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Abstract—In this paper, we propose an algorithm for source
separation with side information where one observes the linear
superposition of two source signals plus two additional signals
that are correlated with the mixed ones. Our algorithm is based
on two ingredients: first, we learn a Gaussian mixture model
(GMM) for the joint distribution of a source signal and the
corresponding correlated side information signal; second, we
separate the signals using standard computationally efficient
conditional mean estimators.

The paper also puts forth new recovery guarantees for this
source separation algorithm. In particular, under the assumption
that the signals can be perfectly described by a GMM model,
we characterize necessary and sufficient conditions for reliable
source separation in the asymptotic regime of low-noise as a
function of the geometry of the underlying signals and their
interaction. It is shown that if the subspaces spanned by the
innovation components of the source signals with respect to the
side information signals have zero intersection, provided that
we observe a certain number of linear measurements from the
mixture, then we can reliably separate the sources; otherwise we
cannot.

Our proposed framework — which provides a new way to
incorporate side information to aid the solution of source
separation problems where the decoder has access to linear
projections of superimposed sources and side information — is also
employed in a real-world art investigation application involving
the separation of mixtures of X-ray images. The simulation
results showcase the superiority of our algorithm against other
state-of-the-art algorithms.

I. INTRODUCTION

Blind source separation (BSS) — where the aim is to recover
individual unobserved source signals from some mixture of
these signals — is a very relevant problem arising in various
applications such as:

o Audio source separation [1]-[4] — also usually referred to
as the “cocktail party” problem — involving the extraction
of one or more source signals of interest from the
observation of several audio recordings which contain
different linear combinations of the source signals.

o Image separation [5]-[7] involving the decomposition
of a given image into different components, usually
associated with different semantic meanings or different
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phenomena or sources. For example, in astronomical
imaging one often wishes to separate stars from filaments
for further analysis [7]], [8]]. In this case, image acquisi-
tion can be done via the use of compressive sensing, thus
leading to compressive source separation frameworks.

e Hyperspectral Unmixing involving the decomposition of
mixed pixels into endmembers and corresponding abun-
dance maps of endmembers. In hyperspectral imaging,
one pixel consists of the reflectance spectra of several ma-
terials where each coefficient in the mixture corresponds
to abundance of each material [9]. Hyperspectral imaging
is often used to determine what materials are present in
a scene [10], [11].

o Multi-user digital communications [12]]-[14] where one
wishes to extract a message associated with a single user
given the superposition of signals associated with various
users conveyed over a communications channel [[12].

These intrinsically ill-defined inverse problems, which of-
ten require additional prior knowledge/assumptions about the
mixed signals, such as sparsity [15]-[17], have been the
subject of intensive research for the past two decades [15],
[16]l, (18]I, [19].

The availability of side information in general inverse
problems — beyond source separation — is indeed known to
bring about various benefits. For example, in compressive
sensing, where the aim is to reconstruct high-dimensional
signals from low-dimensional measurements, it is now well-
established that the availability of side information can lead
to improved reconstruction accuracy [20]-[24]. Likewise, in
the separation of mixed signals, it is also known that the
availability of side information — again, in the form of other
signals correlated with the signals of interest— can also lead
to better separation accuracy [6]]. However, current approaches
to source separation with side information also have various
limitations [2]]-[4]], [6]] including:

e Performance: As it will be shown by the numerical
results reported in Section [VI] informed source separation
(ISS) approaches such as [6]], [16] exhibit poor separation
performance, leading to significant cross-interference be-
tween the separated sources. This is possibly due to the
inability of separating morphologically similar contents
or due to challenges in learning discriminative dictionar-
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ies operating at different scales.

o Complexity: Informed source separation approaches such
as [6] also exhibit high computational complexity, both
during the training phase and the testing phase.

e Guarantees: Current informed source separation ap-
proaches also lack separation guarantees, i.e., conditions
for identifiability of the individual sources given the
mixed one in terms of the underlying properties of the
individual and mixed signals.

Motivated by these limitations, we build upon our recent
work [21]], [24]] to propose a new approach to separate linearly
mixed signals in the presence of side information, leverag-
ing a joint Gaussian mixture model (GMM) for the joint
distribution of the source and side information signals. Our
proposed approach can address various limitations associated
with previous approaches:

o First, our method outperforms existing ones such as
[6], [16]. This is due, in part, to the fact that GMM
priors have been shown to deliver outstanding results
in various applications such as image processing [25],
[26]], video compression [27] and dictionary learning [28]],
[29]]. The GMMs can be seen as the Bayesian counterpart
of the union-of-subspaces model, where each subspace
corresponds to the image of the (possibly low rank)
covariance matrix of each Gaussian component within
the GMM [21]], [24], [29], [30].

e Second, our method is also less complex than existing
ones such as [6]]. This is, in turn, due to the fact that i)
we learned a GMM model using very efficient algorithms
such as an expectation maximization (EM) algorithm [31]]
or the non-parametric approach described in [28]] and ii)
one can also find a closed-form solution for the signal
separation problem when assuming that the signals are
described by a GMM model.

o Third, our approach is very flexible in modeling a wide
range of signals such as patches extracted from natural
images and videos, portions of hyperspectral data cubes,
speech features and so on [21]], [25], [29]. Note also that
GMM distributions can approximate any distribution with
arbitrary precision (by adding further components to the
mixture) [32f.

o Finallyy, GMM models are amenable to mathematical
analysis, enabling one to determine identifability condi-
tions for a wide range of problems [21]], [29].

A. Contributions

Our main contributions are:

1) We propose a new approach to source separation with
side information based on GMM models of the source
and side information signals.

2) We characterize the identifiability properties associated
with source separation with side information — in the
form of necessary and sufficient conditions for reliable
separation in the asymptotic regime of low noise — as a
function of the geometry of the source signals, the side
information signals, and their interaction.

3) We provide a number of synthetic results showcasing
that our theoretical identifiability conditions align with
practice.

4) Finally, we provide a number of results associated with a
real-world problem — involving the separation of mixed
X-ray signals — that demonstrate that our approach leads
to better results than competing ones, in terms of perfor-
mance and complexity [6], [16].

Part of this work was previously presented in [33]]. This
work extends significantly [33]] by adding the following con-
tributions.

o New theoretical results: the theorems proved in this work
are now valid for the more general case in which GMMs
can contain non-zero mean Gaussian components. On the
other hand, the results in [33]] were valid only for the case
of zero-mean distributions.

o A real-world application of the proposed source separa-
tion framework is studied in this work. In particular, an
image separation problem with side information for art
investigation is considered.

o Detailed proofs of all theoretical results are reported in
this work.

B. Organization

The remainder of the paper is organized as follows. In
Section |lI] we review the relevant source separation literature,
including approaches to source separation with and without
side information. Section [III] proposes our approach to source
separation with side information. Section [[V| provides identifi-
ability conditions associated with source separation with side
information. Sections [V] and [VIl offer a number of results with
synthetic and real data showcasing the merits of our approach.
Finally, conclusions are drawn in Section The proofs of
the main results appear in the Appendices.

C. Notation

We now set up the notation used in the remainder of the
paper. Matrices are denoted by upper-case bold characters (A)
and vectors are denoted by lower-case bold letters (a). The
identity matrix of dimension n X n is denoted by I,, and
0,,.xn represents the all zero matrix of dimension m x n. The
operators transpose, trace, rank, and Moore-Penrose pseudo
inverse are denoted by (-)7, tr(-), rank(-), and (-), respec-
tively. Im(-) and Null(-) denote the image and null space of
a matrix, respectively, and dim(-) denotes the dimension of a
linear subspace. The Gaussian distribution with mean p and
covariance matrix 3 is denoted by A (s, 32) and E(-) denotes
the expectation operator.

II. RELATED WORK

The source separation problem has attracted considerable
attention in the past two decades. We review main approaches
to blind source separation and informed source separation.
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A. Blind Source Separation

The BSS problem involves the estimation of individual
sources merely from observing their mixture. This highly ill-
posed problem has been approached by imposing different
constraints on the source signals, e.g. non-Gaussianity [18]],
low-rank [34]], sparsity [15], [17], or prior distributions [35],
[36].

A widely used technique for BSS is independent component
analysis (ICA), which assumes the individual source signals
are non-Gaussian and independent. The separation is done by
minimizing the mutual information between source signals,
where separation guarantees — up to a permutation and scaling
— can also be provided if the number of linear mixtures exceeds
the number of sources, and at most one of the sources is
Gaussian [37]]. Various algorithms have been developed to
implement ICA, e.g., FastICA [38], RADICAL [39], JADE
[40].

Sparsity is also often used to enable BSS approaches [15],
[17]. In particular, sparsity-based BSS algorithms exploit the
fact that different source signals can often be described as
linear combinations of a few atoms from a dictionary. For
example, morphological component analysis (MCA) [16] is
a well-known sparsity-based source separation algorithm that
takes advantage of both sparsity and morphological diversity to
separate a linear mixture onto its different components. More
specifically, it assumes that each source signal has a sparse
representation over a specific dictionary that is not sparse over
the dictionaries of the other components.

Finally, it is also common to impose priors on the source
signals to carry out BSS within a Bayesian framework [15],
[35], [41]]. In [42], a unified Bayesian inference framework
based on Markov chain Monte Carlo algorithm is proposed
in order to recover the source signals from the mixture,
based on a hidden Markov model of the wavelet coefficients
associated with the source signals. Reference [35] studies the
image separation problem where the prior density of pixels
are constructed using Markov random fields (MRF) based on
a statistical model of the gradient image. The MRF is then
solved numerically using a modified Gibbs sampling.

B. Informed Source Separation

In turn, ISS aims to recover the source signals from a
mixture of them in the presence of some additional information
which can be incorporated to aid the task in hand. Broadly
speaking, the ISS algorithms can be divided into two main
categories: signal processing based algorithms [2]-[4] and
learning based algorithms [43[]-[45]].

A relatively recent signal processing based algorithm relies
on the assumption that the source signals are known in the
encoding (mixing) stage. This framework is motivated by
some key audio applications where mixing and demixing
can be processed separately by cooperative users [3]. In the
encoder some descriptors — which consist in the characteristic
parameters of the source signals — are extracted from each
source and embedded into the mixture. In the decoder the
descriptors are extracted to be used to separate each source
signal from the mix signal.

On the other hand, learning based source separation algo-
rithms rely on the availability of training data to carry out the
source separation task. Different levels of supervision have
been considered: semi-supervised setting and fully-supervised
setting.

1) Semi-supervised setting: In the semi-supervised setting,
it has been assumed that the available training data only
contains examples of source signals [44]], [46]] (or occasionally
the source signals plus additional side information [6]); for
example, in separating instruments from music recordings, one
can have access to examples of one or more solo recordings.
The training data is used to learn a generative model for source
signals. This generative model is then used to carry out the
separation task.

A number of semi-supervised source separation methods
have been proposed in the last decade. Non-negative Matrix
Factorization (NMF) [44]], [46]-[48], a popular method for
source separation, tackles the problem in a semi-supervised
setting where it has been assumed that one has access to
examples of signals at a training stage. This prior information
is exploited to pre-compute the dictionaries that accurately
represent the signals [44]. The learned dictionaries are then
used to solve the separation task.

More recently, [6] proposes a semi-supervised algorithm
based on a coupled dictionary approach for X-ray image
separation exploiting side information. In this scenario, the
X-ray signals to be separated have similar morphological
characteristics, thus, one of the fundamental assumptions for
the use of MCA is not verified. The proposed approach [6]
instead couples the two available imaging modalities, X-ray
and RGB, by using a coupled dictionary learning algorithm
to capture both the inherent similarities and the discrepancies
among heterogeneous correlated data. The coupled dictionaries
are learned from a set of training data which contains
examples of pairs of X-ray and RGB images. Then, in the
separation stage, sparsity constraints are imposed to solve the
source separation problem.

2) Fully-supervised setting: In the fully-supervised setting,
it is assumed that we have access to a set of training data
containing pairs of mixtures and corresponding individual
signals where the source separation problem boils down to
learning a mapping from mixture to unmixed signals [43],
[45]].

In this setting, the algorithms exploit full supervision to
learn a mapping from the mixture to the individual source
components (e.g. [43], [45]]). Unfortunately, in various applica-
tions, one rarely has access to full supervision in order to take
advantage of fully-supervised source separation approaches.

In this paper, we consider a semi-supervised (compressive)
source separation framework where we only have access to
examples of the source signals and, in addition, other signals
correlated with the source signals.

III. PROPOSED SOURCE SEPARATION APPROACH

Our approach aims to decompose a linear mixture of two
signals into its constituents from a set of linear (possibly
compressive) observations:

v =®(x; +x2) +n, (1)
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where & € R™*"= represents a random linear mixing matrix
(operator) drawn from a rotationally invariant distribution.
Note that random projections, as those computed via the
observation matrix ®, have been shown to capture salient
features of natural signals in an efficient way and without
requiring adaptation to the specific application [49], [50].
Moreover, rotationally invariant distributions guarantee inco-
herence between the projections and the domain where the
signals of interest have a sparse representation with high prob-
ability. This fact leads to the possibility of guaranteeing stable
recovery of the signal of interest from a reduced number of
projections [51]]. The vector n is a zero-mean white Gaussian
noise, i.e., n ~ N(0,0%I,,), where 0> > 0 represents the
noise variance, v € R™ is a vector representing the noisy
mixed signal, and x1,x2 € R"* are vectors representing the
signals of interest. It is assumed throughout that the number
of measurements m extracted from the linear mixture is such
that m < ng.

We also consider that the decoder has access to additional
side information signals

2
3)

where y; € R™n1 is correlated with x;1, yo € R™»2 is
correlated with x5, and n; € R™»1 and n, € R™v2 represent
zero-mean Gaussian noise, i.e., n; ~ N(0,0%L,, ) and ny ~
N(0,0°1,, ). We further assume that (x1,y1), (X2,y2), m
and ny are statistically independent. Note that, although the
proposed analysis could be generalized to the case when side
information signals and the mixture are affected by noise with
different variances, in order to simplify the exposition, all
noise variances are equal to the same value o2.

Given the model in (1), ), and (@), we now propose a
source separation algorithm that is based on two main ingre-
dients. The first ingredient in our separation algorithm involves
learning a joint GMM model connecting each individual signal
to the corresponding side information signal, given a number
of pairs of samples of these signals. In particular, we consider
the sets of labels Z = {1,...,a} and J = {1,..., 8}, where
7 and J are associated with the pairs (x1,y1) and (X2,y2),
which are formed from the source signals and side information
signals, respectively. Then, we model x; and y; via a joint
Gaussian mixture distribution, i.e.,

Z pr(i
i€l

where p;(4),4 € T is the probability distribution of the label I
over the set of values Z and p(x1,y1|/ = 7) is a multivariate
Gaussian distribution

u =y +m

uz =y + no,

X17Y1 X17Y1|I:i)7 (4)

p(xla}’lu = Z) = N(/’Lgi?m ’ z72512‘1)?/1)’ ®)
with mean ué?yl and covariance matrix:
() (@)

S i ©
e 2?/111 2?41

Also, conditioned on a particular label value I = i, the vectors
x7 and y; are assumed to be Gaussian distributed.

In the same way, we also model x5 and y» via a Gaussian
mixture distribution, i.e.,

=Y »s()

jeT

p(x2,y2) p(x2,y2|J = j), (7
where p;(j),j € J is the probability distribution of the label

J over the set of values 7 and

p(XQa Y2|J = .7) = N(,J’(wjz)llz E(wjz)lﬂ)’ (8)
with mean p,%)yg and covariance matrix:
»0)  5n6)

E(JQ) = r2 r2y2 9)
B N

Also, conditioned on a particular label value J = j, the vectors
X2 and yo are assumed to be Gaussian distributed.
Conditioned on the component labels (I,J) = (i,j) €
L =T x J, the joint distribution of the two source signals
X = [XTXT]T and of the two side information signal =
= X1 X3 gna Sy =

[leyQ} follows a Gaussian distribution N (uxy ,2%)),
with mean .
s = [ 2, a0
and covariance:
=) o =, o
Eg) — 0 Egﬂ]z) 0 E%)yz (11)

S 0 =g 0
o =i o 3
These joint GMM models can be easily learned using an

EM algorithm.

The second ingredient in our source separation algorithm
involves leveraging the GMM to separate the two source sig-
nals given the mixed signal and the associated side information
signals. In particular, we can write the mean-squared error
associated with the recovery of the two individual source
signals as follows:

MSEX\V,uLuz (02) = E [HX - f(V, ug, u2)||2] ’ (12)

where f(v,u;,us) represents an estimator delivering an es-
timate of x; and x5 given v,u; and u., and, likewise, we
can also write the minimum mean-squared error (MMSE)
associated with the recovery of the two signals — where the
minimum is with respect to all possible estimators of x; and
X9 given v,u; and uy — as follows:

MMSEX\V,Uhuz (02) = ]E [HX - ]E[X|V7 uj, u2} ”2] 9 (13)

where E[x|v,u;,us] corresponds to the conditional mean
estimator of x; and x5 given v,u; and ue that can also be
written in closed-form as in (T4)-(I3)), at the top of next page
[21]], [28]].

This conditional mean estimator — which we also adopt
to reconstruct the original source signals given the mixed
signal and the associated side information signals — has various
advantages. It exhibits a computational complexity increasing
linearly with the number of components associated with the
joint GMM, involving only computation of simple algebraic
operations and matrix inversion operations (with the matrices
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@1 =8 o0 =l 0 .
Efx|v,u,wo] = > m15(i.j) ( YOI g o) s | B (@SR 4 ) (w - Bol) |
i€Z,j€T Heay T2 T2Y2
(14)
, (i) ) e ¢ 0 O v
where /J'-(Tll)yr = [M?zB :ugﬁjz)yz = H?JZ) ,®o=10 0 I”y1 0 |,w=|u|, and
Hy, My 0 0 0 Iny2 u
. : ) :vj) P Eg])q)T 2I
1.0, j) = pr(0)ps ()N (W; Ropray’ , PoXay +0°1) (15)

Z(i,j)eg pr(0)ps ()N (w; (I’Oﬂiy)a Qozz(cy)q)g +0?I)

dimensions scaling with m, n,, n,,, and n,,, so of moderate
size for standard patch sizes). A few tens of components
were shown to be sufficient to model patches extracted from
images or frames of a video [21]], [29]]. In contrast, competing
approaches such as [6] can exhibit much higher computational
complexity.

In summary, our procedure to separate two mixed signals
given side information involves two main steps:

1) Learning a GMM model connecting each individual sig-
nal and the side information given a number of samples
associated with the individual signals and the side infor-
mation. Once again, this can be done efficiently using
a well-known EM algorithm [31]] or the non-parametric
approach described in [28].

2) Employing a simple conditional mean estimator to re-
cover the two individual signals given the linear mixture
signal and the side information signals. This can be done
via the closed-form expression reported in (T4)-(T3).

A. Learning a GMM model

In order to learn the GMM priors that will be leveraged
to separate the signals of interest from the observed mixture,
we assume that we have access to Ny samples of the source
signals x;,x, and the associated side information signals
¥y1,¥y2. From these samples, 2Ny vectors are generated as:

07 = [(x)T.(yH"]", 63 = [T, (yDT]",

for ¢ = 1,..., Ny. Then, the vectors {Bq} %, are used to
determine the parameters of the GMM prior modelrng x; and
y1, Whereas the vectors {9 91 are used to determine the
parameters of the GMM prior modehng X9 and yo.

First, the number of Gaussian components in each GMM,
i.e., the values « and 3, are fixed. Then, the GMM parameters
are learned using an EM algorithm [31] tailored to this
problem. Namely, the EM algorithm is applied independently
to the sets of vectors {89} 41> and {63 } ;- In the following,
we will provide details of the apphcatron of the EM algorithm
to the training set {0‘1} . Similar steps can be applied to
the training set {64 }

The EM algorrthm is an iterative algorithm that starts from
some initial estimate of the parameters and then proceeds
to iteratively update the parameters until convergence. Each
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iteration consists of two main steps: the expectation step and
maximization step.

o Expectation step: In this step, we use the GMM parame-
ters obtained as output of the previous iteration of the EM
to compute the membership weights ¢! for all data points
0%, Vg € {1,---, Ny} and for all mixture components
Vie{l,---,a} (see [31] for details).

o Maximization step: In this step, the calculated member-
ship weights are used to update the parameter estimates.
Let N; denote the sum of membership weights for com-
ponent ¢, defined as N; = Z =1 Ci- This is the effectlve
number of data samples associated with component 1.
Then, the parameters of the GMM are updated with the
following expressions:

p1(i) <~N;i/Ny (16)
Yool ol
Bl %T )
q (1) q (i) \T
() 1 1(0 )u’fﬂlyl)(gl - /J*rryr)
By = . . (18)

Then, expectation and maximization steps are applied alterna-
tively until convergence and the GMM parameters obtained
from the last iteration are retained. The details of the use
of the EM algorithm in the estimation of the GMM models
describing the vectors xi,y; and Xs,yo are reported in
Algorithm [T]

Algorithm 1 Learning Algorithm

Input: {Bq}q °..{62 }q 1> @ B, Niter

OUtput 2561)111 ) Egﬂz)yza Ngcl)yl ’ IJ/SCQ)ZIQ ) p[( ) pJ(]) V(l, .7)

Initialization: Initialize p;(7), uifyl, Exl)yl, ps(j), ugé)y?,

() o

Emgyg’ V(Za .])

for n =1,..., Ni do
Expectation: compute the membership weights ¢!
of 01 and c of 03 with the current parameters, (i, )
Maximization: Update p; (i), p'y,, E_Ji?yl using
(T6)-(T8) and update p;(7), piy,. 2532)1/2 with
equations akin to (I6)-(I8), V(7, )

end for
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B. Separating GMM Signals

The separation algorithm takes as input the observation
vectors v, uj, Uy, the projection matrix ®, and the GMM
parameters, which are assumed to be known by the decoder.
The algorithm gives as output the estimates of the signals
of interest x; and x». The pseudo code of the separation
algorithm is detailed in Algorithm [2]

Algorithm 2 Separation Algorithm

Input: v, ur, ue, ®, 257, 1l pr (i), 05 (), V(i,5) € £
Output: E[x|v,u;, us]
for V(i,j) € £ do
Find the posterior probability of each component
label given the observation vector 7y ;(i,7) from (I3)
end for
Compute the estimate E[x|v, u, us] using (14)

IV. PROPOSED SEPARATION APPROACH: IDENTIFIABILITY
CONDITIONS

Our proposed separation approach also comes with iden-
tifiability guarantees. In particular, we now consider both
necessary and sufficient conditions for

lim MMSEx|y u; u, (0%) = 0, (19)

20

entailing reliable separation of both source signals in the sense
that the individual MMSEs associated with the reconstruction
of x; given v, uj, and uy and the reconstruction of x5 given
v, uj, and ug approach zero in the asymptotic regime where
02 — 0. This asymptotic regime is relevant in many practical
signal and image processing scenarios where the variance of
noise can be considered to be —60 dB or less [29]. We also
consider that the relevant signals obey (exactly) the GMM
models in @)-(@) and (7)-(9). Note that the analysis of the
separation error induced by the process of learning signal and
side information distributions is not considered in this work. In
fact, when a sufficient number of training samples is available,
the adopted GMM distributions are shown to approximate any
distribution with arbitrary precision, by adding the appropriate
number of components to each mixture [32].

The identifiability conditions are expressed in terms of the
number of measurements m and quantities that are related to
the geometry of the signals and the measurement matrix. In
particular, we will be using the following quantities:

. rf(fl) = rank(ngl)) represents the dimension of the sub-
space spanned by the source signal x; and rl(,ll) =
rank(E(y?’l)) represents the dimension of the subspace
spanned by the side information signal y;, identified by
component labels I = 1.

. 7'&32) = rank(ngz)) represents the dimension of the
subspace spanned by the source signal x5 and rg(ﬂz) =
rank(Eéé)) represents the dimension of the subspace
spanned by the side information signal y;, identified by
component labels J = j.

. r(il)yl = rank(i_gfl)yl) represents the dimension of the

subspace spanned collectively by the source signal x;

and the side information signal y, identified by the labels
I =i.

. rg(ci)yz = rank(flgfz)yz) represents the dimension of the
subspace spanned collectively by the source signal xo

and the side information signal y», identified by the labels

= ].
. r;’;{) = rank(Z&Z)) represents the dimension of the
subspace spanned collectively by the source signals and
the side information signals identified by the component
labels (I,.J) = (4, ). The superscripts are dropped when
the results hold for all possible choice of labels or when

the meaning is clear from the context.

Such conditions are also provided for the scenario where
the covariance matrices 23(;1, Eg(fl), ngl)yl, 23(32), 25]2) and
E,@m have low rank, smaller than or equal to the ambient
dimensions. Moreover, the images of the covariance matrices
corresponding to different Gaussian components are assumed
to be drawn from random ensembles. Namely, on recalling
the definition of a Grassmann manifold as the space of all
k-dimensional linear subspaces of a given ambient linear
space [52], we assume that the ranges of the covariance
matrices are subspaces drawn from a continuous distribution
defined over the corresponding Grassmann manifold. Note that
the assumption on the subspaces associated with covariance
matrices is plausible as it reflects well the behaviour of
many real data ensembles for various applications such as
face recognition, digits classification, etc. [53]]. Moreover, it
simplifies the statement of some of our theoretical results.

The identifiability conditions for GMM signals build upon
identifiability conditions for Gaussian signals. We therefore
treat each case separately, denoting the MMSE associated with
the separation of Gaussian signals by MMSES and the

x|v,ug,us
MMSE associated with GMM signals by MMSES%%MUZ.

The theoretical results in the next sections are based on
the following Lemma, which states the geometrical interplay
between the measurement matrix ¥, and the covariance

matrices of source and side information signals

Lemma 1. Consider the following compact notation for the
measurement model in (I)-(3):

w = ®ys + ny, (20)
where ng ~ N (0, 021m+n?/1+n1/2) and,
> P 0 0 « v
®=]0 0 I, 0 ,S—H,w— w . @n
00 0 I, Y u;

Let X3,, be the matrix defined in @), and ¥, be the
matrix defined in where ® € R™*"= is a random matrix
drawn from a rotationally invariant distribution. Then, with
probability one, the rank of the matrix ®¢3,, is given by:

r=min{ryy — Dy, m+ 1y, + 7y}, (22)
where

Dw‘y = dim(lm(Ezl‘yl) N Im(Ezz‘yz)). 23)
Proof. See Appendix [A] O
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A. Gaussian Signals

We first consider conditions for reliable separation of Gaus-
sian distributed signals in the presence of side information.

Theorem 1. Consider the measurement model in (I)-(3),
where (x1,y1) and (X2,y2) are drawn from the joint Gaus-
sian distributions described in (5) and (), respectively, and
(x1,y1) and (x2,y2) are statistically independent. Then, with
probability one, it holds:

lim MMSE|, . ,,(0°) =0 <
o250 su1,u2
M > Ty — Ty, — Ty, and Dy =0, 24)
where
and
Yoy = May — Ew1y12;1 Yyiz
sz\yz =3, - zxzyzzgf/g D
Proof. See Appendix O

Remark 1. In the case where side information is not available,
ie., y1 = y2 = 0, irrespective of the number of measure-
ments, reliable separation of the source signals is only feasible
provided that the range spaces associated to the source signals
have no overlap, i.e.,

D, = dim(Im(X,,) NIm(X,,)) = 0.

Under this condition, 7., + r,, measurements are necessary
and sufficient to drive the MMSE to zero in the low-noise
regime.

Interestingly, Theorem [I] shows that the presence of side
information not only reduces the number of measurements,
necessary and sufficient for reliable separation, but equally
importantly also relaxes the condition on the interaction be-
tween the subspaces associated with the two source signals.
More intuitively, given that the dimension of the subspaces
associated with the source signals conditioned on the side
information can shrink, we can still reliably separate the source
signals given the side information provided the “conditioned”
subspaces do not overlap even if the original ones do (as
suggested by the conditions in (24)).

Moreover under condition Dy, = 0, Theorem || shows that
we can reliably separate the source signals in the presence
of the side information, provided that we observe at least
Tgy — Ty, — 'y, Measurements extracted from the mixture, i.e.,
the dimension of the projected mixture is equal to or greater
than the sum of the dimensions of two spaces spanned by
components of the source signals which are most uncorrelated
with respect to side information signals.

In other terms, when side information is available to the
decoder, this can be effectively used to extract all information
contained in such signals that is correlated with the signals
of interest. Therefore, reliable separation in the presence of
side information is achieved when the projections of the
components of the source signals which are most uncorrelated
with the corresponding side information do not overlap.

B. GMM Signals

We now consider conditions for reliable separation of GMM
signals in the presence of side information. In this case,
the analysis challenge relates to the absence of closed-form
expressions for the MMSE in (I3) associated with GMM
sources. Therefore, to derive necessary conditions, we will be
working with the following MMSE lower bound, which we
denote by MMSEL? (%), which is given by:

x|v,u1,uz

MMSES™, | (0?) =E [|x — E[x|v, ur, uz]||?]
= > pr(0ps() E[lx — Elxlv, ur, ua] || = i, J = j]
(i,5)EL
. . G(%,7
2 ; Pr(i)ps(7) MMSES) | (0%)
i,j)EL

= MMSEL}, ,, u,(0?),

where MMSEgl(\Z,’)]lzl)112 (%) represents the MMSE associated
with the recovery of the Gaussian component corresponding
to the label (4, j) of the GMM signal given the measurements
of the linear mixture and given the side information. The
inequality is the consequence of the optimality of the MMSE
estimator for the Gaussian sources and side information. The
analysis of the MMSE lower bound leads immediately to the

following theorem.

Theorem 2. Consider the measurement model in (I)-(3),
where the source signals x;, x2 and the side information
signals yi, yo are drawn from the joint GMM distribution
described in Section Then, with probability one, it holds:

lim MMSES%NL " (02) 0=
o2—0 ;u1,u2
m2 ) —ry) =) (25)
and D7) =0 (i, j) € L, 26)
where
'D;(ll‘y) = dim(Im(Eﬁ(ﬂ?lyl) N Im(zijz)lm))
and
() _ s , s
2951‘?/1 - Egjzl) - 2&??/1 22(111) Eigzl)zu
(G) 50 , Ry
23!2‘92 - 21552) - 29(6]2)’!& El(/jz) Ez(!Jz)»Lz
Proof. See appendix -

In turn, to derive sufficient conditions, we will be working
with an MMSE upper bound, MSECS(U2), associated with
a specific two-step classify and separate (CS) decoder. The
upper bound is due to the sub-optimality of the classify and
separate decoder, which means that, due to the definition of
the MMSE, it holds MMSESNY,, , (0?) < MSE® (o).

The CS decoder operates in two main steps as follows:

1) Classification step: In the first step, an estimate (f J ) of

the component labels associated to the source signals and
side information signals is obtained via the maximum a
posteriori classifier:

(I,J) = arg max p(I =i,J = jlw)
(1,5)€L
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= arg max pyg(i,j) p(w|l =i,J = j).
(i,)€L
2) Separation step: In the second step, an estimate x of
the vector x is obtained using the Gaussian conditional
mean estimator associated to the Gaussian component
with labels (1,.]):

XU (w) = pl) + WD (w — B pll))
where
ij o ~ T T
ny'!) = [ué? ply }
and
win_ |2 0 =, 0 |y
v o = o =),

(o1 + @D @l) L.

The analysis of the MMSE upper bound leads to the
following theorem.

Theorem 3. Consider the measurement model in (I)-(3),
where the source signals x;, xo and the side information
signals y;, y2 are drawn from the the joint GMM distribution
described in Section Then, with probability one, it holds:

m > r_,(j@j) — r?(jl) — r?g?z) 27)
and Df;fy) =0 V(i,j)eL= (28)
: GMM 2
UlglgloMMSEX|V,U1,U2 (c9)=0
Proof. See appendix O

The results from Theorems [2] and [3] state that, in order to
achieve reliable separation, the spaces spanned by conditional
covariances, i.e., the space spanned by signal components
which are not correlated with the side informations, ought to
have no intersection for all possible label pairs (/,.J). More-
over, the measurements extracted from the mixture should be
enough to capture the components of source signals which
are not correlated with the side informations for all Gaussian
components.

Notably, the provided conditions for reliable separations are
tight, as the necessary conditions are only one measurement
away from the sufficient conditions. In other terms, when
using the proposed sufficient conditions for reliable separation
to gauge the number of measurements m used for a given
separation problem, the provided analysis guarantees that such
number differs at most one measurement from the optimal
solution.

V. NUMERICAL RESULTS

We now provide results with synthetic data showcasing the
interplay between the number of linear measurements from the
mixture and the properties of the individual components of the
mixture impact on the quality of separation. In particular, these
results also demonstrate that our theory is able to predict the
number of linear observations required for reliable separation.

In our simulations, we use random measurement matrices
whose entries are i.i.d., Gaussian random variables with zero

o

MMSE (dB)
&

-10

-15

1 15 2 2.5 3 3.5 4 4.5 5
1/0? (dB)

Fig. 1: MMSE associated with the separation of two GMM
sources vs. 1/0? for different number of random measure-
ments m = 2 to m = 6. The actual MMSE is represented
by solid lines, the CS upper bound is represented by circled
solid lines, and the lower bound by dashed lines. The lines
corresponding to the actual MMSE, the CS upper bound and
the lower bound are almost completely overlapping over the
considered noise range.

mean and unit variance, which have been normalized so that
it holds ®®7 =1.

We assume that the joint distribution of (x3,y;) and the
joint distribution of (x2,y2) are modeled via a zero-mean
Gaussian mixture model. Conditioned on a component labels
1 or j, the covariance matrices for the pairs source signal
and side information signal are generated according to the
model adopted in [21]], where the correlation between any two
Gaussian vectors is expressed in terms of a common compo-
nent and innovation components. In the following description,
in order to simplify notation, superscripts are dropped, as
the covariance matrix construction is repeated similarly for
all labels 4. Then, on denoting by P, ,P.,, the matrices
modulating the common components of the signal of interest
and side information, respectively, and by P;,,, P;,, the ma-
trices modulating the corresponding innovation components,
the covariance matrices of the signal of interest and the side
information can be written as 3,, = PcmlPZzl + Pmng;l
and ¥, = Pcyley L+ PiylP};l, respectively. Moreover, the
joint covariance matrix of the pair (x1,y1) is given by:

T T T
) _ Pcanchl + l;ixlpizl I;C%Pcyl T
r1yYr .
P091PC$1 Pcy1 Pcy1 + Plylpiyl

The matrices P.,, € R"™*"1 P, € R**7"= P, €
R™1 %71 and Py, € R™1 %1 have i.i.d., zero-mean, Gaus-
sian entries. Therefore, the corresponding ranks are, with prob-
ability one, r,, = min{ng, re, + iz, }, 7y, = min{ny,,re, +
Tiy, }» and 75, = min{ng + ny,,7e, + Tigy + Tiy, }. A
similar construction is adopted to generate the joint covariance
matrices for (x2,y2).

Fig. [I] shows the MMSE associated with the separation
of two-components GMM signals, ie., « = § = 2, with
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W)

Y/

Fig. 2: Panels from the Ghent Altarpiece: (left) open panel,
(centre) closed panel, (right) corresponding X-ray images
containing a mixture of components.

TABLE I: Running time comparison.

Algorithm Train time Test time
CDL 1.5 x 10°s 1.1 x 10%s
GMM 1.65 x 103s 5.03s
dimensions n,, = mn,, = 10, in the presence of side

information where 7;,,, = 73,4y, = 6, Ty, = Tz, = 4 and
Ty, = Ty, = 4 for all component labels. We report the actual
values of the separation error MMSESM™ ' (52), the lower

x|v,u1,u2
bound MMSELY, ,,, ,,(c?) and the up}|;>er bound MSE®® (52)
associated to the classify and separate decoder. We observe
that reliable separation is achieved with m = 4 for the lower
bound, the upper bound and the actual MMSE, although the
curves offsets are slightly different. The fact that both upper
and lower bounds approach zero with the same number of
measurements relates to the performance of the MAP classifier
in the presence of side information. More specifically, when
we fully observe the side information and the associated
subspaces are distinguishable, the classification can be reliably
performed based on the side information, regardless of m. In
this case, the MMSE associated to the classify and reconstruct
decoder perfectly captures the features of the actual MMSE.
Then, it is possible to observe that the results reported in
Fig.[T]indicate that the theory presented in Section[[V]allows to
gauge the number of observation of the linear mixture required
to obtain reliable separation.

VI. APPLICATION: SEPARATION OF SUPER-IMPOSED
X-RAY IMAGES GIVEN RGB SIDE INFORMATION

We finally use our algorithm to address an image separation
problem arising in the context of the well-known Ghent Altar-
piece. This altarpiece, one of the most admired masterpieces
in the history of art, is a polyptych on wood panels attributed
to the brothers Hubert and Jan van Eyck. It consists of a series
of panels organized in two vertical tiers, each with double sets
of foldable wings comprising inner and outer panel painting.
The closed and open views of the master piece are shown in
Fig

The masterpiece was documented with various imaging
modalities including visual microphotography, X-radiography

Fig. 3: Image set from a double sided panel of the Ghent
Altarpiece which we used as the test data to evaluate the
performance of our proposed algorithm. The first and second
images are the photographs of the closed and open panels
respectively and the third column is the corresponding X-ray
scan.

Fig. 4: Visual evaluation of the proposed algorithm in com-
parison with other algorithms [6]], in the separation of
X-ray images in Fig [3} first row separated side 1; second row
separated side 2; first column, the results of the proposed
algorithm; second column, the results of the multi-modal
dictionary learning algorithm [6]]; third column, the results of
the MCA algorithm with fixed dictionaries [16].

and infrared reﬂectographyﬂ The X-ray is a common tool in
art investigation, which — by penetrating through the painting
— reveals information about its inner structures, including
underpaintings, composition of the materials and cracks in the
different layers. Due to the X-ray penetration property, X-ray

Uhttp://closertovaneyck kikirpa.be
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TABLE II: Table of performances for the source separation algorithms on synthetically added X-ray images with PSNR and
SSIM error measures. The rows present the algorithms and the columns present the error measures for each mixture pair.

Image Mixture 1 Mixture 2 Mixture 3 Mixture 4 Mixture 5 Mixture 6
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
CDL X-ray 1 | 23.1932  0.7297 | 19.1268 0.6001 | 16.4117  0.7538 | 24.2636  0.7336 | 25.7920  0.6337 | 21.7206 0.7781
X-ray 2 | 21.7015  0.4448 | 19.5387 0.3394 | 21.7062 0.5783 | 24.6145 0.6823 | 26.3819 0.6452 | 24.1172  0.5858
GMM X-ray 1 | 23.5703 0.7412 | 25.0642 0.7548 | 22.4417 0.8805 | 25.5121 0.8626 | 24.8206 0.8421 | 21.2675 0.8569
X-ray 2 | 24.6499 0.8387 | 23.3593 0.8039 | 23.7488 0.9075 | 24.7298 0.8537 | 24.4782 0.8210 | 22.0572 0.8970

scans of double sided panels are, in fact, mixtures of the X-rays
of both sides. The image separation challenge then relates to
the separation of the mixture of the X-ray images taken from
double-sided panels, leveraging the visual scan of each side
as the side information.

We approach this problem using our proposed method. In
particular, our goal is to decompose a vector v representing a
patch of size 8 x 8 corresponding to the X-ray mixture image
onto two vectors x; and Xg representing patches of size 8 x 8
corresponding to the X-ray images of each side, given vectors
u; and uy, relating to the corresponding patches from the RGB
scans of each side. Note that, in this set of experiments, the
mixture is fully observed, i.e., ® = L

Concretely, we first learn a GMM model to describe the
pairs of vectors (x1,y1) and (x2,y2) with a« = § = 15.
This joint GMM model is learned from 8 image pairs — each
consisting of one X-ray scan and the corresponding visual scan
— taken from single-sided panels of the Ghent Altarpiece using
an EM algorithm [54]. Stability of the chosen EM procedure
is guaranteed by forcing the covariance matrices in the GMM
to be approximately low rank with the introduction of a small
diagonal perturbationE]

We then use such GMM model to separate the mixed
x; and xg from their superposition given u; and uy using
the conditional mean estimator appearing in (I4)-(I5). This
process is also repeated for every patch — where each two
adjacent patches are overlapping by 4 pixels — enabling us
to separate the mixed X-ray image shown in Fig. 3] onto its
constituents. It is important to mention that the images used
as training and test sets have been registered (aligned) using
multi-modal image registration algorithms [56].

The results obtained with the proposed algorithm are de-
picted in Fig. [d] We also compare the separation results of the
proposed algorithm against those achieved with a state-of-the-
art algorithm in separating X-ray images which uses coupled
dictionary learning [6] and MCA [[16]. For both the proposed
algorithm and the method in [6], training data are obtained by
extracting 8 x 8 patches from the same images.

We follow the setting in the original work on the same
dataset [6], where we set the number of sparse common com-
ponent to 10, the number of sparse innovative components to
8, and the number of each dictionary atoms to 256. We report
the best performing multi-scale approach which recursively
decomposes the X-ray and visual images into low and high
pass bands. The high frequency component of the mixed X-

Note that the analysis carried out for exactly low-rank GMM models can
be shown to provide valuable information in determining the behavior of
approximately low-rank data [30], [55].

ray image at each scale is then separated patch-by-patch. It
is worth mentioning that, as opposed to the results reported
in [6], we do not remove the crack patterns from the painting
images for any of the algorithms. For MCA algorithms — which
do not take advantage of the availability of the RGB images
associated with each side of the panel — we use fixed curvelet
and wavelet dictionaries.

Although a third-party evaluation has not been considered
in the comparison, a visual analysis of the results reported
in Fig. [] suggests that the proposed algorithm outperforms
the other two algorithms in capturing some fine details of the
images (e.g., eye lashes). Moreover, the proposed algorithm
is not affected by the smoothing effect which appears for the
algorithms based on the coupled dictionary learning and MCA.

It is also interesting to observe that the proposed method
offers significant advantages in terms of computational com-
plexity, both during the training and testing phases. Table [I|
displays the train and test time of the proposed algorithm
(referred as GMM) in comparison to coupled dictionary learn-
ing algorithm (referred as CDL), where one obtains over
100-fold improvements during the training phase and over
1000-fold gain during the testing phase. This is due to the
efficiency of the EM algorithm in comparison to coupled
dictionary learning in the training phase. Also, in test phase the
GMM algorithm exploits an efficient closed form expression
as opposed to CDL which uses an iterative algorithm to
solve a regularized optimization problem. Both algorithms
have been implemented in Matlab and have been run on the
same machine with 12 CPU cores. The reported test time is
measured on separating a mixture of X-ray images of size
256 x 256.

Finally, due to the lack of ground truth data, it is also of
interest to evaluate the performance of our algorithm quan-
titatively. We have thus generated simulated mixtures using
the available training data taken from single sided panels. In
particular, we extract 6 image patches of size 256 x 256, from
the X-ray images of single sided panels, depicting content
similar to the images in Fig. [3] i.e, 6 image patches visualizing
part of a face and 6 images patches visualizing a piece of
fabric. We then assessed the separation performance of the
proposed algorithm against the coupled dictionary algorithm
[6] by measuring the peak-signal-to-noise-ratio (PSNR) and
structural similarity index metric (SSIM). The results are
reported in Table [[Il Compared to the state-of-the-art coupled
dictionary learning algorithm, the proposed algorithm provides
a considerably better separation quality both in terms of PSNR
and SSIM except for simulated Mixtures 5 and 6. This could
be due to the fact that the images in mixture 5 and mixture 6
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have less high frequency components.

VII. CONCLUSION

In this paper, we have proposed a new approach to source
separation with side information. In particular, our main con-
tributions are:

1) A new framework to source separation with side infor-
mation leveraging a GMM of both the individual source
signals of interest and the side information signals.

2) A characteterization of necessary and sufficient condi-
tions for reliable separation of source signals from a linear
mixture in the presence of side information.

3) An application of the approach to image separation
problems arising in art investigation.

When compared with other source separation algorithms
leveraging the availability of side information, as [6]], the
proposed approach exhibits a clear advantage in terms of
training and testing time, and it guarantees visually superior
separation results.

APPENDIX A
PROOF OF LEMMA[I]

We start by considering the following rank:
i 0 ]

rank(®X,,) = rank ({
. 0 I"y1 tny,

Ewl 23;2 2-161211 2-’521/2
Yy 0 b 0 30)
0 E?JQIQ 0 2y2
We define: E
M = {G H} , 31
with
E= [Eml Em] F= [E$1y1 Emzyz]

b 0 b 0
G = Y1x1 :| H= |: Y1 :| .
[ 0 Eyzwz 0 Eyz

Now, by applying the rule for the computation of the rank of
the Schur complement [57] we have:

rank(M) = rank(H) + rank(M/H)
rank(M/H) = rank(E — FH'G)

(32)
(33)
where M/H is the Schur complement of block H in matrix
M and

E-FH'G =

[Ewl - 21'1111 Ej/] Eylll 21‘2 - szyzzzg Eyzﬂéz] . (34)

On leveraging the rank equality for block matrices [58]], one

can write:
rank(E — FHTG) =Tayy, = Tys T Tasys — Tys — Dafy- (35)

Then, by substituting rank(H) = r,, + r,, and the rank
expression (33) in (32), we have:

rank(M) = 74,4, + T2oyy — Dajy = Tay — Dajy- (36)

Now we can apply similar techniques as those used in the
proof of Lemma 5 in [2I] to calculate the rank in (30).
Moreover, on defining the matrix ®; as:
o 0 }

0 I”y1 Ny, (37)

® - |
and by applying the Sylvester’s rank equality [52], we can
write:

r = rank(®; M) = rank(M) — dim(Im(M) N Null(®,)).
(38)
Now, we define matrix W € R"™=~™X" 39 the matrix whose
columns form the basis for Null(®). Since ® is randomly
drawn from a rotationally invariant distribution, column range
space of W is drawn from a uniform distribution on the
Grassmann manifold of (n, — m) dimensional subspaces in

T
R"™=. One can also show that [‘I’TO,TLyﬁnyQan,m} form

the basis for the Null(®;) and:

r = rank(M) — dim <Im(M) N Im( [ﬂ )) (39)

0
k(& Y) -

where we have i) partitioned the matrix M to M = [ATBT
where

(40)

]T

A= [Em 2962 Emlyl 212?;2} 41)
by 0 by 0

B = Yi1x1 Y1 :| , (42)
|: 0 Eyzwz 0 Ey2

ii) used the fact that

rank ({g ‘(I)’D — rank( [g})+rank( m)

— dim (Im( Bﬂ) A T ( [‘(I)’] )) . @43)

and iii) used the fact that rank(¥) = n, — m. In or-
der to compute the rank in (@0), we apply the generalized
singular value decomposition (GSVD) [59]] on the matrices
A and B as defined above. The GSVD implies that there
exist two orthogonal matrices U € R"=*(2ne+ny;+74,) and
V € Rwitny)X(2natny; +n4,) and a non-singular matrix
X € RZnatny, t1y,) X (2natny, +n9,) guch that:

UTAX = [AA 071,T><(2nm+ny1+ny2 —’I"AB)] ) (44)
VTBX = [AB O(nyl+ny2)><(2nm+nyl+ny2frl45)] ) (45)
where
TAB —TB SAB TAB —TA
I TAB —TB
AA = ( DA > SAB (46)
0 n—ryg
TAB —TB SAB TAB —TA
0 r"aAB —TB
AB = ( DA ) SAB (47)
I n—ra
(48)
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and 74 = rank(A), rg = rank(B), rap = rank(M) =
rank( [ATBT]T), saB = ra+rg—rap. Furthermore D 4 and
D g are diagonal matrices such that D 4 = diag(as, ..., @5, 5 )s
Dp = diag(B, ..., Bs,p) and o + B2 =1, fori =1,...,54p.
Hence, we can write:

(A 1)
(305 4]).

where the range of W' = U”'W is uniformly distributed over
the Grassmann manifold of n, —m dimensional subspaces of
R™». Now, by considering the first 745 — rp columns of the
matrix in (30) together with its last n, — m columns and by
using the fact that the columns of ¥’ form a random subspace
in R™ we can conclude that, with probability one, we can
select from such columns, min{rap — rg + n, — m,n,}
independent columns which are also independent from the
other rp non-zero columns of the same matrix. Therefore,
we obtain:

(49)

(50)

reg =min{rap —rg+n, —m,n.} +rp. 51

By substituting 74 p = rank(M) = 14y, =Dy, 1B = Ty, +7y,
in (31) and then substituting (51) in (@0), we have:

7 =min{ryy — Dyjy, M + 1y, + 7y, }- (52)

Note that the expression for rp follows from a column permu-
tation in B and using the fact that rank( [Eylzl Eyl]) =Ty
and rank([Zy,z, 2y,]) = ry,. O

APPENDIX B
PROOF OF THEOREM 1

The proof is based on reformulating the MMSE associated
to the reconstruction of source signals in terms of the MMSE
associated to the reconstruction of the signals conditioned on
observing the side-information signals:

MMSES |, . u,(07) = E [|Ix — E[x|w]||*] = (53)
MMSE(zla Z2|Wz)7 (54)

where z1 ~ p(x1|y1), Z2 ~ p(x2|y2) and w, = ®(z; +22)+
n. The equality in (53) follows from taking the expectation of

with respect to the variables (x1]y1), (X2|y2) and y1,ya2,
separately. Since (x1,y1) and (x2,y2) are jointly Gaussian,
then

zy ~ Xl‘yl NN(“’xl\y17Ez1|y1)7 Z NN(/"’217221) (55)
Z1 ~ XQ‘y2 NN(“’mZ\vaEmﬂyz)v Z2 NN(“ngzm) (56)

where,
Hooy = By, = Bay + By, 21,1 (y1— ty,) (57)
M., = “wg\yg = Mg, + E€1U2Z/2 2:r,lz (y2 - IJ’UZ) (58)
T =y = a0 = B, — B 2 By, (59)
Yo = z::702|y2 =3, = X, — Yoy, Ezzzyziz' (60)

More specifically, ¥, |, and 3., are the conditional
covariances of the conditional random variables x;|y; and

X2|y2, respectively. By applying the results in Appendix D
[21]], one can show that , r,, =rank(X,,) =7z, —ry, and

T5, = r1ank(3,,) = 74,y, —Ty,. We define the signal z = Zl
2
where z ~ N (u,,X,) and
13 3, 0
S L B ST et : 61
o Bt A B

Now, the problem can be formulated as recovering z from the
observation in w,. Our results on the separation of two Gaus-
sian sources in Theorem 1 imply that we can reliably recon-
struct z from w, if and only if dim(Im(X,,) NIm(X,,)) =0
and m > r,, + r,,. This directly leads to the necessary and
sufficient conditions for the reliable separation of x; and x5
from w which are
o M > Ty, + ooy, — Tyy — Ty

. dlm(Im(ZI”yl) N Im(2I2|y2)) =0. (I

APPENDIX C
PROOF OF THEOREM 2

This immediately follows from applying Theorem 2 on the
lower bound MMSIE,LJF‘,’ul .u,- 10 particular, Theorem 2 implies
that if MMSEg, ., ., — 0 for V(i, j) € £ then the conditions

are verified for V(i,5) € L. O

APPENDIX D
PROOF OF THEOREM 3

This proof is based on the proof in [29, Appendix C] where
the upper bound to the MMSE associated to the use of a
classify and separate decoder described in Section [IV-B] is
used. Conditioned on the component labels (I,.J) = (,7),
the source signals and side information signals jointly follow a
Gaussian distribution. The decoder separates the source signals
by using the Wiener filter associated to the estimated compo-
nent -which is the output of the MAP classifier- (I = i,.J = )
as follows:

%09 (w) = p{?) + W) (w — Dopfis)

where
i aT Nak
n = (" "
and
W) — ngl) 0 E:(nil)yl 0 T
’ o = o =Y, °

(0 T+ 2B D)
On using the law of total probability, we can write;

MSES < 3" py s (6, §)E[x — £ (w)|?[I = i, J = j]

>

(i’3")#(i5)
E[l|x — %77 (w) I =4, J = j].

¥
+ > p1a(i.d) p(f =i, J =T =i,J =j)
i

Under the conditions in (24), Theorem [I] implies that:
lim E[||x—x®)(w)|?I=1i,J=j]=0.
020
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In the following, by leveraging an analysis of the MAP
classifier akin to that provided in [60] (see supplementary
material), we will prove that,

hmp( =i Jf]|Ifz J=17)

020

El|[x — £ (w) |2 =, J =4I =i,J=j]=0.

(62)

We consider two different cases:

1)
P ) 5 00, )+ r )
or

r(i) 4 p (3 — D(ilﬂ;i’j/) >

_pld)

D(U)
zly

r® 4@ — DD ) 4 0 (63)

In this case, under the assumption that

m > min{r{) +rd) — p@lﬂ) ) 4 pG) D(w N,

E2) x|y’

Theorem ?? implies that

hmp( =i J=4I=i,J=j)=0.
020
Therefore, (62) is verified, as the term that does not
depend on the error probability can be upper bounded
by a constant when, o2 — 0.
2)
r(d) 4 p (')

_ ) 6) () _ pi) _
Dz\y =T +T‘22 ,Dw\y -

) ) (64)

zZ2

_ D(i"j')
x|y
and

P G0 2 ) g G) 2 ) G0,

Although in this case the classification probability is not
guaranteed to converge to zero, it is possible to observe
that such conditions are not verified with probability one.
The last statement follows from the fact that, under the
assumption that subspaces associated to the image of the
covariance matrices are drawn from continuous distribu-
tions defined over the Grassman manifold, the subspaces
associated to the Im(X% + 7 ) and Im(Z%, + 27)
are random subspaces whose dimensions are deﬁned and
strictly smaller than the ambient dimension n,. Since
m > min{r{) +ri) — Di’ljy), r) 4D - Dg(;‘/yjl)}
and m < n,, these two subspaces will not be completely
overlapping, i.e., with probability one, it holds,

D(Z‘J i'j )

(i) ) i’
— D) ) 4 )

p(id) 4 ")

r® 4 ) - D;"l'yj'). (65)

This concludes the proof. ([
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