

modulation is set as 16 QAM, and the results are obtained

from 1 × 104 Monte Carlo runs. We denote the zero-forcing

detector by “ZF”, the successive interference cancellation

detector by “SIC”, and lattice-reduction-aided detectors with

prefixes: “LLL-SIC/ZF” [32], “bLLL-SIC/ZF” [16], “SR-Pair-

SIC/ZF” (this paper), “SR-Hash-SIC/ZF” (this paper), and

“Seysen-SIC/ZF” [26]. Here comparisons are made for major

lattice-reduction-aided methods in large-scale MIMO systems,

because they represent pre-processing based methods that may

attain the diversity order of ML detection [6], [44].

1) i.i.d. channels: Assume that each entry of the chan-

nel matrix is chosen from a standard normal distribution

CN (0, 1). Fig. 5 plots the bit error rate (BER) performance

of different uncoded MIMO detectors in a real domain 2nT ×
2nR = 60 × 60 MIMO system. Here the linear detectors are
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Fig. 4: The number of effective CVP runs in η-Greedy and

SR-CVP.

implemented with the MMSE criterion. Parameters in LSH are

chosen as t = ⌊n0.585⌉ = 11, k = ⌊logn⌉ = 6.

In the high SNR region of Fig. 5-(a), we observe that, in

addition to the well-known fact that ZF, SIC and Seysen-SIC

fail to achieve the full diversity order, b-LLL-SIC, SR-Pair-

SIC and SR-Hash-SIC all attain approximately 1dB gain over

LLL-SIC. As for Fig. 5-(b), the variants of SR both outperform

conventional and boosted LLL algorithms. Both sub-figures

indicate that SR-Hash gets very close to SR-Pair.

The complexity of implementing the lattice reduction al-

gorithms is plotted in Fig. 6, where sub-figure (a) is for the

effective channel matrix under the MMSE criterion, and sub-

figure (b) under the ZF criterion. Considering the difficulty

in analyzing the number of floating-point operations for hash

operations, here we measure the complexity by the number of

vector comparisons. This equals to the number of iterations

times: the size of the basis for SR-Pair, the number of vectors

in the same buckets for SR-Hash, and to the size of vectors

for doing size-reductions for both LLL and bLLL. From Fig.

6-(a), we observe that the LLL variants are not affected by

SNR in the MMSE matrix, and Seysen, SR-Pair and SR-

Hash gradually increase with the rise of SNR. This shows the

complexity of Seysen, SR-Pair and SR-Hash are dependent on

the quality of the input bases. Regarding the stationary lines

in Fig. 6-(b), the numbers of comparisons of Seysen, SR-Pair

and SR-Hash reflect the asymptotic values of their counter-

parts in Fig. 6-(a). Both subfigures reveal that the hash method

helps to reduce the complexity of SR-Pair significantly. A

natural question that arises here is whether the complexity

dependency of SR-Pair&SR-Hash on input bases may lead to

inferior performance at low SNR. To address this question,

we plot the SNR versus OD relations of different reduction

algorithms in Fig. 7. We observe from the figure that even

at low SNR, SR-Pair&SR-Hash featuring low complexity still
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(a) Lattice-reduction-aided SIC detectors.
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(b) Lattice-reduction-aided ZF detectors.

Fig. 5: The BER performance of different detectors in large

MIMO.

outperform Seysen and LLL in terms of OD.

2) Correlated Channels: Results in the last example were

obtained for i.i.d. frequency-flat Rayleigh fading channels. The

performance of MIMO systems in realistic radio environments

however sometimes depends on spatial correlation. Therefore,

we investigated the effect of channel correlation on the per-

formance of the new reduction algorithms. Based on [45], the

spatially correlated channel is modeled as

B̃c = ΨBc,

where Ψ ∈ R
nR×nR is the correlation matrix defined by

Ψ =




1 ρ . . . ρnR−1

ρ 1 . . . ρnR−2

...
...

. . .
...

ρnR−1 ρnR−2 . . . 1


 ,

and ρ refers to the spatial correlation coefficient.

With the same chosen parameters in the algorithm as those

for i.i.d. channels, Fig. 8 demonstrates the BER performances

against SNR in correlated channels respectively with ρ = 0.1
and ρ = 0.3. It reveals that, as ρ increases, the SR aided

detectors suffer from more severe performance degradation
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Fig. 6: The complexity of different lattice reduction algorithms

in i.i.d. channels.
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Fig. 7: The ODs of MMSE matrices reduced by different

algorithms.

than the LLL aided methods, although the BER gaps between

SR variants and LLL variants are very small. This is not un-

expected because we do have examples showing SR-Pair/SR-

Hash cannot reduce certain matrices (e.g., the matrix in (19)).

Lastly, as plotted in Fig. 9, the complexity of SR-Pair/SR-Hash

is still much lower than those of LLL variants and Seysen, and

the proposed SR-Hash has much lower complexity than SR-

Pair.

VI. CONCLUSIONS AND FUTURE WORK

To summarize, we have unveiled a new lattice reduction

family called sequential reduction, which enjoys a polynomial

number of iterations. Theoretical bounds on basis lengths and

orthogonality defects are derived under the premise that an ex-

act CVP subroutine has been invoked. Though we only manage

to prove these results for small dimensions, they still provide

insights on understanding the performance of such a class of
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(a) ρ = 0.1.
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(b) ρ = 0.3.

Fig. 8: The BER performance of lattice-reduction-aided SIC

detectors in correlated channels with ρ = 0.1 and ρ = 0.3.

algorithms. Within the SR framework, the SR-Hash method

can serve as an effective subprogram, and simulation results

show that the complexity-performance trade-off outperforms

those of SR-Pair and LLL variants in large MIMO detection.

We believe that the studies we initiated here, only scratch

the tip of the iceberg about the new lattice reduction family.

Many important questions remain to be answered. Research on

the interactions and combinations of SR with other techniques

such as floating-point arithmetic [46], [47], randomized detec-

tion algorithms [31], [48], success probability analysis [49],

[50], and numerous other topics is now being pursued.

APPENDIX A

ON THE TYPE OF BASES FEASIBLE FOR

SR-PAIR&SR-HASH

We first argue that a large dimensional Gaussian random

basis is always SR-CVP reduced, and thus being SR-Pair

and SR-Hash reduced. The inability to change such bases is

however not a problem because these bases are close to being

orthogonal.



11

12 14 16 18 20 22 24
SNR/dB

103

104

105

106

N
um

be
r 

of
 c

om
pa

ris
on

s

(a) ρ = 0.1.

15 20 25
SNR/dB

103

104

105

106

N
um

be
r 

of
 c

om
pa

ris
on

s

(b) ρ = 0.3.

Fig. 9: The complexity of lattice reduction algorithms in

correlated channels with ρ = 0.1 and ρ = 0.3.

Proposition 7. For a Gaussian random basis whose entries

follow the distribution N (0, 1), the probability that it is not

SR-CVP reduced goes to zero as n→∞.

Proof: We need to show that for all choices of coefficients

a′is in Z with at least one nonzero ai, the probability

Pr



∥∥∥∥∥b1 +

n∑

i=2

biai

∥∥∥∥∥

2

≤ ‖b1‖2



vanishes as the problem size n increases. Since
∑n

i=2 biai
is an isotropic Gaussian random vector with covariance

E

(
(
∑n

i=2 biai) (
∑n

i=2 biai)
⊤
)

=
(∑n

i=2 a
2
i

)
In, then for

any β > 0,

Pr



∥∥∥∥∥b1 +

n∑

i=2

biai

∥∥∥∥∥

2

≤ ‖b1‖2



≤ E

(
e
−β

(

‖b1+
∑

n
i=2 biai‖2−‖b1‖2

)
)
,

=

∫
dxdv

(2π)
n

e
− 1

2 [v
⊤,x⊤]





In 2
√∑n

i=2 a
2
iβIn

2
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2
iβIn

(
1 + 2β
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In




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



= det

([
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2
i βIn

2
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2
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(
1 + 2β
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2
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)
In

])−1/2

=

(
1

1 + 2β (1− 2β)
∑n

i=2 a
2
i

)n/2

. (20)

By optimizing over β in the denominator, we have 1 +
2β (1− 2β)

∑n
i=2 a

2
i ≤ 1 + 1

4

∑n
i=2 a

2
i . This means we can

use β = 1
4 to reach the tightest bound for inequality (20).

Therefore, for any ε > 0, we have

lim
n→∞

Pr



∥∥∥∥∥b1 +

n∑

i=2

biai

∥∥∥∥∥

2

≤ ‖b1‖2



≤ lim
n→∞

(
1

1 + 2β (1− 2β)
∑n

i=2 a
2
i

)n/2

< ε.

Next, we investigate the reduction on the dual of a Gaussian

random basis, which arises in our detection problem. For an

input basis B we define

θi,j = arccos

( |〈bi,bj〉|
‖bi‖ ‖bj‖

)
, 1 ≤ i 6= j ≤ n.

The following lemma says that the SR-Pair method can

provide a Gauss-reduced basis for all pairs of vectors with

pairwise angles θi,j > π/3.

Lemma 8. For an SR-Pair reduced basis, we have θi,j > π/3
for all i 6= j.

Proof. If a lattice basis B is non-reducible by SR-Pair, we

have ⌊〈bi,bj〉/〈bj ,bj〉⌉ = 0 ∀i 6= j. Therefore the lemma

follows from

cos θi,j <
1

2

‖bi‖
‖bj‖

<
1

2

min(‖bi‖ , ‖bj‖)
max(‖bi‖ , ‖bj‖)

≤ 1/2.

Here we argue that the pairwise angles are dense in the dual

of a Gaussian random basis. Fig. 10-(a) plots the histogram

of such random matrices. It shows that so a large number of

vectors satisfy θi,j < π/3, and these vectors will trigger the

reduction in SR-Pair/SR-Hash. On the contrary, as predicted

by Proposition 7, Fig. 10-(b) shows that the primal basis will

not be reduced by SR-Pair/SR-Hash. Bases with dense angles

also feature large orthogonality defects. In Fig. 11, we plot the

OD versus dimension n relations respectively for the dual and

primal Gaussian random matrices. The figure shows the dual

bases approximately have a growth rate of O(20n
1.5

), while

that of the primal basis is extremely small. The above confirms

that the objective lattice bases in MIMO detection are easily

reducible by tuning the pairwise angles.
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