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Abstract—Learning of the cell-load in radio access networks
(RANs) has to be performed within a short time period. There-
fore, we propose a learning framework that is robust against
uncertainties resulting from the need for learning based on a
relatively small training sample set. To this end, we incorporate
prior knowledge about the cell-load in the learning framework.
For example, an inherent property of the cell-load is that it is
monotonic in downlink (data) rates. To obtain additional prior
knowledge we first study the feasible rate region, i.e., the set of
all vectors of user rates that can be supported by the network.
We prove that the feasible rate region is compact. Moreover, we
show the existence of a Lipschitz function that maps feasible rate
vectors to cell-load vectors. With these results in hand, we present
a learning technique that guarantees a minimum approximation
error in the worst-case scenario by using prior knowledge and a
small training sample set. Simulations in the network simulator
NS3 demonstrate that the proposed method exhibits better
robustness and accuracy than standard multivariate learning
techniques, especially for small training sample sets.

Index Terms—machine learning, 5G, robust learning, optimal
approximation

I. INTRODUCTION

The fifth-generation (5G) networks will be based on orthog-
onal frequency-division multiple access (OFDMA). Due to
inter-cell interference, radio resource management (RRM) and
performance optimization in these networks are challenging. In
fact, many RRM problems in OFDMA-based networks, such
as small-scale optimal assignment of time-frequency resource
blocks and powers to users, have been shown to be NP-hard
[1]. Recent research has therefore focused on the development
of frameworks that capture the essence of OFDMA-based
networks, while leading to a tractable problem formulation. An
example of such a framework is the non-linear load-coupling
model proposed in [2], [3], [4]. In this framework the cell-
load at a base station is the fraction of time-frequency resource
blocks that are used to support downlink data rates (henceforth
simply rates). With this model, and given some power budget
that can be used for transmission, one can estimate the cell-
load required at each base station to support given rates.

The study in [5] shows the intuitive result that the cell-load
is monotonic in rates. The interference coupling between cells
implies that increasing the rates in an arbitrary cell increases
the cell-load at each base station, which also increases the
inter-cell interference.1 So, it is important for a base station to
have a reliable forecast of the cell-load before serving higher
rate demands from its associated users. Therefore, cell-load
learning can be used to make radio resource management and
self-organizing-network (SON) algorithms more reliable and
efficient.

1For brevity, we assume that cells are not mutually orthogonal.

Cell-load learning is also a vital part of energy saving
mechanisms in radio access networks (RANs). For instance in
[6], the value of the cell-load is used as an input to a simple
heuristic algorithm that switches off base station antennas
when the cell-load is low. Large gains in energy savings are
reported with minimal effect on the cell sum throughput. The
same concept can be used in the case of virtual base station
formations in cloud RANs [7]. In these virtual systems some
power-hungry components of a RAN (digital signal processors,
line cards, fronthaul, etc.) are virtualized in a central location,
and these components can be allocated on-demand to cells
according to the cell-load. Therefore, given RAN data traffic
(or rates) predictions, the corresponding cell-load forecasts
can enable us to proactively manage network components for
energy savings.

A. The Need for Robust Cell-Load Learning

Note that even though the load-coupling model has been
shown to work sufficiently well in predicting the cell-load in
some scenarios [3], [8], [9], models are only idealizations and
in general they do not capture all the intricacies of dynamic
wireless environments. Therefore, our objective is to directly
learn the underlying function that maps user rates to cell-load
values given a training sample set consisting of rate vectors
and the corresponding measured cell-load vectors. To improve
the learning process, we use the load-coupling model to study
some salient aspects of the relationship between rates and
the cell-load. We use these aspects as prior knowledge in the
learning process.

Compared to the core network, the RAN data traffic is
volatile and it shows irregular patterns throughout a day be-
cause of the unpredictable nature of user activity and relatively
fast changes in the network topology [10]. Therefore, the
underlying statistics (i.e., the joint probability distribution)
of rates and the corresponding cell-load values, which are
part of the so-called environment, can be assumed to remain
constant for only a short time. This implies that a training
sample set must be acquired during this short time before
the environment changes, since otherwise the sample set can
be rendered useless for predicting future cell-load values.
However, in general, the smaller the sample set, the larger the
uncertainty about the underlying phenomenon, which makes
large prediction errors on unseen rates more probable.

In uncertain situations we need “robust” learning methods
that provide a guaranteed worst-case performance under uncer-
tainty. The objective of this study is to develop such a robust
learning framework. Our method is optimal in the sense that it
minimizes the worst-case or maximum error of approximation
which is a classical robust optimization problem (see, e.g.,
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[11], [12], [13], [14]). This means that no matter how small the
training sample set is, we are guaranteed the best worst-case
error. Our method involves only low-complexity and stable
mathematical operations and its theoretical properties are very
well understood. The above mentioned optimization problem
is solved by explicitly incorporating prior knowledge regarding
the Lipschitz continuity of the function to be approximated. By
incorporating additional prior knowledge concerning mono-
tonicity of the function, we further reduce the worst-case error.

We point out that our framework is different to many
modern conventional machine learning frameworks that tar-
get mean or average performance rather than the worst-case
performance we consider in this study. The performance of
many current complex learning methods, such as deep neural
networks (DNNs), is often dependent on the availability of
a large training (or pre-training) sample set. Including prior
knowledge in these frameworks to reduce the reliance on large
training sets is not easy, and it is often discouraged [15]. Even
if some prior knowledge could be enforced in neural networks
(as in [16]), it is theoretically unclear whether (or how) this
enables neural networks to learn better. This makes DNNs ill-
suited to our setting because we consider learning with very
small training sample sets.

B. Related Work

The load-coupling model [2], [3], [4] is commonly used
when designing networks according to the long-term evolution
(LTE) standard. Recently it has also attracted attention in
the context of 5G networks [17]. More specifically, the load-
coupling model has been used in various optimization frame-
works dealing with different aspects of network design in-
cluding data offloading [5], proportional fairness [18], energy
optimization [19], [20], [21], and load balancing [22]. In the
context of energy savings, and by using the theory of implicit
functions [23], the study in [21] shows that there exists a
continuously differentiable function relating user associations
with the base stations to the cell-load. In contrast to [21],
the user association is assumed to be fixed in this study;
we study the relationship between downlink rates and the
cell-load and we incorporate this prior knowledge in our
learning framework. Previous studies dealing with cell-load
estimation, for instance, in the context of data offloading
[5] and maximizing the scaling-up factor of traffic demand
[24], have used load coupling model driven methods that
require information about channel gains, powers, etc.. Most
of these methods employ iterative algorithms to estimate the
cell-load for given downlink rates and other parameters by
exploiting the fact that the cell-load is the fixed point of the
standard interference mapping [25] that is constructed using
the network information. In contrast, we directly learn the
underlying function that maps feasible rates, i.e., downlink
data rates that can be supported by the network, to the observed
cell-load in the network using a sample training set and
prior knowledge. Our framework, therefore, does not require
information about powers, channels, etc..

Inclusion of prior knowledge in the form of constraints,
known properties, and logic has also been widely used in

other areas, such as optimal control [26], [27], to deal with
uncertainty. However, incorporating prior knowledge in ma-
chine learning algorithms for multivariate data2 with arbitrary
dimensions is difficult, and most of the well-known algorithms
either do not preserve the “shape” (i.e., known properties such
as monotonicity, continuity, etc.) of the underlying function or
they become too complex for high-dimensional data [28]. An
inherent property of the cell-load is that it is monotonic in
rates. The study in [29] shows that monotonicity is difficult
to incorporate in popular online learning methods even in
the case of univariate data. In [28] the author proposes a
shape preserving multivariate approximation of scalar mono-
tonic functions that are also Lipschitz. The author shows
that Lipschitz continuity of the function to be approximated
allows for computing tight upper and lower bounds on the
function values. Using these bounds one can obtain an optimal
solution in the sense that this solution minimizes a worst-
case error of approximation [11], [12], [13]. Furthermore,
the approximation preserves both the monotonicity and the
Lipschitz continuity of the underlying function.

C. Our Contribution

This study deals with the problem of learning cell-load in
RANs as a function of downlink rates given a relatively small
training sample set. The assumption of small training sample
sets is crucial because modern RAN networks do not permit
a long observation and sample acquisition period (see Section
I-A). To cope with this limitation, we propose a robust learning
framework that guarantees a minimum worst-case error of
approximation. To achieve robustness, we incorporate prior
knowledge about the cell-load and its relationship with rates.
We show that the incorporation of prior knowledge enables
us to provide explicit tight bounds that cannot be achieved by
using a sample set alone, no matter how large the sample set
is.

In the following we summarize the main contributions of
this study.

1) We study the feasible rate region which is defined as the
set of all rates that can be supported by the network.
In the conference version of this study [30] we stated
without proof that the feasible rate region is compact. In
this work we provide a formal proof for this assertion
along with some other related results.

2) In particular, we show that there exists a function that
maps rates to the cell-load and that this function is
monotonic and Lipschitz continuous over the feasible rate
region.

3) We use the prior knowledge developed in 1) and 2) to
perform robust learning of the cell-load by using the
framework of minimax approximation [11], [12], [13].
Note that, this technique cannot be directly used without
the prior knowledge above.

4) In contrast to [28], where the main concern is to pre-
serve the monotonicity, we show theoretically and by

2Multivariate data in this context means that the input argument (or domain)
of the function to be approximated has an arbitrary dimension.
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experiments that including the prior knowledge regarding
monotonicity results in reduced uncertainty.

5) Our machine learning framework does not require net-
work information such as powers and channel gains in
contrast to traditional cell-load approximation methods.
The guaranteed performance of our framework with small
sample sets makes it suitable in such scenarios where
other learning frameworks such as DNNs cannot be
applied.

6) In contrast to the conference version, we perform sim-
ulations in the network simulator NS3 to demonstrate
the performance of the algorithm in a realistic cellular
wireless network. We compare our framework with stan-
dard multivariate learning techniques and show that our
method outperforms these standard techniques for small
sample sizes.

D. Overview

The remainder of this study is organized as follows. Sec-
tion II provides the mathematical background and results that
are used throughout the study. Section III presents the non-
linear load coupling model. In Section IV we provide our
results on the feasible rate region. In Section V we discuss
the robust optimization problem for cell-load learning along
with some more related results. Section VI deals with the
implementation of the cell-load learning framework developed
in this study in a wireless network. Finally, in Section VII,
empirical analysis is performed by simulations in the network
simulator (NS3).

II. MATHEMATICAL BACKGROUND

Throughout this study R, R≥0, and R>0 denote the sets of
reals, non-negative reals, and positive reals, respectively. We
denote by ‖ · ‖ and ‖ · ‖∞ the usual Euclidean norm and 𝑙∞
norm in R𝑚, respectively. The sets of non-negative integers and
natural numbers are denoted by Z≥0 and N := Z≥0 \ {0}, re-
spectively. We define 𝑁1, 𝑁2 := {𝑁1, 𝑁1 + 1, 𝑁1 + 2, . . . , 𝑁2},
𝑁1, 𝑁2 ∈ Z≥0 with 𝑁1 ≤ 𝑁2. We denote by (x)+ the operation
max {x, 0} for a vector x ∈ R𝑁 , where the max is taken
component-wise and 0 is the all-zero vector. For two vectors x
and y, the inequality x ≤ y should be understood component-
wise.

Let S be a normed vector space equipped with a norm ‖ · ‖S
and its induced metric 𝑑S : S×S → R≥0 : (s𝑜, s) ↦→ ‖s𝑜−s‖S .
We denote by BS (s𝑜, 𝛿) := {s ∈ S|‖s − s𝑜‖S < 𝛿} the open-
ball of radius 𝛿 > 0 centered at s𝑜 ∈ S. A sequence (s𝑛)𝑛∈N ⊂
S is said to converge (in norm) to s ∈ S if ‖s𝑛 − s‖S → 0
[31, Page 26].

We now define the concepts of boundedness, closedness,
and compactness that we use throughout this study.

Definition 1 (Boundedness, Closedness, and Compactness).
[31, Chapter 2] Consider a set K in the normed space (S, ‖ ·
‖S).
a). Boundedness: K is bounded if (∃𝐿 ≥ 0) (∀k ∈ K)

‖k‖S ≤ 𝐿.
b). Closedness: K is closed if and only if every convergent

sequence (k𝑛)𝑛∈N ⊂ K has a limit in K.

c). Compactness: K is compact if every sequence (k𝑛)𝑛∈N ⊂
K has a convergent subsequence with a limit in K.

In this study we consider the space 𝐶 (X,Y) of vector-
valued continuous functions mapping X ⊂ R𝑁

>0 to Y ⊂ R𝑀≥0.
For a function g ∈ 𝐶 (X,Y) its 𝑖th component (𝑖 ∈ 1, 𝑀)
𝑔𝑖 : X → R≥0 is a scalar continuous function. We equip
𝐶 (X,Y) with the uniform norm [31, Page 23]

‖g‖𝐶 (X) = sup
x∈X

max
1≤𝑖≤𝑀

𝑔𝑖 (x). (1)

If X is compact, then the sup is attained according to the
extreme value theorem [32] because the max operation3 pre-
serves continuity.

We now present some important concepts to keep the study
as self-contained as possible. These concepts are essential to
understanding our results in Section IV and in Section V.

Definition 2 (Monotonic Function). Let X ⊂ R𝑁
>0 and Y ⊂

R𝑀≥0. A function f : X → Y is said to be monotonic if (∀x ∈ X)
(∀y ∈ X) x ≤ y ⇒ f (x) ≤ f (y).

Definition 3 (L-Lipschitz function). Consider f ⊂ 𝐶 (X,Y)
and a vector L := [𝐿1, 𝐿2, · · · , 𝐿𝑀 ]ᵀ ∈ R𝑀≥0. We say that
f is L-Lipschitz on X if (∀𝑖 ∈ 1, 𝑀) (∀x ∈ X)(∀y ∈
X) | 𝑓𝑖 (x) − 𝑓𝑖 (y) | ≤ 𝐿𝑖 ‖x − y‖.

Definition 4 (L-Lipschitz-Monotonic Function). We say that
f ⊂ 𝐶 (X,Y) belongs to the class of L-Lipschitz-Monotonic
Functions (LIMF) if f is monotonic and there exists L ∈ R𝑀≥0
such that f is L-Lipschitz.

Note that a function f ∈ 𝐶 (X,Y) is continuous at x𝑜 ∈ X if
given 𝜖 > 0, there exists 𝛿x𝑜 > 0 such that (∀x ∈ BX (x𝑜, 𝛿x𝑜 ))
‖f (x) − f (x𝑜)‖ < 𝜖 . The following concept of equicontinuity
extends the concept of continuity to a collection/set F ⊂
C(X,Y) of functions.

Definition 5 (Equicontinuity of a Set). [32, Chapter 7] A func-
tion set F ⊂ C(X,Y) is called equicontinuous at x𝑜 ∈ X if for
every 𝜖 > 0 there exists 𝛿x𝑜 > 0 such that (∀x ∈ BX (x𝑜, 𝛿x𝑜 ))
(∀f ∈ F ) ‖f (x) − f (x𝑜)‖ < 𝜖 . Furthermore, if for every 𝜖 > 0
there exists 𝛿 > 0 such that (∀x𝑜 ∈ X) (∀x ∈ BX (x𝑜, 𝛿))
(∀f ∈ F ) ‖f (x) − f (x𝑜)‖ < 𝜖 , then F is said to be (uniformly)
equicontinuous.

Remark 1 (Set of L-Lipschitz Functions). An example of a
(uniformly) equicontinuous subset of 𝐶 (X,Y) is the set of L-
Lipschitz functions, i.e., Lipschitz functions with the Lipschitz
constant determined by L ∈ R𝑀≥0 (see Definition 3). For
completeness, a proof is shown in Appendix A.

The general concept of compactness in normed vector
spaces has been introduced in Definition 1. The following
Fact, along with Remark 2, characterizes compact subsets of
𝐶 (X,Y).

Fact 1 (Compact subsets of 𝐶 (X,Y)). [33][32, Corol-
lary 45.5] Let X be compact. Then,

3The usage of max in (1) is different to the component-wise max in
max{x, 0}. The distinction between the two usages shall be clear by the
context in which they are used.
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a). Arzelá-Ascoli’s Theorem: Every bounded and equicon-
tinuous sequence (f𝑛)𝑛∈N ⊂ 𝐶 (X,Y) has a convergent
subsequence.

b). A set F ⊂ 𝐶 (X,Y) is compact if it is bounded, equicon-
tinuous, and closed.

Remark 2 (Compactness in R𝑚 and in 𝐶 (X,Y)). A subset
of a finite dimensional Euclidean space is compact if and
only if it is bounded and closed (see Heine-Borel Theorem
[32, Theorem 27.3]). However, in 𝐶 (X,Y), equicontinuity
is required in addition to boundedness and closedness for
compactness.

Finally, we present the concept of implicit functions, which
plays an important role in our study.

Fact 2 (Implicit function theorem). [23] Consider sets X ⊂
R𝑁 , Y ⊂ R𝑀 , and Z ⊂ R𝑀 , and a vector-valued continuous
function g : Y×X → Z. Denote by (𝑖 ∈ 1, 𝑀) 𝑔𝑖 : Y×X → R
the 𝑖th component of g. Now, assume that g is continuously
differentiable in a neighborhood (∃𝛿𝑥 , 𝛿𝑦 > 0) BY (y, 𝛿𝑦) ×
BX (x, 𝛿𝑥) of a point (y, x) ∈ Y × X, and that g(y, x) = 0.
Let the Jacobian of g with respect to variables y (i.e., the first
argument), denoted by ∇

g
y : Y × X → R𝑀×𝑀 and defined as

∇
g
y :=

©«
𝜕𝑔1
𝜕𝑦1

𝜕𝑔1
𝜕𝑦2

· · · 𝜕𝑔1
𝜕𝑦𝑀

...
...

. . .
...

𝜕𝑔𝑀
𝜕𝑦1

𝜕𝑔𝑀
𝜕𝑦2

· · · 𝜕𝑔𝑀
𝜕𝑦𝑀

ª®®®¬ ,
be invertible at (y, x). Then, there exists a (unique and
continuous) “implicit” function f : BX (x, 𝛿𝑥) → BY (y, 𝛿𝑦)
such that (∀x ∈ BX (x, 𝛿𝑥)) g(f (x), x) = 0. Furthermore, f
is continuously differentiable on BX (x, 𝛿𝑥). The value of the
Jacobian of f is given by

(∀x ∈ BX (x, 𝛿𝑥)) ∇f
x (x) = −

(
∇

g
y (f (x), x)

)−1
∇

g
x (f (x), x), (2)

where ∇
g
x : Y ×X → R𝑀×𝑁 is the Jacobian of g with respect

to variables x (i.e., the second argument) given by

∇
g
x :=

©«
𝜕𝑔1
𝜕𝑥1

𝜕𝑔1
𝜕𝑥2

· · · 𝜕𝑔1
𝜕𝑥𝑁

...
...

. . .
...

𝜕𝑔𝑀
𝜕𝑥1

𝜕𝑔𝑀
𝜕𝑥2

· · · 𝜕𝑔𝑀
𝜕𝑥𝑁

ª®®®¬ .
III. SYSTEM MODEL

In this study we consider an urban cellular base station
deployment consisting of 𝑀 ∈ N base stations and 𝑁 ∈ N
users. We consider the downlink and we denote by 𝑟 𝑗 ∈ R>0
the rate of user 𝑗 ∈ 1, 𝑁 per unit time. We collect the rates of
all users in a vector r := [𝑟1, 𝑟2, · · · , 𝑟𝑁 ]ᵀ ∈ R𝑁

>0.

A. Load Coupling Model and the Feasible Rate Region

We now present the load-coupling model proposed in [2],
[5], which has been shown to be sufficiently accurate in certain
scenarios in practice [3], [8], [9]. This model is based on the
fact that time-frequency resources available at a base station
are divided into physical resource blocks to facilitate resource
allocation. The cell-load (at a base station) is defined to be
the fraction of available resource blocks that are allocated to

TABLE I
LIST OF VARIABLES

Description Symbol
Number of base stations 𝑀

Number of users 𝑁

Set of base stations M = {1, 2, . . . , 𝑀 }
Set of users N = {1, 2, . . . , 𝑁 }
Set of users for base station 𝑖 N(𝑖)
Rate of user 𝑗 𝑟 𝑗 ∈ R>0
Minimum user rate vector 𝑟min ∈ R>0
Device SNR between base station 𝑖 and user 𝑗 𝛾𝑖 𝑗
Number of resource blocks 𝑅 ∈ N
Bandwidth of each resource block 𝐵 ∈ R>0
Cell-load 𝝆 ∈ R𝑀≥0
Load mapping q : R𝑀≥0 × R𝑁

>0 → R𝑀≥0
Base station transmit power p ∈ R𝑀

>0
Path-loss between base station 𝑖 and user 𝑗 𝐺𝑖, 𝑗 ∈ R>0
Space of continuous functions from 𝑋 to Y 𝐶 (X, Y)
Lipschitz constant L ∈ R𝑀≥0
Euclidean open-ball centered at x ∈ X BX (x, 𝛿)
Network coherence time 𝑇net ∈ R>0
Sample acquisition time 𝑇obv ∈ R>0
Sample average time 𝑇avg ∈ R>0
Sample set size 𝐾 ∈ N

support the rates of the users associated with the base station.
Resource blocks are allocated to users based on their rates
and channel qualities given in terms of their average signal-
to-interference-plus-noise ratios (SINRs). In the following we
denote by M := {1, 2, . . . , 𝑀} and N := {1, 2, . . . , 𝑁} the
set of base stations and users, respectively, and we denote by
N(𝑖) the set of users associated with base station 𝑖 ∈ M.

Consider the case where base station 𝑖 ∈ M is serving user
𝑗 ∈ N (𝑖) and denote by 𝐺𝑖, 𝑗 the path-loss between base station
𝑖 and user 𝑗 . The load-based SINR model represents the inter-
cell interference from base station 𝑘 ∈ M \ 𝑖 as the product
𝑝𝑘𝐺𝑘, 𝑗 𝜌𝑘 ≥ 0, where 𝑝𝑘 is the fixed transmit power of base
station 𝑘 per resource block, and where 0 < 𝜌𝑘 ≤ 1 denotes
the cell-load at base station 𝑘 [3]. With this model in hand, the
network layer (averaged) SINR of the wireless link between
base station 𝑖 and user 𝑗 is expressed as [2], [5]

𝛾𝑖 𝑗 (𝝆) =
𝑝𝑖𝐺𝑖, 𝑗∑

𝑘∈M\𝑖 𝑝𝑘𝐺𝑘, 𝑗 𝜌𝑘 + 𝜎2 , (3)

where 𝝆 := [𝜌1, 𝜌2, ..., 𝜌𝑀 ]ᵀ ∈ R>0 is the vector of cell-
load values at all base stations in the network and where 𝜎2

denotes noise power. Note that the denominator in (3) provides
an interpretation of the cell-load as the probability of inter-cell
interference from base station 𝑘 [2]. For further details of the
model including its strengths and weaknesses see [2], [5]. Let
𝑅 ∈ N be the total number of resource blocks available at
the base station, each with bandwidth 𝐵 ∈ R>0. Given SINR
𝛾𝑖 𝑗 (𝝆), we assume that base station 𝑖 can reliably transmit at
a rate 𝑟𝑠

𝑖 𝑗
= 𝐵 log(1 + 𝛾𝑖 𝑗 (𝝆)) per resource block to user 𝑗 .

Thus, to “support” the rate 𝑟 𝑗 , base station 𝑖 has to allocate
𝜌𝑖 𝑗 =

𝑟 𝑗

𝑟 𝑠
𝑖 𝑗

resource blocks to user 𝑗 . Summing the resource
block consumption over all N(𝑖), we obtain the “cell-load” (in
terms of total resource consumption) of base station 𝑖 ∈ 1, 𝑀

𝜌𝑖 =
1
𝑅𝐵

∑︁
𝑗∈N(𝑖)

𝑟 𝑗

log(1 + 𝛾𝑖 𝑗 (𝝆))
. (4)
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Note that, we can express the right-hand side of (4) for the
entire network as a vector-valued mapping

q : R𝑀≥0 × R
𝑁
>0 → R𝑀>0

(𝝆, r) ↦→


1
𝑅𝐵

∑
𝑗∈N(1)

𝑟 𝑗

log(1+𝛾𝑖 𝑗 (𝝆))
...

1
𝑅𝐵

∑
𝑗∈N(𝑀 )

𝑟 𝑗

log(1+𝛾𝑖 𝑗 (𝝆))

 ,
which we refer to as the load mapping. Given r ∈ R𝑁

>0,
it follows from (4) that the cell-load vector is the solu-
tion (if it exists) to the fixed point problem: Find 𝝆∗ =

[𝜌∗1, 𝜌
∗
2, ..., 𝜌

∗
𝑀
]ᵀ ∈ R𝑀≥0 such that:

𝝆∗ = q(𝝆∗, r). (5)

Since the cell-load is defined as a fraction of the available
resources at the base station, a rate vector is feasible (i.e.,
there are sufficient resource blocks available at all base stations
to support rate of every user) if the solution (if it exists)
to (5) satisfies 𝝆∗ ≤ 1. For a given supported r ∈ R𝑁

>0,
the solution to (5) can be obtained by iterative fixed point
algorithms as long as the network information (path-losses,
powers, user association, etc. in (4)) required by these al-
gorithms is available. In more detail, given r ∈ R𝑁

>0, the
mapping Γr : R𝑀≥0 → R𝑀

>0 : 𝝆 ↦→ q(𝝆, r) is a positive
concave mapping, so it also belongs to the class of standard
interference functions [34], [25]. Therefore, the following
holds:

Fact 3 (The unique fixed point solution). [25] Suppose the
rate vector r ∈ R𝑁

>0 is feasible, then the solution set of (5)
given by

Fix(Γr) :=
{
𝝆∗ ∈ R𝑀≥0 | 0 < Γr (𝝆∗) = 𝝆∗ ≤ 1

}
contains at most one fixed point.

As mentioned previously in Section I-C, we incorporate
prior knowledge about the cell-load in our learning framework
presented in Section V to ensure robust learning. To this end,
Fact 4 presents an important property of the cell-load, namely
its monotonicity in the rate vector:

Fact 4. [5, Theorem 2] Consider any two feasible rate vectors
r𝑘 , r 𝑗 ∈ R and the corresponding fixed points 𝝆 𝑗 ∈ Fix(Γr 𝑗 ) ≠
∅ and 𝝆𝑘 ∈ Fix(Γr𝑘 ) ≠ ∅. Then r 𝑗 ≥ r𝑘 =⇒ 𝝆 𝑗 ≥ 𝝆𝑘 .

In the next section we define and study the feasible rate
region, which is the set of all rates supported by the network.

IV. PROPERTIES OF THE FEASIBLE RATE REGION

In light of Fact 3 and Fact 4, and given the minimum
feasible rate vector rmin ∈ R𝑁

>0 (e.g., corresponding to the
lowest order modulation and coding scheme in the network)
that induces the cell-load 𝝆min ∈ R𝑀

>0, we are now in a position
to define the feasible rate region and the set of cell-load vectors
over this set.

Definition 6 (Feasible Rate Region and the Cell Load Set).
The feasible rate region is defined as

R := {r ≥ rmin ∈ R𝑁>0 | (∃ 𝝆∗ ∈ Fix(Γr)) , 𝝆min ≤ 𝝆∗ ≤ 1}.
(6)

Similarly, the feasible cell-load set is given by the set of fixed
points (see Fact 3)

L :=
{
𝝆 ∈ R𝑀>0 | (∃ r∗ ∈ R) , 𝝆min ≤ Γr∗ (𝝆) = 𝝆 ≤ 1

}
. (7)

In the following we extend the prior knowledge in our learn-
ing framework by studying the feasible rate region R ∈ R𝑁

>0
in Definition 6. In particular, we show in Theorem 1 that R
is compact. The compactness of R is also required for our
results in Section V.

Note that R is bounded from below by rmin ∈ R𝑁
>0. Since

power, bandwidth, and the total number of resource blocks are
fixed in (3) and (4), and because the cell-load is monotonic
in the user rate vector by Fact 4, arbitrarily large user rates
cannot be supported. We state this fact formally in Lemma 1,
which we use to prove compactness of R in Theorem 1.

Lemma 1. The feasible rate region is bounded.

We now present the main result of this section.

Theorem 1. The feasible rate region is compact.

Proof. Recall from Definition 1(b) that a subset of a normed
space is closed if and only if it contains all of its limit points.
We denote by clo(R) the closure of R in Definition 6, which
is the smallest closed set in R𝑁

>0 containing R. Similarly,
denote by clo(L) the closure of L in Definition 6. Consider an
arbitrary sequence (r𝑛, 𝝆𝑛)𝑛∈N ⊂ R×L, of tuples consisting of
feasible rate vectors and the corresponding cell-load vectors.
Suppose (r𝑛, 𝝆𝑛) → (r, 𝝆) ∈ clo(R) × clo(L). From (5) it
follows that, given r𝑛, 𝝆𝑛 must be the solution to the fixed
point problem with the load mapping q. Therefore, we have

(∀𝑛 ∈ N) 𝝆min ≤ 𝝆𝑛 = q(𝝆𝑛, r𝑛) ≤ 1. (8)

Now, since q is continuous, we have

𝝆min ≤ lim
𝑛∈N

𝝆𝑛 = lim
𝑛∈N

q(𝝆𝑛, r𝑛) ≤ 1

𝝆min ≤ 𝝆 = q(𝝆, r) ≤ 1

which implies that (r, 𝝆) ∈ R × L. Thus, every convergent
sequence in R has its limit in R which implies that R is closed.
Now, according to Lemma 1, R is bounded and recall from
Remark 2 that every bounded and closed subset of a finite
dimensional Euclidean space is compact. �

V. ROBUST LEARNING OF CELL-LOAD

Building upon the results from the previous section we
formulate the robust learning of cell-load. Note that the cell-
load is modeled by the load-coupling model in (4). This means
that given the network information required by the model, we
can calculate the value of the “modeled” cell load. However,
as mentioned in Section I-A, dynamic wireless networks are
in general difficult to model accurately. Therefore, in the
following we present a framework to directly approximate the
cell-load values in networks that may not follow the cell-load
model accurately. We use the cell-load model in this study
only to extract some useful prior knowledge. In addition to
the monotonicity of the cell-load and the compactness of the
feasible rate region R established in Theorem 1, we show in
Theorem 2 that the function that maps rates to cell-load is
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continuously differentiable and therefore Lipschitz continuous
on R. The Lipschitz continuity is then used to solve our robust
optimization problem formulated in the following.

Let D = {(r𝑘 , 𝝆𝑘 := f∗ (r𝑘 )) ∈ R × L, 𝑘 ∈ 1, 𝐾} be a
sample set of rates and their corresponding cell-load values,
where f∗ : R → L is assumed to be a continuous but unknown
function, and where R and L are defined in Definition 6.
We denote by 𝐶 (R,L) the space of vector-valued continuous
functions mapping R to L, equipped with the norm defined in
(1). Our objective is to learn a function g∗ that approximates
f∗ (r) for any r ∈ R which is a classical problem considered
in, for example, [13], [11], [12]. As mentioned in Section I-C
we are interested in a robust approximation of f∗. To this end,
we consider the minimax optimization problem that leads to
robust solutions under uncertainties:

Problem 1. [11], [35] Given D = {(r𝑘 , 𝝆𝑘 ) ∈ R × L, 𝑘 ∈
1, 𝐾}, find g∗ ∈ 𝐶 (R,R𝑀≥0) such that the worst-case error

E𝑤 (g) = sup
f∈𝐶 (R,L)

‖f − g‖𝐶 (R) , (9)

attains its minimum (if it exists) subject to: (∀𝑘 ∈ 1, 𝐾)
g(r𝑘 ) = f (r𝑘 ) = 𝝆𝑘 .

It is known that Problem 1 can be solved by restricting
f∗ to a compact subset of 𝐶 (R,L) and by computing finite
tight upper and lower bounds on the values (∀r ∈ R) f∗ (r)
[13], [36], [28]. If the only information available about f∗ is
that it satisfies the interpolation constraints in Problem 1, then
computing tight bounds on unseen function values f∗ (r) is not
possible, no matter how large the sample set D is. However, if
we impose an additional restriction on f∗ that satisfies certain
properties [13], then we can obtain tight bounds 𝝈l (r) and
𝝈u (r) such that 𝝈l (r) ≤ f∗ (r) ≤ 𝝈u (r), where 𝝈l (r) and
𝝈u (r) can be computed explicitly. The optimal approximation
g∗ (r) of f∗ (r) is simply given by g∗ (r) =

𝝈l (r)+𝝈u (r)
2 and

the magnitude of uncertainty |𝝈u (r)−𝝈l (r) |
2 is minimal [14].

Therefore, no matter how small the sample set D is we are
guaranteed the minimum worst-case error (9). It is in this sense
that we refer to the learning as being robust (see Section I-A).

In [36], [28] the analysis is restricted to Lipschitz functions
in which case the above mentioned additional restriction
results from the Lipschitz continuity. Following this approach,
and by considering the cell-load model, we show in Theorem 2
that f∗ belongs to the class of L-Lipschitz-Monotone Functions
(LIMF) (see Definition 4). Moreover, Proposition 1 shows that
this class is a compact subset of 𝐶 (R,L). The computation
of the bounds 𝝈1 (r) and 𝝈u (r) is presented in Fact 5.

In the following we denote by R̃ ⊂ R𝑁
>0 the set of all rate

vectors (not necessarily feasible/supported) for which there
exists a fixed point solution of (5), i.e., R̃ := {r ∈ R𝑁

>0 | (∃ 𝝆 ∈
R𝑀
>0) 𝝆 = q(𝝆, r)}. So we have R ⊂ R̃.

Theorem 2. Consider the load mapping q : R𝑀≥0×R
𝑁
>0 → R𝑀

>0
in (5).
a). There exists a continuously differentiable function fimp :

R̃ → R𝑀
>0 such that (∀r ∈ R̃) fimp (r) = 𝝆 = q(𝝆, r).

b). The restriction of fimp to the feasible rate region R ⊂ R̃
is a LIMF function.

Proof. a). From the uniqueness of the fixed point solution
of (5) it follows that, for two solution pairs (𝝆1, r1) and
(𝝆2, r2), if 𝝆1 ≠ 𝝆2, then we must have r1 ≠ r2. Thus,
there exists a function fimp : R̃ → R𝑀

>0 : r ↦→ fimp (r) =
q(fimp (r), r) that maps every feasible rate vector to a
unique fixed point. We now show that fimp is continuously
differentiable on R̃.
Consider the function g : R𝑁

>0 × R𝑀
>0 → R𝑀 defined as

g(r, 𝝆) := 𝝆 − q(𝝆, r), where q is the load mapping in
(5), and note that (∀r ∈ R̃) (𝝆 = fimp (r)) g(r, 𝝆) = 0.
We now show that g is continuously differentiable, and
the Jacobian matrix ∇

g
𝝆 (r, 𝝆) is non-singular (invertible),

on R̃ × R𝑀
>0 (see Fact 2). To show that g is continuously

differentiable, we show that the Jacobians ∇
g
r and ∇

g
𝝆 are

continuous. The two Jacobians are given in Appendix B
and Appendix C, respectively, and it can be verified that
they are continuous. The invertibility of the 𝑀×𝑀 matrix
∇

g
𝝆 (r, 𝝆) is shown in Appendix D. Therefore, according

to Fact 2, fimp is continuously differentiable.
b). According to part (a) and Fact 2, the Jacobian ∇

fimp
r

is continuous on R̃. Denote by f : R → L and ∇f
r,

the restriction of fimp and ∇
fimp
r , respectively, to the set

of feasible rate vectors R ⊂ R̃. Since R is compact
according to Theorem 1, ∇f

r is bounded on R according
to the extreme value theorem [32] which implies that
∃L ∈ R𝑀≥0 such that f is L-Lipschitz on R. Moreover,
by Fact 4, f is monotonic on R, so f is a LIMF function
(see Definition 4).

�

In the following we denote by F ⊂ 𝐶 (R,L) the class of
LIMF functions f : R → L with a given L ∈ R𝑀≥0 (see Defi-
nition 4). Before we proceed further, we obtain the following
important result whose proof is shown in Appendix E.

Proposition 1. The class F ⊂ 𝐶 (R,L) of LIMF functions,
with a given L = [𝐿1, 𝐿2, · · · , 𝐿𝑀 ]ᵀ ∈ R𝑀≥0, is compact.

A. Minimax Optimal Approximation

We are now in a position to incorporate the prior information
obtained in previous sections into Problem 1. Moreover, we
formally state the robust learning problem considered in this
study as an optimization problem.

Definition 7 (Minimax Optimal Approximation). Let D =

{(r𝑘 , 𝝆𝑘 ) ∈ R × L}𝐾
𝑘=1 be a sample set and assume that

(∀𝑘 ∈ 1, 𝐾) 𝝆𝑘 := f∗ (x𝑘 ) are values generated by an unknown
function (F 3) f∗ : R → L, where F ⊂ 𝐶 (R,L) is a set of
LIMF functions with a given L ∈ R𝑀≥0. The minimax optimal
approximation problem can be then stated as follows:

Problem 2. [11], [28], [35] Find g∗ such that

g∗ ∈ arg min
g∈𝑆

Emax (g) (10)

where 𝑆 := {g ∈ 𝐶 (R,R𝑀
>0) | (∀𝑘 ∈ 1, 𝐾) g(r𝑘 ) = 𝝆𝑘 }, and

Emax (g) := maxf∈F ‖f − g‖𝐶 (R) is the worst-case error (9)
computed over the set F .
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The study [28] proposes a framework for interpolation
of scalar Lipschitz functions defined over a compact set by
using a central algorithm [11], [12]. This framework can be
used to obtain a solution to Problem 2. Furthermore, this
method is also “shape preserving”, i.e., the approximation
preserves the Lipschitz continuity and monotonicity of the
underlying original function. The following fact summarizes
the important properties of an optimal solution obtained based
on this framework.

Fact 5. [28] Let D = {(r𝑘 , 𝝆𝑘 ) ∈ R × L}𝐾
𝑘=1 be a dataset

generated by an unknown function f∗ ∈ F , where F is the set
of LIMF functions with the same L := [𝐿1, 𝐿2, · · · , 𝐿𝑀 ]ᵀ ∈
R𝑀≥0. Then, the following holds:

a). A minimax optimal approximation g∗ of f∗ ∈ F can be
constructed component-wise by

(∀𝑖 ∈ 1, 𝑀) (∀r ∈ R) 𝑔∗𝑖 (r) =
𝜎𝑖
𝑙
(r) + 𝜎𝑖𝑢 (r)

2
, (11)

where 𝜎𝑖l (r) = max𝑘 {𝜌𝑘𝑖 − 𝐿𝑖 ‖(r𝑘 − r)+‖}, 𝜎𝑖u (r) =

min𝑘 {𝜌𝑘𝑖 + 𝐿𝑖 ‖(r− r𝑘 )+‖}, and 𝐿𝑖 ∈ R≥0 is the Lipschitz
constant of the 𝑖th component 𝑓 ∗

𝑖
of f∗.

b). The approximation preserves the L-Lipschitz continuity
and monotonicity, i.e., g∗ is L-Lipschitz and monotonic.

c). g∗ interpolates the sample set D.

B. Complexity

The complexity of the closed-form computation (11) is
linear in the sample size 𝐾 , i.e., the complexity is 𝑂 (𝐾).
Since we consider very small sample sizes, the complexity
is not of a practical concern. Moreover, (11) can be computed
independently for each base station. Therefore, the complexity
is independent of the number of base stations 𝑀 .

Remark 3 (Prior Knowledge Decreases Uncertainty). Note
that the study [28] is concerned with shape preserving ap-
proximation and it does not consider learning from a small
sample set. However, we show in Proposition 2 that (except
for one particular case) excluding prior information regarding
monotonicity worsens at least one of the bounds in Fact
5(a) during generalization on unseen data and this therefore
increases uncertainty and error. We also evaluate this fact
empirically in Section VII-B1 in a realistic wireless network.

The lower and upper bounds without monotonicity con-
straints in Fact 5 are given by (𝑖 ∈ 1, 𝑀) [𝑖l (r) = max𝑘 {𝜌𝑘𝑖 −
𝐿𝑖 ‖r𝑘−r‖} and [𝑖u (r) = min𝑘 {𝜌𝑘𝑖 +𝐿𝑖 ‖r−r𝑘 ‖}. Let Umon (r) :=
|𝜎𝑖

u (r)−𝜎𝑖
l (r) |

2 denote the magnitude of uncertainty calculated

from the bounds in Fact 5, and let U(r) := |[𝑖u (r)−[𝑖l (r) |
2

denote the magnitude of uncertainty without monotonicity in
the framework.

Proposition 2. Let r ∉ D = {(r𝑘 , 𝝆𝑘 ) ∈ R ×L}𝐾
𝑘=1, where D

is the data set in Fact 5. Then Umon (r) ≤ U(r) if

a). (𝑘∗ ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝑘 {𝜌𝑘𝑖 − 𝐿𝑖 ‖(r𝑘 − r)‖}) r𝑘∗ ≥ r, and
b). ( 𝑗∗ ∈ 𝑎𝑟𝑔𝑚𝑖𝑛 𝑗 {𝜌 𝑗𝑖 + 𝐿𝑖 ‖(r − r 𝑗 )‖}) r 𝑗∗ ≤ r;

otherwise Umon (r) < U(r).

Proof. Consider two vectors x, y ∈ R𝑁≥0 such that x ≠ y. If
x ≥ y, then ‖(x − y)+‖ = ‖(x − y)‖ and ‖(y − x)+‖ < ‖(x −
y)‖. Similarly, if x ≤ y, then ‖(x − y)+‖ < ‖(x − y)‖ and
‖(y − x)+‖ = ‖(x − y)‖. If x and y are incomparable then
‖(y − x)+‖ < ‖(x − y)‖ and also ‖(x − y)+‖ < ‖(x − y)‖.

Now, if conditions a) and b) are satisfied simultaneously,
then (by condition a)) for the lower bound we have

[𝑖l (r) = {𝜌𝑘∗𝑖 − 𝐿𝑖 ‖(r𝑘
∗ − r)‖}

= {𝜌𝑘∗𝑖 − 𝐿𝑖 ‖(r𝑘
∗ − r)+‖}

≤ max
𝑘

{𝜌𝑘𝑖 − 𝐿𝑖 ‖(r𝑘 − r)+‖} = 𝜎𝑖l (r).

Similarly, (by condition b)) 𝜎𝑖u (r) ≤ [𝑖u (r). This proves the
first claim of the proposition. Now suppose condition a) is
violated, i.e., either r𝑘∗ ≤ r or r𝑘∗ and r are incomparable,
then from the above discussion

[𝑖l (r) = {𝜌𝑘∗𝑖 − 𝐿𝑖 ‖(r𝑘
∗ − r)‖}

< {𝜌𝑘∗𝑖 − 𝐿𝑖 ‖(r𝑘
∗ − r)+‖}

≤ max
𝑘

{𝜌𝑘𝑖 − 𝐿𝑖 ‖(r𝑘 − r)+‖} = 𝜎𝑖l (r).

Similarly, if condition b) is violated, 𝜎𝑖u (r) < [𝑖u (r) and the
second claim follows. �

The consequence of Proposition 2 is that Umon (r) < U(r)
whenever r violates either of the two conditions in Propo-
sition 2. Therefore, including prior knowledge in our frame-
work regarding monotonicity provably improves generaliza-
tion/prediction on unseen data.

VI. IMPLEMENTATION IN A WIRELESS NETWORK

We have shown in Theorem 2 that there exists an implicit
function (∀𝑖 ∈ 1, 𝑀) 𝑓𝑖 : R →]0, 1] mapping every r ∈ R
to a cell-load value 𝜌𝑖 at base station 𝑖. Furthermore, Fact 5
shows that given a sample set D(𝑖) = {(r𝑘 , 𝑓𝑖 (r𝑘 ))}𝐾𝑘=1 at base
station 𝑖 and the knowledge of the Lipschitz constant 𝐿𝑖 , we
can easily approximate the cell-load value 𝑓𝑖 (r) for r ∉ D(𝑖).
In this section we show how to implement our framework in
an OFDMA-based wireless cellular network. To this end, we
first look at how to calculate the cell-load, and then we show
how to obtain an appropriate sample set at a base station.

A. Cell-load Calculation

In OFDMA-based networks, such as LTE networks, time is
divided into fixed length slots known as subframes. During a
subframe, if a base station is active, it transmits to one or more
users on a block of frequencies in its cell. Therefore, users
are allocated subframes in time and bandwidth in frequency
to match their rate requirements. A subframe together with
its bandwidth is commonly referred to as a physical resource
block. To calculate the cell-load, we record the fraction of the
total available physical resource blocks allocated by a base
station on average during a total time period of 𝑇avg > 0,
where 𝑇avg is a design parameter.
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Algorithm 1 Cell-load Learning for each Base Station

→ Initialization
• Fix 𝐾 > 0 and 𝑇avg > 0.

→ Sample Acquisition (while 𝑡 < 𝑇obv)
• Exchange user rate with other base stations.
• Observe the sample set Dnoise = {(r𝑘 , 𝑦𝑘 = 𝑓 (r𝑘 ) + 𝜖 (r𝑘 ))}𝐾

𝑘=1
(Section VI-B).

→ Training (at 𝑡 = 𝑇obv)
• Perform the estimation of 𝐿 (Section VI-C).
• Perform data smoothing to obtain a compatible Dcom =

{(r𝑘 , �̃�𝑘 )}𝐾
𝑘=1 (Section VI-C).

→ On-Demand Prediction (at 𝑡 > 𝑇obv)
• Given a new rate vector r ∈ R, perform the computation (11)

in Fact 5

𝑔(r) =
1
2
(max
𝑘

{ �̃�𝑘 − 𝐿‖(r𝑘 − r)+‖}) +
1
2
(min
𝑘

{ �̃�𝑘 + 𝐿‖(r − r𝑘 )+‖}).

B. Obtaining a Sample Set

We denote by 𝑇net > 0 the network coherence time during
which the environment (network topology, channels, rate dis-
tribution, etc.) is assumed to be constant (see Section I-A). Let
𝑇obv < 𝑇net denote the sample observation time. We divide 𝑇obv
in 𝐾 ∈ N time windows of duration 𝑇avg each as shown in Fig-
ure 1. To obtain a sample set D(𝑖) = {(r𝑘 , 𝜌𝑘

𝑖
= 𝑓𝑖 (r𝑘 ))}𝐾𝑘=1

at each base station 𝑖 ∈ 1, 𝑀 , the cell-load values 𝜌𝑘
𝑖
= 𝑓𝑖 (r𝑘 )

can be calculated as in Section VI-A for each time window
𝑘 ∈ 1, 𝐾 . The base stations can exchange the rate values of
users associated with them with other base stations to obtain
the rate vectors r𝑘 .

Fig. 1. Learning Timeline: During each slot 𝑘 ∈ 1, 𝐾 of length 𝑇avg we obtain
a sample (r𝑘 , 𝜌𝑘

𝑖
) by observing the proportion of resource blocks consumed

to support rate r𝑘 on average during 𝑇avg.

In the following, we assume that a sample set D(𝑖) =

{(r𝑘 , 𝜌𝑘
𝑖
= 𝑓𝑖 (r𝑘 ))}𝐾𝑘=1, is available at time 𝑡 = 𝑇obv at base

station 𝑖 ∈ 1, 𝑀 . We also omit the index 𝑖 since the same
procedure is carried out at each base station.

C. Obtaining a Compatible Sample Set

Note that the cell-load values calculated in a real network do
not follow the cell-load model exactly. In more detail, instead
of the sample set D = {(r𝑘 , 𝜌𝑘 = 𝑓 (r𝑘 ))}𝐾

𝑘=1, we assume
that an inaccurate sample set Derror = {(r𝑘 , 𝑦𝑘 = 𝑓 (r𝑘 ) +

𝜖 (r𝑘 ))}𝐾
𝑘=1 is available; 𝜖 (r𝑘 ) ≥ 0 is the inaccuracy/error

which is assumed to be bounded.4 As a consequence, for a
given value of the Lipschitz constant 𝐿 ∈ R≥0, Derror may
not be compatible with the monotonicity of 𝑓 . Therefore,
and if required, it must be smoothed to obtain a compatible
set. Furthermore, in practice the prior information about the
Lipschitz constant 𝐿 is often unavailable, so its value must be
estimated from the set Derror. In more detail, we first estimate
the Lipschitz constant by �̃� := max𝑘≠ 𝑗 |𝑦𝑘−𝑦 𝑗 |

‖r𝑘−r 𝑗 ‖ [39].5 Given an
estimate �̃� of the Lipschitz constant, we perform monotone-
smoothing of Derror. The details are provided in Appendix F.

D. Algorithm

The robust cell-load learning algorithm is presented in
Algorithm 1. The Sample Acquisition step corresponds to
the acquisition of the training sample set as explained in
Section VI-B, whereas Training refers to Lipschitz constant
estimation and the data smoothing process as presented in
Appendix F. The On-Demand Prediction refers to the approx-
imation of the cell-load value for a new rate vector during
time period 𝑇net − 𝑇obv (also see Figure 1).

VII. NUMERICAL EVALUATION

In this section we evaluate the robust learning framework
presented in Section V-A by simulation. To evaluate the
learning techniques in a realistic cellular network, simulations
are performed in the network simulator (NS3) [40]. We focus
on the following aspects in this numerical evaluation:

1) We only use the load-coupling model (see Section III-A)
in this study to establish some prior knowledge about
the cell-load in a real cellular network. We show in the
simulations that our learning framework is able to predict
the cell-load sufficiently accurately in a realistic cellular
network in NS3. This is significant because models are
only idealizations, and they may not capture the true
behavior of cellular networks.

2) We have shown in Proposition 2 that including prior
knowledge decreases the uncertainty. We demonstrate this
by comparing our learning framework with full prior
knowledge with the case in which the prior information
regarding the monotonicity of the cell-load with respect
to rate is not included in the framework.

3) Finally, we compare our method to standard multivariate
regression techniques. We show the effect of sample size
𝐾 and the size of the network (i.e., the number of users
𝑁 and base stations 𝑀) on the quality of approximation.

In the next section we present the LTE simulation frame-
work in NS3.

4Our approximation framework is a special case of bounded error esti-
mation/robust set-membership estimation [37], [38] which was developed for
scenarios where the inaccuracy is unknown but bounded.

5There exist more sophisticated methods of estimating the Lipschitz con-
stant such as the method proposed in [28]. But these methods are not the
focus of this study and they add substantial complexity to the algorithm.
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TABLE II
NS3 SIMULATION PARAMETERS

Description Value
Number of base stations 𝑀 3
Number of users 𝑁 30
Base station height 30 m
User height 1.5 m
Noise figure base station 5 dB
Noise figure user 9 dB
Min/Max user rate 0.1 × 106/1 × 106

Simulation area 200 × 200 m
Simulation time 1 s
Total bandwidth 10 MHz
Total number of resource blocks 50
Path-loss model Log-Distance Propagation Loss
SRS periodicity 80 × 10−3 s
Internet application On-Off with Ipv4

A. Network Simulator (NS3) and Scenario

We perform simulation in NS3 using the LTE model, the
details of which can be found in [40]. The load coupling
model is evaluated in the LTE downlink in certain scenarios
in [9]. Briefly, NS3 is a well-known discrete-event network
simulator widely used in educational research and industry
due to its accuracy in simulating computer networks such
as LTE. The granularity of the LTE model in NS3 is up
to the resource block level which allows for accurate packet
scheduling and calculation of inter-cell interference. We chose
the Round Robin scheduler at the MAC layer. The reason is
that the fairness inherent in the simple cyclic scheduling is
more likely to ensure that the minimum data rate requirement
of all users are met, which may not be the case with other more
complex scheduling algorithms [41]. The modulation and
coding scheme and the resource block allocation are chosen
based on the wide-band channel quality indicator (CQI). The
CQI is calculated based on the average received SINR. Users
and base stations are distributed uniformly in the service
area of 200 × 200 meters. We perform simulations for 𝑀 =

{3, 5, 7, 9, 10} base stations with 𝑁 = {30, 50, 70, 80, 90, 100}
users. Users are associated with the base station to which they
have the lowest path-loss. To generate training and test data,
the data rates are distributed uniformaly between 0.1 × 106

bits/s and 1× 106 bits/s. The important simulation parameters
are shown in Table II. Other parameters were chosen as default
in NS3. The simulation time was chosen to be 1 second
which is equal to the length 𝑇avg of each averaging time
slot/window in Figure 1 and Algorithm 1. The cell-load values
are calculated according to Section VI-A.

B. Results

We now present our numerical results. We use Algorithm
1 to perform the robust learning of cell-load proposed in
this study. We present the results for cell-load learning at a
single base station. To obtain reliable statistics we consider 50
topologies (with different user locations, base station locations,
and user associations) for each value of 𝑁 and we let 𝑀 =

𝑁/10. Note that scaling the number of base stations with an
increase in the number of users is necessary to ensure that rate
requirements of users are met. The objective of the simulation

is to observe the effect of sample size and the network size
on the approximation. For each fixed topology, we perform
100 experiments for each value of 𝐾 ∈ {10, 20, . . . , 100}.
During each experiment, a sample set Derror = {(r𝑘 , 𝑦𝑘 )}𝐾

𝑘=1
is generated independently at random and the Training Step
is performed in Algorithm 1 to obtain a compatible training
sample set Dcom. Validation/prediction is performed for an
independent test sample set of size 1000 with rate vectors
r ∉ Dcom. All results are averaged over 100 experiments and
then over 50 topologies to obtain reliable statistics.

1) Effect of Prior Information: In this section we compare
our framework’s performance with and without the prior
information regarding the monotonicity of the cell-road with
respect to rate (see Remark 3). For this simulation we consider
𝑀 = 3 and 𝑁 = 30. Note that the objective of this rather
theoretical comparison is to confirm the result of Proposition 2
in a realistic simulation. This comparison is performed with
an ideal Lipschitz constant 𝐿ideal that can be obtained by
using the method in Section VI-C but by using both the
training sample set and the test sample set. This way 𝐿ideal

is a good approximation of the true Lipschitz constant. We
chose an ideal Lipschitz constant because in this section we
want to focus only on the effect of including prior knowledge
regarding monotonicity of the cell-load in rate in a realistic
cellular network, and this requires an accurate calculation of
function bounds in Section V. However, the comparison with
state-of-art techniques in Section VII-B2, which is of a more
practical significance, is performed with the Lipschitz constant
that is estimated from only the training data set.

20 40
Number of Samples K

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
Uncertainty

 With Prior Knowledge

 Without Prior Knowledge

Fig. 2. We compare the performance of our framework with the case
where prior knowledge about the monotonicity of the cell-load has not been
considered.

We perform the comparison in terms of two metrics, namely
the magnitude of uncertainty given as |𝜎u (r)−𝜎l (r) |

2 (see Sec-
tion V), where the rate r is a test sample point and 𝜎u (r)
and 𝜎l (r) are upper and lower bounds, and the correlation
with test sample set that we measure in terms of the popular
Pearson’s correlation coefficient.

The results are shown in Figure 2 and Figure 3. Figure 2
shows that uncertainty about the cell-load values decreases
with the increasing training sample set size 𝐾 in both cases.
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20 40
Number of Samples K

0.2

0.4

0.6

0.8

1
Pearson's Correlation Coefficient

 With Prior Knowledge

 Without Prior Knowledge

Fig. 3. We compare the performance of LIMF learning framework with the
case where prior knowledge about the monotonicity of the cell-load has not
been considered.

20 40
Number of Samples K

0

0.2

0.4

0.6

0.8

1
Pearson's Correlation Efficient

 2-Nearest Neighbor
 GPR- Linear
 GPR- Gaussian
 LIMF
 ERF

Fig. 4. We compare the the 5 techniques in terms of the linear correlation
between predictions and true values for increasing 𝐾 .

However, we observe that the prior information regarding the
monotonicity always results in less uncertainty than the case
where monotonicity of the cell-load is ignored. The results
are therefore of a theoretical significance and they justify the
inclusion of monotonicity as part of the prior knowledge in
the framework (see Remark 3). The same effect is seen in
Figure 3 where we can clearly see that the case with all
prior information included in the framework results in more
correlation with the test sample set.

2) Comparison with State-of-Art Techniques: In this sec-
tion we compare our learning framework with some low-
complexity state-of-art techniques for various training sample
and network sizes. Throughout this section, we estimate 𝐿

from the available training sample set. We compare our
method with four multivariate techniques, namely the state-of-
art methods Gaussian process regression (GPR) and ensemble
learning with random forests (ERF), and the simple 2-nearest
neighbor interpolation. The GPR technique is well-known for
its universal approximation of continuous functions defined
over compact sets. Note that, in addition to the state-of-art

20 40
Number of Samples K

10-2

10-1

100 Maximum Sample Error
 2-Nearest Neighbor
 GPR- Linear
 GPR- Gaussian
 ERF
 LIMF

Fig. 5. We compare the the 5 techniques in terms of the maximum error
between predictions and true values for increasing 𝐾 .

50 60 70 80 90 100
Network Size

0

0.2

0.4

0.6

0.8

1
Person's Correlation Coefficient

LIMF
GPR- Gaussian
GPR- Linear
2-Nearest Neighbor
 ERF

Fig. 6. We compare the the 5 techniques in terms of the linear correlation
between predictions and true values for increasing network size.

methods, it is important to compare the performance with a
simple method such as the 2-nearest neighbor interpolation to
highlight the difficulty of learning with small sample sets. We
stress again that we consider very small sizes.

Figure 4 shows a comparison of (linear) Pearson’s corre-
lation coefficient, which is a popular measure of the strength
and direction of the linear relationship between the predicted
and the real test values, for an increasing sample size and
fixed number of users 𝑁 = 30. In particular, we use this
coefficient as a measure of the “quality" of approximation. A
high positive value of Pearson’s correlation coefficient means
that the predictions made by the learning method have a strong
linear relationship with the test sample set. Figure 5 shows the
maximum or worst-case error encountered while predicting
on the test sample set for an increasing sample size 𝐾 and
fixed number of users 𝑁 = 30. The maximum error is more
suitable for comparing the robustness of the approximation
techniques than some other popular error metrics because
it shows that all error residuals remain below this level.
Therefore, the maximum error is a reasonable substitute for
the maximum error of approximation in (9) which we cannot
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50 60 70 80 90 100
Network Size 

10-2

10-1

100 Maximum Sample Error 
 LIMF
 GPR- Gaussian
 GPR- Linear
 2-Nearest Neighbor
 ERF

Fig. 7. We compare the the 5 techniques in terms of the maximum error
between predictions and true values for increasing network size.

TABLE III
TRAINING TIME COMPARISON ON STANDARD PC

Technique Average Training Time
LIMF 10 × 10−3 seconds
Nearest Neighbor not applicable
GPR 80 × 10−3 seconds
ERF 60 × 10−3 seconds

compute directly.
It is important to analyze maximum error and correlation

together to better understand the comparison between our
learning framework and other techniques. We observe that
even for an inexact value of Lipschitz constant 𝐿, our method
outperforms other techniques. An interesting observation is the
fact that the GPR method (with the Gaussian function) and
ERF show a relatively good error performance in Figure 5
but a considerably smaller correlation in Figure 4 than our
method for small sampze sizes 𝐾 < 30. This is because of the
fact that our method incorporates prior knowledge about the
cell-load and other methods do not. The poorest performance
is seen in the case of the 2-nearest neighbor interpolation
whose performance improves slowly with increasing sample
size. Clearly, this shows that we do not have enough samples
to perform such a simple interpolation.

Finally, Figure 6 and Figure 7 show the effect of network
size (in terms of number of users 𝑁) on the performance of all
techniques for a small sample size of 𝐾 = 20. We see that, as
expected, there is a gradual degradation of performance for all
techniques. In particular, we observe in Figure 6 that the GPR
with Gaussian function performs poorly due to insufficient
training.

VIII. CONCLUSION

We have studied the problem of robust learning of cell-
load in dynamic wireless cellular networks with small sample
sets. In this challenging setting, we have proposed a learning
framework that is robust against uncertainties that result from
learning based on a small training sample set. We have
shown that robustness can be achieved with the help of some

prior knowledge about the cell-load and its relationship with
downlink rates. For example, an inherent property of the cell-
load is that it is monotonic in rates so this property can be
used as prior knowledge. To obtain additional prior knowledge,
we have shown that the feasible rate region is compact, and
that there exists a Lipschitz continuous function mapping
feasible rates to the cell-load. These properties enables us
to use the classical framework of minimax approximation. In
this framework the objective is to minimize the worst-case
error given a training sample set and the prior knowledge. We
have shown by simulations in NS3 that, in a realistic scenario,
our method outperforms other popular learning techniques. An
extension of this study is to develop sophisticated methods for
estimation of the Lipschitz constant from small sample sets.

APPENDIX

A. Proof of Equicontinuity of L-Lipschitz functions

Let F ⊂ 𝐶 (X,Y) denote the set of L-Lipschitz functions
with L := [𝐿1, 𝐿2, · · · , 𝐿𝑀 ]ᵀ ∈ R𝑀≥0. Since each component
of f ∈ F is Lipschitz on X ⊂ R𝑁

>0, we have that

(∀x, y ∈ X) (∀𝑖 ∈ 1, 𝑀) | 𝑓𝑖 (x) − 𝑓𝑖 (y) | ≤ 𝐿𝑖 ‖x − y‖ . (12)

Define 𝐿max := max
𝑖∈1,𝑀 𝐿𝑖 and note that

(∀x, y ∈ X) ‖f (x) − f (y)‖∞ ≤ 𝐿max ‖x − y‖ . (13)

From the equivalence of norms in finite dimensional normed
spaces it follows that (∃𝐶 > 0) such that

‖f (x) − f (y)‖ ≤ 𝐶 ‖f (x) − f (y)‖∞ ≤ 𝐶 𝐿max ‖x − y‖ . (14)

Given 𝜖 > 0 and for every x𝑜 ∈ X, choose 𝛿 := 𝜖
𝐿max𝐶

as
the radius of 𝐵X (x𝑜, 𝛿). We have from (14) that

‖f (x) − f (x𝑜)‖ ≤ 𝐶 𝐿max ‖x − xo‖ < 𝜖, (15)

whenever ‖x − xo‖ < 𝛿. We have shown that 𝛿 can be chosen
independently of x𝑜. Now since (15) holds for every f ∈ F ,
the proof is complete.

B. Jacobian of g with respect to r
The entry [∇g

r (r, 𝝆)]𝑖, 𝑗 of the 𝑀 × 𝑁 Jacobian ∇
g
r (r, 𝝆) is

given by

[∇g
r (r, 𝝆)]𝑖, 𝑗 =

{
− 1
𝑅𝐵 log(1+𝛾𝑖 𝑗 ) , if 𝑗 ∈ N (𝑖)

0, otherwise

where 𝛾𝑖 𝑗 := 𝑝𝑖𝐺𝑖, 𝑗∑
𝑘∈M\{𝑖} 𝑝𝑘𝐺𝑘, 𝑗𝜌𝑘+𝜎2 .

C. Jacobian of g with respect to 𝝆

The entry [∇g
𝝆 (r, 𝝆)]𝑖,𝑘 of the 𝑀 ×𝑀 Jacobian ∇

g
𝝆 (r, 𝝆) is

given by

[∇g
𝝆 (r, 𝝆)]𝑖,𝑘 =

{
− ∑
𝑗∈N(𝑖)

ln(2) 𝑟 𝑗
𝑅𝐵

𝑝𝑖𝐺𝑖, 𝑗

𝑝𝑘𝐺𝑘, 𝑗

ln2 (1+𝛾𝑖, 𝑗 ) (𝛾−2
𝑖, 𝑗

+𝛾−1
𝑖, 𝑗

) , if 𝑖 ≠ 𝑘

1, if 𝑖 = 𝑘

where 𝛾𝑖 𝑗 := 𝑝𝑖𝐺𝑖, 𝑗∑
𝑘∈M\{𝑖} 𝑝𝑘𝐺𝑘, 𝑗𝜌𝑘+𝜎2 .
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D. Invertibility of the Jacobian ∇
g
𝝆 (r, 𝝆)

We follow the analysis in [21] which exploits the sufficient
conditions for invertibility of a generalized diagonal dominant
matrix [42] on the whole domain. In more detail, we show
that the matrix ∇

g
𝝆 (r, 𝝆) is invertible because it is an invertible

generalized diagonal dominant matrix. For any 𝝆 ∈ R𝑀
>0

[∇g
𝝆 (r, 𝝆)]𝑖𝝆 = 𝜌𝑖 −

∑︁
𝑗∈N(𝑖)

𝑟 𝑗

𝑅𝐵 log(1 + 𝛾𝑖, 𝑗 )
×

∑
𝑘∈M\{𝑖} 𝜌𝑘 𝑝𝑘𝐺𝑘, 𝑗

𝑝𝑖𝐺𝑖, 𝑗

ln(1 + 𝛾𝑖, 𝑗 ) (𝛾−2
𝑖, 𝑗

+ 𝛾−1
𝑖, 𝑗
)
,

where [∇g
𝝆 (r, 𝝆)]𝑖 is the 𝑖th row of ∇

g
𝝆 (r, 𝝆). Since∑

𝑘∈M\{𝑖} 𝜌𝑘 𝑝𝑘𝐺𝑘, 𝑗

𝑝𝑖𝐺𝑖, 𝑗
<

∑
𝑘∈M\{𝑖} 𝜌𝑘 𝑝𝑘𝐺𝑘, 𝑗+𝜎2

𝑝𝑖𝐺𝑖, 𝑗
= 𝛾−1

𝑖, 𝑗
and ln(1 +

𝛾𝑖, 𝑗 ) (𝛾−2
𝑖, 𝑗

+ 𝛾−1
𝑖, 𝑗
) > 𝛾−1

𝑖, 𝑗
[21], we have

∑︁
𝑗∈N(𝑖)

𝑟 𝑗

𝑅𝐵 log(1 + 𝛾𝑖, 𝑗 )
×

∑
𝑘∈M\{𝑖} 𝜌𝑘 𝑝𝑘𝐺𝑘, 𝑗

𝑝𝑖𝐺𝑖, 𝑗

ln(1 + 𝛾𝑖, 𝑗 ) (𝛾−2
𝑖, 𝑗

+ 𝛾−1
𝑖, 𝑗
)
<∑︁

𝑗∈N(𝑖)

𝑟 𝑗

𝑅𝐵 log(1 + 𝛾𝑖, 𝑗 )
= 𝜌𝑖

which implies that [∇g
𝝆 (r, 𝝆)]𝑖𝝆 > 0. Since the off-diagonal

entries are all non-positive and diagonal entries are all non-
negative, ∇g

𝝆 (r, 𝝆) satisfies the sufficient conditions for it to
be an invertible generalized diagonal dominant matrix [21],
[42].

E. Proof of Proposition 1

Proof. The class F ⊂ 𝐶 (R,L) satisfies the following proper-
ties:

a). Boundedness: F is bounded because (∀f ∈ F ) ‖f‖𝐶 (R) ≤
1.

b). Equicontinuity: Since F is a set of L-Lipschitz functions,
F is an equicontinuous subset of 𝐶 (R,L) (see Remark
1).

c). Closedness: The class F can be written as F =

F Lip ⋂Fmon, where F Lip and Fmon are the sets of L-
Lipschitz functions and continuous monotone functions,
respectively, in 𝐶 (R,L). Recall that the intersection of
two closed sets is closed. Therefore, it is sufficient to
show that F Lip and Fmon are closed sets. For complete-
ness, we show in Lemma 2 that Fmon and F Lip are closed
sets.

The proposition now follows from Fact 1. �

Lemma 2. Consider the space 𝐶 (X,Y).
a). The set of monotonic functions F mon in 𝐶 (X,Y) is

closed.
b). The set of L-Lipschitz functions F Lip in 𝐶 (X,Y) is

closed.

Proof. a). Let (f𝑛)𝑛∈N ⊂ Fmon ⊂ 𝐶 (R,L) be an arbitrary
convergent sequence of continuous monotone functions
converging to some g ∈ 𝐶 (R,L). Then from Definition

2, and the fact that inequalities are preserved in the limit,
it follows that:

(∀x, y ∈ R) x ≤ y =⇒ (∀𝑛 ∈ N) f𝑛 (x) ≤ f𝑛 (y)
(∀x, y ∈ R) x ≤ y =⇒ lim

𝑛→∞
f𝑛 (x) ≤ lim

𝑛→∞
f𝑛 (y)

(∀x, y ∈ R) x ≤ y =⇒ g(x) ≤ g(y),

which means that g ∈ Fmon. Since (f𝑛)𝑛∈N was chosen
arbitrarily, the above holds for every sequence in Fmon

showing that Fmon is closed.
b). Following the same idea as above, we show that the

limit function g ∈ 𝐶 (R,L) of an arbitrary sequence
(fLip
𝑛 )𝑛∈N ⊂ F Lip ⊂ 𝐶 (R,L) is Lipschitz with the same

L, i.e., g ∈ F Lip also. Note that ‖fLip
𝑛 − g‖𝐶 (R) → 0

if and only if (∀𝑖 ∈ 1, 𝑀) ‖ 𝑓𝑖Lip
𝑛 − 𝑔𝑖 ‖𝐶 (R) → 0.

Therefore, it suffices to show that (𝑖 ∈ 1, 𝑀) 𝑔𝑖 , the limit
of the sequence ( 𝑓𝑖Lip

𝑛 )𝑛∈N, is Lipschitz with 𝐿𝑖 , the 𝑖th
component of L.
Now, since 𝑓𝑖

Lip
𝑛 → 𝑓𝑖 uniformly, for some 𝜖 > 0 there

exists 𝑁 𝜖1 ∈ N such that (∀x ∈ R) | 𝑓𝑖 (x) − 𝑓𝑖
Lip
𝑁 𝜖

1
(x) | < 𝜖

which implies that there exists 𝑁 𝜖 > 𝑁 𝜖1 such that (∀x ∈
R) | 𝑓𝑖 (x) − 𝑓𝑖

Lip
𝑁 𝜖 (x) | < 𝜖/2. Then,

(∀x ∈ R) (∀y ∈ R) | 𝑓𝑖 (x) − 𝑓𝑖 (y) | = | 𝑓𝑖 (x) + 𝑓𝑖
Lip
𝑁 𝜖 (x)

− 𝑓𝑖
Lip
𝑁 𝜖 (x) + 𝑓𝑖

Lip
𝑁 𝜖 (y)

− 𝑓𝑖
Lip
𝑁 𝜖 (y) − 𝑓𝑖 (y) |

< 𝜖/2 + 𝜖/2 + 𝐿𝑖 ‖x − y‖
= 𝜖 + 𝐿𝑖 ‖x − y‖.

Since the above holds for all 𝜖 > 0, it follows that

(∀x ∈ R) (∀y ∈ R) | 𝑓𝑖 (x) − 𝑓𝑖 (y) | ≤ 𝐿𝑖 ‖x − y‖.

�

F. Monotone Smoothing of the Sample set

We consider the monotone-smoothing problem which is
formulated as a standard convex optimization problem. The au-
thor in [28] has shown that a sample set Dcom := {(r𝑘 , �̃�𝑘 )}𝐾

𝑘=1
is compatible with the monotonicity if and only if it satisfies
the following set of linear constraints [28, Proposition 4.1]

(∀𝑘 ∈ 1, 𝐾) (∀ 𝑗 ∈ 1, 𝐾) �̃�𝑘 − �̃� 𝑗 ≤ �̃�‖(r𝑘 − r 𝑗 )+‖. (16)

Given the measured sample set Derror = {(r𝑘 , 𝑦𝑘 )}𝐾
𝑘=1, we look

for a compatible set Dcom = {(r𝑘 , �̃�𝑘 )}𝐾
𝑘=1 (that satisfies (16))

that is closest to Derror in the ‖ · ‖1 sense. In more detail, let
y = [𝑦1, · · · , 𝑦𝐾 ]ᵀ and �̃� = [ �̃�1, · · · , �̃�𝐾 ]ᵀ, then we minimize

‖y − �̃�‖1 =

𝐾∑︁
𝑘=1

| �̃�𝑘 − 𝑦𝑘 |. (17)

We now formalize this problem as a standard linear program
(LP) which can be solved easily by any standard convex solver.
Denote the 𝑘th residual in (17) by 𝑞𝑘 := �̃�𝑘 − 𝑦𝑘 and split 𝑞𝑘

into two parts 𝑞𝑘+ and 𝑞𝑘− such that 𝑞𝑘 = 𝑞𝑘+ − 𝑞𝑘−. Substituting
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(∀𝑙 ∈ 1, 𝐾) 𝑞𝑙 + 𝑦𝑙 for �̃�𝑙 into (16) and (17), the monotone-
smoothing problem can be written as an LP [28]

minimize
𝑞𝑘+ ,𝑞

𝑘
− ≥0

𝐾∑︁
𝑘=1

|𝑞𝑘 |

subject to (∀𝑘 ∈ 1, 𝐾) (∀ 𝑗 ∈ 1, 𝐾)
𝑞𝑘 − 𝑞 𝑗 ≤ 𝑦 𝑗 − 𝑦𝑘 + �̃�‖(r𝑘 − r 𝑗 )+‖, (18)

where |𝑞𝑘 | = 𝑞𝑘+ + 𝑞𝑘−, and where 𝑞𝑘+ , 𝑞
𝑘
− ≥ 0 are the optimiza-

tion variables. The smoothed compatible values follow from
�̃�𝑘 = 𝑦𝑘 + 𝑞𝑘 .

Note that since we consider very small sample sizes 𝐾

and the constraint matrix, with rows given by (18), is sparse,
the above LP can be solved efficiently with standard convex
solvers that exploit sparsity [43]. Therefore, the complexity of
the smoothing step, which is performed only once after sample
acquisition, is not of a practical concern.
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