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Abstract—Sampling is classically performed by recording the
amplitude of an input signal at given time instants; however, sam-
pling and reconstructing a signal using multiple devices in parallel
becomes a more difficult problem to solve when the devices have
an unknown shift in their clocks. Alternatively, one can record
the times at which a signal (or its integral) crosses given thresh-
olds. This can model integrate-and-fire neurons, for example, and
has been studied by Lazar and Tóth under the name of “Time
Encoding Machines”. This sampling method is closer to what is
found in nature. In this paper, we show that, when using time
encoding machines, reconstruction from multiple channels has a
more intuitive solution, and does not require the knowledge of
the shifts between machines. We show that, if single-channel time
encoding can sample and perfectly reconstruct a 2Ω-bandlimited
signal, then M-channel time encoding with shifted integrators
can sample and perfectly reconstruct a signal with M times the
bandwidth. Furthermore, we present an algorithm to perform this
reconstruction and prove that it converges to the correct unique
solution, in the noiseless case, without knowledge of the relative
shifts between the integrators of the machines. This is quite unlike
classical multi-channel sampling, where unknown shifts between
sampling devices pose a problem for perfect reconstruction.

Index Terms—Bandlimited signals, sampling methods, signal
reconstruction.

I. INTRODUCTION

A LMOST all current sampling theories represent a signal
using (time, amplitude) pairs. However, this is quite dif-

ferent from the way encoding is done in nature, where processes
have undergone millions of years of evolution. More precisely,
when a neuron takes an input, it outputs a series of action
potentials—the timings of which encode the original input.

Similarly, the output of a time encoding machine (TEM) [1]
is not a series of (time, amplitude) pairs as in classical sampling,
but rather a series of signal-dependent time points, which is
reminiscent of the output of spiking neurons. The resemblance
is highlighted in Fig. 1 where we depict the outputs of three
different encoding schemes: encoding using classical sampling,
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using a leaky integrate-and-fire neuron and using a time encod-
ing machine.

Classical sampling and reconstruction [2], [3] has been re-
visited frequently with extensions proposed along two axes: the
sampling setup and the signal class. For example, the traditional
uniform sampling setup has been extended to setups where sam-
ples are irregularly spaced in time [4], [5], and where samples
are taken at unknown locations [6], [7], among others. On the
other hand, reconstructibility results have been established for
multiple signal classes, from bandlimited signals [2], to signals
in general shift-invariant subspaces [8], and signals of finite
rate of innovation [9], [10]. In short, classical sampling is well
established and understood. Nonetheless, transitioning to a time
encoding paradigm presents additional advantages.

On the one hand, time encoding can help us to better un-
derstand biology. Time encoding machines can be made to
resemble biological neurons to different degrees. Here, we study
perfect integrators that reset once a threshold is reached, but
one can also investigate encoding and decoding using leaky
integrate-and-fire neurons with refractory periods [11] or even
Hodgkin Huxley neurons [12] for more biological resemblence.
One can then hope that understanding time encoding can help to
better understand the neural code. Moreover, and perhaps more
practically, neural networks are often constructed using spiking
neurons [13]. Then, understanding the basic components in
spiking neural networks can help us understand their functioning
and their constraints, as well as understand how to better take
advantage of neuromorphic hardware [14], [15].

On the other hand, time encoding can help us to improve man-
made systems. In fact, time encoding can help us in designing
higher-precision sampling hardware as high-precision clocks are
more readily available than high-precision quantizers [1]. It can
also help in reducing power consumption. It has been shown
that single-channel time encoding has similar capabilities as
traditional sampling: with time encoding, one can sample and
reconstruct bandlimited signals [1], [16]–[18] as well as signals
with finite rate of innovation [19]. Here, we will show that time
encoding also provides an advantage over classical sampling
when it comes to multi-channel encoding. Indeed, we show that,
in time encoding, reconstruction from multi-channel sampling
with unknown initial conditions is no harder than reconstruction
using single-channel sampling. This is not the case in classical
sampling.

In this paper, we study multi-channel time encoding, where
a bandlimited signal is input to M > 1 time encoding ma-
chines that generate different outputs because of a shift in their
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Fig. 1. Encoding of the same signal using different encoding modalities: (a) a classical sampler, (b) a leaky-integrate and fire (LIF) neuron, and (c) a time
encoding machine. In (a), the signal is convolved with a kernel g(t), commonly assumed to be a sinc function if the input signal is bandlimited for example, and
then sampled every T seconds. The output is then a series of equally spaced (time, amplitude) pairs. In (b), we assume that the signal is injected as a current into
a spiking leaky-integrate-and-fire neuron following the model described in [20] and implemented using a spiking neural network simulator called Brian [21]. The
recorded output is the outgoing current which exhibits a series of action potentials, or spikes. In (c), the signal is input to a time encoding machine, as will be
described in Section III, and the output is a series of signal-dependent trigger times. Notice how, in both (b) and (c), the output spike streams are denser when the
signal is stronger and sparser when the signal is weaker.

integrator values. To make the analogy with neuroscience, it
seems intuitive (at least from advances in machine learning),
that multiple neurons can encode a signal better than one. Here,
we would like to quantify this improvement when using TEMs
which resemble neurons with perfect integrators.

Multi-channel sampling has been studied in the classical
sampling setup by Papoulis who showed that a bandlimited
signal can be reconstructed from its samples from M channels
using 1/M the sampling rate [22].

In this paper, we show that, if a bandlimited signal with
bandwidth Ω can be reconstructed using one TEM, then, using
a Projection onto Convex Sets (POCS) algorithm [23], [24],
a bandlimited signal with bandwith MΩ can be reconstructed
fromM TEMs with the same parameters, as long as the machines
are shifted with nonzero shifts. We also show that the reconstruc-
tion algorithm and conditions do not require the knowledge of
the shifts, as long as these are nonzero. This is an important
improvement over [25], where we only showed that this bound
could be achieved if shifts between the machines were equally

spaced, which is not easy to achieve in practice. The bound we
propose here generalizes to all shift configurations.

II. BACKGROUND AND MOTIVATION

A. Previous Work on Multi-Channel Time Encoding

As we previously mentioned, time encoding can mimick
sensory information processing in neuroscience. Therefore, an
intuitive extension to the time encoding machine introduced
in [1] is a system consisting of multiple time encoding machines:
human sensory systems are comprised of many neurons that
encode inputs using spikes, which are later used in higher order
processes in the brain.

Moreover, neurons in sensory systems often develop receptive
fields. This means that certain neurons are sensitive to certain
shapes of inputs, and the spiking output of these neurons is
essentially driven by filtered versions of the original input sig-
nal [26]. Therefore, different neurons spike at different times
and therefore encode different sets of information.
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Inspired by such experimental findings, Lazar and Pnev-
matikakis defined a setup with M linearly independent filters
and M leaky integrate-and-fire time encoding machines [27]. A
1-dimensional signal x(t) is then fed into filter i before being
input to TEM i for i = 1 · · ·M and then reconstructed from the
samples. Within this setup, the authors were able to quantify the
improvement one obtains from the multi-channel encoding and
decoding setup.

In the present paper, our approach to time encoding is differ-
ent: we assume that we are dealing with multiple similar neurons
encoding the same input, i.e. they all respond to the same kinds
of stimuli.

Therefore, we assume that our signal is not prefiltered before
being input to each machine or neuron, but that machines output
different spike times because of different initial configurations
of the time encoding machines or neurons. In [28], we extend the
results of this paper to time encoding and decoding of vectors
of inputs where the connection between the inputs is more
complex. This extension mimicks the way neurons automatically
form receptive fields: these fields arise naturally because of the
structure of the connection between input and neuron.

The setup presented here also draws a parallel with the multi-
channel sampling setup in the classical sampling scenario, where
sampling devices have unknown shifts in their clocks. Here,
our time encoding machines will have unknown shifts in their
integrators. The former problem seems to be quite difficult to
solve, whereas the latter seems no harder to solve than the single-
channel variant.

B. Foundations for Understanding Time Encoding

The theory behind time encoding and decoding is built on the
seminal work on reconstruction from averages presented in [29],
[30]. The authors set the foundations for the reconstruction of
bandlimited signals from averages. They provided an iterative
algorithm for the reconstruction of input signals, with guarantees
for convergence under constraints on the number of samples
taken. The jump to time encoding and decoding included two
extra contributions, the first is the relationship between spike
times and average values, and the second is the development of
a closed form algorithm that bypasses some impracticalities of
the recursive algorithm where the results depend on the number
of iterations or on the stopping criterion of the algorithm.

The work in the present paper is heavily inspired by this
previous work on reconstruction from averages and on time
encoding and decoding. However, we use a POCS approach,
which provides geometric intuition, and allows us to construct
a convergence proof which we believe is more approachable.
During the revision of this manuscript, a preprint of parallel work
about POCS and time encoding became available online [31].

C. Multi-Channel Time Encoding: Advantages

Time encoding and classical sampling require similar sam-
pling rates to be able to reconstruct a bandlimited signal. How-
ever, as we briefly mentioned, time encoding hints towards
hardware that is more power-efficient when compared to tradi-
tional analog-to-digital converters (ADC) [32], [33]. In fact, time

encoding requires only the distinction of two levels to be able to
detect the occurrence of a spike, whereas classical ADC requires
higher precision quantization. Moreover, time encoding, when
based on an integrate-and-fire paradigm, as it is here, produces
sparser activity when the input signal has a lower intensity.
Therefore, if dealing with signals that are zero for long stretches
of time, a time encoder that has no bias will not spike when the
signal is zero, thus saving energy.1

Moreover, multi-channel time encoding provides a more scal-
able alternative to single-channel time encoding with high spik-
ing rate. It is true that a single-channel TEM and a multi-channel
TEM have, in theory, the same performance if they have the same
total spiking rate, as we show later. However, multi-channel time
encoding provides practical advantages:

1) When designing hardware for multi-channel time encod-
ing, one can simply reuse single-channel TEMs that have
already been well engineered to have a specific spiking
rate. On the other hand, modifying the spiking rate of
a TEM without perturbing other parameters is not easy.
In fact, when designing hardware for time encoding, one
often has multiple conflicting specifications to achieve: the
integrator circuit should behave as closely as possible to
a perfect integrator, the frequency response of the system
should be high enough compared to the input signal, the
time encoder should be able to achieve a given spiking
rate, the spikes should be narrow enough etc. As these
characteristics are often conflicting, it is easier to com-
promise on one of them, namely the spiking rate in this
case, in order to satisfy other constraints, and then stack
different machines together to obtain a better performing
system.

2) Multi-channel time encoding allows a lower spiking rate
per channel. This allows spikes to be resolvable when they
have a nonzero width, which is always the case in practice.
Thus, having multi-channel time encoding allows for a
better resolution of the spikes for each channel and an
overall better estimate of the output spike times.

III. SINGLE-CHANNEL TEM

A. Time Encoding Definition

There are different variations of time encoding [1], [11], [34],
[35], but we consider the case where a time encoding machine
(TEM) acts like an integrate-and-fire neuron with a perfect
integrator and no refractory period.2

Definition 1: A time encoding machine (TEM) with param-
eters κ, δ, and b takes an input signal x(t), adds to it a bias b,
and integrates the result, scaled by 1/κ, until a threshold δ is
reached. Once this threshold is reached, a time is recorded, the
value of the integrator resets to −δ and the mechanism restarts.
We say that the machine spikes at the integrator reset and call
the corresponding recorded time tk a spike time.

1Note that we assume, in the setup of this paper, that time encoders do have
a positive bias. Therefore, these time encoders always spikes, even if the signal
is zero. This allows us to ensure theoretical guarantees for reconstruction. More
general setups which can admit a bias of zero are, for example, presented in [28].

2Note that this is slightly different from the definition provided in [1].
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Fig. 2. Circuit of a time encoding machine with input x(t) and parameters κ,
δ and b, where κ is the integrator constant, δ is a threshold above which a spike
is triggered and b is a positive bias added to the signal.

Figure 2 depicts the circuit of a TEM and Fig. 3 provides an
example of how an input generates its output.

Note how our definition of a sample has changed. In traditional
sampling, a sample denoted a (time, amplitude) pair, whereas
here, a sample denotes a spike time. We use the terminology
“spike time,” to keep the analogy with integrate-and-fire neurons
which produce responses by emitting action potentials. These
action potentials have a fixed shape and amplitude,3 so the
relevant information in a neuron’s output lies in the timing of
these action potentials, or spikes.

Before we proceed, notice that the integrator constant κ and
the threshold δ in Definition 1 can be combined into one param-
eter δ′ = κδ. However, we prefer to keep the two parameters
separate as each comes from a different source in hardware. The
integrator constantκ arises from the integrator circuit as depicted
in Fig. 5 and is therefore hard to change. The threshold, on the
other hand, is a parameter of the comparator and is easier to
manipulate.

B. Iterative Reconstruction of Bandlimited Signals

Results on signal reconstruction from the output of a TEM
have been obtained for cases where the input is a c-bounded,
2Ω-bandlimited signal in L2(R).

Definition 2: A signalx(t) is 2Ω-bandlimited and c-bounded
if its Fourier transform is zero for |ω| > Ω and |x(t)| ≤ c where
c ∈ R.

Definition 3: A signal x(t) is in L2(R) if
∫∞
−∞ |x(t)|2dt =

d < ∞ for some d ∈ R.
Although these requirements are generally not met by real-

world signals, we adopt the bandlimited constraint as is done
in the classical sampling community, assuming that signals
generally have a frequency region where most of the interesting
information lies [36].

It was shown by Lazar and Tóth that such a signal can be
perfectly reconstructed from the samples obtained from a TEM
with parameters κ, δ, and b, if b > c and

Ω <
π (b− c)

2κδ
. (1)

The reconstruction algorithm uses the spike times tk to com-
pute integrals of the original signal [1]. Indeed, if x(t) is our

3There are two types of action potentials: the all-or-none action potential
has a fixed amplitude, whereas the graded action potential can have a varying
amplitude. The integrate-and-fire model assumes that action potentials are all-
or-none, and not graded, although graded action potentials can also be found in
biology.

Fig. 3. Processing of a signal x(t) as it goes through the different stages of a
time encoding machine. From top to bottom, we have: the input signal x(t); the
result of the bias addition where b is the bias; the result of the integration; and
the spike stream output where tk denotes the kth spike and k ∈ Z. Note that,
in practice and in our simulations, k takes a finite number of values as there is
a finite number of spikes, but the analysis in this paper is conducted for infinite
number of spikes, assuming the TEM runs forever.

input signal and {tk, k ∈ Z} is the set of spike times recorded
by our TEM, then we can compute

∫ tk+1

tk

x(u) du = 2κδ − b (tk+1 − tk) , (2)

where tk and tk+1 are any two consecutive trigger times. Now,
let R be the following reconstruction operator:

R (y(t)) =
∑

k∈Z

∫ tk+1

tk

y(u) du g(t− sk), (3)

where sk = (tk + tk+1)/2 and g(t) = sin(Ωt)/(πt).
Given this R, one can estimate x(t) iteratively by setting

x0 = R(x), (4)

xl+1 = xl +R (x− xl) . (5)

To prove that the reconstruction algorithm converges if (1) is
satisfied, one requires a bound on the separation between spike
times: we recall that |x(t)| ≤ c, which, when substituted into (2),
yields

−c (tk+1 − tk) ≤ 2κδ − b (tk+1 − tk) ,

tk+1 − tk ≤ 2κδ

b− c
. (6)

Then, one can use Bernstein and Wirtinger’s inequalities
(Lemmas 8 and 9 of Appendix A) to prove convergence of
the algorithm described in (3)–(5). In short, it is shown in [1]
that the given algorithm can perfectly reconstruct a c-bounded,
2Ω-bandlimited signal in L2(R) from the samples of a TEM
with parameters κ, δ and b, given that c < b and Ω satisfies (1).

Notice that this result imposes a Nyquist-like constraint on
the bandwidth: The bound in (1) requires a bandwidth which
is inversely proportional to the separation between spike times.
Reconstruction of the original signal is then very similar to the
reconstruction of a bandlimited signal sampled with irregularly
spaced amplitude samples [4].
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C. Matrix Formulation of Bandlimited Signal Reconstruction

In [1], Lazar et al. also obtain a closed-form matrix formula-
tion for the above recursive algorithm. First, letG be the operator
defined as

G(y) =
∑

k∈Z
ykg(t− sk),

where sk = (tk + tk+1)/2 and g(t) = sin(Ωt)/(πt) as before.
In addition, define

q =

[∫ tk+1

tk

x(u) du

]

k∈Z
,

and

H = [H�k]�,k∈Z =

[∫ t�+1

t�

g(u− sk) du

]

�,k∈Z
.

Then, one can write x(t) = G(H+q) where H+ is the pseu-
doinverse of H. We refer the reader to [1] for a proof.

We have covered the main results established in [1] and
now wish to reformulate the reconstruction algorithm from the
perspective of projections onto convex sets. We will later use this
perspective to present a solution for multi-channel sampling and
reconstruction.

IV. SINGLE-CHANNEL TEM: A POCS PERSPECTIVE

We wish to reach a more intuitive interpretation of the recur-
sive algorithm presented above, to adapt it to new, potentially
more complex scenarios. To do so, we will slightly modify the
reconstruction algorithm to be able to adopt a projection onto
convex sets approach.

Definition 4: The projection onto convex sets (POCS)
method obtains a solution for x, called x̂, by alternately project-
ing on each of the convex sets C1, C2, . . . , CN , using operators
P1,P2, . . . ,PN . Here, we assume that ∃N ∈ N such that the
element x we are looking for lies in the intersection of N
known convex sets C1, C2, . . . , CN which are subsets of a Hilbert
space X .

The POCS algorithm is known to converge to a fixed point
which lies in the intersection of the sets at hand

⋂N
i=1 Ci [37].

Thus, if the intersection of the sets consists of a single element,
then the algorithm converges to the correct solution.

One can see that the algorithm presented by Lazar and Tóth [1]
resembles a POCS algorithm. In particular, notice that R, de-
fined in (3) can be rewritten as

R (y(t)) = B (y(t)) ∗ g(t), (7)

where

B (y(t)) =
∑

k∈Z

∫ tk+1

tk

y(u) du δ(t− sk). (8)

Here, δ(t) is the Dirac delta. In words,B adds Diracs in the center
of each inter-spike interval,4 where the Diracs are weighted in
such a way that the input and output have the same integrals
between tk and tk+1. The operator R first applies B and then
convolves the result with a sinc function g(t) to make it ban-
dlimited.

4The inter-spike intervals are the intervals [tk, tk+1] between any two con-
secutive spikes tk and tk+1.

Recursively applying R, as in (4) and (5), therefore alter-
nately projects onto two convex sets, the set of bandlimited
functions and the set of functions which match the measurements
{tk, k ∈ Z}. However, the range of operator B does not lie in a
Hilbert space, so the algorithm does not meet all the technical
requirements for a properly converging POCS algorithm [31].
To remedy this, we assume that our input signals are in L2(R),
and define operator B1 as follows:

B1 (y(t)) =
∑

k∈Z

∫ tk+1

tk

y(u) du
1

tk+1 − tk
1[tk,tk+1)(t), (9)

where 1[tk,tk+1)(t) is a function which takes value one when
t ∈ [tk, tk+1) and zero elsewhere. B1 and B produce signals
that have the same integrals over intervals [tk, tk+1), but the
result obtained from applying B1 is in L2(R), which is a Hilbert
space.

Now, we define operator R1 as follows:

R1 (y(t)) = B1 (y(t)) ∗ g(t). (10)

Now defining

x0 = R1(x), x�+1 = x� +R1(x− x�), (11)

we can show that x�(t) is bandlimited with bandwidth 2Ω at
every iteration �. Therefore,

x�+1 = x� ∗ g + B1 (x− x�) ∗ g,
= (x� + B1 (x− x�)) ∗ g.

Notice the similarity between the iterations of this algorithm
and those of the algorithm presented in Section III. Earlier, at
each iteration, Diracs were placed between consecutive spikes
to make the signal consistent with the spike times and the result
was then low-pass filtered. Here, indicator functions are placed
between consecutive spikes before the low-pass filter is applied.

To formalise the POCS perspective, we can divide the com-
putation of x�+1 into two steps:

x�+1 = PΩ (PA1
(x�)) , (12)

where

PA1
(y(t)) = y(t) + B1(x(t)− y(t)), (13)

and

PΩ (y(t)) = y(t) ∗ g(t). (14)

Letting CΩ be the space of 2Ω-bandlimited functions which
are also in L2(R), we have the following two lemmas.

Lemma 1: PΩ is a firmly nonexpansive projection operator
onto CΩ.

Proof: See Appendix B. �
Lemma 2: CΩ is convex.
Proof: See Appendix B. �
As for PA1

, we can substitute (9) into (13), yielding

PA1
(y(t))

=y(t)+
∑

k∈Z

∫ tk+1

tk

[x(u)− y(u)] du
1[tk,tk+1)(t)

tk+1 − tk
. (15)

We thus see that the operator depends on the spike times tk
emitted by a TEM with input x(t). PA1

used operator B1 to
produce an output which is consistent with the measurements
{tk, k ∈ Z}.
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Now, let CA1
be the space of L2(R) functions y(t) satisfying∫ tk+1

tk
y(u) du =

∫ tk+1

tk
x(u) du, ∀k ∈ Z. In other words, the

space CA1
is the space of functions in L2(R) that are consistent

with the measurements tk: these functions generate the spike
times tk when passed through the TEM A1.

Lemma 3: PA1
is a firmly nonexpansive projection operator

onto CA1
.

Proof: See Appendix B. �
Lemma 4: CA1

is convex.
Proof: See Appendix B. �
Since both PA1

and PΩ are projection operators onto CA1

and CΩ respectively, the entire iterative reconstruction algorithm
then consists of alternately projecting onto two sets, each being
convex.

We have thus devised a reconstruction algorithm for single-
channel time encoding consisting of an alternating projection
onto convex sets (POCS) algorithm [37]–[39].

Adopting a POCS interpretation of our algorithm allows us to
directly deduce that the algorithm converges to a fixed point in
the intersection of the sets of 2Ω-bandlimited functions, and
functions which generate the spike times of the TEM. The
conditions for the fixed point to be unique and for it to indeed
be the original signal relies on our proof given in Section V-C.

Therefore, the reconstruction algorithm presented here and
in [1] remains heavily based on the reconstruction from averages
algorithm provided in [4], [30], [40], but the POCS formulation
provides intuition on the process and allows for a different
approach to proving convergence.

V. M-CHANNEL TEM

A. M-Channel TEM Definition

First let us define integrator shifts between TEMs with the
same parameters.

Definition 5: M TEMs with parameters κ, δ and b have inte-
grator shifts α1, α2, . . . , αM if, for the same input x(t), and for
any time t, the outputs of the integrators y1(t), y2(t), . . . , yM (t)
satisfy

yi+1(t) = (yi(t) + αi) mod 2δ, i = 1 · · ·M − 1 (16)

y1(t) = (yM (t) + αM ) mod 2δ. (17)

Here, the αi’s naturally satisfy5 (
∑

i αi) mod 2δ = 0.
Now, we can define an M -channel time encoding machine.
Definition 6: AnM -channel time encoding machine consists

of M single-channel TEMs A1,A2, . . . ,AM , with parameters
κ, δ and b and integrator shifts α1, . . . , αM .

When these shifts are all nonzero, the machines will spike in
this order A1,A2, . . . ,AM , i.e.

t
(i+1)
k−1 < t

(i)
k < t

(i+1)
k ∀k,∀i = 1 · · ·M − 1, (18)

t
(1)
k < t

(M)
k < t

(1)
k+1 ∀k, (19)

where {t(i)k , k ∈ Z} is the set of spike times emitted by
TEM Ai.

5This arises from recursively expanding the expression of y1(t) in (17) and
noting that y1(t) = y1(t) +

∑
i
αi mod 2δ.

Fig. 4. Output of the integrators of two TEMs with nonzero shifts. We assume
both TEMs have a threshold δ = 2 and that TEM A2 is leading TEM A1 by
α1 = 0.75. This means y2(t) = y1(t) + α1 mod 2δ, ∀t. We plot, from top
to bottom: The original signal input to the machines, the output of the integrator
of each machine (yi(t) corresponding to the output of the integrator of TEM
Ai), the difference between the outputs of the two machines, and the output
spikes of each machine. Note how the spike times are interleaved, i.e. there is
always one spike on TEM A1 between any two spikes of TEM A2 and vice
versa.

Equations (18) and (19) force a strict order of the spike times
on the M machines, which naturally arises from nonzero shifts
between the integrators of the machines.

Figure 4 shows an example of 2-channel time encoding.
We pass an input signal through the two single-channel TEMs
(with nonzero integrator shifts) and record the output of each
integrator. Notice how the integrator values are always shifted
by the same amount (modulo 2δ). In contrast, if the integrator
shifts between the two channels were zero, the output of both
integrators would match at all time points. However, in the exam-
ple presented, the integrators are shifted by a nonzero amount.
Therefore, as the spike times are generated at the integrator reset,
the TEMs are guaranteed to spike at different times so that t(i)k 	=
t
(j)
� ∀k, l ∈ N, ∀i 	= j, i, j ∈ [1, · · ·M ]. Moreover, the spike

times are interleaved, satisfying (18) and (19). Note that these
equations are naturally satisfied when we have an M -channel
TEM where all channels have the same parameters κ, δ, and b
and nonzero shifts. However, we have yet to explain where these
shifts come from, in practice.

So far, we have assumed that our signals have infinite support,
and that our TEM samples the signal for infinite time. In practice,
however, a TEM would start recording a signal at a certain time
tstart and stop recording at tend. In these scenarios, integrator
shifts can be well defined and implemented.

Indeed, these integrator shifts will result from different ini-
tial conditions on the integrators of the TEMs at tstart. For
example, assume TEMs A1 and A2 start integrating at the
same time tstart with initial values y1(tstart) and y2(tstart),
respectively. Then TEM A2 will always lead TEM A1 by
α1 = y2(tstart)− y1(tstart).

More practically, an integrator is represented in circuitry by
an operational amplifier coupled with a resistor and capacitor,
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Fig. 5. The circuit of an integrator comprises of an operational amplifier, a
resistor R and a capacitor C in the shown configuration. The circuit does not
provide a perfect integrator as we require in our model but it serves a good
approximation of it and allows the implementation of our setup in hardware. An
analysis of time encoding using leaky integrators such as this one is presented
in [27].

as seen in Fig. 5. This capacitor can be charged with a certain
voltage before the input is fed into the circuit. This initial charge
of the capacitor can practically implement the initial value of
the integrator. Therefore, having different initial charges on the
capacitors of each machine would lead to nonzero integrator
shifts.

However, we recall that our setup assumes a perfect integrator
and infinite time support. The initial conditions formulation
in this section serves as a more intuitive explanation of how
integrator shifts arise, and as a practical explanation of where
these shifts come from, in hardware.

B. Convergence of M-Channel Reconstruction Using POCS

We use the POCS formulation to devise a reconstruction
algorithm for multi-channel time encoding, thus extending the
result found in [1] to the case where x(t) is sampled using
multiple independent time encoding machines.

In [25], we presented an algorithm that could reconstruct 2Ω-
bandlimited signals from an M -channel TEM if

Ω <
π(b− c)

2κᾱ
. (20)

Here, ᾱ = maxi=1···M αi depends on the shifts between the
machines. In this scenario, we reached the maximal possible
bandwidth if the machine integrators were spaced in such a way
that ᾱ = αi = 2δ/M, ∀i = 1 · · ·M . Then, the bandwidth could
improve by a factor of M compared to the single channel case.

In this paper, we want to show that, in theM -channel case, the
improvement on Ω is always M -fold, regardless of the spacing
between the machines’ integrators, as long as this spacing is
nonzero.

To do this, we will design an algorithm that reconstructs an
input from its M -channel spiking output and provide conditions
for its convergence. We use as inspiration the POCS intepretation
of the single-channel reconstruction algorithm.

The POCS method can guarantee convergence onto a fixed
point by alternately projecting onto convex sets. The averaged
projection method works similarly.

Fig. 6. Multi-channel time encoding and decoding pipeline. In practice, the
TEMs are initialized with some initial value of their integrators yi(tstart) and
the integrator shift between two machines Ai and Ai+1 isαi = yi+1(tstart)−
yi(tstart) mod 2δ, for 1 < i < M (the shift between machines AM and
A1 is αM = y1(tstart)− yM (tstart) mod 2δ). The output streams of the
different machines can be combined into one before being fed into a single
decoding machine because of the perfect ordering of the spikes provided in (18)
and (19).

Definition 7: The averaged projections method assumes that
we have N convex sets C1, . . . , CN with corresponding projec-
tion operators P1, . . . ,PN and that we compute an estimate of
x at iteration �+ 1 by taking

x�+1 =
1

N

N∑

i=1

Pi (x�) . (21)

This algorithm can be reduced into an alternating projection
algorithm and therefore also converges to a fixed point in the
intersection of the sets.

We use the averaged projections method to design an al-
gorithm for reconstructing 2Ω-bandlimited signals from the
encoding of more than one TEM. Our algorithm will converge
to a fixed point in the set of solutions that can produce the
different time encodings, as is guaranteed by the properties
of the POCS algorithm and the averaged projections method.
Indeed, sufficient technical requirements for the convergence of
our algorithm to a fixed point in

⋂N
i=1 Ci are based on a review

by Bauschke and Borwein [37].
Later, we will find conditions on Ω that are sufficient for

this set of solutions to consist of a single element, so that our
algorithm converges to the unique and desired solution. First, let
us explain the algorithm.

Let A1,A2, . . . ,AM be our M time encoding machines, and
let {t(i)k , k ∈ Z} be the spike times emitted by machine i, i =
1 · · ·M , when the input is x(t)—a 2Ω-bandlimited signal in
L2(R) such that |x(t)| < c, for some c ∈ R.

Then, let Ri be the reconstruction operator associated with
machine i, such that

Ri (x(t)) =
∑

k∈Z

∫ t
(i)
k+1

t
(i)
k

x(u) du
1[tk,tk+1)(t)

tk+1 − tk
∗ g(t). (22)

Note that each of these reconstruction operatorsRi is the same as
the operator defined in (10) for each of the individual machines
Ai, and therefore also consists of two projections onto convex
sets CAi

and CΩ.
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Fig. 7. (Top) Reconstruction of a signal from its time encoding, using one
channel. (Middle) Reconstruction of the same signal from its time encoding
using two channels with integrators shifted by an unknown value. (Bottom)
Reconstruction error when using outputs of 1-channel TEM and 2-channel TEM.

Then, define a new reconstruction operator

R1···M =
1

M

M∑

i=1

Ri (23)

and recursively estimate x(t) by setting

x0 = R1···M (x), (24)

x�+1 = x� +R1···M (x− x�) . (25)

This algorithm is equivalent to taking alternating projections
on the set CΩ and the sets CAi

, where CΩ denotes the set of 2Ω-
bandlimited functions and each CAi

denotes the set of functions
that could have potentially generated the spike times of machine
Ai. All of these sets are convex by Lemmas 2 and 4.

The algorithm converges to a solution that is 2Ω-bandlimited
and that can generate the spike times {t(i)k , k ∈ Z}, ∀i =
1 · · ·M , by the properties of the POCS method. Note that
this algorithm does not require knowing the shifts αi between
the integrators of the machines, it only requires knowing the
parameters κ, δ and b of the machines.

So far, we have only shown that the algorithm converges to
a fixed point that satisfies 2Ω-bandlimitedness and is consistent
with the spike times generated by all machines Ai, i = 1 · · ·M .

In the next section, we show that this solution is unique
(and is thus the originally sampled signal), if the signal is
2Ω-bandlimited where

Ω <
Mπ(b− c)

2κδ
. (26)

We recall that M is the number of machines, κ, δ and b are
the parameters of the individual machines and c is the bound on
the input signal x(t), i.e |x(t)| ≤ c. Before we proceed to prove
uniqueness, we show, in Fig. 7, a reconstruction example demon-
strating that the algorithm we suggested for the M -channel case
can reconstruct a wider range of signals than is possible in the
single channel case.

C. Uniqueness of M-Channel Reconstruction Using POCS

We have presented an algorithm which converges to a fixed
point in the intersection of the CAi

’s with CΩ; we now wish to
pinpoint sufficient conditions for this intersection to be unique.

Assume the input signal,x(t), is a c-bounded,2Ω-bandlimited
signal in L2(R), which has its integral well defined: ∀t, ∃γ ∈
R, s.t.

∫ t

−∞ x(u) du = γ. We wish to find an estimate of the
input signal x(t), which we denote x̂(t), using the output spike
times of M time encoding machines. By applying the algorithm
we described in (23)–(25), x̂(t) = lim�→∞ x�(t) will be a fixed
point in the intersection of the sets CAi

with CΩ, so x̂(t) will lie
in every one of the CAi

’s. This means that for every i = 1 · · ·M ,
∫ t

(i)
k+1

t
(i)
k

x̂(u) du =

∫ t
(i)
k+1

t
(i)
k

x(u) du, ∀k ∈ Z. (27)

Let us denote X(t) =
∫ t

−∞ x(u)du and X̂(t) =
∫ t

−∞ x̂(u)du.

Then it follows that X(t
(i)
k+1)−X(t

(i)
k ) = X̂(t

(i)
k+1)− X̂(t

(i)
k ),

∀k ∈ Z.
Lemma 5: X(t

(i)
k ) = X̂(t

(i)
k ), ∀ k ∈ Z, ∀i = 1 · · ·M.

Proof:

X(t
(i)
k )

(a)
=

∫ t
(i)
k

−∞
x(u) du

(b)
=

k−1∑

�=−∞

(
X(t

(i)
�+1)−X(t

(i)
� )

)

(c)
=

k−1∑

�=−∞

(
X̂(t

(i)
�+1)− X̂(t

(i)
� )

)

(d)
=

∫ t
(i)
k

−∞
x̂(u) du

(e)
= X̂(t

(i)
k ), ∀k ∈ Z,

where equalities (a) and (e) follow from the definitions of
X(t) and X̂(t), respectively, (b) and (d) follow from x(t) and
x̂(t) having well-defined integrals, and (c) follows from the
fact that X(t

(i)
k+1)−X(t

(i)
k ) = X̂(t

(i)
k+1)− X̂(t

(i)
k ), ∀k ∈ Z. So

X(t) and X̂(t) match at all t(i)k , k ∈ Z, i = 1 · · ·M . �
Lemma 6: The integrals X(t) and X̂(t) are both 2Ω-

bandlimited.
Proof: The original signals x(t) and x̂(t) are both 2Ω-

bandlimited. Taking the integrals of these signals corresponds to
a division by jω in the frequency domain, where ω denotes the
frequency, so the frequency content of X(t) and X̂(t) remains
concentrated in [−Ω,Ω]. �

Therefore, X(t) and X̂(t) are two 2Ω-bandlimited functions
which coincide at time points t

(i)
k , ∀k ∈ Z, ∀i = 1 · · ·M . In

other words, if both X(t) and X̂(t) are sampled at the t
(i)
k ’s,

their samples would have the same values.
Let us combine and order all spike times from the machines

into one set {t̃k, k ∈ Z}. To show that these samples are suffi-
cient to ensure that X(t) and X̂(t) match, we use a result from
Jaffard. In [5], he proved that a sampling sequence {tk, k ∈ Z}
generates a frame for the space of 2Ω-bandlimited functions if
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and only if {tk, k ∈ Z} is relatively separated and

lim inf
r→∞

n(r)

r
>

Ω

π
, (28)

where n(r) is the number of samples in an interval of length r.
This finding provides sufficient conditions for irregular (time,

amplitude) samples to completely characterize a bandlimited
signal: the sample set has to be relatively separated, and the
average sampling rate needs to be higher than the Nyquist rate.
Note that the set being relatively separated is only required for
the reformulation in terms of a problem about frames.

It is a technical condition which is naturally satisfied in our
scenario. In fact, it ensures a minimum separation between
sample times. In Appendix B, we formally define it (Definition 8)
and show that the sampling set {t̃k, k ∈ Z} is relatively sepa-
rated (Lemma 12). On the other hand, to help us prove that the
Nyquist-like condition is satisfied, the following lemma provides
us with a lower bound on the average sampling rate of our spike
times {t̃k, k ∈ Z}.

Lemma 7: The sampling set {t̃k, k ∈ Z} has an average sam-
pling rate which is at least M(b− c)/(2κδ).

Proof: Spike times have a maximal separation between them
defined by (6). According to this bound, every machine pro-
duces a sampling set {t(i)k , k ∈ Z} where two spike times have
a separation of at most 2κδ/(b− c). Therefore, the sampling
rate n(r)/r is at least (b− c)/2κδ, for any r ∈ R. Therefore,
the average sampling rate of a machine lim infr→∞ n(r)/r
is at least (b− c)/2κδ. Since all machines fire at distinct
time points (because the shifts between them are nonzero),
together, they have an average sampling rate which is at least
M(b− c)/2κδ. �

It follows that the samples emitted by the TEMs are sufficient
to determine uniqueness for a 2Ω-bandlimited signal, provided
that Ω satisfies (26).

Hence, a signal X(t) which is 2Ω-bandlimited, with Ω satis-
fying (26), is uniquely defined by the samples provided by a M -
channel TEM with parametersκ, δ and b and inputx(t), such that
|x(t)| ≤ c < b, x(t) ∈ L2(R) and has a well defined integral, if
the shifts between the machines are nonzero. Therefore, X(t)
and its estimate X̂(t)match exactly, and asx(t) and x̂(t) are their
respective derivatives, they are also completely characterized by
the samples and match exactly. So our reconstruction using this
multi-channel time decoding algorithm is perfect in the noiseless
case.

Our findings are summarized into the following theorem.
Theorem 1: Assume x(t) is a 2Ω-bandlimited signal in

L2(R) that is bounded such that |x(t)| ≤ c and that has a well-
defined integral

∫ t

−∞ x(u) du = γ(t) < ∞. If x(t) is passed
through M TEMs with parameters κ, δ and b, such that b > c,
the shifts αi, i = 1 · · ·M between the TEMs are nonzero and

Ω <
Mπ(b− c)

2κδ
,

then

lim
�→∞

x�(t) = x(t). (29)

when x�(t) is as defined in (22)–(25),

We have thus shown that using M time encoding machines to
encode a 2Ω-bandlimited signal x(t) allows a bandwidth which
is M times larger than in the single channel case, no matter how
the shifts between the machines are configured, as long as they
are all nonzero. As already stated, we had shown in [25] that
the bandwidth could become M times larger, but only if the
machines were configured in such a way that their integrators
had equally spaced values. In other words, if we denote yi(t)
to be the value of the integrator of machine i, then we required,
∀i = 1 · · ·M − 1,

αi = yi+1(t)− yi(t) = 2δ/M. (30)

Configuring the integrator shifts between two machines is not
easy (somewhat like synchronizing the clocks of different chan-
nels in classical sampling). Therefore, achieving maximal in-
formation gain becomes a harder feat. Here, we have shown
that the bandwidth improvement by a factor of M is actually
independent of the αi’s, as long as these are nonzero, and that
the reconstruction algorithm does not require the knowledge of
the αi’s.

The strength of this algorithm lies in its simplicity. We have
M TEMs with integrators that are shifted with respect to each
other by some shifts αi, and if the set of αi’s changes, the spike
outputs of the machines change. However, this algorithm does
not require knowledge of the shifts, it only operates on the spike
times generated by the machine. Moreover, labelling of spike
times according to the machine they come from is not necessary.
TEMs are shifted with respect to each other by αi, so the order
of spiking of the machines is fixed: we will always have spikes
coming from TEMA1,A2, . . . ,AM ,A1,A2, · · · . Therefore, the
algorithm operates on a model as depicted in Fig. 6, and is still
able to disentangle spike streams.

D. Closed Form Solution

We have described a POCS iterative algorithm to reconstruct
an input signal from the output of a TEM. However, adopting
a POCS algorithm in practice might be quite slow, and the
performance is dependent on the number of iterations or the
stopping criteria. Instead, for practical implementations, we
propose an equivalent closed form solution to the problem.

First, let {t̃k, k ∈ Z} denote the set of combined and ordered
spike times from all machines A1, . . ., AM . Now define

G̃(y) =
∑

k∈Z
ykg̃[t̃k,t̃k+M )(t), (31)

where g̃[t̃k,t̃k+M )(t) = 1[t̃k,t̃k+M )(t) ∗ g(t).
Also define

q̃ =

[∫ t̃k+M

t̃k

x(u) du

]

k∈Z
,

and

H̃ =
[
H̃�k

]

�,k∈Z
=

[∫ t̃�+M

t̃�

g̃[t̃k,t̃k+M )(u) du

]

�,k∈Z
.
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Then, one can show by induction thatx�, as defined in (23)–(25),
can be expressed as

x� = G̃
(

�∑

k=0

(
I− H̃

)k

q̃

)

. (32)

Now we note that lim�→∞
∑�

k=0(I− H̃)k = H̃+, where +

denotes a pseudo-inverse. Therefore, a closed form solution for
reconstructing x(t) under the same conditions as the ones posed
in Theorem 1 is

x̂(t) = G̃
(
H̃+q̃

)
. (33)

VI. SIMULATIONS

A. Simulation Setup

To validate our theory, we set up an environment to test
our reconstruction algorithm, and verify its performance un-
der different conditions. Generally, our approach includes four
steps:

1) Signal Generation: We wish to generate signals that are
2Ω-bandlimited, and sample them over a finite time win-
dow [tstart, tend]. We assume the signals are a linear com-
bination of sincs centered at uniform time points between
tstart and tend with a separation of π/Ω. The amplitudes
of these sincs are randomly generated assuming a uniform
distribution over [0, 1], and the signals are finally all
normalized to have unit norm.

2) Signal Sampling: Time encoding is performed using either
of two techniques. In the first, we sample the signal dis-
cretely using small steps and approximate the integral of
the signal with a cumulative sum. In the second technique,
signals are assumed to be generated according to our signal
generation procedure described above, and we search for
each spike time using binary search, by evaluating the
signal’s integral at different time points. On one hand,
the first technique is more versatile to different signal
types. On the other hand, the second technique allows
more spike time precision without requiring extra space
requirements which arise from heavily oversampling the
input signal.

3) Signal Reconstruction: Signal reconstruction is performed
using the closed form solution provided in (33). The
reconstruction can also be done using the iterative POCS
algorithm, but obtaining the reconstruction then becomes
more time consuming and the reconstruction’s perfor-
mance depends on the chosen number of iterations or the
stopping criterion.

4) Performance Evaluation: To evaluate the performance of
our reconstruction, we compute the difference between our
(discretized) reconstruction and the original (discretized)
signal. We then compute the power of this difference
for the middle 90% of the signal (assuming the start
and end generally have a less precise reconstruction be-
cause of our finite support sampling and reconstruction
setup). We call this the mean-squared reconstruction er-
ror. As all signals are normalized to have unit norm, the

Fig. 8. Error of time encoding reconstruction when M = 1 · · · 10 channels
with equally-shifted integrators encode a signal as its bandwidth varies. The
mean-squared error is averaged over one hundred trials and plotted as a function
of the bandwidth and the number of channels.

mean-squared reconstruction error of different signals are
comparable.

In the simulations that come, we will evaluate the recon-
struction algorithm’s success while varying 4 main variables in
different combinations: the bandwidth of the sampled signals Ω,
the number of machines M , the shifts αi between the machines
and the variance of the noise added on top of the spike times.

The parameters of the TEMs are always kept constant, taking
κ = δ = 1 and b = maxt |x(t)|+ 1 where x(t) is the input
signal. In fact, when evaluating the algorithm performance, we
can keep these parameters constant without loss of generality as
long as we vary Ω. Indeed, assume we have a 2Ω-bandlimited
signal x1(t) that is sampled using parameters κ, δ and b and
generates spike times {tk(x1), k ∈ Z}. Then, let x2(t) be a
2pΩ-bandlimited signal such that x2(t) = x1(pt). Now assume
x2(t) is sampled using parameters κ, δ/p and b and gener-
ates the spike times {tk(x2), k ∈ Z}, then tk+1(x2)− tk(x2) =
(tk+1(x)− tk(x))/p. In essence, the information content of
the two signals is the same, and the increase in bandwidth of
one can be compensated for by a decrease in the threshold δ
and vice versa. One can also perform similar analyses for the
other parameters κ and b. Therefore we decide to fix the first
three of the four parameters κ, δ, b and Ω and only vary the
last one.

The figures are reproducible using code available online [41].

B. Experimental Validation of Theorem 1

In Fig. 8, we randomly generate one hundred 2Ω-bandlimited
signals, for each value of Ω = π, 2π, . . . , 20π. We provide the
reconstruction error when using M = 1 · · · 10 channels with
the same parameters κ, δ and b to sample and reconstruct
the signals. The channels are constructed with equally spaced
shifts, i.e. for an M -channel TEM, the integrator shifts are
αi = 2δ/M, ∀i = 1 · · ·M . For every number of channels M
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Fig. 9. Error of time encoding reconstruction, when using a single channel
(blue), and when using 2 channels with different spacing configurations (orange,
green, red). The mean-squared error is averaged over one hundred trials and
plotted as a function of the bandwidth. The shift takes value α1, i.e. TEM A2

has its integrator α1 ahead of TEM A1 (modulo 2δ) and consequently, TEM A1

has its integrator 2δ − α1 ahead of TEM A2 (modulo 2δ). The closer the shift
is to δ, the more equally spaced the samples are expected to be.

used to perform the signal sampling and reconstruction, we have
a different constraint on the bandwidth which ensures that this
M -channel TEM can reconstruct its input signal as given in (26).
Looking at Fig. 8, for each number of channels M , we can see
a degradation of the reconstruction as the bandwidth increases
beyond the constraint placed in (26). Notice how this degradation
happens for higher Ω as the number of channels M increases.
The separation between “good” and “bad” performance seems
to change linearly with the number of channels M as we would
expect from (26).

To show that this M -fold improvement on the bound for
the bandwidth is independent of the value of the shift, we
evaluate the reconstruction error when signals are sampled using
2-channel TEMs with different values for the shift. In Fig. 9,
we again simulate one hundred 2Ω-bandlimited signals where
Ω now varies between π/4 and 15π, and plot the averaged
reconstruction error for 2-channel decoding, as well as the aver-
aged reconstruction error for single-channel decoding. For both
the single-channel and the 2-channel case, the reconstruction
error is low for low values of Ω and becomes much higher as
Ω surpasses the bound provided in (26) and plotted using the
dashed vertical lines in Fig. 9. Notice how the reconstruction is
successful for wider ranges of the bandwidth in the 2-channel
case, compared to the single-channel case, and how different
values of the integrator shifts between the two channels do not
affect this region of success.

C. Problem Ill-Conditioning for Small Shifts

We have shown that, in theory, the condition we placed in (26)
is sufficient for the reconstruction algorithm to converge no
matter the shifts between the integrators of different machines.
Moreover, Fig. 9 verified this result for a few values of the inte-
grator shifts. Intuitively, however, the problem should become
more ill-posed as the shifts approach zero.

To investigate this, we evaluate the performance of two-
channel time encoding and decoding as the shifts between the
channels approach zero. We randomly generate one hundred
2Ω-bandlimited signals, where Ω varies between π/4 and 8π.
These signals are then encoded and decoded using two-channel
TEMs with fixed parameters κ, δ and b and with varying shift

Fig. 10. Reconstruction error plotted as a function of bandwidth and integrator
shift. A hundred 2Ω-bandlimited signals, where Ω varies between π/4 and 8π
are generated and subsequently sampled and reconstructed using two-channel
time encoding and decoding. The TEM used has fixed parameters κ = 1, δ = 1
and b = maxt |x(t)|+ 1 but variable integrator shifts. Here, we plot one of the
two shiftsα1, the value of the second shift can be obtained fromα2 = 2δ − α1.
The mean-squared error is averaged over the hundred randomly generated signals
and plotted as a function of bandwidth and shift. Although we have shown that
the value of the integrator shifts should have no effect on the reconstructible
bandwidth (26), very small shifts perform less well than shifts that are within
the same order of magnitude as the threshold δ. The rightmost column, separated
by the dashed yellow line, shows the reconstruction error when a shift of zero is
used. In other words, this is the reconstruction error when using single-channel
time encoding and decoding.

α1. We then estimate the reconstruction success by computing
the reconstruction error.

Figure 10 is essentially a two dimensional version of the plot
in Fig. 9 which investigates smaller shifts. As the integrator
shift approaches zero, the outputs of the two channels of the
TEM start to resemble each other more and more, so our two-
channel encoding starts to resemble single-channel encoding.
Therefore, we also include, in Fig. 10 the reconstruction error of
a single-channel TEM, to compare it to the result obtained with
two-channel encoding with very small shift.

Note that the system seems to perform reasonably well in the
noiseless case, when the condition in (26) is satisfied, for values
of the shift that are not too small (less than 10−4).

D. Algorithm Performance in Noisy Settings

We now provide basic analyses to understand the system’s
performance in the case of noise. We study the effect of noise
on reconstruction when varying two other parameters: the band-
width (Fig. 11.a) and the shift (Fig. 11.b). In both scenarios,
we assume that we have a two-channel TEM with parameters
κ, δ and b fixed, such that the TEM is guaranteed to be able to
reconstruct 2Ω-bandlimited signals with Ω = π.

In Fig. 11.a, we assume that the two machines are equally
spaced (α1 = α2) and that Gaussian noise is added to the spike
times. We then vary the SNR between 80 dB and 0 dB and the
bandwidth between 0.25π and 8π. Notice how, with high SNR,
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Fig. 11. (a) Reconstruction error of two-channel time encoding with equal
spacing in the shifts, with gaussian noise added to the spike times, when the
SNR varies between 80 dB and 0 dB and the bandwidth varies between 0.25π
and 8π. (b) To the left of the yellow line, reconstruction error of two-channel
time encoding of 2Ω-bandlimited signals with Ω = 2π, with gaussian noise
added to the spike times, when the SNR varies between 80 dB and 0 dB and
the integrator shifts vary between 1 (equal spacing) and 10−8. To the right of
the yellow line, reconstruction error of single-channel time encoding of signals
with the same bandwidth.

i.e. with low noise, the machines can reconstruct signals with
bandwidths that go up to 2π. As the SNR becomes lower, the
machines become less apt at reconstructing signals with high
bandwidths.

In Fig. 11.b, we assume that the input signals to the ma-
chines are 2Ω-bandlimited where Ω = 2π. We then vary the
SNR between 80 dB and 0 dB and the integrator shifts
of the machines between 1 (equal spacing) and 10−8. Notice how
the reconstruction of the input becomes worse as the shift be-
tween the machines approaches zero and as the SNR decreases.
We also provide the reconstruction error for the single-channel
time encoding as a comparison.

E. Setting Shift Values: Practical Considerations

As seen in Fig. 10, the algorithm we have suggested works
well, in the noiseless case, for varying values of the shift, until
the shift approaches zero very closely. Therefore, if the shifts
are randomly assigned, they will, with very high probability fall
in a regime where the algorithm provides good performance.

As for the physical implementation of the shifts, as previ-
ously mentioned, the hardware implementation of time encoding
machines uses a capacitor which can hold some initial charge.
One can make sure that different machines have different initial
charges on their capacitors by first feeding the TEMs with
different signals to randomly initialize the values of the capacitor
before beginning to encode the signal of interest.

VII. CONCLUSION

We have studied multi-channel time encoding of 2Ω-
bandlimited signals, proposed an algorithm for reconstructing an
input signal from its samples, and provided sufficient conditions
on Ω for the algorithm to converge to the correct solution. We
have shown that if a TEM can perfectly encode a 2Ω-bandlimited
signal, thenM TEMs with the same parameters and with shifts in
their integrators can perfectly encode a 2MΩ-bandlimited sig-
nal. The reconstruction algorithm is then based on a projection
onto convex sets method.

The improvement on bandwidth that we found is independent
of the value of the shifts between the machine integrators, as
long as these shifts are nonzero. We have also shown that the
knowledge of the relative shifts between the machines is not
necessary for reconstruction to be possible. This is not the case
in similar setups of multi-channel encoding in the classical
sampling scenario where an unknown shift makes the inverse
problem more difficult to solve.

Our setting has focused on reconstructing signals using TEMs
with the same parameters κ, δ and b, where b > 0. However, our
algorithm can be extended to scenarios where these parameters
vary according to the machine, and to scenarios where b = 0.
However, the improvement in bandwidth becomes harder to
quantify, as different configurations entail different improve-
ments and many edge cases can be found. As a general rule,
a 2Ω-bandlimited signal can still be reconstructed, if Ω is
inversely proportional to the number of linearly independent
constraints that arise from the spike times generated by the
machines.

In our future work, we address this kind of setup and extend
it to scenarios with vectors of input that are fed into the TEMs
with different combinations [25]. We also hope to understand
what potential sources of noise are in practice, and study our
setup’s behavior in noisy conditions.

APPENDIX A
PREVIOUS RESULTS

The following results can all be found in [4].
Lemma 8 (Bernstein’s inequality): If x = x(t) is a function

defined on R bandlimited to [−Ω,Ω] then dx/du is also
bandlimited and

∥
∥
∥
∥
dx

du

∥
∥
∥
∥

2

≤ Ω‖x‖2.

Lemma 9 (Wirtinger’s inequality): If x, dx/dt ∈ L2(a, b) and
either x(a) = 0 or x(b) = 0, then6

∫ b

a

|x(u)|2 du ≤ 4

π2
(b− a)2

∫ b

a

∣
∣
∣
∣
dx

du

∣
∣
∣
∣

2

du.

Definition 8: A set {tk, k ∈ Z} is called relatively separated
if it can be divided into a finite number of subsets so that |xn −
xm| ≥ β > 0 for a fixed β > 0, n 	= m, and xn, xm in the same
subset.

6A signal x(t) is in L2(a, b) if ‖x(t)‖2 = (
∫ b

a
|x(u)|2 du)1/2 < ∞.
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APPENDIX B
PROOFS

Lemma 1: PΩ is a firmly nonexpansive projection operator
onto CΩ.

Proof of Lemma 1: First, we show that PΩ is idempotent.
Denoting G(ω) to be the Fourier transform of g(t), we get
G(ω) = 1, ∀|ω| ≤ Ω and zero otherwise.

Then,

PΩ (PΩ (y(t))) = y(t) ∗ g(t) ∗ g(t) = y(t) ∗ g(t),
since G(ω)2 = G(ω), so that g(t) ∗ g(t) = g(t).

We now show that PΩ has as range the space CΩ of 2Ω-
bandlimited functions in L2(R).

First, let y(t) be an arbitrary L2(R) function, its Fourier
transform Y (ω) is then also L2(R), according to Parseval’s
theorem. The result of the projection will have Fourier transform
Y (ω)G(ω) = Y (ω), ∀ |ω| < Ω, and zero otherwise. Therefore
Y (ω)G(ω) is also ∈ L2(R).

Now, let y(t) be a 2Ω-bandlimited function ∈ L2(R), then
its Fourier transform Y (ω) is such that Y (ω) = 0, ∀|ω| > Ω.
Convolving y(t) with g(t) in the time domain only multiplies
Y (ω) by 1 in the region where it is nonzero. Therefore y(t) ∗
g(t) = y(t) ∈ CΩ.

Finally, PΩ is firmly non-expansive, since it is an orthogonal
projection operator [3]. �

Lemma 2: CΩ is convex.
Proof of Lemma 2: Let y1(t) and y2(t) be in CΩ. Then let

y3(t) be any convex combination of y1(t) and y2(t), i.e. y3(t) =
λy1(t) + (1− λ)y2(t), whereλ ∈ [0, 1]. Then, letY1(ω),Y2(ω)
and Y3(ω) be the Fourier transforms of y1(t), y2(t) and y3(t)
respectively. By linearity of the Fourier transform, we find that
Y3(ω) = λY1(ω) + (1− λ)Y2(ω), ∀ω ∈ R. Therefore, since
y1(t) and y2(t) are in CΩ and Y1(ω) = Y2(ω) = 0 ∀|ω| > Ω,
Y3(ω) = 0 ∀|ω| > Ω. Therefore, y3(t) is also 2Ω-bandlimited.
L2(R) is also a convex set (as it is a linear space), therefore
y3(t) is also in L2(R), as y1(t) and y2(t) ∈ L2(R). Therefore
y3(t) ∈ CΩ, thus showing that CΩ is convex. �

Lemma 3: PA1
is a firmly nonexpansive projection operator

onto CA1
.

Proof of Lemma 3: First we show that PA1
is idempotent.

Note that
∫ tk+1

tk
PA1

y(u) =
∫ tk+1

tk
x(u) du, ∀k ∈ Z. Therefore,

PA1
(PA1

(y(t)))

= PA1
(y(t))

+
∑

k∈Z

∫ tk+1

tk

[x(u)− PA1
(y(u))] du

1[tk,tk+1)(t)

tk+1 − tk

= PA1
(y(t)) .

Now we show that the range of PA1
is indeed the space of

functions z(t) with
∫ tk+1

tk
z(u) du =

∫ tk+1

tk
x(u) du.

First let y(t) be a function in L2(R). It is easy to show
that PA1

(y(t)) will have
∫ tk+1

tk
PA1

(y(u)) du =
∫ tk+1

tk
x(u) du.

One can also show that PA1
(y(t)) will be in L2(R), by using

Lemma 10.

Now, let y(t) be in CA1
, then

PA1
(y(t)) = y(t)

+
∑

k∈Z

∫ tk+1

tk

[x(u)− y(u)] du
1[tk,tk+1)(t)

tk+1 − tk

= y(t) +
∑

k∈Z
0× 1[tk,tk+1)(t)

tk+1 − tk

= y(t).

Therefore, PA1
has range CA1

.
It remains to show that PA1

is firmly nonexpansive. To do so,
it is sufficient to show that PA1

can be written

PA1
=

1

2
I +

1

2
N ,

where N is an nonexpansive operator. Indeed, the operator can
be written as such if we set

N y(t) = Iy(t) + 2B1 (x(t)− y(t)) .

We want to show thatN is nonexpansive, therefore it is sufficient
to show that for any y1(t) and y2(t) in L2(R),

||N y1 −N y2|| ≤ ||y1 − y2|| .
We will start with the left hand side of the equation:

||N y1 −N y2|| = ||Iy1(t) + 2B1 (x(t)− y1(t))

− Iy2(t)− 2B1 (x(t)− y2(t))||
= ||Iy1(t)− 2B1y1(t)− Iy2(t) + 2B1y2(t)||
= ||(I − 2B1) (y1 − y2)||
≤ ||I − 2B1|| ||y1 − y2||
≤ ||y1 − y2||

as we have shown, in Lemma 11 that ‖I − 2B1‖ = 1. �
Lemma 4: CA1

is convex.
Proof of Lemma 4: Let y1(t) and y2(t) be in CA1

. Then let
y3(t) be any convex combination of y1(t) and y2(t), i.e. y3(t) =
λy1(t) + (1− λ)y2(t), where λ ∈ [0, 1]. Then, we have:
∫ tk+1

tk

y3(t) dt =

∫ tk+1

tk

λy1(t) + (1− λ)y2(t) dt

= λ

∫ tk+1

tk

y1(t) dt+ (1− λ)

∫ tk+1

tk

y2(t) dt

= λ

∫ tk+1

tk

x(t) dt+ (1− λ)

∫ tk+1

tk

x(t) dt

=

∫ tk+1

tk

x(t) dt.

The first equality holds because of the definition of y3(t), and
the third equality holds because y1(t) and y2(t) are in CA1

. The
result shows that y3(t) is also consistent with the spike times
{tk, k ∈ Z}. On the other hand, L2(R) is a linear space (and
therefore a convex set), so y3(t) ∈ L2(R) as well. Therefore,
y3(t) ∈ CA1

, thus proving that CA1
is a convex set. �

Lemma 10: If y(t) is inL2(R), thenB1y(t) is also inL2(R).
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Proof: Let y(t) ∈ L2(R), so
∫∞
−∞ |y(t)|2 = d < ∞ for some

d ∈ R.

∫ ∞

−∞
|B1y(t)|2 dt

(a)
=

∑

k∈Z

∫ tk+1

tk

|B1y(t)|2 dt

(b)
=

∑

k∈Z

∫ tk+1

tk

∣
∣
∣
∣
∣

∫ tk+1

tk
y(u) du

tk+1 − tk

∣
∣
∣
∣
∣

2

(c)
=

∑

k∈Z
(tk+1 − tk)

∣
∣
∣
∣
∣

∫ tk+1

tk
y(u) du

tk+1 − tk

∣
∣
∣
∣
∣

2

(d)
=

∑

k∈Z

(∫ tk+1

tk
y(u) du

)2

tk+1 − tk

(e)

≤
∑

k∈Z
(tk+1 − tk)

∫ tk+1

tk
(y(u))2 du

tk+1 − tk
,

(f)
=

∑

k∈Z

∫ tk+1

tk

(y(u))2 du

(g)
=

∫ ∞

−∞
(y(u))2 du = d < ∞.

Here, inequality (e) arises from the Cauchy-Schwarz
inequality. �

Lemma 11: The operator norm of operator I − 2B1 is ||I −
2B1|| = 1.

Proof: To find the operator norm ||I − 2B1|| =
supy

‖(I−2B1)y‖
‖y‖ , let us compute

||(I − 2B1) y(t)||2 =

∫ ∞

−∞
|y(t)− 2B1y(t)|2 dt

=
∑

k∈Z

∫ tk+1

tk

(y(t)− 2B1y(t))
2 dt

=
∑

k∈Z

∫ tk+1

tk

(

y(t)− 2

∫ tk+1

tk
y(u) du

tk+1 − tk

)2

dt

=
∑

k∈Z

∫ tk+1

tk

(y(t))2 + 4

(∫ tk+1

tk
y(u) du

tk+1 − tk

)2

− 4

∫ tk+1

tk
y(u) du

tk+1 − tk
y(t) dt

=
∑

k∈Z
4 (tk+1 − tk)

(∫ tk+1

tk
y(u) du

tk+1 − tk

)2

− 4

(∫ tk+1

tk
y(u) du

)2

tk+1 − tk
+

∫ tk+1

tk

(y(t))2 dt

=
∑

k∈Z
4

(∫ tk+1

tk
y(u) du

)2

tk+1 − tk

− 4

(∫ tk+1

tk
y(u) du

)2

tk+1 − tk
+

∫ tk+1

tk

(y(t))2 dt

=
∑

k∈Z

∫ tk+1

tk

(y(t))2 dt

=

∫ ∞

−∞
(y(t))2 dt = ‖y(t)‖2.

Therefore, ‖(I − B1)y(t)‖ = ‖y(t)‖. Thus, ‖I − B1‖ = 1.�
Lemma 12: Assume we have an M -channel TEM with pa-

rameters κ, δ and b, with shifts αi 	= 0, i = 1 · · ·M , and input
x(t) such that |x(t)| ≤ c < b. Let {t̃k, k ∈ Z} be the spike times
generated by this M -channel TEM. In other words, {t̃k, k ∈ Z}
is the combined and ordered set of spike times generated by
all channels of the TEM A1, A2, . . . ,AM . Then, the spike
times {t̃k, k ∈ Z} are relatively separated (see Definition 8 in
Appendix A).

Proof: Assume, without loss of generality that the channels
A1, A2, · · · AM are ordered by spike time:

t
(i)
k < t

(i+1)
k ∀i = 1 · · ·M − 1,

t
(M)
k < t

(1)
k+1.

If we denote, as in Definition 6, αi, i = 1 · · ·M to be the shifts
between two consecutively spiking machines, then a pair of
consecutive spike times t̃k and t̃k+1 will satisfy

∫ t̃k+1

t̃k

x(u) du = 2καi − b (tk+1 − tk) ,

for some αi that depends on the provenance of t̃k and t̃k+1,
which is determined by k since different machines always spike
in order (see Definition 6).

Now recall that |x(t)| ≤ c, which, when substituted into (B),
yields

c
(
t̃k+1 − t̃k

) ≥ 2καi − b
(
t̃k+1 − t̃k

)
,

t̃k+1 − t̃k ≥ 2καi

b+ c
,

for some i ∈ {1, . . . ,M} which depends on k. Then,

t̃k+1 − t̃k ≥ 2κmini(αi)

b+ c
.

Now denote β = 2κmini(αi)/(b+ c). Note that β is nonzero
because all αi’s are assumed to be nonzero. Therefore, our
sampling set {t̃k, k ∈ Z} is relatively separated. �
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