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Kinetic Euclidean Distance Matrices
Puoya Tabaghi , Ivan Dokmanić , and Martin Vetterli , Fellow, IEEE

Abstract—Euclidean distance matrices (EDMs) are a major tool
for localization from distances, with applications ranging from
protein structure determination to global positioning and man-
ifold learning. They are, however, static objects which serve to
localize points from a snapshot of distances. If the objects move,
one expects to do better by modeling the motion. In this paper,
we introduce Kinetic Euclidean Distance Matrices (KEDMs)—a
new kind of time-dependent distance matrices that incorporate
motion. The entries of KEDMs become functions of time, the
squared time-varying distances. We study two smooth trajectory
models—polynomial and bandlimited trajectories—and show that
these trajectories can be reconstructed from incomplete, noisy
distance observations, scattered over multiple time instants. Our
main contribution is a semidefinite relaxation, inspired by similar
strategies for static EDMs. Similarly to the static case, the relax-
ation is followed by a spectral factorization step; however, because
spectral factorization of polynomial matrices is more challenging
than for constant matrices, we propose a new factorization method
that uses anchor measurements. Extensive numerical experiments
show that KEDMs and the new semidefinite relaxation accurately
reconstruct trajectories from noisy, incomplete distance data and
that, in fact, motion improves rather than degrades localization
if properly modeled. This makes KEDMs a promising tool for
problems in geometry of dynamic points sets.

Index Terms—Euclidean distance matrix, positive semidefinite
programming, polynomial matrix factorization, trajectory,
localization, spectral factorization.

I. INTRODUCTION

THE famous distance geometry problem (DGP) [1] asks
to reconstruct the geometry of a point set from a subset

of interpoint distances. It models a wide gamut of practical
problems, from sensor network localization [2]–[4] and micro-
phone positioning [5]–[8] to clock synchronization [9], [10], to
molecular geometry reconstruction from NMR data [11], [12].
Among the most successful vehicles for the design of DGP
algorithms are the Euclidean distance matrices (EDM) [13].

EDMs model static objects. When things move, they char-
acterize a snapshot of the interpoint distances and the point
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set geometry. It seems intuitive that with a good model for
the trajectories one should be able to leverage the motion and
improve trajectory estimation.

In this work we make a first step towards distance matrices
for moving points, which we call Kinetic EDMs (KEDMs)
inspired by the notion of kinetic data structures [14] for moving
points. KEDMs are a generalization of EDMs whose entries
now become functions of time. We show how by using KEDMs
we can neatly address the kinetic distance geometry problem
(KDGP), a natural generalization of the classical, static distance
geometry problem (DGP) defined in Section II. Unlike with the
static DGP, in order to make the kinetic version well posed,
we must constrain the point trajectories to belong to a class
of functions, for example polynomial trajectories of a bounded
degree. Informally, we ask the following question: suppose a set
of points move according to a known trajectory model. At given
time instants we measure a subset of pairwise distances; the sub-
set can change between measurements and it may be too small
to allow localization at any time alone. Can we systematically
localize the points and reconstruct trajectories by exploiting the
trajectory model?

Localization of dynamic point sets from distance measure-
ments finds applications whenever objects move. Robot swarms,
for example, often must localize autonomously [15], especially
in remote situations such as extraterrestrial exploration [16] or
deep-water missions [17]. Related applications exist in environ-
mental monitoring, for example for dynamic sensor networks
composed of river-borne sensing nodes [18]. An important
application of localization of moving objects is in global po-
sitioning with satellites where both the satellites and the users
move. Applications are emerging where sensing is opportunistic
and the positions of reference objects are not known [19]; in
Section VI-D, we present a simulated example of global posi-
tioning with unknown satellite trajectories. This problem is fur-
ther related to simultaneous localization and mapping (SLAM)
[20], [21]. Kinetic distance geometry problems are common in
computer vision. Examples are action recognition from dynamic
interjoint distance skeleton data [22] and more generally data
structures for describing kinetic point sets [14]. Applications in
multi-robot coordination, crowd simulations, and motion retar-
geting are explored in [23], [24], where the authors introduce
the dynamical distance geometry problem (dynDGP).1 Even in
applications to proteins and molecules, the atoms move (for
example, proteins fold) in specific ways [25].

The study of distance geometry and EDMs goes back to the
work of Menger [26], Schoenberg [27], Blumenthal [28], and

1Though related, the dynDGP is rather different from our KDGP.
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Young and Householder [29]. Gower derived numerous results
on EDMs [30], [31] including a complete rank characteriza-
tion [31]. An extensive treatise on EDMs with many original
results and an elegant characterization of the EDM cone was
written by Dattorro [32]; [13] is a tutorial-style introduction to
EDMs.

A large class of approaches to point set localization from
distance measurements rely on semidefinite programming [33],
[34]. Namely, the localization problem is written in terms of the
Gram matrix of the point set which leads to a rank-constrained
semidefinite program. The rank constraint is often relaxed to
arrive at a semidefinite relaxation which is a convex optimization
problem and can be solved using standard tools.

We take inspiration from these approaches and show how
trajectory localization can also be formulated as a semidefinite
program, thus answering the above question in the affirmative.
Concretely, we show that the parameters of chosen trajectory
models can be recovered by a semidefinite program and a tailor-
made alignment procedure akin to Procrustes analysis. The latter
can be interpreted as spectral factorization of semidefinite poly-
nomial matrices with side information, and our developments
rely on the related spectral factorization results [35].

As we will show, a major difference from the static case is
that the (time-varying) distance information does not specify
the point set up to a rigid transformation. The larger class of
ambiguities can nevertheless be resolved through the use of
anchor points.

We show through extensive computational experiments that
our semidefinite relaxation indeed works as expected and that
with an appropriate trajectory model we can reduce the number
of measurements per time instant well below that minimally
required for localization in the static case.

A. Paper Outline

In Section II we extend the definition of the distance ge-
ometry problem (DGP) to its kinetic version and review the
essential facts about Euclidean distance matrices and associated
semidefinite programs. Next, in Section III, we introduce the two
trajectory models we will use throughout the paper—polynomial
and bandlimited—and show how to write the corresponding
polynomial Gram matrices in a form suitable for semidefinite
programming. We use this form (given in terms of the so-
called basis Gramians) to formulate a semidefinite relaxation
in Section IV. The solution to the SDP, however, only gives
us distance trajectories. To convert them to point trajectories,
we need known and new results on spectral factorization of
polynomial matrices developed in Section V. Finally, we provide
simulation results and list several promising directions for future
work.

B. Reproducible Research

We adhere to the philosophy of reproducible research: docu-
mented code and data to reproduce all experiments is available
online.2

2https://github.com/swing-research/kedm/

II. STATIC AND KINETIC DISTANCE GEOMETRY PROBLEMS

We begin by introducing the classical distance geometry
problem (DGP) and then formulate its generalization to moving
points. We also discuss an EDM-based approach to the DGP
with noisy and incomplete distances.

The DGP can be informally stated as follows: find the d-
dimensional locations {xn ∈ Rd}Nn=1 of a set of points, given
a subset of possibly noisy pairwise distances {dmn : 1 ≤ m <
n ≤ N}. We will work only with Euclidean distances so that
dmn = ‖xm − xn‖.

An elegant formalization can be made in graph-theoretic
terms. Consider a graph G = (V,E) whose vertex set V cor-
responds to the points {xn}Nn=1. The edge set E tells us which
distances are measured and which are not. Given two vertices
u, v ∈ V and the corresponding undirected edge e = {u, v},
we have e ∈ E if and only if the distance between u and v
is known. Let f : E → R+ be the weight function that assigns
those known, measured distances to edges. Then we can pose
the following problem [1]:

Problem 1 (Distance Geometry Problem): Given an integer
d > 0 (the ambient dimension) and an undirected graph G =
(V,E) whose edges are weighted by a non-negative function
f : E → R+ (distance), determine whether there is a function
x : V → Rd such that

for all {u, v} ∈ E we have ‖x(u)− x(v)‖ = f({u, v}).

The function x which assigns coordinates to vertices is called
an embedding or a realization of the graph in Rd. Of course,
in practice the measurements are corrupted by measurement
errors, and the goal is to minimize some notion of discrepancy
between the measured distances and the distances induced by
our estimate; for example:

minimize
x:V→Rd

∑

{u,v}∈E
(‖x(u)− x(v)‖ − f({u, v}))2 . (1)

Section II-A explains how to use EDMs to proceed in this
case. Figure 1 illustrates the DGP with an intermediate step of
constructing an EDM. The EDM can be interpreted as a weighted
adjacency matrix with weights being squared distances.

In this paper, we address distance geometry problems when
the points move and the set of measured distance changes over
time. Instead of localizing the points only at the measurement
times, our goal will be to estimate entire trajectories for all times.
To make this problem well posed we must introduce a class of
admissible continuous trajectories X . Then, we can formulate
the following kinetic version of Problem 1:

Problem 2 (Kinetic Distance Geometry Problem): Given an
embedding dimension d > 0, a set of T sampling times T =
{t1, . . . , tT } ⊂ R, and a sequence of undirected graphs Gi =
(V,Ei) whose edges are weighted by non-negative functions
fi : Ei → R+, for i ∈ {1, . . . , T}, determine whether there is a
function x : V ×R→ Rd, where x ∈ X and for all ti ∈ T we
have:

‖x(u, ti)− x(v, ti)‖ = fi({u, v}) for all {u, v} ∈ Ei,

where X is the set of admissible trajectories.

https://github.com/swing-research/kedm/
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Fig. 1. The objective of DGP is to find an embedding for a given partial pair-wise distance data. This can be done in two steps: a) Completing EDM associated with
the measurements, i.e. estimating the missing measurements and b) Estimate an embedding and using anchor points to resolve the rigid transformation ambiguity,
discussed in Section II-A.

Fig. 2. KDGP: Estimate an embedded trajectory for a given sequence of partial pair-wise distances at different times, t1, . . . , tT . We estimate the corresponding
KEDM with a semidefinite relaxation Algorithm 1, and then use anchors to estimate the trajectories.

Figure 2 illustrates the KDGP for four trajectories. One way to
interpret KDGP is as a sequence of static DGPs with additional
information about sampling times and trajectory model. Indeed,
the KDGP can be seen a a nonlinear spatio–temporal sampling
problem, with the nonlinear samples (distances) spread in space
and time. A natural question is whether we can compensate for
a reduction in the number of spatial samples by oversampling in
time. We answer this question in affirmative in Section VI.

The first step is to estimate the continuous KEDM from
samples distributed in space and time; this is discussed in
Section IV. The second step is to use information about the
absolute positions of a set of anchor points in order to assign
absolute locations to trajectories; this is discussed in Section V.
This step is more challenging than for the usual EDMs.

A. Solving the Distance Geometry Problem by EDMs

It is useful to recall the EDM-based approach to the DGP.
Ascribe the coordinates of N points in a d-dimensional space
to the columns of matrix X ∈ Rd×N , X = [x1, x2, . . . , xN ].
The squared distance between xi and xj is

d2ij = ‖xi − xj‖2 = ‖xi‖2 − 2x�i xj + ‖xj‖2 ,

from which we can read out the equation for the EDMD = (d2ij)
as

D = K(G)
def
= diag(G)1� − 2G+ 1 diag(G)�, (2)

where 1 denotes the column vector of all ones, G is the Gram
matrix G = X�X , and diag(G) is a column vector of the
diagonal entries of G. We see that the EDM of a point set is
a linear function of its Gram matrix. Reformulating the problem
in terms of the Gram matrix is beneficial because it will lead to a
semidefinite program. If we can find the Gram matrix, the point
set can be obtained by an eigenvalue decomposition.

To see how, let G = UΛU�, where Λ = diag(λ1, . . . , λN )
with all eigenvalues λi non-negative, and U orthonormal,
as G is a symmetric positive semidefinite matrix. Assume
that the eigenvalues are sorted in decreasing order λ1 ≥
λ2 ≥ · · · ≥ λN . Then we can estimate the point set as X̂

def
=[

diag
(√

λ1, . . . ,
√
λd

)
, 0d×(N−d)

]
U�. Since the EDM only

specifies the points up to a rigid transform, X̂ will be a rotated,
reflected and translated version of X .

One way to estimate D from noisy, incomplete distance data
is by semidefinite programming. This hinges on the one-to-one
equivalence between EDMs with embedding dimension d and
centered Gram matrices of rank d. Define the geometric center-
ing matrix J as

JN
def
= I − 1

N
11�.

Then K(G) is an invertible map on the set of Gram matrices
which correspond to centered point sets (implying G1 = 0)
with the inverse given by

−1

2
JNK(G)JN = G.

In particular, we have the following equivalence that holds for
matrices D with a zero diagonal:

D = D(X)
affdim(X) ≤ d

}
⇐⇒

{
− 1

2JNDJN � 0

rank(JNDJN ) ≤ d.
(3)

where D(X) = K(X�X) and affdim denotes the dimension
of the smallest affine space that can hold X . In other words,
instead of directly searching for the points X given distance
data, we can search for the suitable Gram matrix.

Let D̃ be the noisy, incomplete EDM from which we want to
estimate the point locations, with unknown entries replaced by
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zeroes. Define the mask matrix W = (wij) as

wij
def
=

{
1, (i, j) ∈ E

0, otherwise
.

This mask matrix will let us compute the loss only on those
entries that were actually measured. Note that W is precisely
the adjacency matrix of the undirected graph from Problem 1.

Then the above discussion is summarized in the following
rank-constrained semidefinite program:

minimize
G

‖D̃ −W ◦ K (G) ‖2F

subject to G � 0

G1 = 0

rank (G) ≤ d. (4)

Since the Gram matrix (Gramian) is linearly related to the
EDM, the objective function is convex. However, the rank con-
straint, rank(G) ≤ d, makes the feasible set in (4) non-convex.
Note that (1) is also a non-convex program.

The value of reformulation in terms ofG is that it admits a sim-
ple convexification strategy—a semidefinite relaxation—which
was repeatedly shown to perform well in the context of distance
geometry [13], [33]. An intuitive explanation is that while the
rank condition ensures the correct embedding dimension, the
constraint that G be positive semidefinite (in other words, that it
be a Gramian) enforces a number of geometric constraints. For
instance, it ensures that the entries of the EDM verify triangle
inequalities, as well as other subtle properties (see, for example,
the Cayley-Menger conditions [36]).

We should add that a semidefinite relaxation is by no means
the only way to convexify (1) or (4). The mathematical opti-
mization literature knows a number of others, many of which
could also be applied in the X-domain (1). One may, for
example, replace non-linear terms in (4) by suitable convex over-
and under-estimators. A well-known example is McCormick’s
convexification for bilinear terms [37], and similar strategies for
quadratic and higher-order terms [38]. In this paper we limit
ourselves to semidefinite relaxation.

Once the rank constraint is discarded, the embedding dimen-
sion of the reconstructed point set is dictated by the measure-
ments. One often looks for a solution with the lowest possible
embedding dimension via various rank-minimization heuris-
tics [13]. In general, especially with noisy measurements, we can
at best hope that the reconstructed points will lie close to a linear
variety of the desired dimension.3 To ensure the right embedding
dimension, a suboptimal solution can be computed by replacing
the estimated Gramian with its best rank-d approximation; see
Section V for the kinetic case.

The constraint G1 = 0 serves to set the centroid of the
recovered point set at the origin of the coordinate system as it
impliesX1= 0. This resolves the translational invariance of the
problem. The remaining rotational (and reflection) invariance

3An empirical study of the number of required measurements is available
in [13]

must be resolved once the points are estimated from the Gramian.
The Gramian itself is of course invariant to the rotations of the
point set sinceG = X�X = (UX)�UX for any orthonormal
matrix U ∈ Rd×d.

B. Orthogonal Procrustes Problem

As mentioned before, the EDM only specifies the point set up
to a rigid transformation (rotation, translation, and reflection).
If the task requires determining absolute positions of points, the
standard method is to designate a subset of points as anchors
whose positions are known, and use anchors to align the recon-
structed point set.

Let Xa ∈ Rd×Na be the submatrix (a selection of columns)
of X that should be aligned with the anchors listed as columns
of Y ∈ Rd×Na . We note that the number of anchors—columns
in Xa—is typically small compared with the total number of
points—columns in X .

We first center the columns of Y and Xa by subtracting the
corresponding column meansyc andxa,c, obtaining matricesY
andXa. Next, we perform the orthogonal Procrustes analysis—
we search for the rotation and reflection that best maps Xa onto
Y :

R = argmin
Q:QQ�=I

∥∥QXa − Y
∥∥2
F
. (5)

The solution to (5) is given by the singular value decomposition

(SVD) [39] as follows. LetU ΣV � be the SVD ofXaY
�

; then
R = V U�. The best alignement is applied to the reconstructed
point set as

Xaligned = R(X − xa,c1�) + yc1�.

III. TRAJECTORY MODELS AND BASIS GRAMIANS

In order to extend the EDM-based tools to the KDGP, we must
define the class of trajectories X . We introduce two trajectory
models—polynomial and bandlimited—and show how they can
be parameterized in terms of the so-called basis Gramians.

The chosen trajectory models are standard; they model many
interesting trajectories, as shown in Figure 3. The polynomial
model is common in simultaneous localization and mapping as
well as tracking, where it appears as constant velocity or constant
acceleration model [40], [41]. The bandlimited model describes
periodic trajectories of varying degrees of smoothness which are
locally well-approximated by polynomials.

We use similar notation as in the static case. Let X(t) =
[x1(t), . . . ,xN (t)] be the trajectory matrix of N points in Rd

where xn(t) is the position of n-th point at time t. We define
the KEDM in a natural way:

Definition 1 (KEDM): Given a set of trajectories X(t) ∈
Rd×N [t], the corresponding KEDM is the time-dependent ma-
trix D(t) ∈ RN×N [t] of time-varying squared distances be-
tween the points:

D(t)
def
= D(X(t)). (6)
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Fig. 3. Example polynomial (P = 5) and bandlimited (P = 3, ω = π/4)
trajectories. Solid parts correspond to the sampling window [T1, T2] =
[−0.8, 0.8]. The goal is to retrieve the trajectories of all points by measuring
di,j(t) = ‖xi(t)− xj(t)‖2 at different times and for different (i, j)-pairs.

A. Polynomial Trajectories

For a set of N points in Rd, we define the set of polynomial
trajectories of degree P as

Xpoly =

{
P∑

p=0

tpAp

∣∣∣∣Ap ∈ Rd×N , p ∈ {0, . . . , P}
}
. (7)

For X(t) ∈ Xpoly, the Gramian at time t can be written as

G(t) =
K∑

k=0

Bkt
k, (8)

where Bk =
∑min{k,p}

i=max{0,k−p}A
�
i Ak−i and K = 2P .4 Similar

to the static case, our goal is to cast the trajectory retrieval prob-
lem as a semidefinite program; we do so via the time-dependent
Gramian in Section IV.

The key step is to parameterize the problem entirely in terms
of (constant) positive semidefinite matrices, instead of the pa-
rameterization in terms of Ap or Bk. To do so, we fix K + 1

time instants τ0, . . . , τK and define Gk
def
= G(τk). The matrices

Gk should be interpreted as elementary, or basis Gramians in
the sense that the Gramian G(t) can be written as a linear
combination of G0, . . . ,GK as elaborated in the following
proposition.

Proposition 1: Consider the polynomial trajectory in (7). Let
Gk, k ∈ {0, 1, . . . ,K}, K = 2P be given as above with τk all
distinct. Then we have

G(t) =

K∑

k=0

wk(t)Gk,

4Simplified from G(t) =
(∑P

p=0
tpAp

)�(∑P

p=0
tpAp

)
.

with the weights w(t) = [w0(t), . . . , wK(t)]� given as

w(t) =

⎛

⎜⎜⎝

1 1 · · · 1
...

...
. . .

...

τK0 τK1 · · · τKK

⎞

⎟⎟⎠

−1
⎛

⎜⎜⎜⎜⎝

1

t
...

tK

⎞

⎟⎟⎟⎟⎠
.

Proof: The Gramians can be written as linear combinations
of a set of monomial terms (cf. (8)), which gives

G0 = B0 + τ0B1 + · · ·+ τK0 BK

...

GK = B0 + τKB1 + · · ·+ τKKBK .

(9)

Each matrix equation in (9) consists of N ×N scalar equa-
tions for entries of Gk. Focusing on a particular entry (i, j)
gives a linear system g = Mb with column vector g =
[g0, . . . , gK ]� where gk is (i, j)-th element of Gk, the ma-

trix M
def
= [τk

′
k ]0≤k,k′≤K , and b = [b0, . . . , bK ]� where bk is

(i, j)-th element of Bk. We also have from (8) that [G(t)]ij =

(1, t, t2, . . . , tK)b
def
= t�b. Since τk are distinct, the square

Vandermonde matrix M is invertible. We have b = M−1g,
which gives [G(t)]ij = t�M−1g. Denoting w(t) = (M�)−1t

we have that [G(t)]ij = w(t)�g =
∑K

k=0 wk(t)[Gk]ij which
proves the claim. �

This result is a matrix version of Lagrange interpolation.
Since entries of G(t) are polynomials of degree 2P in t, they
are completely determined by their values at 2P + 1 points.
However, in this Gram matrix version it gives us something
rather useful: a way to write a positive semidefinite G(t) as
a linear combination of positive semidefinite Gk, which lends
itself nicely to convex optimization. We note that the question
of how to choose the sampling times τk is beyond the scope of
this article, though we give empirical results in Section VI.

B. Bandlimited Trajectories

The second model we consider are periodic bandlimited
trajectories. For a set of N points in Rd, the set of periodic
bandlimited trajectory of degree P can be written as

XBL =

{
B0 +

P∑

p=1

{Ap sin(pωt) +Bp cos(pωt)}
∣∣∣∣

Ap,B0,Bp ∈ Rd×N , p ∈ {1, . . . , P} , ω ∈ R+

}
.

(10)

Similar to the polynomial case, we represent the Gramian
G(t) as a linear combination of some Gramian basis.

Proposition 2: Consider the bandlimited trajectory in (10).
Let Gk, k ∈ {0, 1, . . . ,K}, K = 4P be given as above with
τk all distinct (modulo 2π

ω ). We have

G(t) =

K∑

k=0

wk(t)Gk
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Fig. 4. Two trajectory sets which are not rigid transforms of each other, but
which generate the same KEDM. Corresponding points have the same color.

with the weights w(t) = [w0(t), . . . , wK(t)]� given as

w(t)=

⎛

⎜⎜⎜⎜⎜⎜⎝

1 · · · 1

sin(ωτ0) · · · sin(ωτK)

cos(ωτ0) · · · cos(ωτK)
...

. . .
...

cos(2Pωτ0) · · · cos(2PωτK)

⎞

⎟⎟⎟⎟⎟⎟⎠

−1
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

sin(ωt)

cos(ωt)
...

sin(2Pωt)

cos(2Pωt)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Proof: The proof is analogous to the polynomial case. We
only need to show that the system matrix is full rank which is a
standard result [42]. �

We have thus developed a way to write a time-dependent
Gramian in terms of a linear combination of positive semidefinite
(constant) basis Gramians.

C. Ambiguities Beyond Rigid Transformations in KDGP

Same as the static DGP, the KDGP suffers from rigid transfor-
mation ambiguity. Namely, the rotated and translated trajectory
sets cannot be distinguished from pairwise distance data. How-
ever, since at every time instant we can apply a different rigid
transform, the set of ambiguities that arise in the KDGP is much
larger than just the rigid transforms.

In particular, trajectory sets which look rather differently
(nothing like rotations and translations of each other) could
generate the same KEDM. We give an example in Figure 4.
The following straightforward result characterizes trajectories
that lead to the same KEDM.

Definition 2: We say that the two trajectories X(t), Y (t) ∈
Rd[t] defined over some time interval T are distance-

equivalent and write X
D∼ Y if and only if D(X(t)) =

D(Y (t)), for all t ∈ T .
Proposition 3: Let X(t), Y (t) be arbitrary trajectories in

Rd[t]. Then, the following statements are equivalent

1) X
D∼ Y ,

2) Y (t) = U(t)X(t) + c(t)1� where U(t)�U(t) = I and
c(t) is a d-dimensional time-varying vector.

Proof: (1)⇒ (2): From X
D∼ Y , by definition we have

K(X(t)�X(t)) = K(Y (t)�Y (t)), ∀t ∈ T . Then, from (2)
there is an orthogonal matrix U(t) such that

JY (t) = U(t)JX(t)

for all t ∈ T . On the other hand, X(t) = JX(t) + x(t)1�, and
Y (t) = JY (t) + y(t)1� for x(t),y(t) ∈ Rd. Finally,

Y (t) = JY (t) + y(t)1�

= U(t)JX(t) + y(t)1�

= U(t)(X(t)− x(t)1�) + y(t)1�

= U(t)X(t) + (y(t)−U(t)x(t))1�.

(2)⇒ (1) is trivial. �
Requiring that the trajectories follow a particular model (for

example polynomial or bandlimited) limits possible choices of
the time-varying rigid transform parameters U(t) and c(t). In
particular, known results on spectral factorization of polynomial
matrices imply that the orthogonal U(t) must be a constant
matrix [43], [44]. On the other hand, as long asc(t) is polynomial
(or bandlimited) of the same degree asX(t), it is a legal choice in
the sense that the trajectories remain polynomial or bandlimited.
But even with a fixed U(t) = U , varying c(t) can produce
trajectories of rather different shapes which are indistinguishable
from their time-varying distances.

In Section V, we propose a method for spectral factorization
of kinetic Gramians based on anchor points and show how it
resolves the described ambiguities. In our algorithms we will
choose c(t) so that the centroid of the point set is kept fixed
at the origin at all times, and then recover the correct centroid
using anchor points. The following proposition will be useful.

Proposition 4: For trajectories of the form (7) or (10), the
following statements are equivalent:

1) All coefficient matrices {Ap}Pp=0 have zero-mean
columns;

2) X(t)1 = 0, ∀t ∈ R;
3) Gk1 = 0, ∀k ∈ {0, . . . ,K}.
Proof: We establish (1)⇔ (2) and (2)⇔ (3) for the poly-

nomial trajectories and leave the straightforward extension to
bandlimited trajectories to the reader. It is obvious that (1)
implies (2) and (2) implies (3).

(2) implies (1): We have X(t)1=
∑P

p=0(Ap1)tp = 0. Since
the monomials {t �→ tp}Pp=0 form a linearly independent set, the
coefficients Ap1 must all be zero. (In other words, the column
centroid of all Ap must be at the origin.)

(3) implies (2): SinceG(t)1=
∑K

k=0 wk(t)Gk1=0, we have

‖X(t)1‖22 = 1�X(t)�X(t)1 = 1�G(t)1 = 0.

Hence X(t)1 = 0 for all t ∈ R. �

IV. COMPUTING THE KEDM FROM NOISY, INCOMPLETE DATA

BY SEMIDEFINITE PROGRAMMING

In this section we use the basis Gramian representation to
derive an algorithm that solves the KDGP. Just as in the static
case, we can either search directly for the set of trajectoriesX(t)
which reproduces the measured distances, or we can search for
the time-varying Gramian G(t) and use spectral factorization
to estimate X(t). In the static case, the two formulations are
equivalent (they produce the same solution up to a rigid trans-
form), but the formulation in terms of the Gram matrix led to
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a convenient semidefinite relaxation. In the time-varying case,
we again state both formulations, and argue that the difference
is now more significant.

To treat polynomial and bandlimited trajectories at once, we
define the symbol Θ to mean either Θ = {Ap}Pp=0 for the
polynomial model or Θ = {Ap,Bp}Pp=1 ∪ {B0} for the ban-

dlimited model, and similarly let XΘ(t) =
∑P

p=0 Apt
p (resp.

XΘ(t) = B0 +
∑P

p=1 Ap cos(pωt) +Bp sin(pωt)).
a) Formalizing in X domain: In this case, trajectory retrieval

is written as

minimize
Θ∈A

T∑

i=1

αi

∥∥∥D̃ti −W i ◦ D (XΘ(ti))
∥∥∥
2

F

subject to XΘ(t)1 = 0, ∀ t ∈ R,

(11)

where D(X) = K(X�X), D̃ti is the matrix of partial mea-
sured distances at time ti, W i is the adjacency matrix corre-
sponding to measurements, αi ≥ 0 are non-negative weights,
and A is the set of all feasible parameters. It is not hard to see
that the objective in (11) is nonconvex in Θ (even though the
constraint set is convex by Proposition 4). Hence, this problem
involves minimizing a nonconvex functional which is in general
difficult.

b) Formalizing in G Domain: Next, we derive a semidefinite
program inspired by (4) for the trajectory recovery problem. The
key ingredient is the basis Gramian representation of G(t) from
Section III. Since the actual kinetic Gramian is linear in basis
Gramians, the overall objective will be convex as long as the
data fidelity metric is convex. The latter holds true since we use
the squared Frobenius norm:

minimize
(Gk:Gk�0)Kk=0

T∑

i=1

αi

∥∥∥∥∥D̃ti −W i ◦ K
(

K∑

k=0

wk(ti)Gk

)∥∥∥∥∥

2

F

subject to G(t)1 = 0, ∀t ∈ R

G(t) � 0, ∀t ∈ R

max
t∈R

rankG(t) = d. (12)

The constraints ensure that the solution corresponds to a time-
varying Gramian G(t) with correct rank.

Recall that any trajectory generates a Gramian with the form
G(t) =

∑K
k=0 wk(t)Gk. Hence, it is clear that the set G =

{(Gk : Gk � 0)Kk=0 :
∑K

k=0 wk(t)Gk � 0 for all t} is non-
empty. Further,G is convex as an (infinite) intersection of convex
sets, Gt =

⋂
t∈R{(Gk : Gk � 0)Kk=0 :

∑K
k=0 wk(t)Gk � 0}.

Let us emphasize that even though the objective is convex,
the problem (12) is not easy to solve: it is still non-convex (due
to the rank constraint) and in fact uncountably infinite (due to
the continuous-time constraints).

There is no rotation ambiguity associated with this formula-
tion because the Gramian is invariant to rotation and reflection of
the points. Translation ambiguity has been resolved by requiring
that G(t)1 = 0 which implies that the recovered point set shall
be centered at all times.

A. Equivalence Between (11) and (12)

The two formulations are equivalent if for every possible set of
measurements, the solution sets produce the same KEDM. De-
noting the optimizers (which could be sets) byΘ∗ and (G∗k)

K
k=0,

it should hold that

D (XΘ∗(t)) = K
(

K∑

k=0

wk(t)G
∗
k

)
, t ∈ R.

By Propositions 1 and 2, for any optimizer Θ∗ of (11) and
the corresponding trajectory XΘ∗(t), we can find a Gramian
basis (G̃k)

K
k=0 such that D(XΘ∗(t)) = K(

∑K
k=0 wk(t)G̃k).

Therefore,

J1(Θ
∗) = J2((G̃k)

K
k=0) ≥ J2((G

∗
k)

K
k=0),

where J1 denotes the loss in (11), and J2 denotes the loss
in (12). The question is whether this inequality can be made
strict. Could the solution to (12) lead to a Gramian G(t) with
no corresponding trajectory in A? An in-depth study of this
question is beyond the scope of this paper, but to see that this is
indeed possible consider a contrived case of no measurements
at all, that is to say, a feasibility search.

Trivially, any Θ ∈ A is a solution to (11) and any set of basis
Gramians (Gk : Gk � 0)Kk=0 is a solution to (12). By Lemma 1
every Gramian G(t) produced by its basis (Gk)

K
k=0 has a

polynomial spectral factor, that is, it corresponds to a polynomial
trajectory X(t) such that G(t) = X(t)�X(t). Even though
G(t) is real, its spectral factor, however, need not be; see [35] for
a characterization of rank-deficient polynomial Gramians G(t)
without real spectral factors. This situation is fundamentally
different from what we had in the static case. Hence, we can
construct feasible “complex trajectories” which are outside of
A. Consequently, the constraints in (11) are necessary but not
sufficient for the two formulations to be equivalent. Nonetheless,
they become equivalent with sufficient measurements:

Proposition 5: Suppose that D̃i = W i ◦ D(XΘ(ti)) and
(12) has a unique optimizer G∗(t) =

∑K
k=0 wk(t)G

∗
k. Then

G∗(t) = XΘ∗(t)
�XΘ∗(t) (13)

whereXΘ∗(t) = UXΘ(t)JN for some orthogonal matrixU ∈
Rd×d (that is, it is a centered, rotated version of the true geom-
etry).

Proof: We prove this proposition by construction. Let us
defineG∗k = JNXΘ(τk)

�XΘ(τk)JN for k ∈ {0, . . . ,K} and
G∗(t) =

∑K
k=0 wk(t)G

∗
k. From Propositions 1 and 2, we de-

duce that G∗(t) = JNXΘ(t)
�XΘ(t)JN . Hence, G∗(t) be-

longs to the feasible set of (12) as JNXΘ(t)
�XΘ(t)JN is a

zero-mean positive semidefinite matrix for all t ∈ R, with rank
at most d. On the other hand, sinceD(XΘ(t)) = K(G∗(t)), we
have J2(G

∗) = 0. Finally, since (12) has a unique solution, the
minimizer of (12) must have the form (13). �

It is useful to interpret the two approaches in (11) and (12) in
terms of graph-based definition of the KDGP (Problem 2). The
sequence of incomplete and noisy distances, D̃t1 , . . . , D̃tT is
modeled as a series of incomplete graphs whose edge weights
correspond to the measured distances. The goal of KDGP is
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to find a node function x(u, t) that maps vertices of mea-
surement graphs to points in Rd whose pairwise distances
match the measured distances at sampling times tk ∈ T . From
this perspective, the formulation (11) aims to directly esti-
mate the node function x(u, t) from distance measurements,
while in formulation (12), we break the KDGP into two
subproblems:

1) Completing the measurement graphs: This amounts to
estimating the edge function, f(e, t) for every e ∈ Et in-
stead of only for e ∈ Ei, withEi being the edges measured
at time ti ∈ T ;

2) Estimating the node function, x(u, t): This is equivalent
to spectral factorization of the time-dependent Gramian.

The formulation (12) solves the first subproblem since it
outputs a time-varying Gramian G(t) from which we easily
get the KEDM asK(G(t)). The second problem is addressed in
Section V.

Finally, we note that the KEDM formulation in (12) is a
generalization of the static EDM formulation in (4). To see the
equivalence, note that static points are modeled by a polynomial
of degree zero, P = 0, in which case the Gramian becomes
G(t) = G0 since w0(t) = 1.

B. Practical Considerations: Relax and Sample

To get a practical algorithm for (12), we sample the
continuous-time semidefiniteness constraint,G(t) � 0, ∀t ∈ R,
and relax the non-convex rank constraint. In Algorithm 1, we
denote the set of sampling times for this constraint by Tpsd.

In relaxations for static EDMs, instead of simply removing
the rank constraint, it is often replaced by a regularizer. Perhaps
counterintuitively (see [13] for a longer discussion), a strategy
that works well is to maximize the rank of the Gram matrix, as
this corresponds to pushing the points apart and minimizing the
embedding dimension. We use a similar strategy in our KEDM
semidefinite relaxation (Algorithm 1).

One issue with the semidefinite relaxation for the standard
DGP is that there are often no strictly feasible points; the feasible
Gram matrices lie on the low-rank faces of the positive semidef-
inite cone. This is troublesome for the primal–dual interior
point solvers since it precludes strong duality (Slater’s constraint
qualification fails). On the other hand, Krislock and Wolkowicz
skillfully exploit it by noting that the degeneracy is due to the
existence of cliques in the DGP graph. They characterize faces of
the positive semidefinite cone associated with individual cliques,
and design fast, accurate solvers for noiseless instances [45].

Whether their ideas can be applied to the KDGP remains an
open question. At a glance, it seems challenging: not only does
the connectivity graph in the KDGP change between the sam-
pling instants, but we work with a non-unique decomposition of
the time-varying Gramian into basis Gramians.

Thus, even with low-rank-promoting regularization, the re-
covered Gram matrices will rarely be exactly rank-d due noise
and numerical issues of the off-the-shelf semidefinite solvers. To
address this, we apply a standard rank projection to the retrieved
Gramians by setting the least significant N − d singular values
to 0.

Algorithm 1: Semidefinite Relaxation for KEDM.

1: procedure SDR ({ti}Ti=1, {D̃ti}Ti=1, {W i}Ti=1)
2: Solve for {Gk}:

minimize
T∑

i=1

αi

∥∥∥∥∥D̃ti −W i ◦ K
(

K∑

k=0

wk(ti)Gk

)∥∥∥∥∥

2

F

− λ

K∑

k=0

Tr(Gk)

w.r.t G0, . . . ,GK � 0

such that Gk1 = 0 k ∈ {0, . . . ,K},
K∑

k=0

wk(t)Gk � 0 t ∈ Tpsd.

3: Gk ← RankProjection(Gk, d), k ∈ {0, . . . ,K}
4: return D̂(t) = K(

∑K
k=0 wk(t)Gk)

5: end procedure

V. SPECTRAL FACTORIZATION OF THE GRAMIAN

Algorithm 1 produces a time-varying Gramian whose KEDM
best represents the measured distance sequence. In this section,
we show how to estimate the corresponding trajectory by fac-
toring the Gramian as G(t) = X(t)�X(t) where X(t) is the
set of point trajectories. We know that the trajectory can only be
estimated up to a time-invariant rotation (and possibly reflection)
[43] and a time-varying translation. To resolve this uncertainty,
we introduce a set of anchors—points whose absolute positions
are known.

In practice, anchors might correspond to nodes whose position
is fixed such as buoys and beacons, or nodes equipped with a
positioning technology such as GPS. Because in the KDGP the
anchors can move (unlike in the usual DGP), we have more
possibilities for anchor measurements than in the static case.
For our trajectory models, we only need to know the positions
of the anchor points at some fixed, finite set of times, but we
could measure positions of different sets of points at different
times.

Given a spectral factor5 X(t), of the time-varying Gramian,
the true trajectory, X(t), can be found as

X(t) = UX(t) + x(t)1� +N(t). (14)

where U is a d× d orthogonal matrix, x(t) is a d× 1 time-
varying vector and N(t) represents the net effect of model
mismatch and measurement noise. The matrix U is constant (by
the spectral factorization theorem) whereas the translation factor
x(t) is a function of time. On the other hand, the translation
factor x(t) must belong to the same trajectory model as X(t)
(polynomial or bandlimited). Hence, x(t) can be written as

x(t) = Mz(t),

5One out of infinitely many possible.
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where for the polynomial model, Xpoly we have

z(t) = [1, t, · · · , tP ]�

and M ∈ Rd×(P+1), and for the bandlimited model, XBL,

z(t) = [1, sin(ωt), cos(ωt), . . . , sin(Pωt), cos(Pωt)]�

and M ∈ Rd×(2P+1).
A difficulty compared to the static case is that spectral fac-

torization of polynomial Gram matrices is not straightforward
and becomes brittle in the presence of noise. It is thus desirable
to develop trajectory estimation methods that do not require full
polynomial factorization. We show that this is possible at the
expense of additional anchor measurements.

A. Known Spectral Factor

We start by assuming that we have access to some spectral
factor X(t) such that G(t) = X(t)�X(t). In this case, to
estimate the unknown rotation and translation, we assume that
at L distinct times τ1, . . . , τL we measure positions of points
I1, . . . , IL, with I� being the index set of points whose positions
are measured at τ�. We let XI� denote the column selection of
X(τ�) corresponding to indices in I�.

An estimate for U and M can be computed by solving

argmin
U∈Md(R),M∈Rd×L

L∑

�=1

∥∥XI� −UX(τ�)−Mz(τ�)1�
∥∥2
F

where Md(R) is the set of d× d orthonormal matrices and
L = P + 1 (resp. 2P + 1) for polynomial (resp. bandlimited)
trajectories. This is a non-convex problem because Md(R) is a
non-convex set.

The above optimization can be decoupled as in standard
Procrustes analysis provided that there exists a time τ̃� ∈
{τ1, . . . , τL} at which we know the positions of at least d+ 1
anchors. In this case,U can be estimated at this time alone using
the technique described in Section II-B. Once the rotation Û is
found, we can estimate the matrix M by solving the following
convex problem:

M̂=argmin
M∈Rd×L

L∑

�=1

∥∥∥∥Mz(τ�)−
1

Nτ�

(
XI�(τ�)−ÛX(τ�)

)
1

∥∥∥∥
2

2

where Nτl ≥ 1 for � ≥ 2. Finally, we note that matching d
instead of d+ 1 points would leave us with a flip ambiguity,
so d+ 1 is indeed the smallest number of anchors that lets us
use the Procrustes analysis.

B. Unknown Spectral Factor (Practical Algorithm)

The previous section implies that L+ d anchor points are
necessary to estimate the rotationU and translationM provided
that a spectral factorX(t) ofG(t) is given. Unfortunately, algo-
rithms for spectral factorization rely on unstable computations
involving determinants and are often computationally demand-
ing, which makes them unsuitable for our application where
noise can be significant [46]. To avoid this step, we propose a
method which relies on additional anchor measurements.

Algorithm 2: Spectral Factorization.

1: procedure SpectralFactorization (D̂(t),
{XI�}Ll=1) �XI� : Anchor points at different times,
τ1, . . . , τL.

2: for l ∈ {1, . . . , L} do
3: Ĝ(τl)← − 1

2JND̂(τl)JN

4: X(τl)← Ĝ(τl)
1/2

5: Solve for Û τl using Procrustes analysis
6: Estimate the translation at time τ�:

x̂(τl)←
1

Nτl

(XI� − ÛXI�(τl))1

7: Estimate point positions at time τ�:

X̂(τl)← Û τlX(τl) + x̂(τl)1�

8: end for
9: Find the trajectory:

Θ← argmin
Θ∈A

L∑

�=1

‖XΘ(τ�)−
(
Û τ�X(τ�)+x̂(τ�)1�

)
‖2F

10: return XΘ(t)
11: end procedure

Assume that at each of L distinct times we measure positions
of at least d+ 1 anchors; as before, denote the anchor indices
at time τ� by I�, and the corresponding positions by XI� . Now
we can use Procrustes analysis at each time individually (that
is, applied to constant matrices that are evaluations of time-
varying matrices at these particular times) to estimate rotation
and translation, Û τl and x̂(τl) at time τl. Denote by X(τ�) any
matrix such that X(τ�)

�X(τ�) = G(τ�); since this involves
only constant matrices, we can use the eigendecomposition
method described in Section II-A to compute X(τ�).

Note that in doing so, there is no guarantee that these
“marginal” estimates for the rotation correspond to the unique
global U we are looking for, because we do not exploit any
temporal model in computing the spectral factors X(τ�). In
other words, all Û τl could be distinct, and in principle they
will. Nevertheless, we can use them to estimate the trajectory by
solving the following problem:

Θ∗ = argmin
Θ∈A

L∑

l=1

∥∥∥XΘ(τl)−
(
Û τlX(τl) + x̂(τl)1�

)∥∥∥
2

F
,

(15)
and using XΘ∗(t) as our estimate of the trajectory.

The logic behind (15) is that even though the matrices Û τ�

are “wrong,” the product Û τlX(τl) is correct thanks to the
anchors. With sufficiently many marginal estimates, there is
a unique set of polynomial trajectories passing through them.
The described procedure is summarized in Algorithm 2 and the
complete KEDM trajectory localization algorithm with anchors
in Algorithm 3.
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Algorithm 3: End-to-end KEDM Algorithm.

1: procedure KEDM ({XI�}, {ti}, {D̃ti}, {W i})
2: D̂(t) = SDR({ti}, {D̃ti}, {W i})
3: XΘ(t) = SpectralFactorization(D̂(t),

{XI�})
4: return XΘ(t)
5: end procedure

VI. SIMULATION RESULTS

In this section we empirically evaluate different aspects of
the proposed algorithm. We first study the influence of sampling
time distribution in Section VI-A as this choice affects the
other experiments. In Section VI-B, we look at the maximum
achievable measurement sparsity:6 KDGP measurements are a
sequence of incomplete EDMs and it is interesting to understand
what proportion of missing entries we can tolerate.7 Finally, in
Section VI-C we study the effect of measurement noise on the
quality of the estimated trajectories.

We end this section by applying our algorithms to a synthetic
problem of satellite localization from noisy and very sparse
distance measurements.

A. Distribution of Sampling Times

The measurements in Algorithm 3 are a sequence of (in-
complete) snapshots of KEDM at different times, {W i ◦
D(X(ti))}i. We experiment with different choices of sampling
times {ti}i. To exclude the influence of other factors, we assume
having access to all pairwise distances, and we contaminate
the measurements by noise. Note that without noise, we can
compute the Gramian basis simply by solving a linear system of
equations so that any sampling strategy with sufficiently many
samples gives the perfect estimation.

Let the true, noiseless distances be dij(t) = ‖xi(t)− xj(t)‖,
and noisy measurements given as

d̃ij(t) = dij(t) + nij(t) (16)

where nij(t) ∼ N (0, σ2) is iid measurement noise. The corre-
sponding KEDMs are D(t) = [d2

ij(t)]ij and D̃(t) = [d̃2
ij(t)]ij .

To compare the different sampling protocols, we average the
reconstruction error over many trajectory and noise realizations.
The reconstruction error is defined as

eD(t) =
‖D(t)− D̂(t)‖F
‖D(t)‖F

.

where D̂(t) = SDR(({ti}, {D̃ti}, {W i})}Ti=1) is the KEDM
estimated by Algorithm 3. The goal is to determine which
sampling pattern minimizes eD(t) for all t in the interval of
interest [T1, T2]. In Figure 5, we show the average errors for the
following sampling patterns:

6We use the term “sparsity” to refer to sparse or subsampled measured data,
as is common in the inverse problems theory.

7In all experiments we sample the positive semidefinite constraint at random
times. We have found empirically that this choice does not matter much,
unlike the choice of measurement times. The exact details can be found in the
reproducible code at https://github.com/swing-research/kedm/

Fig. 5. Relative reconstruction error eD(t) averaged over M = 200 realiza-
tions. The number of points is N = 10, ambient dimension d = 2, trajectory
degree P = 3 and noise variance σ2 = 1 for both models. The trajectory pa-
rameters, Ap, are drawn iid Gaussian—real valued for polynomial and complex
for bandlimited with complex exponential basis. The sampled interval of interest
is [−1, 1] for the polynomial and [0, 1] for the bandlimited model.

� random: ti ∼ Unif([T1, T2]),
� Chebyshev: ti = 1

2 (T1 + T2) +
1
2 (T2 − T1) cos(

2i−1
2 T π),

� equispaced: ti = T1 + (T2 − T1)
i
T ,

where i = 1, . . . , T . We can see that random sampling per-
forms poorly for both the polynomial and the bandlimited model.
Chebyshev and equispaced nodes give a similar relative error,
with equispaced nodes performing slightly better for the ban-
dlimited model. Studying individual realizations shows that the
worst-case error for Chebyshev and equispaced sampling is on
the same order as the average error, but it is much worse for
random sampling: large reconstruction errors occur when two
consecutive measurement times are far apart. In the following
experiments, we use equispaced measurement times.

All experiments were run on a laptop with a 2.9 GHz Core i5
processor and 16 GB of memory, using thecvxpy package [47],
[48]. The interior point methods used by solvers in cvxpy tend
to become slow as the number of points and the polynomial
degree grow (e.g., for N ≥ 20, P ≥ 5), and should be replaced
by faster, tailor-made optimizers. In this proof-of-concept paper,
we used cvxpy for convenience; a study of faster solvers is left
to future work.

B. Measurement Sparsity

Trajectory estimation from distances is a nonlinear sampling
problem, with trajectory models allowing us to trade spatial
for temporal samples. Here we empirically study the maximum
sparsity level for spatial measurements. Given a sequence of
measurement masks W 1, . . . ,W T ∈ {0, 1}N×N , the sparsity
level, 0 ≤ S ≤ 1, is defined as the ratio of average to total
number of pairwise distances:

S =
1(
N
2

) 1
T

T∑

i=1

# of missing measurements at time ti.

We can expect the maximum sparsity level to vary with factors
such as the trajectory model, temporal sampling pattern, mea-
surement masks, and noise. To evaluate it, we fix parameters
the trajectory class, degree, number of points, and ambient
dimension. We declare a localization experiment successful if
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TABLE I
MAXIMAL SPARSITY FOR THE POLYNOMIAL MODEL AND d = 2

Fig. 6. The estimated sparsity level Ŝ for polynomial degrees P and numbers
of points N . The success threshold δ is set to 0.99 and the target fraction of
successful reconstructions q to 0.9.

the relative trajectory mismatch,

eX =

∫

T
‖X(t)− X̂(t)‖F /‖X(t)‖F dt,

which we approximate by discretizing T , is below some pre-
scribe threshold δ. We are interested in numerically evaluating
the probability that the localization succeeds (within tolerance
δ) if on average over sampling times, m pairwise distances are
missing. Denote this probability by p(δ,m). We would like to
find conditions on m such that p(δ,m) is large. In particular, for
0 ≤ q < 1, let m(δ, q) be the largest m such that p(δ,m) ≥ q.

We run M localization trials for different realizations of
random trajectories, and denote the number of succesful trials
by M1. For a given average number of missing pairwise dis-
tances m, the probability of correct localization is estimated as
p̂M (δ,m) = M1

M . The estimate of m(δ, q) is then simply

m̂(δ, q) := max {m : p̂M (δ,m) ≥ q} .

To compute m̂(δ, q), we increase the number of missing mea-
surements per sampling time, m, and count the number of
δ-accurate estimates to compute m̂(δ, q) and the corresponding
Ŝ(δ, q) = m̂(δ, q)/

(
N
2

)
.

In the first experiment, we fix the number of sampling times,
T , and vary the number of points N and polynomial (or ban-
dlimited) degree P . Specifically, in Figure 6 we choose T = 7
for polynomial and T = 13 for bandlimited models.

As expected, we observe that for a fixed N , as P grows (and
consequently the number of parameters) the allowable sparsity
level decreases, meaning that more complicated trajectories
require more spatial samples. This is due to fact that ratio
of number of measurements, which is fixed in this case, to
number of parameters decreases. Importantly, compared to the
static DGP, we see that KEDMs and the proposed semidefinite
relaxation allow us to measure fewer distances at any given time,
and compensate for this by sampling at multiple times.

Fig. 7. Estimated trajectories, X̂(t), for N = 6 points in R2 at different
levels of measurement noise and number of temporal measurements. The time
interval of interest is t ∈ [−1, 1] for polynomial and t ∈ [0, 1] for bandlimited
trajectories.

In the second experiment we attempt to better characterize the
observed spatio–temporal sampling tradeoff. To this end, we fix
the parameters so that the ratio of the number of measurements
to the number of the degrees of freedom is constant. That is, we
keep the number of sampling times proportional to the number of
basis Gramians, T = K + 1 for the polynomial and T = 2K +
1 for the bandlimited model.

As Tables I and II show, with this scaling the sparsity level is
approximately constant as the polynomial degree P grows. In
other words, even though the trajectories become more and more
complicated, we can keep the number of spatial measurements
fixed as long as we adjust the number of temporal sampling
instants. The empirical observation that the required number of
measurements scales linearly with the number of the degrees
of freedom suggests that the proposed algorithms require an
order-optimal number of samples.

C. Noisy Measurements

We again quantify the influence of noise by the relative
trajectory mismatch. We fix a trajectory, shown in Figure 7, and
a set of distance sampling times {tk}Kk=0, and generate many
realizations of noisy measurement sequences D̃t0 , . . . , D̃tK

with the same noise variance σ2. The i.i.d. noise is added to the
non-squared distances. The empirical trajectory mismatch is
an average of relative trajectory mismatches over realizations,
1
M

∑
m e

(m)
X .
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TABLE II
MAXIMAL SPARSITY FOR THE BANDLIMITED MODEL AND d = 2

Fig. 8. Reconstructing the trajectories of 8 orbiting satellites. Colored and
dashed lines represent actual and estimated trajectories. All satellites have the
same angular frequency with P = 1. The measurement matrices are missing
about 9/10 measurements, and noise level is set to σ = 0.05. The average
reconstruction error is 1

M

∑
i
eD(ti) = 0.01.

In Figure 7, we show many estimated trajectories X̂(t). As
expected, the mismatch increases with measurement noise σ2

and decreases with the number of measurements. In all cases,
the estimated trajectories concentrate around the true ones.

D. A Stylized Application: Satellite Positioning

In this section we apply KEDMs in a stylized satellite posi-
tioning scenario where measurements are both very sparse and
noisy. We consider a set of satellites moving with constant angu-
lar velocity, with angular frequency being an integer multiple of
the fundamental frequency ω0. This is a limitation of the current
bandlimited model which we intend to address in future work.
Such trajectories have the form

x(t) = R

⎛

⎝
a cos(ωt)
b sin(ωt)

0

⎞

⎠ ,

where R is a 3× 3 rotation matrix.
The set of all satellite trajectories,

X(t) = [x1(t, p1), . . . ,xN (t, pN )]

follows the bandlimited trajectory model. Concretely,

x(t, p) = a1 cos(pω0t) + a2 sin(pω0t)

is the trajectory of a satellite whose angular frequency is p
times the fundamental frequency ω0 and a1,a2 ∈ R3. The
ensemble trajectory, X(t), is a bandlimited trajectory of degree
P = maxn pn.

We apply Algorithm 3 in two experiments. In Figure 8, we
show trajectories of N = 8 satellites with the same orbiting
frequency ω0. Since the ellipses are of different sizes, the inner

Fig. 9. Reconstructing the trajectories of 5 orbiting satellites with angular
frequencies of ω0 and 2ω0. The measurement matrices are 80% sparse, and
average reconstruction error is 1

M

∑
i
eD(ti) = 0.03.

points can also be interpreted as vehicles on the earth. We
measure 3 noisy pairwise distances, out of 28 available, per
sampling time instant. This could model, for instance, occlusions
by the earth and other adversarial effects. We compensate for
undersampling in space by oversampling in time, taking samples
at T = 30 different times. Similarly, in Figure 9 we showN = 5
satellites with angular frequencies ω0 and 2ω0, that is, with
P = 2; we measure only 2 pairwise distances per sampling time
instant (these are extremely sparse measurements with which
static localization is hopeless), at T = 30 sampling times. As
figures show, in both experiments, we successfully reconstruct
trajectories of the satellites.

VII. CONCLUSION

In this paper, we extended the algebraic tools for localiza-
tion from distances to the case when points are moving. We
defined kinetic Euclidean distance matrices for polynomial and
bandlimited trajectories, and we derived algorithms based on
semidefinite programming to solve the associated trajectory lo-
calization problem. The chosen trajectory models are expressive
and can approximate continuous trajectories commonly used in
localization and tracking.

The key step in our method is to represent the time-varying
Gram matrices as time-varying linear combinations of certain
constant matrices. This allowed us to rewrite the localization
problem as a semidefinite program. Same as in the static case, the
actual localization involves an additional spectral factorization
step. However, for polynomial matrices, this is much harder than
a simple SVD, and especially from noisy data like those that we
get. We circumvent the related difficulties by deriving a spectral
factorization method that directly uses anchor measurements.
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We demonstrated through numerical experiments that the
proposed algorithms can indeed reconstruct model trajectories
from sparse and noisy measurements, and that they can explore
the tradeoff between the number of distances measured at any
given time, and the number of sampling times.

A. Future Work

Both the polynomial and the bandlimited trajectories are
special cases of a general class of subspace trajectories. Con-
ceptually, one should be able to derive the localization theory
for general subspace trajectories (for example, one could mix
bandlimited and polynomial trajectories). Doing this cleanly
is not trivial and is part of ongoing work. Instead of adopting
deterministing trajectory models, we could think of stochastic
models. The KEDM would then become a random object and
ideas of statistical inference could be used to extract point
position information. Stochastic models should play particularly
well with SLAM.

In the presented numerical experiments we empirically ex-
plored the tradeoff between the spatial and the temporal mea-
surements. An interesting and important line of work is to char-
acterize this tradeoff analytically, as a function of the algorithm
used for localization.

Finally, an interesting thing happens once we depart from
static EDMs: instead of only measuring inter-point distances,
we can measure relative (vector or scalar) velocities, and the
same goes for anchors. It is of considerable practical interest to
derive tractable optimization procedures that take into account
these general kinetic measurements.

APPENDIX A
SPECTRAL FACTORIZATION OF THE GRAMIAN

Let q stand for t for the polynomial model, or ejωt for the ban-
dlimited model. Similarly, let P = {0, . . . , P} for polynomial

orP = {−P, . . . , P} for bandlimited, andP + P def
= {p1 + p2 :

p1, p2 ∈ P}.
Lemma 1: Let G(q) =

∑
p∈P+P Bpq

p (with Bp ∈ CN×N )
be rank-d and positive semidefinite. Then there exists a unique
(up to a d× d left unitary factor) d×N matrix X(q) =∑

p∈P Akq
p such that G(q) = X(q)HX(q).

The statement has been proved for Laurent matrix polynomi-
als in [44]. For q = t it is equivalent to spectral factorization of
polynomial matrices on the real line. Ephremidze [43] proved
the full rank version; an entirely parallel construction to those
in [43], [44] implies that it holds of rank-deficient matrices.
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[8] R. Parhizkar, I. Dokmanić, and M. Vetterli, “Single-channel indoor mi-
crophone localization,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., 2014, pp. 1434–1438.

[9] A. Singer, “A remark on global positioning from local distances,” Proc.
Nat. Acad. Sci. USA, vol. 105, no. 28, pp. 9507–9511, 2008.

[10] L. Liberti and C. Lavor, “Open research areas in distance geometry,” in
Open Problems in Optimization and Data Analysis. Berlin, Germany:
Springer, 2018, pp. 183–223.

[11] B. Hendrickson, “The molecule problem: Exploiting structure in global
optimization,” SIAM J Optim., vol. 5, no. 4, pp. 835–857, 1995.

[12] B. A. Hendrickson, “The molecule problem: Determining conformation
from pairwise distances,” Cornell University, Ithaca, NY, USA, Tech. Rep.
90-1159, 1990.
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