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communication in cluttered environments
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Abstract—In this study, we consider a spectrum sharing archi-
tecture, wherein a multiple-input multiple-output communication
system cooperatively coexists with a surveillance radar. The
degrees of freedom for system design are the transmit powers of
both systems, the receive linear filters used for pulse compression
and interference mitigation at the radar receiver, and the space-
time communication codebook. The design criterion is the maxi-
mization of the mutual information between the input and output
symbols of the communication system, subject to constraints
aimed at safeguarding the radar performance. Unlike previous
studies, we do not require any time-synchronization between
the two systems, and we guarantee the radar performance on
all of the range-azimuth cells of the patrolled region under
signal-dependent (endogenous) and signal-independent (exoge-
nous) interference. This leads to a non-convex problem, and an
approximate solution is thus introduced using a block coordinate
ascent method. A thorough analysis is provided to show the
merits of the proposed approach and emphasize the inherent
tradeoff among the achievable mutual information, the density
of scatterers in the environment, and the number of protected
radar cells.

Index Terms—Spectral coexistence, shared spectrum access for
radar and communications (SSPARC); radar-communications
convergence, joint system design, MIMO communications,
surveillance radars, mutual information.

I. INTRODUCTION

Spectral co-existence of sensing and communication sys-
tems, anticipated as a possible enabling technology for post-
Fourth Generation (4G) wireless services in [1], has assumed
more and more relevance with the deployment of Fifth Gen-
eration (5G) [2]: for example, the December 2017 Third
Generation Partnership Project (3GPP) first release of the 5G
New Radio standard standardizes the usage of a 3 GHz carrier
frequency to undertake single-carrier frequency-division multi-
ple access in the uplink of terrestrial networks (see also [3]). A
foreseeable trend for Sixth Generation (6G) is an increased cell
densification, with the transition from small cells to tiny cells
and a corresponding transition from the Sub-6 GHz policy
to the full utilization of C (4-8 GHz) and X (8-12 GHz)
bandwidths [4]. Since S, C, and X bands are traditionally
assigned to sensing functions (and, very frequently, under
military control in order to undertake surveillance tasks), co-
existence between radar and wireless communications has
become a necessity, more than an option. A significant recent
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development is the announcement of the shared spectrum
access for radar and communications (SSPARC) program, by
the defense advanced research projects agency (DARPA) [5]–
[8].

A number of approaches aimed at assessing the feasibility
of full spectrum sharing have been proposed so far, the
big divide being that among cooperative and un-cooperative
architectures. Early studies (see, among the others, [9]–[16])
focused on the performance of a primary radar system co-
existing with un-licensed wireless users, while more recent
results consider the performance of the communication system
as the primary element of concern [17]–[20], and the radar
waveform is carefully designed [21]–[25]. Increased degrees
of cooperation obviously allow safeguarding the performance
of both the radar and the communication system. Such coop-
erative strategies avoid generating mutual interference through
strict transmit policies coordination: for example, in [26]–
[34] only one transmitter is active and carefully designed to
ensure dual-function radar-communication, while in [35]–
[37] channel sensing techniques are borrowed from the large
cognitive radio literature to detect and exploit spectral holes.

A different philosophy is the one proposed by [38]–[43],
wherein both systems are equipped with an active transmitter,
but joint design (or co-design) of the radar waveform(s)
and of the communication system codebook is undertaken.
Generalizations of this approach to account for multiple-input
multiple-output (MIMO) architectures of the radar and/or the
communication systems, the presence of possible reverberation
(clutter) induced by the radar transmitter onto the communica-
tion receiver, and the use of different radar waveform families
have been recently considered [44], [45]. The major drawback
of these approaches is that they assume complete freedom in
the choice of the radar waveform: in fact, such waveforms
cannot be chosen at will, but must comply with a number of
requirements concerning resolution, variations in the signal
modulus (amplifiers and A/D converters requires constant
modulus signals), sidelobe level, and ambiguity [46]–[48],
whereby the performance achievable in practice—i.e., once
the above requirements are translated into as many constraints
in the joint design procedure—may be very distant from the
theoretical ones, especially for what concerns the commu-
nication system [41], [49]. Moreover, the radar performance
is guaranteed only at a specific resolution cell, thus making
the design inappropriate in surveillance radars, where the
monitored area is wide, and all the observed resolution cells
should be protected by excessive interference. Finally, a high
coordination between the two systems is needed, since they are
required to operate in a time-synchronous manner [41], and
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this may be too demanding or not allowed in some applications
(e.g., for military radars).

In this context, starting from the preliminary results in [50],
we consider the problem of jointly designing the transceiver
architecture of a surveillance radar and of a MIMO com-
munication system, operating in full bandwidth overlap. The
degrees of freedom for system optimization are, for the radar
system, the transmit power and the receive filters, while,
for the MIMO communication system, the whole codebook,
whose space-time codewords (STC’s) are bounded to span
exactly one PRT. From the point of view of the radar sys-
tem, whose transmit waveform is designed once and for all,
this architecture replaces the concept of full cooperation—
hardly feasible also due to security reasons—with that of
awareness. The design strategy is the maximization of the
mutual information between the input and output symbols
of the communication system, while the performance of the
radar system is guaranteed by forcing the received signal-to-
disturbance ratio (SDR) at each resolution bin to exceed a
prescribed level. Major novelties of the present contribution
are the detailed signal model, the global approach we take,
in that all the monitored radar resolution cells are protected,
and the reduced degree of cooperation that is needed, since
no time synchronization between the two systems is required.
The resulting problem is very complex, whereby we propose
a block coordinate ascent method (also known as alternating
maximization) to find an approximate solution thereof. The
analysis demonstrates that large gains with respect to a disjoint
design are possible, especially in terms of achievable SDR’s at
the radar side, and that there is a fundamental tradeoff among
the mutual information, the density of clutter scatterers in the
surrounding environment, and the number of protected radar
cells.

The rest of the paper is organized as follows. In the next
section, the signal model at the radar and communication
system sides is introduced. In Sec. III the joint optimization
problem is presented and (sub-optimally) solved, while in
Sec. IV a numerical example is provided to show the merits of
the proposed strategy. Finally, some concluding remarks are
given in Sec. V.

Notation: In the following, R, R+, C, and Z denotes the
set of real, non-negative real, complex, and integer numbers,
respectively; x+ = max{x, 0} is the positive part of x ∈ R,
while x+ is the vector of positive parts of the entries of
x ∈ RN ; x∗, xT , and xH denote the conjugate, the transpose,
and the conjugate transpose of the vector x; IN is the N ×N
identity matrix; ON,M is the N × M matrix with all zero
entries; diag(a1, . . . , aN ) is the N ×N diagonal matrix with
entries {ai}Ni=1 on the principal diagonal; [X]a:b,c:d is the sub-
matrix consisting of the rows a through b and the columns
c through b of the matrix X; X−1/2 is the square root of
the inverse of the Hermitian positive definite matrix X; E[ · ]
denotes statistical expectation; Nc(0,X) denotes the complex
circularly-symmetric Gaussian distribution with covariance
matrix X; and 1A is the indicator function of the condition
A, i.e., 1A = 1, if A holds true, and 1A = 0, otherwise.

local reach scattering
environment

Radar
TX-RXComm. TX

Comm. RX

Figure 1. Considered scenario of coexistence between a MIMO communica-
tion system and a radar.

II. SIGNAL MODEL

We consider the scenario outlined in Fig. 1, where a MIMO
communication system coexists with a surveillance radar on
the same bandwidth W . The communication system operates
in a local rich scattering environment (e.g., an urban area),
whose size is in the order of c/W , c denoting the speed of
light. The radar is located outside this area, and monitors a
large region, that includes the one where the communication
system operates; the range resolution of the radar is in the
order of c/(2W ).

The radar is equipped with a non-scanning wide-beam
transmit antenna and emits the following train of (encoded)
pulses

s(t) =
√
Pr
∑
p∈Z

L−1∑
`=0

q(`)φ(t− `Tc − pT ) (1)

where:
• Pr is the average transmit power;
• q = (q(0) · · · q(L − 1))T ∈ CL is the (fast-time) code

sequence, used to modulate the subpulses composing each
pulse, also called chip sequence; we set ‖q‖2 = N , with
N a positive integer greater than L;

• Tc ≈ 1/W is the chip period;
• φ(t) is the subpulse, a baseband waveform with support1

in [0, Tc], bandwidth W , and such that
∫
R |φ(t)|2dt = Tc;

• L is the number of subpulses in each pulse, so that LTc
is the pulse duration; and

• T = NTc is the pulse repetition time (PRT).
The number of non-ambiguous range cells2 is N ≈WT , and
is typically much larger than L.

The communication transmitter is equipped with M omni-
directional antennas, and the waveform emitted by antenna m
is

xm(t) =
∑
i∈Z

cm(i)φ(t− iTc) (2)

m = 1, . . . ,M , where cm(i) is the symbol sent at epoch i. The
symbols transmitted by the M antennas during N signaling in-
tervals (i.e., {cm(pN + i) : m = 1, . . . ,M, i = 0, . . . , N −1},

1We hasten to underline that the assumption on the support of φ(t) is made
here just to simplify the exposition: the sufficient condition is that φ(t) be a
Nyquist waveform, i.e., that

∫
R φ(t)φ(t− `Tc)dt = 0, for any ` 6= 0.

2Ambiguity arises from the periodicity of the radar waveform s(t), and
echoes whose arrival time differ for an integer multiple of T (i.e., targets with
ranges spaced by integer multiples of cT/2) are not distinguishable [51].
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Figure 2. Transmit and propagation delays between the two systems.
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Figure 3. Observation windows at the communication and radar receivers for
codeword/PRT p = 0: both the signal of interest and the interference from
the coexisting system is present.

with p an integer) form an M ×N STC, which is drawn from
a complex circularly-symmetric Gaussian (CCSG) codebook.

The time delay of the radar transmitter with respect to
the communication transmitter is denoted by τ ; τcc is the
propagation delay between the communication transmitter
and receiver, while τcr and τrc are the (smallest) traveling
time between communication transmitter and radar receiver
and between radar transmitter and communication receiver,
respectively (cfr. Fig. 2).

A. Data receiver

The communication receiver is equipped with K omni-
directional antennas and process the signal observed in the
time interval corresponding to the p-th codeword, as shown
in Fig. 3. The signal received by antenna k (expressed with
respect to the temporal reference system of the communication
receiver) can be modeled as

rk(t) =

M∑
m=1

hk,mxm(t)︸ ︷︷ ︸
signal of interest

+

N−1∑
i=0

αk,is(t− iTc)︸ ︷︷ ︸
radar inteference

+ vk(t)︸ ︷︷ ︸
thermal
noise

(3)

for t ∈
[
pT, (p+ 1)T

]
, where:

• hk,m ∈ C is the gain of the channel linking the receive
antenna k to the transmit antenna m, assumed to be
perfectly estimated and known at the transmitter;3

• αk,i ∈ C is the sum of the amplitudes of the radar
echos hitting antenna k at times4 {iTc + dT}∞d=0; we
model αi = (α1,i · · · αK,i)T ∈ CK as a CCSG random
vector with covariance matrix Σα,i, perfectly estimated
and known at the transmit side,5 and assume that αi and
αj are independent for i 6= j; and

• vk(t) is the thermal noise, modeled as a CCSG white
process with power spectral density σ2

v .
Let rk,i = 1

Tc

∫
R rk(t)φ∗(t−pT − iTc)dt, i = 0, . . . , N−1,

be the projections of the signal received at the k-th antenna
onto N time-shifted versions of the baseband pulse (normal-
ized by Tc) and c = (cT1 · · · cTM )T ∈ CMN the p-th STC,
where cm = (cm(0) · · · cm(N − 1))T ∈ CN . Then, the
discrete-time signal rk = (rk,0 · · · rk,N−1)T ∈ CN can be
written as

rk =
(
(hk,1 · · · hk,M )⊗ IN

)
c+

√
Pr

N−1∑
i=0

αk,iqi + vk. (4)

where qi ∈ CN is the vector obtained by taking a downwards
circular shift of i positions of (qT 0 · · · 0)T ∈ CN , and vk ∼
Nc(0,PvIN ) is the noise vector, with Pv = σ2

v/Tc. Stacking
the received signals in a unique vector r = (rT1 · · · rTK)T ∈
CKN , we obtain

r = (H ⊗ IN )c+
√
Pr

N−1∑
i=0

αi ⊗ qi + v (5)

where v = (vT1 · · · vTK)T ∈ CKM , and

H =

h1,1 · · · h1,M

...
...

hK,1 · · · hK,M

 ∈ CK×M . (6)

With this notation, the (normalized) mutual information
between the received vector r and the STC c is

R =
1

N
log det

INK + (H ⊗ IN )C(H ⊗ IN )H

×

(
Pr

N−1∑
i=0

Σα,i ⊗ (qiq
H
i ) + PvINK

)−1
 (7)

bits per channel use, where C = E
[
ccH

]
is the covariance

matrix of c. Such mutual information represents an upper
bound to the achievable transmission rate and can be ap-
proached provided N is large enough.

3We are assuming here that possible a Doppler shift between transmitter
and receiver can be neglected over a time interval of length T , corresponding
to the transmission of a STC.

4The radar interference is
∑N−1
i=0

∑∞
d=0 αk,i,ds(t − iTc − dT ), where

αk,i,d is the amplitude of an echo hitting antenna k at time iTc+dT , and the
term in (3) is obtained by defining αk,i =

∑∞
d=0 αk,i,d and by exploiting

the periodicity of the radar waveform.
5Remarkable examples for Σα,i are the diagonal and the rank-one cases:

in the former, there is a line-of sight component linking the scatterer (or the
radar) and the receive antennas, while, in the latter, there is no line-of sight
component, and independent rays from the rich scattering environment arrive
at the receive antennas.
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B. Radar receiver

The radar forms J simultaneous orthogonal beams (defining
as many azimuth bins), so as to cover the area illuminated
by the non-scanning wide transmit beam, and elaborates the
signal received in the p-th PRT, as shown in Fig. 3. Assuming
the presence of a point-like target with delay6 (L+n)Tc, n ∈
{0, . . . , N−L}, in the j-th azimuth direction, j ∈ {1, . . . , J},
the continuous-time signal received from the j-th azimuth
beam (expressed with respect to the temporal reference system
of the radar receiver) can be modeled as

yj(t) = gn,js(t− nTc)︸ ︷︷ ︸
target echo

+

N−1∑
i=0

γi,js(t− iTc)︸ ︷︷ ︸
radar clutter

+

M∑
m=1

N−1∑
i=0

∞∑
d=0

βm,i,j,d

×xm
(
t+ τ + LTc − (τcr + iTc + dT )

)︸ ︷︷ ︸
data inteference

+ uj(t)︸ ︷︷ ︸
thermal
noise

(8)

for t ∈
[
pT, (p+ 1)T

]
, where:

• gn,j ∈ C is the amplitude of the target echo, modeled as
a zero-mean random variable with variance σ2

g,n,j ;
• γi,j ∈ C is the sum of the amplitudes of the clutter

echoes received at times7 {iTc + dT}∞d=0 from the j-
th azimuth bin, modeled as a zero-mean random variable
with variance σ2

γ,i,j ; we assume that σ2
γ,i,j and σ2

γ,i′,j′

are independent for (i, j) 6= (i′, j′), and that σ2
γ,i,j has

been perfectly estimated;
• βm,i,j,d ∈ C is the amplitude of the echo caused by

the signal emitted by antenna m of the communication
system and hitting the radar from the j-th azimuth
direction after a traveling time τcr + iTc+dT − τ −LTc;
we model βm,i,j,d as a zero-mean random variable and
assume that βm,i,j,d and βm′,i′,j′,d′ are independent for
(i, j, d) 6= (i′, j′, d′); we also assume that8 σ2

β,m,m′,i,j =∑∞
d=0 E[βm,i,j,dβ

∗
m′,i,j,d] has been perfectly estimated;

and
• uj(t) is the additive thermal noise, modeled as a CCSG

process with power spectral density σ2
u.

Letting yi,j = 1
Tc

∫
R yj(t)φ

∗(t−pT−iTc)dt, i = 0, . . . , N−
1, be the projections of the signal received on the j-th

6Delays smaller than the duration of the emitted pulse correspond to
distances of no interest for the radar.

7The comment in Footnote 4 is also valid here.
8Two notable cases are those where σ2

β,m,m′,i,j is independent of
(m,m′), and where it is equal to zero for all m 6= m′. In the former
case, there is a line-of-sight component linking the transmit antennas and
the scatterer (or the radar), so that βm,i,j,d = βm′,i,j,d; in the latter, there
is no line-of-sight component, and independent rays from the rich scattering
environment arrive at the radar.

azimuth bin during the p-th PRT, we obtain the N -dimensional
discrete-time signal

yj =
(
y0,j · · · yN−1,j

)T
=
√
Prgnqn +

√
Pr

N−1∑
i=0

γi,jqi

+

M∑
m=1

N−1∑
i=0

∞∑
d=0

βm,i,j,dcm,i,d + uj (9)

where uj ∈ Nc(0,PuIN ), with Pu = σ2
u/Tc, and

cm,i,d =

 cm
(
(p− d)N − ν − i

)
...

cm
(
(p− d)N − ν − i+N − 1

)
 (10)

is the sequence of N symbols transmitted by antenna m of
the communication system that fall in the p-th PRT, with9

ν = (τcr − τ − LTc)/Tc ∈ Z (cfr. Fig. 3). Notice that cm,i,d
contains the last `i = (ν + i) mod N symbols of the m-th
segment of codeword p − d −

⌊
(ν + i)/N

⌋
− 1 and the first

N−`i symbols of the m-th segment of codeword p−d−
⌊
(ν+

i)/N
⌋
. Hence, assuming that codewords emitted at different

epochs are independent, the cross-covariance matrix of cm,i,d
and cm′,i,d is

Cm,m′,i = E
[
cm,i,dc

H
m′,i,d

]
=

[Cm,m′ ]N−`i+1:N,N−`i+1:N O`i,N−`i

ON−`i,`i [Cm,m′ ]1:N−`i,1:N−`i


(11)

where Cm,m′ = E
[
cmc

′H
m

]
. Interestingly, Cm,m′,i can also

be expressed as a linear function of the covariance matrix C:

Cm,m′,i = Am,iCA
T
m′,i +Bm,iCB

T
m′,i (12)

where Am,i,Bm,i ∈ CN×MN are defined as

Am,i =

(
O`i,(m−1)N O`i,N−`i O`i,(M−m)N+`i

ON−`i,(m−1)N IN−`i ON−`i,(M−m)N+`i

)
(13a)

Bm,i =

(
O`i,mN−`i I`i O`i,(M−m)N

ON−`i,mN−`i ON−`i,`i ON−`i,(M−m)N

)
. (13b)

Assume that pulse compression at range bin n and azimuth
bin j is carried out by using the linear filter wn,j ; then, the
filter output is

wH
n,jyj =

√
Prgnw

H
n,jqn +

√
Pr

N−1∑
i=0

γi,jw
H
n,jqi

+

M∑
m=1

N−1∑
i=0

∞∑
d=0

βm,i,j,dw
H
n,jcm,i,d +wH

n,ju (14)

9Notice that the assumption that τcr−τ be an integer is not necessary and
is made here only to simplify description of the signal model.
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and the SDR at resolution cell (n, j) ∈ {0, . . . , N − L} ×
{1, . . . , J} is

SDRn,j = Prσ
2
g,n,j |wH

n,jqn|2
[
wH
n,j

(
Pr

N−1∑
i=0

σ2
γ,i,jqiq

H
i

+

N−1∑
i=0

M∑
m=1

M∑
m′=1

σ2
β,m,m′,i,j(Am,iCA

T
m′,i

+Bm,iCB
T
m′,i) + PuIN

)
wn,j

]−1

. (15)

C. Remarks on the signal model

Since the radar is non-scanning and the time duration of the
communication STC’s is equal to the PRT of the radar, the
second order statistics of the interference do not chance over
consecutive PRT’s/STC’s, but remain constant on long time-
scales, dictated by the time variability of the covariances of the
scattering coefficients (the entries of the matrices Σα,i, at the
communication system, the coefficients σ2

β,m,m′,i,j at the radar
side), as it can be seen from (7) and (15), respectively. Such
slow time variability can be exploited in practice to obtain
accurate estimates of these quantities, as it is already done
for the channel matrix at the communication system and for
the clutter covariance at the radar side. Remarkably, no time-
synchronization between the two system is needed.

Concerning the interference model, Eqs. (3) and (8) are
quite general and subsume the limiting cases of large scale and
small scale reverberation phenomena. The former, is typically
generated by physically extended obstacles that are in line-
of-sight with the transmitter and the receiver. In this case,
the interfering coefficients over the antennas—{αk,i}Kk=1, con-
cerning the interference from the radar to the communication
receive array, and/or {βm,i,j,d}Mm=1, concerning the interfer-
ence from the communication transmit array to the radar—
are all equal. Small scale phenomena are instead generated
when the communication system is embedded in an urban
area, and no line-of-sight between the communication system
and any physically extended object is present: the clutter is
generated locally and the scatterers proximity to the transmit
array (for the interference generated at the radar side) and/or
to the receive array (for the interference generated at the
communication system) explains the different aspect angles
under which each receive antenna is seen. In this case case,
the interfering coefficients over the antennas, {αk,i}Kk=1 and/or
{βm,i,j,d}Mm=1, are modeled as independent random variables.

III. JOINT OPTIMIZATION

The radar is normally designed to guarantee a minimum
level of SDR at each resolution bin, so as to be able to
detect targets with specified radar cross-sections at specified
locations; we denote ρn,j such minimum required SDR at
resolution cell (n, j) ∈ X , where X ⊆ {0, . . . , N − L} ×
{1, . . . , J} denotes the set of cells under observation. As to the
communication system, high data rates are always desirable,
and the covariance matrix of the STC’s should be chosen to
obtain a mutual information as large as possible, while not

exceeding the available transmit power. We therefore propose
to maximize the mutual information at the communication
system with a constraint on the minimum required SDR at each
radar cell under observation, and the optimization problem
tackled here is

max
C∈CMN×MN

{wn,j}(n,j)∈X∈CN

Pr∈R

R(C, Pr)

s.t C Hermitian positive semi-definite
1

N
Tr{C} ≤ Pc,max

SDRn,j(C, Pr,wn,j) ≥ ρn,j ,∀(n, j) ∈ X
0 ≤ Pr ≤ Pr,max

(16)
where Pr,max and Pc,max is the maximum transmit power at
the radar and communication system, respectively.

Clearly, this problem admits a solution if and only if the
constraints can be satisfied at least when the communication
system is not transmitting, the radar uses all the available
power, and the radar receive filters are chosen so as to
maximize the SDR at each resolution cell, i.e., when

C = OMN,MN

Pr = Pr,max

wn,j =
(
Pr,max

∑N−1
i=0 σ2

γ,i,jqiq
H
i + PuIN

)−1

qn,

(n, j) ∈ X .
(17)

From (15), this results in the following condition on Pr,max
and {ρn,j}(n,j)∈X

σ2
g,n,jPr,maxq

H
n

(
Pr,max

N−1∑
i=0

σ2
γ,i,jqiq

H
i + PuIN

)−1

× qn ≥ ρn,j , ∀(n, j) ∈ X . (18)

which will be assumed to be satisfied in the rest of the
manuscript: should not it be satisfied, coexistence would not
be possible.

Problem (16) appears to be quite complex, so that we resort
to the block coordinate ascent method [52], also known as
nonlinear Gauss-Seidel method or as alternating maximization:
starting from a feasible point,10 the objective function is
maximized with respect to each of the “block coordinate”
variables, taken in cyclic order, while keeping the other
ones fixed at their previous values. If all maximizations
are optimally solved (or, at least, the objective function is
non-decreasing in successive maximizations), the algorithm
converges. However, since the problem is not convex, and
the feasible set cannot be expressed as the Cartesian product
of closed convex sets, there is no guarantee that a global
maximum is reached. In our setting, the natural block coordi-
nate variables are

{
{wn,j}(n,j)∈X , Pr,C

}
, and we are faced

with three reduced complexity sub-problems: radar receive
filters optimization, radar transmit power optimization, and
communication codebook optimization. These problems are

10A feasible point is, clearly, that in (17).
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solved in Secs. III-A, III-B, and III-C, while, in Sec. III-D a
simple, sub-optimum solution to the communication codebook
optimization is presented. Finally, the complete algorithm
is reported in Sec. III-E, along with a discussion on its
computational complexity.

A. Radar receive filters optimization

The problem to be solved here is

max
{wn,j}(n,j)∈X∈CN

R(C, Pr)

s.t. SDRn,j(C, Pr,wn,j) ≥ ρn,j , (n, j) ∈ X .
(19)

Since the objective function is independent of the radar filters,
we select {wn,j}(i,j)∈X so as to maximize the SDR in each
resolution cell (and, therefore, guarantee the largest feasible
set). Now, letting

Dj = Pr

N−1∑
i=0

σ2
γ,i,jqiq

H
i +

N−1∑
i=0

M∑
m=1

M∑
m′=1

σ2
β,m,m′,i,j

× (Am,iCA
T
m′,i +Bm,iCB

T
m′,i) + PuIN (20)

the SDR in (15) can be written as

SDRn,j(C, Pr,wn,j) =
wH
n,j

(
Prσ

2
g,n,jqnq

H
n

)
wn,j

wH
n,jDjwn,j

(21)

which is a generalized Rayleigh quotient. Therefore

max
wn,j∈CN

SDRn,j(C, Pr,wn,j) = Prσ
2
g,n,jq

H
n D

−1
j qn (22)

and the maximum is achieved for

wn,j ∝D−1
j qn

=

(
Pr

N−1∑
i=0

σ2
γ,i,jqiq

H
i +

N−1∑
i=0

M∑
m=1

M∑
m′=1

σ2
β,m,m′,i,j

×
(
Am,iCA

T
m′,i +Bm,iCB

T
m′,i

)
+ PuIN

)−1

qn

(23)

for (i, j) ∈ X .

B. Radar transmit power optimization

The problem to be solved here is

max
Pr∈R

R(C, Pr)

s.t. SDRn,j(C, Pr,wn,j) ≥ ρn,j , (n, j) ∈ X
0 ≤ Pr ≤ Pr,max.

(24)

Since, from (7), the objective function is strictly decreasing
with the radar transmit power, we must select the smallest

value of Pr satisfying the SDR constraints. From (15), con-
straint (i, j) can be rewritten as

Pr ≥ ρn,j

(
N−1∑
i=0

M∑
m=1

M∑
m′=1

σ2
β,m,m′,i,jw

H
n,j

×
(
Am,iCA

T
m′,i +Bm,iCB

T
m′,i

)
wn,j + Pu‖wn,j‖|2

)

×

(
σ2
g,n,j |wH

n,jqn|2 − ρn,j
N−1∑
i=0

σ2
γ,i,j |wH

n,jqi|2
)−1

.

(25)

and, therefore,

Pr = max
(n,j)∈X

ρn,j

(
N−1∑
i=0

M∑
m=1

M∑
m′=1

σ2
β,m,m′,i,jw

H
n,j

×
(
Am,iCA

T
m′,i +Bm,iCB

T
m′,i

)
wn,j + Pu‖wn,j‖2

)

×

(
σ2
g,n,j |wH

n,jqn|2 − ρn,j
N−1∑
i=0

σ2
γ,i,j |wH

n,jqi|2
)−1

.

(26)

C. Communication codebook optimization

For the reader’s sake, we first introduce some variables and
notations that will allow rewriting the problem in a compact
form. If we define

F =

(
Pr

N−1∑
i=0

Σα,i ⊗ (qiq
H
i ) + PvIKN

)− 1
2

× (H ⊗ IN ) ∈ CKN×MN (27)

then, the objective function in Problem (16) can be written
as 1

N log det
(
IKN + FCFH

)
. As to the SDR constraints,

from (15), they can also be written as

Tr

{
C

N−1∑
i=0

M∑
m=1

M∑
m′=1

σ2
β,m,m′,i,j(A

T
m′,iwn,jw

H
n,jAm,i

+BT
m′,iwn,jw

H
n,jBm,i)

}
≤
Prσ

2
g,n,j

ρn,j
|wH

n,jqn|2

− Pr
N−1∑
i=0

σ2
γ,i,j |wH

i,jqi|2 − Pu‖wn,j‖2. (28)

Therefore, if we let

Ef(n,j) =

N−1∑
i=0

M∑
m=1

M∑
m′=1

σ2
β,m,m′,i,j(A

T
m′,iwn,jw

H
n,jAm,i

+BT
m′,iwn,jw

H
n,jBm,i) ∈ CMN×MN , (n, j) ∈ X

(29)

af(n,j) =
Prσ

2
g,n,j

ρn,j
|wH

n,jqn|2 − Pr
N−1∑
i=0

σ2
γ,i,j |wH

n,jqi|2

− Pu‖wn,j‖2 ≥ 0, (n, j) ∈ X (30)

where f is a one-to-one mapping from X to{
1, . . . , card(X )

}
, the SDR constrains can be rewritten
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as Tr{E`C} ≤ a`, ` = 1, . . . , card(X ). With this notation,
the problem to be solved here becomes

max
C∈CMN×MN

log det
(
IKN + FCFH

)
s.t C Hermitian positive semi-definite

Tr{E`C} ≤ a`, ` = 1, . . . , U

(31)

where U = card(X ) + 1, and the power constraint is handled
by EU = IMN and aU = NPc,max.

Problem (31) is a determinant maximization with linear
matrix inequalities [53]: it is a convex optimization problem
that can be readily solved by standard interior-point methods,
at least when the number of variables is modest. When N is
large, first order methods are instead preferable, so as to reduce
complexity and allow a real-time implementation. In this case,
we adopt a (sub)gradient method for constrained optimiza-
tion11 [55], and we handle the positive semidefinite constraint
on C by introducing the auxiliary variable X ∈ CMN×MN

such that C = XXH . Problem (31) then becomes

max
X∈CMN×MN

log det
(
IKN + FXXHFH

)
s.t Tr{XHE`X} ≤ a`, ` = 1, . . . , U

(32)

and the algorithm takes the simple form

Xk+1 = Xk + αkG
(
Xk

)
(33)

where αk is the step-size at the k-th iteration, and G
(
Xk

)
is

the gradient of the objective function, ifXk is feasible, and the
opposite of the gradient of any violated constraint, otherwise.
Precisely, if Tr

{
XH
k E`Xk

}
≤ a`, for all ` ∈ {1, . . . , U},

then

G(Xk) = FHFXk

(
IMN +XH

k F
HFXk

)−1
(34)

where we have exploited [56, Eq. (23)] to evaluate the gradient
of the mutual information. If, instead, Tr

{
XH
k E`Xk

}
> a`

for some ` ∈ {1, . . . , U}, then

G(Xk) = −
∑

`∈{1,...,U}:
Tr{XH

k E`Xk}>a`

E`Xk (35)

where we have included the gradient of all violated constraint,
as in [57]. Since the objective function can decrease over
consecutive iterations (G(Xk) may not be a descent direction
and/or the step-size αk can can be too large), it is common
to keep track of the best point found so far, i.e., the one with
largest function value:

Xk,best = arg max
{Xi}ki=1:

Tr{XH
i E`Xi}≤a` ∀`

log det
(
IKN + FXiX

H
i F

H
)
.

(36)
Notice that, unlike (31), Problem (32) is not a convex opti-
mization, and the gradient method in (33) does not guarantee
that a global maximum is achieved. Nevertheless, since the
objective function evaluated at Xk,best is non-decreasing with

11We do not consider the projected gradient algorithm, since it would
be computationally more demanding: it would require, at each iteration, a
projection on the constraint set, which is itself an optimization problem, that,
following [54], can be solved with another projected gradient algorithm.

k, the gradient method converges and returns an updated
covariance matrix C = Xk,bestX

H
k,best resulting in a mutual

information greater than or equal to the one obtained at the
previous iteration of the block-coordinate descent method.

D. A sub-optimum communication codebook

Problem (31) in the previous section can be simplified if we
sub-optimally fix the eigenvectors of the matrix C and max-
imize over its eigenvalues only. Let UΞV H be the singular
value decomposition (SVD) of F , where U ∈ CKN×KN and
V ∈ CMN×MN are unitary matrices, and Ξ ∈ RKN×KM is a
diagonal matrix with non-negative entries (sorted in decreasing
order) on the principal diagonal. Let also ∆ ≤ N min{K,M}
be the number of non-zero singular values. From Hadamard’s
inequality, the objective function of Problem (31) is maxi-
mized when FCFH is diagonal, so we (sub-optimally) set C
as12

C = V diag(p1, . . . , p∆, 0, . . . , 0)V H . (37)

With this choice, Problem (31) simplifies to

max
p1,...,p∆∈R

∆∑
i=1

log

(
1 +

pi
σ2
i

)
s.t pi ≥ 0, i = 1, . . . ,∆

∆∑
i=1

e`,ipi ≤ a`, ` = 1, . . . , U

(38)

where e`,i = [V HE`V ]i,i ≥ 0, and σ2
i = 1/Ξ2

i,i. Notice that
pi is the power transmitted along the i-th eigenmode of the
MIMO channel represented by F , and σ2

i is the corresponding
disturbance (noise plus interference from the radar); further-
more, since EU = IMN and aU = Pc,max, the last constrain
in (38) is just the power constraint

∑∆
i=1 pi ≤ Pc,max.

To solve Problem (38), we introduce the Lagrange multipli-
ers λi, associated with the constraints pi ≥ 0, for i = 1, . . . ,∆,
and µ`, associated with the constraints

∑∆
i=1 e`,ipi ≤ a`, for

` = 1, . . . , U ; the Lagrangian is, therefore,

L(p,λ,µ) = −
∆∑
i=1

log

(
1 +

pi
σ2
i

)
−

∆∑
i=1

λipi

+

U∑
`=0

µ`

(
∆∑
i=1

e`,ipi − a`

)

=

∆∑
i=1

[
(eTi µ− λi)pi − log

(
1 +

pi
σ2
i

)]
− aTµ

(39)

where p = (p1 · · · p∆)T , λ = (λ1 · · · λ∆)T , µ =
(µ1 · · · µU )T , and ei = (e1,i · · · eU,i)T , i = 1, . . . ,∆. The
dual function is the infimum of the Lagrangian over p

g(λ,µ) = inf
p∈R∆:pi>−σ2

i

L(p,λ,µ) (40)

12Since the power outside the column span of V does not increase the
objective function, the remaining MN − ∆ eigenvalues of C can be set
equal to zero. The choice in (37) would be optimum, if the SDR constraints
are not present [58].
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that yields

pi =

{
1

eTi µ−λi
− σ2

i , if eTi µ− λi > 0

∞, otherwise
(41)

for i = 1, . . . ,∆, so that

g(λ,µ) =

∆∑
i=1

[(
1− σ2

i (eTi µ− λi) + log
(
σ2
i (eTi µ− λi)

))
× 1{eTi µ>λi} −∞1{eTi µ≤λi}

]
− aTµ. (42)

The dual problem is, therefore,

max
λ∈R∆,µ∈RU

g(λ,µ)

s.t. λi ≥ 0, i = 1, . . . ,∆

µ` ≥ 0, ` = 1, . . . , U

(43)

Weak duality always holds for the dual problem in (43):
if λ and µ are dual feasible, i.e., λi ≥ 0 for all i and
µ` ≥ 0 for all `, then the dual objective is a lower bound
to the optimal value of Problem (38). If Problem (38) is
strictly feasible, i.e., there exists a p satisfying the linear
inequalities and such that pi > 0 for some i, then strong
duality holds: there exists λ∗ and µ∗ that are optimal for
the dual problem in (43) with dual objective equal to the
optimal value of Problem (38). Moreover, we can recover
the solution to Problem (38) from the dual optimal variables
using (41). This follows from convexity of Problem (38) and
strict convexity of the Lagrangian with respect to the primal
variable p. Observe that the condition pi > 0 for some i
simply means that the communication system can satisfy the
constraint of Problem (38) with some C 6= OMN,MN , i.e.,
that the original problem admits a solution where coexistence
is allowed.

Looking at Problem (43), one notice that the maximization
over λ can be carried out analytically, and

max
λ∈R∆:λi≥0

g(λ,µ)

=

∆∑
i=1

[(
1− σ2

i e
T
i µ+ log σ2

i e
T
i µ
)
1{0<σ2

i e
T
i µ≤1}

−∞1{σ2
i e

T
i µ≤0}

]
− aTµ (44)

for λi =
(
eTi µ− 1/σ2

i

)+
, i = 1, . . . ,∆. This leads to the

simplified dual problem

max
µ∈RU

{
∆∑
i=1

[(
1− σ2

i e
T
i µ+ log σ2

i e
T
i µ
)
1{0<σ2

i e
T
i µ≤1}

−∞1{σ2
i e

T
i µ≤0}

]
− aTµ

}
s.t. µ` ≥ 0, ` = 1, . . . , U

(45)
and, from (41), to the solution to the primal problem in (38)

pi =

(
1

eTi µ
− σ2

i

)+

, i = 1, . . . ,∆. (46)

Observe that, should the power constraint only be present,
then µ and ei would be scalars, with ei = 1, and the solution
would reduce to water-filling [58].

The simplified dual problem is clearly a convex optimization
problem. The gradient of the objective function is

∆∑
i=1

(
1

eTi µ
− σ2

i

)+

ei − a (47)

whose entries are just the residuals for the constraints in the
primal problem with p as in (46). Several methods can be
used to solve the simplified dual problem. Here we adopt
a very simple one: the projected (sub)gradient method. At
each step, the algorithm selects the next point by moving
towards the gradient direction (like the gradient method) and
then projecting onto the feasible set; in the present case, the
projection operation is just the positive part of each coordinate
of the point. The iterative step of the algorithm is, therefore,

µk+1 =

(
µk + αk

(
∆∑
i=1

(
1

eTi µk
− 1

)+

ei − a

))+

(48)

where αk is the step-size parameter at the k-th iteration. Many
choices are available for the step-size [59], [60], and a simple
one that guarantees convergence is αk such that αk ≥ 0,
limk→∞ αk = 0, and

∑∞
k=1 αk =∞ (e.g., a universal choice

is αk = 1/k).

E. The complete algorithm

The block coordinate ascent method, used to find a sub-
optimum solution to Problem (16), and the gradient method,
used to solve the communication codebook optimization prob-
lem in Sec. III-C, are integrated in Algorithm 1. Loops end
when a sufficiently small percentage increase of the objective
function in two consecutive iterations is observed or when a
specified maximum number of iterations is reached. The com-
putational complexity of the inner loop of Algorithm 1 is dom-
inated by the matrix inversion in (34), needed to updateX , and
by the evaluation of the objective function in Problem (32),
needed to keep track of the Xk,best: the former has a cost of
O(N3M3), while the latter has a cost of O(N3K3), so that
the overall cost is O

(
N3 max{M3,K3}

)
. The computational

complexity of the remaining operations in the outer loop is
dictated by the radar filters and power update in (23) and (26),
and by the evaluation of matrices F in (27) and FHF , needed
in the inner loop: the first two operations have a cost of
O(N3J), the third has a cost of O

(
N3K2 max{M,K}

)
, and

the forth has a cost of O(N3M2K), so that the overall cost
is O

(
N3 max{J,M2K,K3}

)
.

Algorithm 2, instead, uses the sub-optimum procedure
described in Sec. III-D to solve the communication code-
book optimization problem. The computational complexity
of the inner loop of Algorithm 2 is now ruled by the
update of µ in (48), that has a cost of O(U∆): since
∆ ≤ N min{M,K} and U ≤ (N − L + 1)J , the cost
is at most O

(
N2J min{M,K}

)
. This complexity is smaller

than that of the operations in the inner loop of Algorithm 2
whenever U∆ < N3 max{M3,K3}, that is always verified
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Algorithm 1 Sub-optimum solution to Problem (16)
chose {wn,j}(n,j)∈X , Pr, C satisfying the constraints
repeat

update {wn,j}(n,j)∈X with (23)
update Pr with (26)
choose X ∈ CMN×MN : X 6= OMN,MN

repeat
update X with (33)
keep track of Xk,best with (36)

until convergence
update C with C = Xk,bestX

H
k,best

until convergence
return {wn,j}(n,j)∈X , Pr, C

Algorithm 2 Sub-optimum solution to Problem (16)
chose {wn,j}(n,j)∈X , Pr, C satisfying the constraints
repeat

update {wn,j}(n,j)∈X with (23)
update Pr with (26)
compute (U ,Ξ,V ), the SVD of F in (27)
chose µ ∈ RU+ : µ 6= 0
repeat

update µ with (48)
until convergence
compute {pi}∆i=1 with (46)
update C with (37)

until convergence
return {wn,j}(n,j)∈X , Pr, C

if J ≤ N max{M3/K,K3/M}. The remaining operations in
the outer loop of Algorithm 2 have the same complexity as in
Algorithm 1, i.e., O

(
N3 max{J,M2K,K3}

)
.

IV. NUMERICAL EXAMPLES

We examine two co-existing systems operating at 2 GHz
over a bandwidth of 1.5 MHz. The radar has a PRF equal
to 15 kHz, so that N = 100 and T = 0.6̄ µs, and uses a
Barker code of length L = 5. The maximum peak power
is 500 W, so that Pr,max = 25 W, and the maximum non-
ambiguous range is 10 km. At the receiver side, J = 3
orthogonal beams are formed; the power spectral density
(PSD) of the noise is σ2

u = 4 × 10−21 W/Hz, so that
Pu = Fσ2

uW = 2.39×10−14 W, where a receiver noise figure
F = 6 dB has been assumed. We test the system performance
for a specified signal level, this corresponding to a target with
increasing radar cross section located at increasing distance,
and we require the same minimum SDR, ρ, at all range and
azimuth bins; in particular, we set σ2

g,n,j = 4.8 × 10−16, for
all (n, j) ∈ X , so that σ2

g,n,jNPr,max/Pu = 17 dB (this is
the largest achievable signal-to-noise ratio). As to the clutter
component, we set σ2

γ,i,j = 4.8 × 10−17, for all (n, j) ∈ X ,
so that σ2

γ,i,jNPr,max/Pu = 7 dB (this is the largest possible
clutter-to-noise ratio in each resolution cell).

The communication system is equipped with M = 2
transmit antennas and K = 2 receive antennas; the maximum
average transmit power is Pc,max = 10 mW, and the distance
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Figure 4. Mutual information versus the iteration number of the alternating
maximization algorithm of the joint design strategy for different values of the
minimum required SDR, ρ, intensity of the interference, σ2, and density of
the interference scatterers, δ, when 30 resolution cells are protected and a
joint design is undertaken.

between transmitter and receiver is 100 m. The PSD of the
noise is σ2

v = 4 × 10−21 W/Hz, and Pv = Fσ2
vW =

2.39×10−14 W, where F = 6 dB is the receiver noise figure.
The entries of the channel matrix H , perfectly estimated at
the receiver, are generated following a CCSG distribution with
variance σ2

h = 3× 10−10, so that σ2
hPc,max/Pv = 21 dB (this

is the largest achievable signal-to-noise ratio).
As to the mutual interference between the two systems,

we set Σα,i = σ2
α,iIK and σ2

β,m,m′,i,j = σ2
β,i,j1{m=m′} (no

line-of-sight component is present, and independent rays from
the rich scattering environment arrive at the receivers). The
coefficients σ2

α,i and σ2
β,i,j are equal to either 0 or σ2, and we

test σ2 = 1.2×10−13 (resulting in σ2
g,n,jPr,max/(σ

2Pc,max) =
10 dB and σ2

hPc,max/(σ
2Pr,max) = 0 dB) and σ2 = 1.2 ×

10−11 (resulting in σ2
g,n,jPr,max/(σ

2Pc,max) = −10 dB and
σ2
hPc,max/(σ

2Pr,max) = −20 dB). The fraction of non-zero
entries in {σ2

α,i}
N−1
i=0 and {σ2

β,i,j}
N−1
i=0 , for j = 1, . . . , J , is

denoted δ, and their indexes are randomly generated. Different
values of δ are tested, and the performance is evaluated
through Monte Carlo simulations.

In Fig. 4 the mutual information (in bits per channel use)
of the proposed joint design is reported versus the iteration
number of the alternating maximization algorithm for different
values of the density of the interference scatterers, δ, intensity
of the interference, σ2, and minimum required SDR at the
radar, ρ, when the number of protected radar resolution cells
is card{X} = 30. It can be seen that the algorithm rapidly
converges in all inspected cases, requiring a slightly larger
number of iterations only when there is a strong interference
from a dense scattering environment and a high performance
is requested at the radar side.

Fig. 5 shows the mutual information versus ρ for different
values of δ, when σ2 = 1.2 × 10−13 and card{X} = 30.
Notice that not all the values of the SDR constraint are
feasible, since noise and clutter are always present: in fact,
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Figure 5. Mutual information versus the minimum required SDR for a joint
and disjoint design, and for different values of the density of the interference
scatterers, δ, when the intensity of the interference is σ2 = 1.2 × 10−13,
and 30 resolution cells are protected; for comparison purposes, the case of
non-interfering systems is also included.
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Figure 6. Mutual information versus the minimum required SDR for a joint
and disjoint design, and for different values of the density of the interference
scatterers, δ, when the intensity of the interference is σ2 = 1.2 × 10−11,
and 30 resolution cells are protected; for comparison purposes, the case of
non-interfering systems is also included.

from (18), Problem (16) admits a solution only if ρ ≤ 9.12 dB.
For comparison purposes, we also include the following two
cases. In the first one, referred to as non-interfering systems,
Problem (16) is solved when there is no mutual interference
(δ = 0 and/or σ2 = 0). A solution at the radar side is

Pr = Pr,max (49a)

wn,j =

(
Pr,max

N−1∑
i=0

σ2
γ,i,jqiq

H
i + PuIN

)−1

qn, (n, j) ∈ X

(49b)
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Figure 7. Communication transmit power versus the minimum required SDR
for a joint and disjoint design, different values of the density of the interference
scatterers, δ, and intensity of the interference, σ2, when 30 resolution cells
are protected; for comparison purposes, the case of non-interfering systems
is also included.

while, at the communication side, C can be found through
standard waterfilling over the channel r = (H ⊗ IN )c + v
(therefore, Pc = Pc,max). This gives the same value of mutual
information independently of the constraint ρ as long as
ρ ≤ 9.12 dB, and represents an upper bound to the system
performance. In the second case, the previous solution is
incorrectly used when the mutual interference is present; this
corresponds to the case where each system independently
maximizes its own performance measure (mutual informa-
tion/minimum SDR) ignoring the presence of the other system,
and is therefore referred to as disjoint design. The curves
corresponding to this case are, again, half-lines with zero
slope, but the ending points are shifted towards smaller values
of ρ due to the incorrect assumption of absence of interference.
By inspecting Fig. 5, we see that the mutual information
of the proposed joint design decreases with ρ and δ, and
achieves the upper bound of the non-interfering case when
ρ→ −∞. Notice that the joint design outperforms the disjoint
one not only in the value of mutual information, where the
gap becomes significant for high δ’s and/or low ρ’s, but also
in the achievable values of minimum SDR, where the gap is
approximately 1 or 2 dB. The gain of the joint design is more
evident when the mutual interference is stronger, as it can be
seen from Fig. 6, that examines the case σ2 = 1.2×10−11. In
this situation, the gap in terms of achievable SDR with respect
to the disjoint design is significant, and amounts to as much
as 10, 13, and 17 dB for δ = 0.1, 0.2, and 0.5, respectively.

In Figs. 7 and 8, we report, as a function ρ, the level
of transmit communication and radar power, respectively,
corresponding to the scenarios inspected in Figs. 5 and 6.
Clearly, when the minimum performance level required at the
radar is increased, the interference becomes stronger, or the
density of the interference scatterers becomes higher (large
values of ρ, σ2, or δ, respectively), the transmit power must be
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Figure 8. Radar transmit power versus the minimum required SDR for a
joint and disjoint design, different values of the density of the interference
scatterers, δ, and intensity of the interference, σ2, when 30 resolution cells
are protected; for comparison purposes, the case of non-interfering systems
is also included.

increased at the radar side and decreased at the communication
system side. It is interesting to notice that there are intervals
of ρ where both systems are transmitting at their maximum
power, this meaning that coexistence is only handled by space-
time beamforming at the communication transmitter and radar
receiver; more generally, power control is also required to
mitigate the mutual interference.

Next we compare the proposed system design with two ad-
ditional design strategies. In the first one, the communication
system preexists the radar and ignores its presence, so that
the covariance matrix of the STC’s is Cw, the waterfilling
solution for the channel r = (H ⊗ IN )c + v. The radar
is overlaid and adjusts its receive filters and transmit power
so as to meet the SDR constraint and solve Problem (16)
when C = Cw. The second strategy analyzes the specular
case, where the radar preexists the communication system and
adopts the transmit power and receive filters in (49), while the
communication system is overlaid and solves Problem (16)
with Pr and {wn,j}(n,j)∈X fixed to the values in (49). In
Fig. 9, the mutual information is reported as a function of ρ
for two values of σ2 when δ = 0.5 and card{X} = 30. It can
be seen that, when the interference is weak, the single system
optimization is almost as good as the joint design: indeed,
the radar optimization exhibits a good performance when ρ
is small (and converges to the disjoint design when ρ gets
smaller), while the communication system optimiziation has
nearly the same performance as the joint design when ρ is
large, so that the worst case loss in the mutual information is
only 6% at −9.6 dB. When the interference is strong, instead,
the single system optimization exhibits a significant loss in a
wide range of SDR of interest for the radar.

In Fig. 10, we compare the solution to the codebook
optimization subproblem provided in Sec. III-C (labeled “C
opt.” in the figure) with the sub-optimum solution presented
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Figure 9. Mutual information versus the minimum required SDR for different
design strategies and different values of the intensity of the interference, when
the density density of the interference scatterers is δ = 0.5, and 30 resolution
cells are protected.
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Figure 10. Mutual information versus the minimum required SDR for the joint
design with codebook maximization problem optimally and sub-optimally
solved (cfr. Secs. III-C and III-D), and for different values of the intensity
of the interference, σ2, and density of the interference scatterers, δ, when 30
resolution cells are protected.

in Sec. III-D (labeled “C sub-opt.”). The mutual information
is reported versus ρ for two values of δ and σ2, when
card{X} = 30. It is seen that the two solutions are almost
coincident when the interference is weak. When, instead, the
interference is strong, the sub-optimum solution exhibits some
performance degradation for δ = 0.1 in the region ρ ≥ 0 dB,
and the loss becomes significant for δ = 0.5 and ρ ≥ −5 dB.

Finally, we analyze the impact of the number of protected
radar cells on the system performance. In Figs. 11 and 12,
the mutual information is reported versus ρ for different
values of card{X} and δ, when σ2 = 1.2 × 10−13 and
σ2 = 1.2×10−11, respectively. Clearly, the mutual information
is decreasing with the cardinality of the set of protected cells,
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Figure 11. Mutual information versus the minimum required SDR in the
joint design for different values of the number of protected resolution cells
and of the density of the interference scatterers, δ, when the intensity of the
interference is σ2 = 1.2× 10−13.
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Figure 12. Mutual information versus the minimum required SDR in the
joint design for different values of the number of protected resolution cells
and of the density of the interference scatterers, δ, when the intensity of the
interference is σ2 = 1.2× 10−11.

even if, in the inspected scenario, the performance degradation
rapidly saturates, and the difference between 30 and 288
(corresponding to 10.4% and 100%, respectively, of the total
number of radar resolution cells) is significant only for small
δ’s and in the large ρ’s region.

V. CONCLUSION

In this work we tackled the problem of joint design of a
radar and a MIMO communication system sharing the same
bandwidth, and we proposed to maximize the mutual infor-
mation with a constraint on the minimum SDR level required
at each resolution cell monitored by the radar. This translates

to a non-convex optimization problem, with a large number of
constraints, and is sub-optimally solved by resorting to block
coordinate ascent. The numerical results have shown that large
gains are possible with respect to the disjoint design. Future
developments will focus on the inclusion of the radar (fast-
time) code in the design problem and on the generalization
to STC’s of the communication system that spans an integer
multiple of the PRT.
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