
HAL Id: hal-03525410
https://hal.science/hal-03525410

Submitted on 13 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Joint EigenValue Decomposition Algorithms Based on
First-Order Taylor Expansion
Remi Andre, Xavier Luciani, Eric Moreau

To cite this version:
Remi Andre, Xavier Luciani, Eric Moreau. Joint EigenValue Decomposition Algorithms Based on
First-Order Taylor Expansion. IEEE Transactions on Signal Processing, 2020, 68, pp.1716-1727.
�10.1109/TSP.2020.2976580�. �hal-03525410�

https://hal.science/hal-03525410
https://hal.archives-ouvertes.fr

1

1

2

Joint EigenValue Decomposition Algorithms Based

on First-Order Taylor Expansion
Rémi André, Xavier Luciani, and Eric Moreau, Senior Member, IEEE

Abstract—In this paper, we propose a new approach to compute
the Joint EigenValue Decomposition (JEVD) of real or complex
matrix sets. JEVD aims to find a common basis of eigenvectors to
a set of matrices. JEVD problem is encountered in many signal
processing applications. In particular, recent and efficient algo-
rithms for the Canonical Polyadic Decomposition (CPD) of multi-
way arrays resort to a JEVD step. The suggested method is based
on multiplicative updates. It is distinguishable by the use of a first-
order Taylor Expansion to compute the inverse of the updating
matrix. We call this approach Joint eigenvalue Decomposition
based on Taylor Expansion (JDTE). This approach is derived in
two versions based on simultaneous and sequential optimization
schemes respectively. Here, simultaneous optimization means that
all entries of the updating matrix are simultaneously optimized at
each iteration. To the best of our knowledge, such an optimization
scheme had never been proposed to solve the JEVD problem in a
multiplicative update procedure. Our numerical simulations show
that, in many situations involving complex matrices, the proposed
approach improves the eigenvectors estimation while keeping a
limited computational cost. Finally, these features are highlighted
in a practical context of source separation through the CPD of
telecommunication signals.

Keywords—Joint eigenvalue decomposition, joint diagonalization,
canonical polyadic decomposition, MIMO system.

I. INTRODUCTION

Joint diagonalization problems have been at the heart of
many source separation algorithms since the early nineties
[1], [2], [3]. Joint diagonalization usually refers to the Joint
Diagonalization by Congruence (JDC) [4],[5],[6]. However
in many applications, the original separation problem can be
rephrased as a joint diagonalization by similarity problem also
called Joint EigenValue Decomposition (JEVD). For instance,
JEVD has been used for direction of arrival estimation [7],
joint angle-delay estimation [7], [8], multi-dimensional har-
monic retrieval [9], Canonical Polyadic Decomposition (CPD)
of tensors [10], [11], [12], [13], blind source separation [14],
[15] and econometric [16].

JEVD consists in jointly diagonalizing a set of K non-
defective real or complex matrices of size N × N sharing
the same basis of eigenvectors. The matrices to diagonalize
are then defined as

M
(k) = AD

(k)
A

−1, ∀k = 1, . . . ,K, (1)

where A ∈ CN×N is the matrix of eigenvectors and each
diagonal matrix D

(k) ∈ CN×N contains the eigenvalues of
M

(k). In JDC, the inverse of A in equation (1) is replaced

Rémi André, Xavier Luciani and Eric Moreau are with Université de Toulon,
Aix Marseille Université, CNRS, LIS, Marseille, France.

with the (Hermitian) transpose matrix. Hence, JDC and JEVD
are equivalent if A is an unitary matrix. This is not necessary
the case here. Another noteworthy difference between JDC and
JEVD is the uniqueness condition of the solution. Let us define
from the set of matrices D

(k) the N ×K matrix

Ω =







D
(1)
11 · · · D

(K)
11

... · · ·
...

D
(1)
NN · · · D

(K)
NN






. (2)

Then, the JDC is essentially unique (i.e. matrix A is estimated
up to permutation and column scaling) if and only if the rows
of Ω are non zero and non collinear, while the JEVD is
essentially unique if and only if the rows of Ω are distinct
[10]. Thus JEVD uniqueness condition is less restrictive.
Furthermore, most JDC problems can be rewritten as a JEVD
problem while the opposite is not true [17].

A naive approach to solve the JEVD problem would be
to compute a simple eigenvalue decomposition of any matrix
M

(k) or a product of some of them. However, the joint
decomposition allows to get better results in presence of
noise and allows to solve the problem even if one or several
eigenvalues are degenerated or very close. In the last decade,
several algorithms were proposed to solve the JEVD problem.
Most of them resort to the same general algorithmic scheme,
usually referred to as Jacobi-like algorithm. This means that:

• The matrix set is jointly diagonalized by successive
multiplicative updates that minimize a diagonalization
criterion. At the end of the process, the diagonalizing
matrix is then equal to the inverse of the matrix of
eigenvectors up to scaling and permutation.

• The minimization is performed according to a block
coordinate approach. Instead of computing all the pa-
rameters at each update, algorithms sequentially focus
on a small subset of parameters. In the following, we
will speak of sequential optimization scheme.

As a consequence, the main differences between JEVD algo-
rithms are the parametrization of the updating matrix and/or
the cost function used to estimate these parameters. In the
first JEVD applications, authors were only interested in the
eigenvalues. In this case, the matrix set can be triangularized
by orthogonal or unitary matrices. Then, the eigenvalues are
directly estimated from the diagonals of the triangular matrices
[9], [18]. Rigorously speaking, these are not JEVD algorithms
since the matrix of eigenvectors is not computed. Later,
several authors proposed to compute the updating matrix in
a polar decomposition form i.e. as the product of a symmetric
(Hermitian in the complex case) matrix and an orthogonal

3

(unitary) matrix. SH-RT [19], JUST [20], JDTM [13] and
ESJD [21] algorithms have been developed according to this
idea. These algorithms mainly differ in the cost functions
used to compute the symmetric matrix at each update. SH-
RT minimizes the off-diagonal entries of only one particular
matrix of the matrix set. In JUST, all the off-diagonal entries
of the matrix set are considered while JDTM targets two
particular entries of each matrix. Finally, ESJD evaluates the
most appropriate cost function between those of JUST and
JDTM before each update. An alternative approach called JET
has been proposed in [15]. It resorts to the LU factorization of
the diagonalizing matrix and allows to reduce the numerical
complexity. In this approach, the iterative procedure consists in
estimating a lower triangular matrix that makes the matrix set
as triangular as possible. This matrix is updated by minimizing
a triangularization criterion. In JET-O, the exact criterion is
used while JET-U resorts to an approximation. Finally, entries
of the upper triangular matrix are directly estimated from
analytical expressions. A perturbation analysis of the JEVD
problem has been recently introduced and can be used to
compare JEVD algorithms [22].

The previous algorithms require significant modifications
to work with complex-valued data. It has been showed that
these modifications degrade the performances [15]. Indeed, in
the complex case, polar decomposition based algorithms are
robust to the noise power but have a very high computational
cost while algorithms of the JET family give poor results in
the low Signal-to-Noise Ratio (SNR) range. That is why, we
introduced in [23] an original approach called JAPAM. This
family of algorithms can be directly applied to complex-valued
matrices without any modification. Another characteristic of
this approach is that different factorizations (LU, QR, Polar...)
can be used to build the updating matrix. Moreover, both
factorization matrices are jointly estimated. In the complex
case, these algorithms significantly improve the estimation of
the eigenvector matrix for any SNR while keeping a rather low
computational cost. However, these algorithms are sensitive to
the matrix size. A solution is then to initialize the algorithms
by using the Generalized EigenValue Decomposition (GEVD)
of two matrices. However, we are going to see that this solution
may fail.

Thus, in this paper, we propose an alternative approach
inspired by the NOODLES algorithm for JDC [24]. This
approach has been briefly introduced in a previous conference
paper [25]. In comparison with the other JEVD algorithms,
we use a different parametrization of the updating matrix
and a simplified cost function based on the first-order Taylor
expansion of the matrix inverse. This approach has several
advantages. First of all, as for the JAPAM approach, all the
computations are performed in C so that no modification is
required to deal with complex-valued matrix sets. Second, it
can be applied to a simultaneous or a block coordinate (sequen-
tial) optimization scheme. In the simultaneous optimization
scheme, all the parameters are jointly estimated. This is totally
original in the context of JEVD based on multiplicative updates
and this allows to decrease the numerical complexity.

The paper is organized as follows. In section II, we describe
simultaneous and sequential optimization schemes to compute

the JEVD by means of multiplicative updates. In section III-A,
we deeply describe the first version of our approach based
on a simultaneous optimization scheme and we introduce a
first algorithm. Then in section III-B, we propose a second
algorithm as a refinement of the first one. In section III-C,
we show how to modify these two algorithms to derive two
other algorithms based on a sequential optimization scheme.
A short discussion about the algorithms convergence is ad-
dressed in section III-D. Section IV is dedicated to numerical
simulations. First, we provide an empirical convergence study
of the proposed algorithms. Then, these are compared with the
reference algorithms from the literature according to different
scenarios. Finally in section V, we show how our approach can
help to compute the canonical polyadic decomposition in the
context of the source separation of telecommunication signals.

Notations: Scalars are denoted by a lower case (a),
vectors by a boldface lower case (a) and matrices by a
boldface upper case (A). ai is the i-th element of the vector
a and Aij is the (i, j)-th element of the matrix A. I is the
identity matrix. Diag{·} is an operator which sets to zero the
off-diagonal entries of the argument matrix. ZDiag{·} is an
operator which sets to zero the diagonal entries of the argument
matrix. ‖ · ‖ is the Frobenius norm of the argument matrix or
tensor. 〈A,B〉 = trace{AH

B} is the Frobenius inner product
between the matrices A and B. Finally, z and |z| denote
the complex conjugate and modulus of complex number z
respectively.

II. MAIN STRUCTURE OF JEVD ALGORITHMS

JEVD algorithms aim to find an estimation of the matrix
A

−1 in equation (1) (up to the scale and permutation indeter-
minacy), denoted B, such that matrices N

(k) defined by

N
(k) = BM

(k)
B

−1, ∀k = 1, ...,K, (3)

be as diagonal as possible in presence of noise. B is called the
diagonalizing matrix. As mentioned in the introduction, B is
estimated thanks to multiplicative updates. This means that, at
each iteration, a matrix X is computed in order to update the
current estimation of B and consequently the current matrix
set as

{

B ← XB

N
(k) ← XN

(k)
X

−1, ∀k = 1, ...,K.
(4)

The updating matrix X is estimated in order to make the
matrices N

(k) as diagonal as possible. To this end, a classical
cost function is the quadratic measure of diagonality:

C (X) =

K
∑

k=1

‖ZDiag{XN
(k)

X
−1}‖2. (5)

Due to the scaling indeterminacy of the JEVD, the updating
matrix X has N degrees of freedom. Thus, we only have to
compute N(N − 1) parameters to build X. In a simultaneous
optimization scheme, at each iteration, a suitable approxima-
tion of C is minimized with respect to the whole set of
unknown parameters with the conjecture that the algorithm will
converge to a minimum of C . The framework of this scheme

4

is summarized in Algorithm 1. To the best of our knowledge,
there is no JEVD algorithm based on this strategy. Indeed,

Algorithm 1 Framework of JEVD algorithms based on a
simultaneous optimization scheme

Let S be a stopping criterion and itmax the maximal number
of iterations
Initialize B with I or any clever choice
N

(k) ←M
(k), ∀k = 1, ...,K

it = 1
while S is false and it < itmax do

Estimate X as the matrix which minimizes an approxi-
mation of C
Update B← XB

Update N
(k) ← XN

(k)
X

−1, ∀k = 1, ...,K
it = it+ 1;
Update S

end while
D

(k) ← N
(k), ∀k = 1, ...,K

most JEVD algorithms of the literature resort to sequential
optimization schemes. This consists in the sequential optimiza-
tion of small subsets of parameters by using the following
factorization of X:

X =

N−1
∏

i=1

N
∏

j=i+1

X
(i,j). (6)

Recalling that X is defined by N(N−1) non free parameters,
the main interest of this factorization is that the N(N − 1)/2
matrices X

(i,j) depend on only two parameters. Thus, at each
iteration, the diagonalizing matrix B and the matrix set N(k)

are updated N(N−1)/2 times by sweeping the couple indexes
(i, j) as

{

B ← X
(i,j)

B

N
(k) ← X

(i,j)
N

(k)
X

(i,j)−1, ∀k = 1, ...,K.
(7)

We speak of sweeping procedure. Matrices X(i,j) are estimated
by minimizing C (X(i,j)) (or an approximation of it) with
respect to the two unknown parameters.

Usually, matrices X
(i,j) are equal to the identity matrix at

the exception of entries (i, i), (i, j), (j, i) and (j, j). Therefore,
in the transformation X

(i,j)
N

(k)
X

(i,j)−1 only the (i, j) and

(j, i) entries of N(k) are transformed by both the right and left
multiplications. Hence, an alternative and simpler cost function
that targets these two particular entries is

Cs(X
(i,j)) =

K
∑

k=1

|(X(i,j)
N

(k)
X

(i,j)−1)ij |
2

+

K
∑

k=1

|(X(i,j)
N

(k)
X

(i,j)−1)ji|
2. (8)

Minimizing the cost function in equation (8) is generally not
equivalent to minimize the cost function in equation (5) but
it provides very good results in practice when N is not too
large with respect to K . Moreover, it allows to rewrite the

updating equations involving 2 × 2 matrices only. Practical
and theoretical justifications of this approximation can be
found in [21] and [26] in slightly different contexts. Another
link between C and Cs will be highlighted in section III-C.
The framework of JEVD algorithms based on a sequential
optimization scheme is summarized in Algorithm 2.

Algorithm 2 Framework of JEVD algorithms based on a
sequential optimization scheme

Let S be a stopping criterion and itmax the maximal number
of iterations
Initialize B with I or any clever choice
N

(k) ←M
(k), ∀k = 1, ...,K

it = 1
while S is false and it < itmax do

for i = 1 to N − 1 do
for j = i+ 1 to N do

Estimate X
(i,j) as the matrix minimizing C , Cs or

another approximation of C .
Update B← X

(i,j)
B

Update N
(k) ← X

(i,j)
N

(k)
X

(i,j)−1, ∀k = 1, ...,K
end for

end for
it = it+ 1;
Update S

end while
D

(k) ← N
(k), ∀k = 1, ...,K

The approach proposed in this paper allows both optimiza-
tion schemes: simultaneous and sequential. Moreover switch-
ing from one scheme to another involves few algorithmic
modifications.

Numerical complexity of main JEVD algorithms. The
numerical complexity can be defined as the number of real
multiplications that an algorithm computes during one it-
eration. We consider here that a complex multiplication is
equivalent to four real multiplications (even if it can be
done in only three multiplications). Numerical complexity of
JEVD algorithms is clearly dominated by the updating step
of the matrix set (equation (7)). Thus, numerical complexities
of complex JEVD algorithms are about 44KN3 for JUST,
32KN3 for SH-RT and JDTM, 16KN3 for JAPAM, 8KN3

for JET-O and 4KN3 for JET-U.

III. JEVD ALGORITHMS BASED ON TAYLOR EXPANSION

In the first subsection, we introduce an original JEVD
algorithm based on a simultaneous optimization scheme. This
algorithm is called JDTE for Joint eigenvalue Decomposition
based on Taylor Expansion. In the second subsection, we
propose an improved version of this algorithm. In the last
subsection, we develop two algorithms based on a sequential
optimization scheme.

Before going further, we consider the following assump-
tions.

Assumption 1: At a given iteration, matrix X is close to a
stationary point of the optimization process.

5

Assumption 2: At a given iteration, matrix B is close to the
diagonalizing solution.

A stationary point is characterized by X = I, therefore
Assumption 1 implies

‖ZDiag{X}‖ ≪ 1. (9)

On the other hand, Assumption 2 naturally implies

‖ZDiag{N(k)}‖ ≪ 1, ∀k = 1, ...,K. (10)

A. Joint eigenvalue Decomposition based on Taylor Expansion
(JDTE)

JDTE algorithm is based on the framework described in
Algorithm 1. Since X has N degrees of freedom due to the
scaling indeterminacy, we can impose

X = I+ Z, (11)

where Z = ZDiag{X}. According to Assumption 1, X

is a strictly diagonally dominant matrix. Such a matrix is
nonsingular. Thereby the updating scheme in equation (4)
becomes
{

B ← (I+ Z)B
N

(k) ← (I+ Z)N(k)(I+ Z)−1, ∀k = 1, ...,K.
(12)

By injecting (12) in (5), the cost function C only depends
on matrix Z and can be rewritten as

CI+Z(Z) =

K
∑

k=1

‖ZDiag{(I+ Z)N(k)(I+ Z)−1}‖2. (13)

The term (I+Z)−1 makes the minimization of the above cost
function rather intricate. However, under Assumption 1, the
first-order Taylor expansion of (I+Z)−1 gives us the following
useful approximation for X−1 :

(I+ Z)−1 ≃ I− Z. (14)

The cost function (13) can thus be approximated as

CI+Z(Z) ≃
K
∑

k=1

‖ZDiag{(I+ Z)N(k)(I− Z)}‖2. (15)

By developing and neglecting the terms with an order in Z

superior to one, we have for all k = 1, ...,K,

(I+ Z)N(k)(I− Z) = N
(k) + ZN

(k) −N
(k)

Z− ZN
(k)

Z

(16)

≃ N
(k) + ZN

(k) −N
(k)

Z. (17)

Let us now decompose the matrices N
(k) as

N
(k) = Λ

(k) +O
(k), ∀k = 1, ...,K, (18)

where Λ
(k) = Diag{N(k)} and O

(k) = ZDiag{N(k)}. Under

Assumption 2, we have ||O(k)|| ≪ 1 for all k. Then, by
neglecting the terms in O

(k) and Z with an order superior
to one, equation (17) becomes

(I+ Z)N(k)(I− Z) ≃ Λ
(k) +O

(k) + ZΛ
(k) −Λ

(k)
Z. (19)

Finally, injecting (19) in (15), we obtain the approximated cost
function (under Assumption 1 and Assumption 2)

Cjdte(Z) =

K
∑

k=1

‖O(k) + ZΛ
(k) −Λ

(k)
Z‖2. (20)

Now, by rewriting this equation entrywise, it immediately ap-
pears that Cjdte(Z) is separable as a sum of convex functions:

Cjdte(Z) =

N
∑

m,n=1
m 6=n

fmn(Zmn),

where

fmn(Zmn) =

K
∑

k=1

|O(k)
mn + Zmn(Λ

(k)
nn − Λ(k)

mm)|2.

As a consequence, minimizing Cjdte(Z) is equivalent to
independently minimize each fmn(Zmn). Therefore for each
couple (m,n), m 6= n, the optimal value of Zmn is given by
∂f(Zmn)
∂Z̄mn

= 0. This yields

K
∑

k=1

(Λ̄nn − Λ̄mm)(O(k)
mn + Zmn(Λ

(k)
nn − Λ(k)

mm)) = 0 (21)

and we finally obtain

Zmn =

∑K
k=1(Λ̄

(k)
mm − Λ̄

(k)
nn)O

(k)
mn

∑K
k=1 |Λ

(k)
nn − Λ

(k)
mm|2

, ∀(m,n), m 6= n. (22)

Remark 1: If the algorithm is initialized with the identity
matrix, Assumption 1 and Assumption 2 may not be true
during the first iterations especially if N is large. A simple way
to fulfill both assumptions is thus to initialize the algorithms
by the eigenvectors obtained from the GEVD of two matrices
M

(k). We are going to propose an alternative solution in the
next subsection.

Remark 2: The denominator in equation (22) is null if and only

if ∀k,Λ
(k)
nn = Λ

(k)
mm. If this particular case occurs for a given

couple (m,n), with m 6= n, we can impose Zmn = 0 in the
algorithm at the current iteration. The following proposition
provides a sufficient condition to ensure that there exists
at least one couple (m,n), with m 6= n, for which the
denominator is non zero (otherwise X will be the identity
matrix and the algorithm will stop).

Proposition 1: Let B be the estimation of A
−1 at the

current iteration and G = BA. If G is a strictly diagonally
dominant matrix (up to permutation) and if the matrix Ω,
defined in equation (2), has at least two non co-linear rows
then there exists at least one couple (m,n) with m 6= n such
that the denominator in equation (22) is not null.

A proof is given in appendix A. The first part of the sufficient
condition is ensured by Assumption 2. The second part is a
very weak condition.

Remark 3: In the algorithmic procedure, we recommend to use
(I+ Z)−1 instead of (I− Z) to update the matrices N

(k). In

doing so, we preserve the similarity between the matrices N(k)

6

and D
(k).

Numerical complexity. The costliest step of one iteration
of JDTE is the update of the K matrices N

(k) by the matrix
I+ Z. Hence, in the complex case, the numerical complexity
of JDTE is

Γ[JDTE] ≃ 8KN3. (23)

It is noteworthy that JDTE is one of the JEVD algorithms with
the lowest numerical complexity.

B. Weighted JDTE (WJDTE)

We now propose a refinement of JDTE in order to mitigate
the influence of Assumption 1 and Assumption 2. We call
this new algorithm WJDTE for Weighted JDTE. Here, we
decompose the updating matrix as

X = I+ µopt(Z)Z, (24)

where µopt(Z) ∈ R. Matrix Z is computed as previously,
entrywise from equation (22), we denote this matrix Zjdte.
Then, we compute µopt(Zjdte) by minimizing a cost function
derived from equation (17) instead of equation (19):

µopt(Zjdte) = argmin
µ

K
∑

k=1

||O(k) + µC(k)||2, (25)

where C
(k) = ZDiag{ZjdteN

(k) − N
(k)

Zjdte}. The cost
function is thus a convex quadratic polynomial:

K
∑

k=1

||O(k) + µC(k)||2 =

K
∑

k=1

||O(k)||2 + 2Re{〈O(k),C(k〉)〉}µ+ ||C(k)||2µ2. (26)

So, we immediately obtain

µopt(Zjdte) = −

∑K
k=1 Re{〈O

(k),C(k)〉}
∑K

k=1 ||C
(k)||2

. (27)

Finally, we take Zwjdte = µopt(Zjdte)Zjdte.

Remark 1: It is worth mentioning that for µ = 0, ||O(k) +
µC(k)||2 = ||ZDiag{N(k)}||2. So an important result here
is that matrix Zwjdte cannot increase the approximated cost
function

Cwjdte(Z) =

K
∑

k=1

‖ZDiag{N(k) + ZN
(k) −N

(k)
Z}‖2. (28)

Remark 2: We can easily show that Cwjdte(Z) decreases for
any value of µ taken in the interval]0, 2µopt[(if µopt > 0)
or]2µopt, 0[(otherwise). This means that in the algorithmic
procedure, we can force −1 ≤ µopt ≤ 1 in order to better
respect Assumption 1. Moreover, at the convergence, if the
denominator in equation (27) gets close to the machine preci-
sion, we force µopt = 1.
Remark 3: Whatever the chosen matrix Z, it is clear that
matrix µopt(Z)Z cannot increase Cwjdte. As a consequence,

Assumption 2 is not required anymore and we can see Zjdte

as a smart choice for Z.
Numerical complexity. The computation of the K matri-

ces C
(k) involves about 8KN3 extra multiplications. So the

numerical complexity of WJDTE is

Γ[WJDTE] ≃ 16KN3. (29)

C. Sweeping JDTE (SJDTE) and Weighted Sweeping JDTE
(WSJDTE)

We remind that the sequential optimization scheme consists
in updating the matrix set with N(N − 1)/2 matrices X

(i,j)

at each iteration, according to the framework described in
Algorithm 2. We thus decompose matrices X

(i,j) as

X
(i,j) = I+ Z

(i,j), ∀(i, j), i < j (30)

where matrix Z
(i,j) has all its entries equal to zero except

Z
(i,j)
ij and Z

(i,j)
ji . The same reasoning as for JDTE immediately

leads to

Z
(i,j)
ij =

∑K
k=1(Λ̄

(k)
ii − Λ̄

(k)
jj)O

(k)
ij

∑K
k=1 |Λ

(k)
ii − Λ

(k)
jj |

2
, ∀(i, j), i < j (31)

and

Z
(i,j)
ji =

∑K
k=1(Λ̄

(k)
jj − Λ̄

(k)
ii)O

(k)
ji

∑K
k=1 |Λ

(k)
ii − Λ

(k)
jj |

2
, ∀(i, j), i < j. (32)

We call this algorithm SJDTE for Sweeping JDTE.
It is noteworthy that in this case, the simplifications obtained

from Assumption 1 and Assumption 2 lead to

CI+Z(Z
(i,j)) ≃ Cs(I+ Z

(i,j)) + αi,j , (33)

where Cs is the simplified cost function defined in equation
(8) and where

αi,j =

K
∑

k=1

N
∑

n=1
n 6=i,n 6=j

|O
(k)
ni |

2 + |O
(k)
in |

2+ |O
(k)
jn |

2 + |O
(k)
nj |

2. (34)

Since αi,j does not depend of Z
(i,j), Cs and CI+Z are

equivalent under Assumption 1 and Assumption 2.
Remarks done for JDTE hold for SJDTE. In particular, the

denominators of Z
(i,j)
ij and Z

(i,j)
ji must not be equal to zero

for all couples (i, j) with i < j. If it occurs for any couple

(i, j), we set Z
(i,j)
ij = Z

(i,j)
ji = 0 so that X(i,j) is the identity

matrix. As a consequence, the sufficient condition given by the
proposition 1 holds.

As it has been done for JDTE, we can derive a Weighted
Sweeping JDTE algorithm (WSJDTE) by setting the updating
matrix X

(i,j) as

X
(i,j) = I+ µopt(Z

(i,j))Z(i,j). (35)

The weight µopt(Z
(i,j)) is then computed as µopt(Z) by taking

C
(k) = ZDiag{Z(i,j)

N
(k) − Z

(i,j)
N

(k)} in equation (27).
Numerical complexity. The numerical complexity of

SJDTE is dominated by the N(N − 1)/2 updates by the

7

matrices X(i,j). Each update has a numerical complexity equal
to 24KN (indeed the inverse of X(i,j) may have four entries
different to 0 or 1). Therefore, we have

Γ[SJDTE] ≃ 12KN3. (36)

Now for WSJDTE, the computation of µopt(Z
(i,j)) involves

8KN2 + 4KN extra multiplications. This yields

Γ[WSJDTE] ≃ 4KN4 + 20KN3. (37)

In term of numerical complexity, SJDTE is thus a compromise
between JDTE and WJDTE while WSJDTE has the highest
numerical complexity.

D. Discussion about algorithms convergence

JDTE and SJDTE resort to different approximations of the
cost function given in equation (13). We thus conjecture that
if the approximations are good enough, then the original cost
function CI+Z and the approximated one will have the same
local behavior, i.e. if an update decreases the approximated
cost function, then it will also decrease the original one. Those
approximations are justified by Assumption 1 and Assumption
2. We have proposed to resort to GEVD initialization in
order to ensure both assumptions. We can show that this
is not necessary for WJDTE (the same reasoning holds for
WSJDTE).

We first recall that WJDTE only requires Assumption 1, that
is ‖Z‖ ≪ 1. Under this assumption, CI+Z can be rewritten
thanks to Neumann series [27] as

CI+Z(Z) =

K
∑

k=1

‖ZDiag{(I+ Z)N(k)(I− Z+ S)}‖2, (38)

where S =
∑∞

n=2(−1)
n
Z
n. Developing equation (38) yields

CI+Z(Z) =

K
∑

k=1

‖F(k)‖2+

K
∑

k=1

‖G(k)‖2+2Re{〈F(k)H ,G(k)〉},

(39)
where

F
(k) = ZDiag{N(k) + ZN

(k) −N
(k)

Z}, (40)

G
(k) = ZDiag{−ZN(k)

Z+N
(k)

S+ ZN
(k)

S}. (41)

Thus, we have

CI+Z(Z) = Cwjdte(Z) +

K
∑

k=1

‖G(k)‖2 +2Re{〈F(k)H ,G(k)〉}.

(42)
Now, considering that Zwjdte = µoptZjdte, it is always

possible to make
∑K

k=1 ‖G
(k)‖2 + 2Re{〈F(k)H ,G(k)〉} neg-

ligible in equation (42) by choosing |µopt| small enough. As a
consequence, if the original cost function CI+Z increases for
Z = Zwjdte, we can still decrease |µopt| in order to ensure
Assumption 1. This precaution also ensures that X−1 exists.
However, in practice it is unnecessary and could slowdown the
convergence. Therefore, we only impose |µopt| < 1 and accept
the small possible increases of the original cost function that
can occur during the first iterations.

IV. NUMERICAL SIMULATIONS

In this section, we study the behavior and the perfor-
mances of the proposed algorithms. The first subsection is
a convergence study and the second one is a performance
comparison with the existing JEVD algorithms. The matrix
sets to diagonalize are built as follows. First, we randomly
generate K diagonal matrices D

(k) and a matrix A of size
N×N by using a complex standard normal distribution (unless
otherwise indicated). Then, we compute matrices M

(k) as

M
(k) =

AD
(k)

A
−1

||AD(k)A−1||
+ σ

E
(k)

||E(k)||
, ∀k = 1, ...,K, (43)

where E
(k) models a zero mean Gaussian complex-valued

random noise and σ is a parameter allowing to set the SNR
value: SNR = −20 log(σ).

A. Convergence study

Algorithms are initialized with the identity matrix and
are run on 100 different sets of 20 noise free matrices
(K = 20, σ = 0). When the identity matrix is used for the
initialization, Assumption 1 and Assumption 2 may not be
satisfied during the first iterations of the algorithms, especially
when N is large. As a consequence, the matrix size can have a
significant impact on the convergence rate. However, we expect
that this impact is limited for WJDTE and WSJDTE. We thus
consider different matrix sizes for the different algorithms:
N = 5 for JDTE, N = 16 for SJDTE and N = 100
for WJDTE and WSJDTE. We refer to sections IV-B2 and
IV-B3 for a deeper study of the influence of the matrix
size. Figure 1 shows the evolution of the cost function C,
introduced in equation (5), with respect to the iteration number
for JDTE, SJDTE and WJDTE and for the different matrix sets
(convergence plots of WSJDTE are not shown since they are
similar to those of WJDTE). The cost function is normalized

here by
∑K

k=1 ||ZDiag{M
(k)}||2. In each case, the method

consistently converges after few iterations to a value close to
the machine precision. These results indicate that the proposed
approach is relevant in the general case and for a large range
of matrix sizes.

We now consider a more specific case in which entries of
matrix A are defined as Aii = 1, ∀i and Aij = 0.999,
∀(i, j), i 6= j. Hence, the same ill-conditioned matrix A is
used to build all the matrix sets. Convergence plots are shown
in figure 2. Here again, the cost function consistently reaches
a value close to the machine precision after few iterations.

B. Comparison study

We now investigate practical advantages and limitations of
the proposed algorithms in comparison with several algorithms
of the literature: SH-RT [19], JUST [20], JDTM [13], JET-
U [15] and JAPAM-5 [23]. Our first comparison criterion is
an indicator that quantifies the relative deviation between the
estimated matrix of eigenvectors (B−1) and the actual matrix
of eigenvectors (A). After removing scaling and permutation

8

0 5 10 15 20

Iterations

10
-30

10
-20

10
-10

10
0

N
o
rm

a
liz

e
d
 c

o
s
t
fu

n
c
ti
o
n

median value

(a) JDTE, N = 5

0 5 10 15 20 25

Iterations

10
-30

10
-20

10
-10

10
0

N
o
rm

a
liz

e
d
 c

o
s
t
fu

n
c
ti
o
n

median value

(b) SJDTE, N = 16

0 5 10 15 20 25 30 35

Iterations

10
-30

10
-20

10
-10

10
0

N
o
rm

a
liz

e
d
 c

o
s
t
fu

n
c
ti
o
n

median value

(c) WJDTE, N = 100

Fig. 1: Convergence plots with random matrices of eigenvectors.

0 5 10 15 20 25

Iterations

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

N
o
rm

a
liz

e
d
 c

o
s
t
fu

n
c
ti
o
n

median value

(a) JDTE, N = 5

0 5 10 15

Iterations

10
-20

10
-15

10
-10

10
-5

10
0

N
o
rm

a
liz

e
d
 c

o
s
t
fu

n
c
ti
o
n

median value

(b) SJDTE, N = 16

0 5 10 15 20 25

Iterations

10
-20

10
-15

10
-10

10
-5

10
0

N
o
rm

a
liz

e
d
 c

o
s
t
fu

n
c
ti
o
n

median value

(c) WJDTE, N = 100

Fig. 2: Convergence plots with ill-conditioned matrix of eigenvectors.

indeterminacy, this indicator is defined as the Normalized Root
Mean Square Error (NRMSE) between A and B

−1:

rA =
||A−B

−1||

||A||
. (44)

The second criterion, denoted Γtot, is the computational cost,
defined as the product between the numerical complexity
and the number of computed iterations to reach the stopping
criterion. The stopping criterion is defined here as

|C(Xit)− C(Xit−1)|

|C(Xit−1)|
< 10−6 or C(Xit) > 105C(X0) (45)

where Xit is the updating matrix at iteration it. For each
algorithm the maximal number of iterations is set to 500.

Algorithms are compared according to three scenarios. In
the first scenario, we vary the SNR value. In the second one
we vary the matrix size N . In the last one we vary the number
of degenerated eigenvalues of two matrices M

(k). For each
scenario, algorithm performances are evaluated by comparing
the average values of rA and Γtot computed from 100 Monte-
Carlo (MC) runs. Each MC run corresponds to a new matrix
set built as previously explained.

1) Scenario 1: We set the number of matrices to K = 20,
the matrix size to N = 5 and we vary the SNR value from 0
dB to 80 dB by step of 10 dB. Algorithms are initialized with
the identity matrix.

Results of this first scenario are plotted on figure 3. Con-
cerning the average value of rA (figure 3a), the four proposed
algorithms clearly provide the best results along with JAPAM-
5. Other polar decomposition based algorithms compete only
for the lowest SNR value while JET-U is consistently outper-
formed. On the other hand, we can see that JET-U has the
lowest computational cost for any SNR value (figure 3b). In
contrast, SH-RT, JUST and JDTM are the most expensive.
JDTE and SJDTE have a lower computational cost than
JAPAM-5 for all the SNR values. WJDTE and JAPAM-5 have
similar cost while WSJDTE is more expensive.

Thus, this scenario shows that for small matrix sizes, JDTE
and SJDTE compete with the best algorithms of the literature
for the estimation of the matrix of eigenvectors. Moreover,
their computational costs are significantly lower, whatever the
considered SNR value.

2) Scenario 2.a: We set the number of matrices to K = 20,
the SNR value to 50 dB and we vary the matrix size from 3 to
31 by step of 2. Matrix B is still initialized with the identity

9

0 20 40 60 80

SNR

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

r A
 (

a
v
e

ra
g

e
 v

a
lu

e
)

JAPAM-5

JET-U

SH-RT

JUST

JDTM

JDTE

SJDTE

WJDTE

WSJDTE

(a) rA average value

0 10 20 30 40 50 60 70 80

SNR

10
5

10
6

10
7

to
t (

a
v
e
ra

g
e
 v

a
lu

e
)

JAPAM-5

JET-U

SH-RT

JUST

JDTM

JDTE

SJDTE

WJDTE

WSJDTE

(b) Average computational cost

Fig. 3: Scenario 1, average rA and Γtot versus the SNR.

5 10 15 20 25 30

N

10
-3

10
-2

10
-1

10
0

r A
 (

a
v
e
ra

g
e
 v

a
lu

e
)

JAPAM-5

JET-U

SH-RT

JUST

JDTM

JDTE

SJDTE

WJDTE

WSJDTE

(a) rA average value

5 10 15 20 25 30

N

10
4

10
6

10
8

10
10

to
t (

a
v
e
ra

g
e
 v

a
lu

e
)

JAPAM-5

JET-U

SH-RT

JUST

JDTM

JDTE

SJDTE

WJDTE

WSJDTE

(b) Average computational cost

Fig. 4: Scenario 2.a, average rA and Γtot versus the matrix size.

matrix.

First of all, we see that the average value of rA (figure
4a) obtained from JAPAM-5, JDTE and SJDTE dramatically
increases above a critical value of N . Thereby, we can define
an operating limit for these three algorithms. This is not
surprising because these algorithms are based on assumptions
and the validity of these assumptions decreases when the
matrix size increases. This behavior has already been observed
in [23] for the JAPAM algorithms. Here the operating limits of
JAPAM-5, JDTE and SJDTE are N = 13, N = 9 and N = 21
respectively. Thus our simultaneous optimization scheme is
more sensitive to the matrix size than the sequential one. It
is noteworthy that performances of WJDTE and WSJDTE
are not affected by the increase of the matrix size. Indeed
these algorithms provide very good results whatever the value
of N . This means that the weight mitigates the influence
of Assumption 1 and Assumption 2 as it was expected.
Finally, we can note that inside their operating ranges, JDTE

and SJDTE provide similar results to WJDTE and WSJDTE.
Average computational costs are plotted on figure 4b. JET-U
is the least expensive algorithm from N = 3 to N = 11.
JDTE and SJDTE have a lower average computational cost
than JAPAM-5 in its operating range (N < 13). This is also
the case of WJDTE for N = 7 to N = 13. WSJDTE is clearly
more expensive than JAPAM-5 but it is still less expensive than
SH-RT, JUST and JDTM, whatever the considered value of N .

From this scenario, we can conclude that WJDTE is clearly
the best choice when dealing with large matrices (N > 17
for the settings considered here). For smaller matrices, we
can recommend SJDTE because it is slightly less expensive.
Finally, with this initialization, JDTE is suitable only for small
matrices.

In [23], the sensitivity of JAPAM algorithms to the matrix
size is mitigated by initializing the diagonalizing matrix B

with a generalized eigenvalue decomposition. As previously
mentioned, this kind of initialization allows to respect Assump-

10

tion 1 and Assumption 2 from the first iteration. Thus, in the
next two scenarios, we investigate the behavior of the JEVD
algorithms when GEVD initialization is used.

3) Scenario 2.b: We keep the same settings as scenario 2.a
but here the matrix B is initialized by GEVD (of course the
same GEVD is used for all the algorithms).

Results are plotted on figure 5. As expected, regarding the
rA criterion, algorithms are much less sensitive to the matrix
size. Here, there is no difference between the four proposed
algorithms and JAPAM-5. However, JDTE and SJDTE still
have a significantly lower computational cost than JAPAM-
5, whatever the matrix size. Here one should be careful of
the logarithmic scale in figure 5b: the computational cost of
JDTE is twice lower than the one of JAPAM-5. Thereby, JDTE
appears here as a good option when it is well initialized.
Indeed, it provides a good estimation of the eigenvectors with
a rather low computational cost. However, it can happen that
the GEVD does not provide a good initialization. We are going
to study one of these cases in our last scenario.

4) Scenario 3: We set the number of matrices to K = 20,
the SNR value to 50 dB and the matrix size to N = 25.
Matrix B is initialized by GEVD but here we vary the algebraic
multiplicity of the first eigenvalue of each of the two matrices
used to compute the GEVD. We denote P this number and
we vary it from 5 to 25.

Results are plotted on figure 6. Performances of JDTE,
JAPAM-5 and SJDTE dramatically decrease above a critical
value of P . This value is respectively equal to 7, 8 and 17.
Conversely, WJDTE is not affected by this bad initialization
and it consistently provides an optimal estimation of the matrix
of eigenvectors. The same remark holds for WSJDTE but
it is much more expensive. JDTE and SJDTE have a lower
computational cost than JAPAM-5 inside its operating range.
This is also the case of WJDTE for P > 6.

V. APPLICATION TO CANONICAL POLYADIC

DECOMPOSITION AND MIMO TRANSMISSION SYSTEM

JEVD can be used to compute the canonical polyadic de-
composition of tensors. Such a decomposition has become an
important tool for digital telecommunication signal processing.
In particular, CPD can be used in MIMO systems where the
source separation step at the receiver can be performed in a
deterministic way. This approach has originally been proposed
in [28] for Direct-Sequence Code Division Multiple Access
(DS-CDMA) systems. Later, it has been generalized thanks to
the concept of Khatri-Rao Space-Time (KRST) coding [29],
[30], [31], [32]. At the transmission, KRST coding consists
in spreading the symbols of the source signals by a different
code sequence for each source signal. At the reception, mixed
coded signals are gathered in a third order data tensor. Then
a CPD of this tensor provides a deterministic estimation of
the source signals, the mixing matrix and the code matrix.
Another advantage of this approach is that it can deal with
under-determined mixtures of source signals. We show here
that the proposed JEVD algorithms help to improve the CPD
of such data tensors.

In this purpose, we consider the following simple MIMO
system: At the emission, N source signals are coded by a

Q × N code matrix C (each source symbol is spread by a
code sequence of length Q). The code matrix is chosen as a
truncated discrete Fourier transform matrix as in [31]. Source
signals consist in random sequences of P QPSK symbols
gathered in matrix S (P × N). At the reception, an array
of R antennas receives R linear mixtures of the N emitted
signals. These linear mixtures are modeled by a random mixing
matrix H (R × N) of complex numbers. A white Gaussian
noise is added to the mixed signals. Thus each receiving
antenna receives a sequence of PQ symbols. After shifting and
downsampling operations, the collected symbols are gathered
in a P ×Q×R complex-valued tensor X . Then, the rank N
CPD of X gives

Xpqr =

N
∑

n=1

SpnCqnHrn + Epqr, ∀(p, q, r) (46)

where the tensor E models the noise. Here the CPD is
computed using the DIAG algorithm [13]. The crucial step
of this algorithm is the JEVD of K = R(R − 1) matrices
of size N . In [23], we showed that in a similar context this
approach significantly outperforms classical CPD algorithms
such as the alternative least square. JAPAM-5 then appeared
as the best solution for the JEVD step. As a consequence, we
compare here the performances of JDTE, WJDTE and SJDTE
with those of JAPAM-5.

We take P = 64, Q = 16, R = 10 and N = 13.
Thereby, the JEVD problem involves 90 matrices of size 13.
We have chosen a (quite) large number of source signals in
order to emphasize the differences between JEVD algorithms
and deal with under-determined mixtures. Furthermore, these
(relatively) small tensor dimensions should increase the diffi-
culty of the problem. We define here the SNR as

SNR = 20 log

(

||X − E||

||E||

)

(47)

and we vary it from −4 to 8 dB by step of 1 dB. Comparisons
are performed by means of MC simulations. For each SNR
value, 500 data tensors are built according to equation (46)
from random draws of H and E while each column of S is built
as the QPSK modulation of a random binary signal of length
2P . JDTE, WJDTE and SJDTE are initialized by the identity
matrix while two kinds of initializations are considered for
JAPAM-5: identity matrix and GEVD. Comparison criteria are
the Bit Error Rate (BER) computed from the estimated source
matrix after demodulation, the average NRMSE between the
estimated and the actual factor matrices (computed over the
three matrices) and the computational cost Γtot of the JEVD
step. Average values of the three criteria (computed over the
MC runs) are plotted on figures 7a, 7b and 7c respectively.
Regarding the BER criterion, SJDTE and WJDTE provide
the best results and clearly outperform JAPAM even with
the GEVD initialization. The gap with JAPAM increases as
the SNR decreases. In the highest SNR range ([5;8] dB),
WJDTE seems more stable than SJDTE. It is interesting to
note that in spite of the large value of N , JDTE results are
better than those of JAPAM initialized with the GEVD in

11

5 10 15 20 25 30

N

10
-3

r A
 (

a
v
e
ra

g
e
 v

a
lu

e
)

JAPAM-5

JET-U

SH-RT

JUST

JDTM

JDTE

SJDTE

WJDTE

WSJDTE

(a) rA average value

5 10 15 20 25 30

N

10
4

10
6

10
8

10
10

to
t (

a
v
e
ra

g
e
 v

a
lu

e
)

JAPAM-5

JET-U

SH-RT

JUST

JDTM

JDTE

SJDTE

WJDTE

WSJDTE

(b) Average computational cost

Fig. 5: Scenario 2.b, average rA and Γtot versus the matrix size (GEVD initialization).

5 10 15 20 25

Degenerated eigenvalue number

10
-3

10
-2

10
-1

10
0

r A
 (

a
v
e
ra

g
e
 v

a
lu

e
)

JAPAM-5

JET-U

SH-RT

JUST

JDTM

JDTE

SJDTE

WJDTE

WSJDTE

(a) rA average value

5 10 15 20 25

Degenerated eigenvalue number

10
7

10
8

10
9

10
10

to
t (

a
v
e
ra

g
e
 v

a
lu

e
)

JAPAM-5

JET-U

SH-RT

JUST

JDTM

JDTE

SJDTE

WJDTE

WSJDTE

(b) Average computational cost

Fig. 6: Scenario 3, average rA and Γtot versus the number of degenerated eigenvalues (GEVD initialization).

the range [−4; 1] dB and are consistently better than those
of JAPAM initialized with the identity. Now, regarding the
NRMSE criterion, JDTE, SJDTE and WJDTE provide similar
results and clearly improve JAPAM results whatever the used
initialization in the range [−4; 1] dB. For higher SNR, JAPAM-
GEVD competes with the proposed algorithms. The good
performances of JDTE can be explained here by the large value
of the ratio K/N . Finally, SJDTE is less costly than WJDTE
which is less costly than JAPAM-5 with GEVD initialization.
However, JDTE remains the least costly algorithm (except at
-4 dB). In conclusion, SJDTE appears here as the best choice
followed by WJDTE. Nevertheless, if the computational cost
is the most important criterion, one may consider JDTE as a
good option.

VI. CONCLUSION

In the present paper, we have introduced an original ap-
proach to compute the joint eigenvalue decomposition of a set

of matrices. This approach has two main advantages. First, it
equally works in R and C. Second, it allows to derive several
iterative algorithms that are based on very simple analytical
expressions of the updating parameters. The first one, called
JDTE has a low numerical complexity and works very well for
small matrix sizes. The counterpart is that it is quite sensitive
to the matrix size in the absence of smart initialization. In
order to deal with this issue, we have proposed an improved
version of JDTE called WJDTE. The numerical complexity
increases but we obtain the desired robustness with respect
to the matrix size. Actually, in our numerical simulations,
WJDTE has outperformed all the other algorithms in all the
considered situations. It is also remarkably stable whatever the
matrix size, the conditioning of the matrix of eigenvectors and
the initialization. The third algorithm (SJDTE) is a sequential
version of JDTE. SJDTE is a very versatile algorithm: its
numerical complexity is between those of JDTE and WJDTE
and it is as efficient as WJDTE for small to medium matrix

12

-4 -2 0 2 4 6 8

SNR

10
-4

10
-3

10
-2

10
-1

B
E

R
 (

lo
g

 s
c
a

le
)

DIAG-JAPAM

DIAG-JAPAMGEVD

DIAG-JDTE

DIAG-WJDTE

DIAG-SJDTE

(a) BER average value

-4 -2 0 2 4 6 8

SNR

10
-1

10
0

N
R

M
S

E
 (

lo
g

 s
c
a

le
)

DIAG-JAPAM

DIAG-JAPAMGEVD

DIAG-JDTE

DIAG-WJDTE

DIAG-SJDTE

(b) NRMSE average value

-4 -2 0 2 4 6 8

SNR

10
7

10
8

to
t
 (

lo
g
 s

c
a
le

)

DIAG-JAPAM

DIAG-JAPAMGEVD

DIAG-JDTE

DIAG-WJDTE

DIAG-SJDTE

(c) Average computational cost

Fig. 7: Algorithms comparison for source separation in a MIMO system context.

sizes. However, for larger matrix sizes, WJDTE should be
preferred. The last algorithm (WSJDTE) is a sequential version
of WJDTE. In all of our numerical simulations, WSJDTE and
WJDTE have provided similar results. However, the computa-
tional cost of WSJDTE is significantly higher.

Another way to improve the performances of the algorithms
with respect to the matrix size is to initialize the algorithms
with a generalized eigenvalue decomposition. In this case,
JDTE appears as the best trade-off between estimation per-
formances and computational cost. However, GEVD does not
always provide a good starting point and it appears that only
WJDTE and WSJDTE are totally robust to a bad initialization.

Finally, we have shown that WJDTE and SJDTE outperform
the reference JEVD algorithm for the canonical polyadic
decomposition of complex-valued tensors in the context of
source separation of digital telecommunications signals.

APPENDIX A
PROOF OF PROPOSITION 1

An important point of the proposed algorithms is that the
denominator of Zmn in equation (22) must not be equal to
zero for all couples (m,n) with m 6= n. Proposition 1 gives
us a sufficient condition to ensure this point. We give here a
proof of this proposition. Let us first recall the proposition.

Proposition 1: Let B be the estimation of A
−1 at the

current iteration and G = BA. If G is a strictly diagonally
dominant matrix (up to permutation) and if matrix Ω defined
in equation (2) has at least two non co-linear rows then there
exists at least one couple (n,m) with m 6= n such that the
denominator of Zmn in (22) is not null.

Proof:

Denominator of Zmn is non null if and only if Λ
(k)
mm 6= Λ

(k)
nn

for all k. In other words, we want to show that the matrix

∆ =







Λ
(1)
11 · · · Λ

(K)
11

... · · ·
...

Λ
(1)
NN · · · Λ

(K)
NN






(48)

has at least two distinct rows.

First, let us establish the link between matrices ∆ and Ω.
G is strictly diagonally dominant, this implies that both G and
B are invertible. Thus at the current iteration, injecting (1) in
(3) yields

N
(k) = GD

(k)
G

−1. (49)

Let diag{·} be the operator that puts the diagonal entries of
the matrix in argument in a column vector. This yields

diag
{

N
(k)

}

= (G � G
−T) diag

{

D
(k)

}

, (50)

where � is the matrix Hadamard product. Finally, denoting
H = G � G

−T , we obtain

∆ = HΩ. (51)

The difference between two rows of ∆ is thus given by

∆m. −∆n. = (Hm. −Hn.)Ω, (52)

where ∆m., ∆n., Hm. and Hn. are the mth and the nth rows
of matrices ∆ and H respectively. As a consequence,

∀(m,n), m 6= n, ∆m.−∆n. 6= 0⇔ Ω
T (Hm.−Hn.)

T 6= 0

(53)
where 0 is the null vector. Thus, we only need to show that
there exists a couple (m,n), m 6= n such that (Hm. −Hn.)

T

is not in the kernel of ΩT .
We first show that H is full rank. Because G is strictly

diagonally dominant, G−T is also strictly diagonally dominant
(see [33] page 27). Thereby H is strictly diagonally dominant
too and consequently it is nonsingular and full rank. Thus, on
one hand the subspace spanned by the set of vectors {(Hm.−
Hn.)

T }m,n
m 6=n

is of dimension N−1. On the other hand, we have

assumed that matrix Ω
T has at least two non co-linear rows

thereby the dimension of the space spanned by its columns is
greater or equal to 2. Consequently, the dimension of Ker(ΩT)
is strictly lower than N − 1.

Thus, there exists at least one couple (m,n), m 6= n such
that (Hm. −Hn.)

T is not in the kernel of ΩT .

13

REFERENCES

[1] P. Comon, “Independent Component Analysis,” in Higher Order
Statistics, J-L. Lacoume, Ed., pp. 29–38. Elsevier, Amsterdam, London,
1992.

[2] J. F. Cardoso and A. Souloumiac, “Blind beamforming for non-gaussian
signals,” IEE Proceesings-F, vol. 140, no. 6, pp. 362–370, Dec. 1993.

[3] J. F. Cardoso and A. Souloumiac, “Jacobi angles for simultaneous
diagonalization,” SIAM Journal Matrix Analysis and Applications , vol.
17, no. 1, pp. 161–164, 1996.

[4] A. Souloumiac, “Nonorthogonal joint diagonalization by combin-
ing givens and hyperbolic rotations,” IEEE Transactions on Signal
Processing, vol. 57, no. 6, pp. 2222–2231, June 2009.

[5] A. Yeredor, “Non-orthogonal joint diagonalization in the least-squares
sense with application in blind source separation,” IEEE Transactions
on Signal Processing, vol. 50, no. 7, pp. 1545–1553, jul 2002.

[6] Guang-Hui Cheng, Shan-Man Li, and Eric Moreau, “New jacobi-
like algorithms for non-orthogonal joint diagonalization of hermitian
matrices,” Signal Processing, vol. 128, pp. 440 – 448, 2016.

[7] A. J. Van der Veen, P. B. Ober, and E. F. Deprettere, “Azimuth
and elevation computation in high resolution doa estimation,” IEEE
Transactions on Signal Processing, vol. 40, no. 7, pp. 1828–1832, July
1992.

[8] A. N. Lemma, A. J. Van der Veen, and E. F. Deprettere, “Analysis of
joint angle-frequency estimation using ESPRIT,” IEEE Transactions on
Signal Processing, vol. 51, no. 5, pp. 1264–1283, May 2003.

[9] M. Haardt and J.A. Nossek, “Simultaneous schur decomposition
of several nonsymmetric matrices to achieve automatic pairing in
multidimensional harmonic retrieval problems,” IEEE Transactions on
Signal Processing, vol. 46, no. 1, pp. 161–169, January 1998.

[10] L. De Lathauwer, B. De Moor, and J. Vandewalle, “Computation
of the canonical decomposition by means of a simultaneous Schur
decomposition,” SIAM Journal on Matrix Analysis and Applications ,
vol. 26, no. 2, pp. 295–327, 2004.

[11] F. Roemer and M. Haardt, “A closed-form solution for multilinear
parafac decompositions,” in SAM 08, Fifth IEEE Sensor Array and
Multichannel Signal Processing Workshop, july 2008, pp. 487–491.

[12] F. Roemer and M. Haardt, “A semi-algebraic framework for ap-
proximate cp decompositions via simultaneous matrix diagonalizations
(secsi),” Signal Processing, vol. 93, no. 9, pp. 2722 – 2738, 2013.

[13] X. Luciani and L. Albera, “Canonical polyadic decomposition based
on joint eigenvalue decomposition,” Chemometrics and Intelligent
Laboratory Systems, vol. 132, no. 0, pp. 152 – 167, 2014.

[14] A. Boudjellal, A. Mesloub, K. Abed-Meraim, and A. Belouchrani,
“Separation of dependent autoregressive sources using joint matrix
diagonalization,” IEEE Signal Processing Letters, vol. 22, no. 8, pp.
1180–1183, Aug 2015.

[15] X. Luciani and L. Albera, “Joint eigenvalue decomposition of non-
defective matrices based on the LU factorization with application to
ICA,” IEEE Transactions on Signal Processing, vol. 63, no. 17, pp.
4594–4608, Sept 2015.

[16] S. Bonhomme, K. Jochmans, and J.-M. Robin, “Nonparametric
estimation of non-exchangeable latent-variable models,” Journal of
Econometrics, vol. 201, no. 2, pp. 237 – 248, 2017.

[17] A. Mesloub, K. Abed-Meraim, and A. Belouchrani, “A new algorithm
for complex non-orthogonal joint diagonalization based on shear and
givens rotations,” IEEE Transactions on Signal Processing, vol. 62, no.
8, pp. 1913–1925, April 2014.

[18] P. Strobach, “Bi-iteration multiple invariance subspace tracking and
adaptive esprit,” IEEE Transactions on Signal Processing, vol. 48, pp.
442–456, 2000.

[19] T. Fu and X. Gao, “Simultaneous diagonalization with similarity trans-
formation for non-defective matrices,” in ICASSP 2006, 2006 IEEE
International Conference on Acoustics Speech and Signal Processing,
May 2006, vol. 4, pp. 1137–1140.

[20] R. Iferroudjene, K. Abed-Meraim, and A. Belouchrani, “A new
jacobi-like method for joint diagonalization of arbitrary non-defective
matrices,” Applied Mathematics and Computation, vol. 211, no. 2, pp.
363–373, 2009.

[21] A. Mesloub, A. Belouchrani, and K. Abed-Meraim, “Efficient and stable
joint eigenvalue decomposition based on generalized givens rotations,”
in 2018 26th European Signal Processing Conference (EUSIPCO), Sep.
2018, pp. 1247–1251.

[22] E. R. Balda, S. A. Cheema, A. Weiss, A. Yeredor, and M. Haardt,
“Perturbation analysis of joint eigenvalue decomposition algorithms,” in
2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), March 2017, pp. 3101–3105.

[23] R. André, Xavier Luciani, and Eric Moreau, “A new class of block co-
ordinate algorithms for the joint eigenvalue decomposition of complex
matrices,” Signal Processing, vol. 145, pp. 78 – 90, 2018.

[24] T. Trainini and E. Moreau, “A coordinate descent algorithm for complex
joint diagonalization under hermitian and transpose congruences,” IEEE
Transactions on Signal Processing, vol. 62, no. 19, pp. 4974–4983, Oct
2014.

[25] R. André, T. Trainini, X. Luciani, and E. Moreau, “A fast algorithm for
joint eigenvalue decomposition of real matrices,” in EUropean SIgnal
Processing COnference (EUSIPCO’2015), Nice, France, 2015.

[26] V. Maurandi and E. Moreau, “A decoupled jacobi-like algorithm for
non-unitary joint diagonalization of complex-valued matrices,” IEEE
Signal Processing Letters, vol. 21, no. 12, pp. 1453–1456, Dec 2014.

[27] G. W. Stewart, ”Matrix Algorithms: Volume 1, Basic Decompositions” ,
Society for Industrial Mathematics, 1998.

[28] N. D. Sidiropoulos, G. B. Giannakis, and R. Bro, “Blind PARAFAC
receivers for DS-CDMA systems,” IEEE Transactions On Signal
Processing, vol. 48, no. 8, pp. 810–823, March 2000.

[29] D. Nion and L. De Lathauwer, “A Block Component Model based
Blind DS-CDMA Receiver,” IEEE Trans. Signal Proc., vol. 56, no. 11,
pp. 5567–5579, 2008.

[30] A. de Almeida, G. Favier, and J.C. Mota, “Space-time spreading mimo-
cdma downlink systems using constrained tensor modeling,” Signal
Processing, vol. 88, no. 10, pp. 2403 – 2416, 2008.

[31] L. R. Ximenes, G. Favier, A. L. F. de Almeida, and Y. C. B. Silva,
“Parafac-paratuck semi-blind receivers for two-hop cooperative mimo
relay systems,” IEEE Transactions on Signal Processing, vol. 62, no.
14, pp. 3604–3615, July 2014.

[32] L. R. Ximenes, G. Favier, and A. L. F. de Almeida, “Semi-blind
receivers for non-regenerative cooperative mimo communications based
on nested parafac modeling,” IEEE Transactions on Signal Processing,
vol. 63, no. 18, pp. 4985–4998, Sep. 2015.

[33] B. Li, ”Generalizations of diagonal dominance in matrix theory” , Ph.D.
thesis, University of Regina, 1997.

