
1

Fast Adaptive Gradient RBF Networks For Online
Learning of Nonstationary Time Series

Tong Liu, Sheng Chen, Fellow, IEEE, Shan Liang, Member, IEEE, Shaojun Gan, Chris J. Harris

Abstract—For a learning model to be effective in online
modeling of nonstationary data, it must not only be equipped
with high adaptability to track the changing data dynamics but
also maintain low complexity to meet online computational re-
strictions. Based on these two important principles, in this paper,
we propose a fast adaptive gradient radial basis function (GRBF)
network for nonlinear and nonstationary time series prediction.
Specifically, an initial compact GRBF model is constructed on
the training data using the orthogonal least squares algorithm,
which is capable of modeling variations of local mean and trend
in the signal well. During the online operation, when the current
model does not perform well, the worst performing GRBF node
is replaced by a new node, whose structure is optimized to fit
the current data. Owing to the local one-step predictor property
of GRBF node, this adaptive node replacement can be done very
efficiently. Experiments involving two chaotic time series and two
real-world signals are used to demonstrate the superior online
prediction performance of the proposed fast adaptive GRBF
algorithm over a range of benchmark schemes, in terms of
prediction accuracy and real-time computational complexity.

Index Terms—Nonlinear and nonstationary signals, prediction,
radial basis function (RBF) network, gradient RBF network,
adaptive algorithm, tunable nodes

I. INTRODUCTION

Most real-world time series are nonlinear to a large extent,
and radial basis function (RBF) neural networks, as effective
means of modeling nonlinear characteristics from data, have
enjoyed considerable success in time series prediction [1]–
[5]. One important advantage of RBF networks compared
with other neural network models is that the orthogonal least
squares (OLS) algorithm [4]–[9] can readily be applied to
construct a parsimonious RBF model that generalizes well
in prediction for stationary data. Like many other neural
network models, the RBF model constructed on training data
does not characterize temporal variability of unseen data well
[10]. Therefore, using the fixed RBF model constructed on
training data to predict nonstationary signals generally yields
unsatisfactory performance.

T. Liu and and S. Liang are with Key Laboratory of Dependable Service
Computing in Cyber Physical Society, Ministry of Education, Chongqing
University, School of Automation, Chongqing University, Chongqing, China
(E-mails: tl3n18@soton.ac.uk, lightsun@cqu.edu.cn).

S. Chen and C.J. Harris are with School of Electronics and Computer
Science, University of Southampton, Southampton SO17 1BJ, UK (E-mails:
sqc@ecs.soton.ac.uk, chrisharris57@msn.com), S. Chen is also with King
Abdulaziz University, Jeddah 21589, Saudi Arabia.

S. Gan is with Beijing Key Laboratory of Traffic Engineering, College
of Metropolitan Transportation, Beijing University of Technology, Beijing
100124, China (s.gan@bjut.edu.cn)

T. Liu would like to thank the sponsorship of Chinese Scholarship Council
for funding his research at School of Electronics and Computer Science,
University of Southampton, UK. This work was partly supported by the
National Natural Science Foundation of China under grant 61771077, and
the Key Research Program of Chongqing Science & Technology Commission
under Grant No.CSTC2017jcyjBX0025.

As an alternative to the feedforward RBF neural network
for nonlinear dynamic modeling, the recurrent neural networks
(RNNs) have received considerable attention due to their better
capabilities in capturing nonlinear dynamic characteristics in
data [11]–[13]. Different from feedforward RBF networks,
the nodes in RNNs are connected in a loop, and the internal
state of the network exhibit dynamic temporal behavior, which
makes RNNs particularly suitable for modeling nonlinear time
series data with long memory or embedding dimension [14],
[15]. Unlike the training of a RBF network, which offers a
single global optimal solution, training of a RNN is much
more challenging. In particular, traditional RNNs suffer from
the problem of vanishing gradients and thus have difficulty
to capture long-term dependencies [16]. Recently, long short-
term memory (LSTM) network [17] and the gated recurrent
unit (GRU) [18], [19] have been developed to combating
this limitation. By adding multi-threshold gates, The LSTM
and GRU are more effective in learning long-term temporal
dependencies, and they have been successfully applied to many
sequence modeling problems [20]–[23]. However, the underly-
ing structure of RNNs deters the use of RNNs in many online
scenarios, where data are fast arriving and the underlying
dynamics of data are fast time-varying. This is because the
structure and parameters of an RNN are fixed during online
operation, since it is impossible to optimize its structure and
parameters within a small sampling period in order to track
the fast time-varying nonstationary characteristics.

Since most real-world signals are not only nonlinear but also
nonstationary, Online learning in nonstationary environment
has been a very hot topic in the machine learning community
[24]–[31]. Predicting nonstationary time series imposes a
set of challenges, including model adaptability for evolving
environment and stringent real-time computational constraint.
Specifically, a learning model must not only be equipped
with effective adaptation mechanism for tracking changing
data dynamics but also be sufficiently efficient to meet online
complexity restrictions. To cope with nonstationary data, a
commonly used simple method is using adaptive recursive
estimators, such as the recursive least square (RLS) [1], [32]
or the online sequential extreme learning machine (OS-ELM)
[33]–[36], to update the RBF model’s weights in real time.

The OS-ELM of [33]–[36] is a popular online learning
method due to its ‘simplicity’ in model construction. By
randomly selecting a large number of training data as the RBF
centers to fix the RBF model structure, only the model weights
are adapted online using the RLS algorithm. Because the size
of the RBF model has to be very large for OS-ELM, online
adaptation of the model weights is computationally costly and,
moreover, there is no guarantee that the fixed RBF nodes, no
matter how dense they are in the training data space, will also

2

cover the changing nonstationary data space well. Therefore,
the OS-ELM only works for relatively slow time varying data
with priori known data space. It can be seen that adapting the
RBF model structure to track time-varying characteristics, not
just adapting the RBF model weights, is the key to success for
nonstationary data modeling. However, for fast arriving data
with short sampling period, optimizing the whole RBF model
structure online may not meet the real-time constraint.

Starting with a compact RBF model constructed for example
in training by the OLS algorithm, the fast tunable RBF method
[37] adjusts RBF nodes as well as the model weights online to
adaptively model nonstationary signals. Specifically, the fast
tunable RBF adapts the RBF model structure by replacing
an ‘insignificant’ RBF node with a new node to better fit
the current data. Equipped with this fast adaptive mechanism
together with a small fixed model size, the fast tunable RBF
learning is capable of tracking changing characteristics in
nonstationary signals, while imposing a low online compu-
tational complexity. The experimental results of [37] show
that this fast tunable RBF method outperforms the OS-ELM
considerably, in terms of both prediction accuracy and real-
time computational complexity.

It is well known that for nonstationary time series involving
variations of local mean and trend, the series can be made
stationary by applying an appropriate difference operation on
the original signal [38]. Inspired by this property, the gradient
RBF (GRBF) neural network is proposed for nonstationary
signal prediction [39]. In the GRBF model, the input signal to
the network is the difference of the original signal and each
hidden node, which consists of a center and a width as well as
a scalar, can be interpreted as a local one-step predictor [39].
The OLS algorithm can readily be applied to determine an
appropriate model size and, therefore, to construct a compact
GRBF model from the training data. Not surprisingly, this
GRBF network trained by the OLS algorithm outperforms the
classic RBF network also trained by the OLS algorithm in
nonstationary time series prediction [39].

Obviously, nonstationary time series or signals also exhibit
other time-varying characteristics, not just variations of local
mean and trend. In a nonstationary environment, the signal
dynamics can change significantly from the initial training data
space and some new time-varying characteristics, other than
variations of local mean and trend, may appear, which are
unseen in the training data. The fixed GRBF model constructed
on the training data is unlikely to track these unseen dynamics
well and, consequently, its online prediction performance may
degrade. A solution to this problem is to update the GRBF
model structure online. This motivates our current work.

In this paper, we propose a fast adaptive or tunable GRBF
network for online prediction of nonlinear and nonstationary
time series. To be specific, starting from the initial GRBF
network constructed from the training data using for example
the OLS algorithm, the worst performing node during online
operation is replaced with a new node when the current model
does not fit the current data well. This enables the GRBF
network to track the changing dynamics online with high
adaptability. It turns out that online optimization of a GRBF
node is far easier and simpler than online updating a RBF

node as given in [37]. This is because owing to local one-step
predictor interpretation of GRBF node, the center and scalar
of the replacement GRBF node can simply be chosen to be the
current input data and the output gradient, respectively, which
is actually optimal, while the new width can be computed
easily from the set of centers, and the new network weight
vector is calculated using the least squares (LS) estimator.
By comparison, the center and width of the replacement RBF
node also need to be determined via an iterative optimization
procedure for the fast tunable RBF [37]. Consequently, our
proposed fast tunable GRBF method imposes significantly
lower online computational complexity than the fast tunable
RBF method of [37]. Experiments involving prediction of two
chaotic time series and two real-world signals demonstrate
the superior performance of the proposed fast tunable GRBF
algorithm over a range of benchmark schemes, including the
fast tunable RBF of [37], in terms of both prediction accuracy
and online computational complexity.

II. THE GRBF NETWORK

Without loss of generality, consider the one-step-ahead time
series prediction, which uses the past signal samples

xt =[yt−1 yt−2 · · · yt−M ′]T, (1)

to predict the current signal value yt, where M ′ is referred
to as the embedding vector length. The task of the online
prediction therefore can be formulated as follows: given the
observation data {xt, yt}, construct an estimator ŷt =Ft(xt)
to approximate the underlying dynamics at every sampling
time t, where Ft(·) denotes the estimator mapping. All the
our discussions equally apply to multi-step-ahead prediction.

A. GRBF Neural Network

The GRBF network [39], like the conventional RBF net-
work, is a single-hidden-layer feedforward neural network.
However, unlike the RBF network, where the network input
is given by (1), the input vector to the GRBF network is
generated by differencing the raw data. More specifically,
given the M ′ past samples, the input vector of the first-order
GRBF at time t is given by

xt =[yt−1−yt−2 yt−2−yt−3 · · · yt−M−yt−M−1]T, (2)

where M = M ′−1. The elements of xt in (2) show the rate
of change in the trajectory of the time series for the past M ′

samples. Differencing helps to eliminate or reduce trend and
seasonality [38].

Fig. 1 depicts the structure of the GRBF network. Without
loss of generality, we use the Gaussian function to serve as
the hidden node’s nonlinearity which compares the similarity
of the input vector to the hidden node’s center. In addition to
differencing, the main difference between a GRBF node and a
classic RBF node is that the Gaussian function response in a
GRBF hidden node is further multiplied by an additional term(
yt−1+δ

)
. Hence, the response of the jth hidden node to the

input vector xt is given by [39]

ϕj(xt) = exp
(
−α ∥xt − cj∥2

)
×

(
yt−1 + δj

)
, (3)

3

1ty - 1ty - 1ty -

1d 2d K
d

å åå

1q
3q

2q

å

ˆ
t
y

´´´

1ty - 2ty - 3ty - 1t M
y
- -t M

y
-

Input

 layer

Hidden

layer

Output layer

- - -

Fig. 1. Structure of the GRBF network [39].

where cj is an M -dimensional center vector, α is a posi-
tive constant which determines the width of the symmetric
response of the hidden node, and δj is a constant scalar
associated with the jth hidden node. Because the network
input is (2), the hidden nodes now sense the gradient of
the time series rather than the series itself as in the case of
the classic RBF model. The term yt−1 +δj also has a clear
geometrical interpretation as a local one-step prediction of yt

by the jth hidden node. Observe from (3) that if xt is very
similar to cj , the response of the jth Gaussian hidden node
will be very close to the maximum value of 1 and the local
predictor yt−1+δj becomes fully active.

The output layer of the GRBF network is a linear combiner
with weights θj , just as in a classical RBF network. Thus,
assuming a total of K hidden nodes and given the input vector
xt of (2), the relationship between the output of the GRBF
network ŷt and the actual output yt can be expressed as

yt =ŷt + et =
∑K

j=1
ϕj(xt)θj + et, (4)

where et denotes the modeling error.

B. GRBF Neural Network Construction

The centers cj and the scalars δj can be chosen during the
training from the training data {xk, yk}N

k=1. First, for each
training input vector xk, define

dk =yk − yk−1. (5)

If xk is selected as the jth center cj , we set δj =dk to ensure
that the jth hidden node is a perfect predictor of yk. Next
assume that the width parameter α is chosen. Then the problem
of constructing the GRBF network is equivalent to the task of
selecting a K-term subset model {cj , δj}K

j=1 from the full N -
term model {xk, dk}N

k=1, and the OLS method can readily be
applied to complete this subset selection problem.

Specifically, according to (4), the full N -term GRBF model
over the training data set can be expressed as

y = Φθ + e, (6)

where y= [y1 y2 · · · yN]T ∈RN is the desired output vector,
Φ∈RN×N is the full regression matrix whose (k, i)th entry is
Φk,i =ϕi(xk), and θ=[θ1 θ2 · · · θN]T∈RN is the full model

weight vector, while e= [e1 e2 · · · eN]T ∈RN represents the
error vector over the training samples.

Let the orthogonal decomposition of the regression matrix
be Φ =WA, where W = [w1 w2 · · ·wN]∈RN×N denotes
the orthogonal regression matrix that satisfies wT

i wj = 0 for
i ̸=j, and A is an unit upper triangular matrix given by

A =


1 a1,2 · · · a1,N

0 1 · · · a2,N

...
.

...
0 · · · 0 1

 . (7)

The regression model (6) can then be rewritten as

y = Wg + e, (8)

where the transformed weight vector g=[g1 g2 · · · gN]T =Aθ,
whose elements are given by gi =wT

i y/wT
i wi for 1≤ i≤N .

The sum of squares of the output y is therefore given by

yTy =
∑N

j=1
g2

jw
T
j wj + eTe. (9)

The contribution of the jth model term or the error reduction
radio [err]j is defined by

[err]j =
wT

j wjg
2
j

yTy
. (10)

The orthogonal forward selection (OFS) procedure [6] can
readily be utilized to select a subset of K centers ci and scalars
δi one by one from the full model. At each step, a candidate
with the maximum value of [err]i is chosen. The selection pro-
cedure is terminated when some termination criterion is met,
yielding a K-term subset model WKgK which contains the
selected {ci, δi}K

i=1, whereWK ∈RN×K is the selected subset
orthogonal regression matrix and gK ∈ RK is the associated
weight vector. Let the corresponding upper triangular matrix
be AK ∈RK×K . Then the weight vector of the selected K-
term subset GRBF model θK ∈RK can readily be solved from
gK = AKθK by the backward substitution. Termination of
the OFS procedure can base on Akaike’s information criterion
[40], regularization techniques [5], D-optimality experimental
design [7] or leave-one-out mean square error [8].

C. Determining Width of Gaussian Node

A variety of ways exist to determine the width α of Gaussian
hidden nodes. A simple way is to set the width to [41]

α =
1

2d2
max

, (11)

where dmax is the maximum distance between the centers.
The number of centers K can also be taken into account by
modifying (11) as [42]

α =
K

d2
max

. (12)

Furthermore, the dimension of the input M can also be
considered by setting the width to [43]

α =
M 2/M

√
K

2d2
max

. (13)

4

Unsupervised clustering [1] can also be applied to partition
the input data into an appropriate number of clusters which
also yields the cluster variance suitable as the width of
hidden nodes. Individual hidden nodes can also have tunable
widths, which can be optimized using gradient descend or
evolutionary algorithms, and moreover this width optimization
can naturally be embedded with the OFS procedure [44]–[50]
to construct the GRBF network having individually optimized
hidden nodes. Since we will consider online adaptation of the
GRBF model, we only adopt the simple OLS algorithm of
Subsection II-B to construct the initial GRBF model from the
training data with a common width α.

III. ONLINE ADAPTATION OF THE GRBF NETWORK

At the beginning of online operation, we have the initial
GRBF model with K hidden nodes constructed based on the
training data. During online operation, the signal dynamics
can vary dramatically from those seen in the training data. A
simple way of adapting the GRBF model online is to apply the
RLS algorithm to update the weights. However, this is clear
inadequate to track highly time-varying signals. In order to
capture the newly emerged signal’s dynamics, it is necessary
to adapt the GRBF network structure as well. To maintain
low online computational complexity, we do not attempt to
grow the GRBF model by adding new hidden nodes to capture
the newly emerging signal’s dynamics. Rather, we opt for
maintaining the model size, similar to the fast tunable RBF
of [37], and modify the hidden nodes of the GRBF network,
namely, update the centers and associated scalars as well as
individual widths of the hidden nodes, to track the signal’s
changing dynamics.

Therefore, for our fast adaptive GRBF, when the weight
adaptation becomes inadequate at sample t, modification of
the hidden nodes takes place. It is worth pointing out that it
is generally not necessary, in fact, it is undesired to update all
the K hidden nodes of the GRBF network. Recalling from
the previous two subsections, each hidden node encodes a
local signal state learnt from the history. Since the existing
hidden nodes contain the previous system dynamics and they
can be important in the future prediction, it is unwise to
‘wipe out’ them all. Rather, it is far better to identify the
most out-of-date or most insignificant hidden node and replace
it with a new hidden node that better represents the newly
emerging local signal state. It can be seen that our fast adaptive
GRBF is designed to have self-tuned fast tracking capability
for capturing local characteristics of nonstationary signals,
while maintaining low online computational complexity. To
achieve these two objectives, three issues need to be addressed:
1) when the hidden node replacement takes place, and which
node should be replaced; 2) how the structure of the new node
is optimised; and 3) how the weight vector of the new network
is optimized. We now provide the details below.

A. Node Replacement

At sample t, we have the data point (xt, yt) and the weight
vector θt−1 =

[
θ1(t − 1) · · · θK(t − 1)

]T
. We first need to

decide whether a node replacement should take place. We can
calculate the residual error et according to

et = yt − ϕT
t θt−1, (14)

where ϕT
t =

[
ϕ1(xt) · · ·ϕK(xt)

]
is the hidden layer’s re-

sponse to xt. The following squared relative error (SRE) is
defined to measure the overall network performance

SREt =
e2
t

y2
t

, (15)

and we introduce the following decision rule{
if SREt < ε, model structure remains unchanged,
if SREt ≥ ε, node replacement takes place, (16)

where ε is a preset positive threshold. In general, a small ε
leads to frequent node replacements that improves modeling
accuracy but imposes more computational cost, and vice verse.

1) No node replacement: When SREt <ε, we simply keep
the GRBF network model structure unchanged.

2) Which node to replace: When SREt ≥ ε, we need to
decide which node to be replaced. Similar to [37], we define
the weighted node-output variance (WNV) that measures the
individual node’s contribution. Specifically, the WNV of the
jth node is given by

WNVj = |ϕj(xt)θj(t − 1)|2 . (17)

Then find the node with the smallest WNV value:

m =arg min
1≤i≤K

WNVi. (18)

Since the node m has the smallest WNV, it is the worst
performing node and is replaced by a new node.

B. Optimizing New Replacement Node
At sample t, we have decided to replace the node m.

We need to determine the new center cm, scalar δj and
width αm. By exploiting the geometric property of GRBF
hidden node, the task of optimizing this new node becomes
straightforward. We simply set cm = xt and δm = yt−yt−1

to ensure that the new replacement node m is a perfect local
predictor of yt and the new local signal state, represented by
{xt, yt}, is automatically encoded into the updated network
structure. Since the set of centers now contains a new one,
the new maximum distance dmax between the centers is
recalculated, and the new width αm is determined according
to, for example, (11) based on this new dmax.

C. Updating Network Weight Vector
1) SREt < ε: Since the model structure is unchanged, we

simply update the weight vector using the RLS algorithm ψt = Pt−1ϕt

(
λ + ϕT

t Pt−1ϕt

)−1
,

Pt =
(
Pt−1 −ψtϕ

T
t Pt−1

)
λ−1,

θt = θt−1 +ψtet,

(19)

where ψt ∈RK is the Kalman gain vector, 0.9≤λ<1 is the
forgetting factor, and the inverse of covariance matrix Pt ∈
RK×K is usually initialized to P0 = ϑIK in which ϑ is a
large positive constant and IK is the K×K identity matrix.

5

Algorithm 1 Fast adaptive GRBF algorithm
1: Initialization
2: Construct initial K-term GRBF model {cj , δj , αj =

α, θj}K
j=1 based on training data set {xk, yk}N

k=1 using
OLS algorithm of Subsection II-B.

3: Set θ0 to weight vector of initial GRBF model, P0 = ϑIK ,
and collect p latest data points Dp = {x−i, y−i}p−1

i=0 .
4: Set sample index t = 1.
5: Online prediction
6: Given input xt, compute prediction of yt as ŷt = ϕT

t θt−1.
7: Online adaptation
8: When actual output yt is available, shift oldest data point

out of Dp, and add (xt, yt) to Dp.
9: Calculate SREt using (14) and (15).

10: IF SERt < ε:
11: Update weight vector θt with RLS algorithm (19).
12: ELSE IF SER ≥ ε:
13: Calculate the WNV values for all K nodes using (17),

and find node with smallest WNV using (18).
14: Node m has smallest WNV, then replace it:
15: Set new center to cm = xt and new scalar δm =

yt − yt−1.
16: Recalculate maximum distance dmax between centers,

and set new width αm according to (11)
17: Recalculate network weight vector θt as regularized LS

estimate, and update Pt with (23).
18: END IF
19: Set t = t + 1 and go to step 5.

2) SREt ≥ ε: Since the network structure has been
changed, the previous weight vector θt−1 is no longer relavent,
and we need to recompute the weight vector. We will compute
the new weight vector θt as the LS estimate based on the p

latest data Dp =
{
xt−i, yt−i

}p−1

i=0
.

Specifically, define the desired output vector and the regres-
sion matrix over the data set Dp respectively as

yp =[yt yt−1 · · · yt−p+1]T, (20)

Φp =


ϕ1(xt) ϕ2(xt) · · · ϕK(xt)

ϕ1(xt−1) ϕ2(xt−1) · · · ϕK(xt−1)
...

...
...

...
ϕ1(xt−p+1) ϕ2(xt−p+1) · · · ϕK(xt−p+1)

. (21)

Then the regularized LS estimate of θt is readily given by

θt =
(
ΦT

p Φp + βIK

)−1
ΦT

p yp, (22)

where β is a small positive regularization parameter, e.g., β =
10−6. To achieve the smooth transition from one mode to
another at the next sample, the inverse of the covariance matrix
Pt for θt is needed. Therefore, we always set Pt to

Pt =
(
ΦT

p Φp + βIK

)−1
, (23)

after the regularized LS estimation of (22). The value of p
trades off estimation accuracy with complexity. It can be seen
that the main computational complexity of our fast adaptive

GRBF algorithm comes from this online LS estimation.

D. Algorithm Summary

The proposed fast adaptive GRBF algorithm is summarized
in Algorithm 1. We highlight that our fast adaptive GRBF
network is capable of effectively address the well-known
stability-plasticity dilemma [51]. The hidden nodes of our
GRBF network basically encode the past local data dynamics,
which provides the ability to retain acquired knowledge, i.e.,
stability. During online learning in a nonstationary environ-
ment, a learning model must be able to forget part of the
previous knowledge in order to capture the newly emerging
data pattern as fast as possible, i.e., plasticity. Basically, the
number of hidden nodes in the GRBF network can be regarded
as its memory depth, and the size K of the fast adaptive GRBF
network can be quite small in order to have excellent plasticity
of not keeping too much past knowledge. Our fast adaptive
GRBF network forgets the most out-of-date hidden node to
free ‘space’ for encoding the newly emerging local data char-
acteristics as fast as these new dynamics appear. Sensitivity
of the algorithmic parameters, ε and p, to the achievable
prediction accuracy and online computational complexity will
be further investigated in the experimental study.

Compared with the work of [37], [52], our fast adaptive
GRBF algorithm imposes significantly lower online com-
putational complexity per sample. This is because for the
tunable RBF network, the center and width of the replacement
node must be optimized, which is an (M + 1)-dimensional
nonlinear optimization problem. In [37], [52], this optimization
is solved using a gradient descent iterative procedure at each
sampling time to minimize the square of the current error. This
iterative optimization procedure imposes considerably online
computational complexity per sample. In fact, to reliably
determine the center and width, the multi-innovation gradient
descent [53] should be employed, i.e., the optimization should
be based on a block of p latest data points. This, however,
would impose even heavier computational complexity. By
contrast, the optimization of the replacement hidden node for
our GRBF network involve very little computation as can be
clearly seen in the previous subsection. To be specific, during
online operation if only weight adaptation is performed, the
complexity comes from the RLS algorithm (19), which is on
the order of O(K2), while if the node replacement occurs, the
WNV calculation in (17) costs O(K) and the weigh adaptation
costs O(p3) for the regularized LS estimation (22).Thus, the
online computational complexity per sample of the proposed
algorithm is no more than max

{
O(p3), O(K2)

}
. Since p and

K are typically very small, this is clearly affordable.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

Extensive experiments involving several nonlinear and non-
stationary benchmark time series are conducted to evaluate the
proposed fast adaptive GRBF network. The first case study
includes online prediction of two chaotic time series, Rossler
series [54] and Lorenz series [55], while two real-world time
series, the monthly recorded sunspot number [56], [57] and
an electroencephalographic (EEG) time series [58]–[60], are

6

predicted in the second case study. The mean square error
(MSE) and mean absolute error (MAE), defined as

MSEt =
1
t

∑t

i=1

(
yi − ŷi

)2
, (24)

MAEt =
1
t

∑t

i=1
|yi − ŷi| , (25)

are used to evaluate the online prediction performance, where
ŷi is the model prediction for yi. The online computational
complexity is quantified by its online averaged computation
time per sample (ACTpS). The experiments are carried out
on Matlab 2017a, running on a PC with i7-3770 3.40 GHz
processor of 4 cores and 16GB of RAM.

The performance of our proposed approach is compared
with those of typical approaches including the LSTM [17],
[20]–[22], the GRU [18], [19], the OS-ELM [33]–[36], the
RBF network [4], the GRBF network [39] and the fast tunable
RBF [37]. For the OS-ELM, a RBF network is initialized dur-
ing training by randomly selecting a large number of input data
points as its centers, and the online adaptation of the OS-ELM
involves the weight updating using the RLS algorithm. For the
RBF model, a small RBF model is constructed during training
using the OLS algorithm, and the RBF network structure as
well as its weights are fixed throughout the online prediction.
Similar, the initial GRBF model is constructed during training
using the OLS algorithm, and the model structure as well
as weights are fixed during online prediction. For the fast
tunable RBF, the RBF model is initialized during training
using the OLS algorithm, and adaptation takes place during
online modeling and prediction according to the algorithm
described in [37]. For both the LSTM and GRU with single
hidden layer, the mini batch stochastic gradient descend is
used to tune the parameters of the LSTM and GRU during
training, and their network structures and parameters are fixed
throughout online prediction.

A. Chaotic Time Series Prediction

This case study involves prediction of Rossler and Lorenz
time series. For each chaotic time series, after removing a large
number of initial data points, 2100 samples are generated, with
the first 100 samples as the training set for initial modeling

and the remaining 2000 samples as the test dataset for adap-
tive prediction. Also for each time series, 100 independent
realizations are generated. The performance of each method
are presented by its mean and standard deviation (STD) of the
test MSE and ACTpS over the 100 realizations.

The embedding dimension is set to M =6. Hence, the input
dimension of the GRBF model is M ′=5. For our fast adaptive
GRBF, the decision threshold and the number of latest data
points for regularized LS estimate are empirically chosen to
be ε = 10−6 and p = 7, respectively. For a fair comparison,
we also use ε=10−6 and p=7 for the fast tunable RBF. The
regularization parameter for regularized LS estimator should
be a very small positive number and we set β = 10−6.
Additionally, for the fast tunable RBF, the step size and the
maximum number of iterations are empirically chosen to be
0.01 and 5, respectively, for its gradient descent iterative search
procedure. For the LSTM and GRU, the learning rate and
batch size are carefully tuned to be 0.005 and 1, respectively,
for gradient descend training, while the number of maximum
training epochs is set to 50 for the both RNNs.

1) Rossler chaotic time series: Rossler process is a system
of three ordinary differential equations

d x(t)
d t = −y(t) − z(t),

d y(t)
d t = x(t) − ay(t),

d z(t)
d t = b + z(t)(x(t) − c),

(26)

which define a continuous dynamical map that exhibits chaotic
dynamics associated with the fractal properties of the Rossler
attractor [54]. The fourth-order Runge-Kutta method with a
step size of 0.01 is used to generate the samples, and only Y -
dimension samples {yt} are used for time series prediction.

First consider this chaotic time series with the fixed con-
trolling parameters a = 0.2, b = 0.2 and c = 5.7. Table I
compares the performance of the seven methods, in terms of
test predication accuracy and ACTpS. For the RBF, GRBF,
LSTM and GRU methods, no online adaptation takes place,
and they do not impose the computational complexity of online
adaptation. Fig. 2 depicts the MSE learning curves for all the
seven methods, where it can be seen that the performance
of the OS-ELM is poor, only attaining a prediction accuracy
similar to the small nonadaptive RBF model. The LSTM

TABLE I
COMPARISON OF ONE-STEP PREDICTION PERFORMANCE (AVERAGE±STD) OF DIFFERENT PREDICTORS FOR ROSSLER SERIES WITH FIXED PARAMETERS

Method Model Type Model Size MSE (dB) MAE Online ACTpS (ms)

LSTM All fixed 50 12.92±0.14 3.359±0.101 -100 12.58±0.17 3.216±0.109

GRU All fixed 50 11.03±0.15 2.854±0.087 -100 10.04±0.21 2.476±0.105
OS-ELM Structure fixed, weights tunable 100 13.37±0.84 3.519±0.569 0.30±0.009

RBF All fixed 10 13.42±0.61 3.600±0.375 -20 13.36±0.64 3.560±0.328

GRBF All fixed 10 -14.69±4.84 0.120±0.030 -20 -14.11±2.74 0.115±0.027
Fast tunable RBF All tunable 10 -37.50±3.99 0.001±2.75e-04 0.09±0.021

Proposed All tunable 10 -56.31±12.16 7.64e-04±6.13e-04 0.04±0.014

7

0 500 1000 1500 2000

Sample (t)

-60

-50

-40

-30

-20

-10

0

10

20
M

S
E

 (
dB

)

ProposedTunable RBF

GRU

OS-ELM RBF

GRBF

LSTM

Fig. 2. Comparison of average MSE learning curves of various one-step
predictors for Rossler time series with fixed control parameters. The RBF
and GRBF models both have 20 hidden nodes, and the LSTM and GRU
models both have 100 hidden nodes.

and GRU are only slightly better than the OS-ELM and the
nonadaptive RBF, with the GRU attaining lower test MSE than
the LSTM. Also the small nonadaptive GRBF model is more
than 20 dB better in the test MSE than the GRU in this case.
The test MSE of the fast tunable RBF is about 23 dB lower
than the fixed GRBF, while our fast adaptive GRBF attains the
best test MSE performance, about 19 dB lower than the fast
tunable RBF. Observe from Table I that the ACTpS imposed
by the fast tunable RBF is significantly lower than that of the
OS-ELM, and our fast adaptive GRBF is considerably better
than the fast tunable RBF, in terms of ACTpS.

The three methods of determining the node width α in
Subsection II-C, (11) to (13), are well investigated in the
literature, each performing better than the others in different
situations. In our application, we find (11) is better, and it is
employed in Algorithm 1. To demonstrate this, Fig. 3 shows
the achievable test MSE performance by three adaptive GRBF
models with these three Gaussian width calculations. It can
be seen that the adaptive GRBF predictor based on the width
calculation (11) attains the best prediction accuracy.

1e-2 1e-4 1e-6 1e-8 1e-10
Threshold

-70

-60

-50

-40

-30

-20

-10

0

M
S

E
 (

dB
)

 Eq. (11)

 Eq. (12) Eq. (13)

Fig. 3. Impact of the threshold ε with different calculations of Gaussian
width α on the test MSE for the proposed method in online prediction of
Rossler time series with fixed control parameters, given p = 7 and K = 10.

2 4 6 8 10

Latest data p

-70

-60

-50

-40

-30

-20

-10

M
S

E
 (

dB
)

thre=1e-1

thre=1e-2

thre=1e-3

thre=1e-4

thre=1e-5

thre=1e-6

Fig. 4. Impact of number of latest data points p on the test MSE for the
proposed method in online prediction of Rossler time series with fixed control
parameters, given different thresholds ε and K = 10 hidden nodes.

1e-2 1e-4 1e-6 1e-8 1e-10

Threshold

-70

-60

-50

-40

-30

-20

M
S

E
 (

dB
)

node=5

node=25

node=20
node=15

node=10

Fig. 5. Impact of threshold ε on the test MSE for the proposed method in
online prediction of Rossler time series with fixed control parameters, given
different numbers of hidden nodes K and p = 7.

We now investigate how the algorithmic parameters of
Algorithm 1, the latest data points p and threshold ε, impact
on the achievable test MSE performance. Fig. 3 also depicts
the achievable test MSE performance as the function of ε,
given p = 7 and K = 10, where it can be seen that the
lowest test MSE is attained at ε = 10−6 (when (11) is used).
Fig. 4 investigates the impact of p on prediction performance,
given various threshold values and K = 10. Observing the test
MSE curve related to ε = 10−6, it can be seen that p = 7 is
appropriate in this case, as further increasing p does not lead
further improvement in MSE but will impose higher online
computational complexity.

Note that it is impossible to determine the GRBF predictor’s
size K via its online test performance. The size of the GRBF
predictor K can only be determined in the initial training, with
the aim to construct a small predictor that imposes a small
online computational complexity while attaining adequate
training performance. Fig. 5 shows the impact of the threshold
ε with different numbers of hidden nodes K on the test MSE
performance, given p = 7. Observing the test MSE curve
related to K = 10, again it is seen that ε = 10−6 is appropriate

8

1 10 20 30 40 50

Prediction step

-70

-60

-50

-40

-30

-20

-10

M
S

E
 (

dB
)

Fast tunable RBF
Proposed

Fig. 6. Average MSE performance and associated STDs of two multi-step
prediction models for Rossler time series with fixed control parameters. Both
the fast tunable RBF and fast adaptive GRBF have 10 hidden nodes.

in this case. Also from Fig. 5, it can be seen that better test
MSE performance can be achieved by using K = 15, 20 or 25,
with approximate optimal value of ε = 10−7. However, these
predictors will increase the online computational complexity
considerably, compared the case of K = 10.

To show that all the methods can be extended to multi-
step prediction, we consider the multi-step adaptive prediction,
which uses the embedding vector xt of (1) to provide the m-
step ahead prediction for yt+m−1. In Fig. 6, we compare the
multi-step prediction performance for the fast tunable RBF and
our fast adaptive GRBF. As expected, our fast adaptive GRBF
significantly outperforms the fast tunable RBF. Observe that
the STD of prediction accuracy for our method is much smaller
than that of the fast tunable RBF, indicating that our method
attains much more accurate and reliable prediction.

Next, we let the controlling parameters of Rossler map vary
with time to obtain an even more nonlinear and nonstationary
time series. Specifically, we set

a = 0.2,
b = 0.1 + 0.1

(
1 + sin(0.1t)

)
,

c = 3.7 + 2
(
1 + cos

(
20.1t

))
.

(27)

0 500 1000 1500 2000

Sample (t)

-50

-40

-30

-20

-10

0

10

20

M
S

E
 (

dB
)

RBF

OS-ELM

LSTM
GRU

GRBF

Tunable RBF

Proposed

Fig. 7. Comparison of average MSE learning curves of various one-
step prediction models for Rossler time series with time-varying control
parameters. The RBF and GRBF models both have 20 hidden nodes, and
the LSTM and GRU models both have 100 hidden nodes.

Table II and Fig. 7 compare the one-step prediction perfor-
mance of the seven methods for this Rossler chaotic time
series with time-varying control parameters. Again it can be
clearly seen that the proposed fast adaptive GRBF model
attains the best performance, in terms of both prediction
accuracy and ACTpS. The average MSE learning curves and
associated STDs of the multi-step fast tunable RBF and fast
adaptive GRBF predictors are shown in Fig. 8, which again
demonstrates the superior performance of our method.

2) Lorenz chaotic time series: Lorzen process [55] is a
nonlinear dynamic system that exhibits chaotic flow. It is
governed by the three differential equations as

d x(t)
d t = a(y(t) − x(t)),

d y(t)
d t = cx(t) − x(t)z(t) − y(t),

d z(t)
d t = x(t)y(t) − bz(t).

(28)

The fourth-order Runge-Kutta method with a step size of 0.01
is used to generate the samples, and only Y -dimension samples
{yt} are used for the time-series prediction.

Again, we first consider the fixed controlling parameters
with a = 10, b = 8/3 and c = 28. Table III compares

TABLE II
COMPARISON OF ONE-STEP PREDICTION PERFORMANCE (AVERAGE±STD) OF DIFFERENT PREDICTORS FOR ROSSLER SERIES WITH TIME-VARYING

PARAMETERS

Method Model Type Model Size MSE (dB) MAE Online ACTpS (ms)

LSTM All fixed 50 14.09±0.09 3.737±0.089 -100 13.84±0.19 3.644±0.167

GRU All fixed 50 12.48±0.15 3.135±0.056 -100 12.22±0.17 3.013±0.079
OS-ELM Structure fixed, weights tunable 100 15.03±0.39 4.214±0.198 0.31±0.008

RBF All fixed 10 15.07±0.25 4.344±0.153 -20 15.04±0.26 4.283±0.176

GRBF All fixed 10 -10.95±4.22 0.172±0.032 -20 -10.73±3.62 0.104±0.028
Fast tunable RBF All tunable 10 -25.61±8.91 0.014±0.002 0.19±0.021

Proposed All tunable 10 -40.09±10.43 0.002±0.001 0.04±0.001

9

1 10 20 30 40 50

Prediction step

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5
M

S
E

 (
dB

)
Fast tunable RBF
Proposed

Fig. 8. Average MSE performance and associated STDs of two multi-
step prediction models for Rossler time series with time-varying control
parameters. Both the fast tunable RBF and fast adaptive GRBF have 10 hidden
nodes.

the performance of the seven one-step predictors, in terms
of prediction accuracy and ACTpS, while Fig. 9 depicts the
average test MSE learning curves of these seven one-step
prediction models. The results obtained again show that both
RNN predictors and the classic RBF model are inferior to
the fixed GRBF network. The fast tunable RBF achieves the
second best prediction performance, which is about 14 dB
better than the nonadaptive GRBF predictor. Our proposed
adaptive GRBF is dramatically better than the fast tunable
RBF, in terms of both online prediction accuracy and ACTpS.

The results of multi-step ahead prediction performance for
the two best predictors, the fast tunable RBF and our fast
adaptive GRBF, are shown in Fig. 10. It can be seen that
our proposed method consistently outperforms the fast tunable
RBF. In particular, the average MSE of the 50-step-ahead fast
adaptive GRBF predictor is more than 15 dB lower than that
of the 50-step-ahead fast tunable RBF predictor. Moreover,
the STDs of the test MSE for the multi-step fast adaptive
GRBF predictor are consistently much smaller than those for
the multi-step fast tunable RBF predictor. This confirms that
the fast adaptive GRBF is much more accurate and reliable
than the fast tunable RBF.

0 500 1000 1500 2000

Sample (t)

-40

-30

-20

-10

0

10

20

30

M
S

E
 (

dB
)

OS-ELM RBF

LSTM GRU
GRBF

Proposed

Tunable RBF

Fig. 9. Comparison of average MSE learning curves of various one-step
prediction models for Lorenz time series with fixed control parameters. The
RBF and GRBF models both have 20 hidden nodes, and the LSTM and GRU
models both have 100 hidden nodes.

1 10 20 30 40 50

Prediction step

-40

-30

-20

-10

0

10

20

30

M
S

E
 (

dB
)

Fast tunable RBF
Proposed

Fig. 10. Average MSE performance and associated STDs of two multi-step
prediction models for Lorenz time series with fixed control parameters. Both
the fast tunable RBF and fast adaptive GRBF have 10 hidden nodes.

Next, we create a new series by modifying Lorenz chaotic
time series with a time-based drift. Specifically, Lorenz time
series samples {yt} are weighted by an exponential time-based

TABLE III
COMPARISON OF ONE-STEP PREDICTION PERFORMANCE (AVERAGE±STD) OF DIFFERENT PREDICTORS FOR LORENZ SERIES WITH FIXED PARAMETERS

Method Model Type Model Size MSE (dB) MAE Online ACTpS (ms)

LSTM All fixed 50 16.79±0.24 4.737±0.440 -100 16.70±0.31 4.388±0.556

GRU All fixed 50 13.87±0.19 3.252±0.450 -100 13.10±0.33 3.459±0.671
OS-ELM Structure fixed, weights tunable 100 17.91±0.35 5.387±0.422 0.33±0.009

RBF All fixed 10 18.71±0.14 6.702±0.165 -20 18.30±0.26 6.016±0.189

GRBF All fixed 10 9.41±0.74 1.343±0.194 -20 8.04±0.73 1.023±0.132
Fast tunable RBF All tunable 10 -23.68±8.01 0.017±0.034 0.24±0.011

Proposed All tunable 10 -31.28±1.13 0.014±0.001 0.11±0.009

10

0 500 1000 1500 2000

Sample (t)

-30

-20

-10

0

10

20

30

40
M

S
E

 (
dB

)

Proposed

Tunable RBF

RBF, GRBF, OS-ELM, LSTMGRU

Fig. 11. Comparison of average MSE learning curves of various one-step
prediction models for Lorenz time series with time-based drift. The RBF and
GRBF models both have 20 hidden nodes, and the LSTM and GRU models
both have 100 hidden nodes.

drift to obtain a new series
{
ỹt

}
according to

ỹt = 1.10.01tyt. (29)

The new time series
{
ỹt

}
is then used for the time series

prediction. Note that
{
ỹt

}
is seriously nonstationary, and the

dynamic range of ỹt change from initially around [−10, 10]
to about [−400, 400] in the end. Table. IV summarizes the
performance of the seven one-step predictor models, in terms
of prediction accuracy and online computational complexity,
while Fig. 11 compares the average test MSE learning curves
for different one-step predictors. Clearly, except for the fast
tunable RBF and our method, the other five models all have
difficulty to predict this time series accurately, as evidenced
by their large testing MSEs. Unlike the previous example, the
GRBF can hardly improve the performance over the RBF.
This is because most of the nonstationary features of Lorenz
time series with time-based drift are not nearly variations of
local mean and trend. Moreover, the dynamics of this series
varies significantly beyond the initial modeling space. Thus
fixed predictors, such as the RBF, GRBF, LSTM and GRU
perform poorly. It can be seen that the average test MSE of
the one-step fast tunable RBF predictor is more than 30 dB

1 10 20 30 40 50

Prediction step

-30

-20

-10

0

10

20

30

40

M
S

E
 (

dB
)

Fast tunable RBF
Proposed

Fig. 12. Average MSE performance and associated STDs of two multi-step
prediction models for Lorenz time series with time-based drift. Both the fast
tunable RBF and fast adaptive GRBF have 10 hidden nodes.

lower than those of the RBF, GRBF, LSTM and GRU. Also
observe that the average test MSE of our fast adaptive GRBF
is more than 15 dB lower than the fast tunable RBF, while
imposing a significantly smaller ACTpS than the latter.

The multi-step-ahead prediction performance of the fast
tunable RBF and our fast adaptive GRBF are shown in Fig. 12.
Except for the prediction steps of 10 and 30, our fast adaptive
GRBF predictor consistently outperforms the fast tunable
RBF predictor, in terms of both average test MSE and STD.
Although the average MSEs of the fast tunable RBF predictor
are lower than those of our fast adaptive GRBF predictor at the
prediction steps of 10 and 30, the corresponding STDs of the
former are much larger than those of the latter. Therefore, our
multi-step fast adaptive GRBF predictor is much more reliable
than the multi-step fast tunable RBF predictor over the entire
range of the prediction steps tested.

B. Real-World Time Series Prediction

To further illustrate its applicability and efficiency for real
data prediction, we apply our method to two real-life time
series, namely, the sunspot number time series [56] and an
EEG signal [60].

TABLE IV
COMPARISON OF ONE-STEP PREDICTION PERFORMANCE (AVERAGE±STD) OF DIFFERENT PREDICTORS FOR LORENZ SERIES WITH TIME-BASED DRIFT

Method Model Type Model Size MSE (dB) MAE Online ACTpS (ms)

LSTM All fixed 50 38.50±0.15 55.614±1.587 -100 38.22±0.21 52.424±2.067

GRU All fixed 50 37.33±0.18 46.156±1.897 -100 36.54±0.34 45.297±1.765
OS-ELM Structure fixed, weights tunable 100 38.88±0.13 59.846±1.156 0.30±0.008

RBF All fixed 10 38.89±0.14 60.356±1.112 -20 38.88±0.13 59.844±1.234

GRBF All fixed 10 38.66±0.17 53.878±1.367 -20 38.58±0.19 52.897±1.987
Fast tunable RBF All tunable 10 7.77±8.95 0.987±0.112 0.36±0.034

Proposed All tunable 10 -8.60±5.86 0.129±0.091 0.14±0.009

11

0 100 200 300 400 500 600 700

Sample (t)

-10

0

10

20

30

40

M
S

E
 (

dB
)

Proposed

Tunable RBF

GRU

RBF, OS-ELM

LSTM
GRBF

Fig. 13. Comparison of MSE learning curves of various one-step prediction
models for sunspot time series. The RBF and GRBF models both have 50
hidden nodes, and the LSTM and GRU models both have 500 hidden nodes.

1) Prediction of sunspot number series: The sunspot time
series is an annual averaged relative number of sunspots
observed, which exhibits highly complex and nonstationary
characteristics. It is widely used as a benchmark for nonlinear
time series analysis and prediction [57]. The monthly recorded
sunspot time series from 1945 to 2017s is considered here.
In constructing one-step predictor, the entire sunspot series is
divided into the training set, from 1945 to 1953, and the test
set, from 1954 to 2017. The embedding vector’s dimension is
chosen to be M = 4 as in [57]. For our fast adaptive GRBF,
ε = 10−2 and p = 7 are empirically chosen. The same ε and
p are also used for the fast tunable RBF. The regularization
parameter is again set to β = 10−6. Additionally, the step size
for gradient descent and the maximum number of iterations for
RBF node optimization are chosen to be 0.01 and 5, respec-
tively, for the fast adaptive RBF. For the LSTM and GRU, the
learning rate and batch size are empirically chosen to be 0.005
and 1, respectively, for its gradient descend training, while the
maximum epochs during training is 50. Since the sampling rate
of this time series is month, one-step-ahead prediction is one-
month-ahead prediction, one-year-ahead prediction is 12-step-

1954 1974 1994 2014

Year

0

50

100

150

200

S
un

sp
ot

 n
um

be
r

Prediction by Proposed
Prediction by GRBF
Actual number

Fig. 14. One-step sunspot number predictions using the GRBF of size 50
and the fast adaptive GRBF of size 10.

ahead, and two-year-ahead prediction is 24-step-ahead, etc.
Consequently, when constructing one-year-ahead predictor, the
desired outputs are the sunspot number series from 1946 to
1954, and the test data are from 1955 to 2017. Thus, the test
data becomes shorter as the prediction step increases.

One-step prediction performance of the seven predictors
are compared in Table V, and their corresponding test MSE
learning curves are depicted in Fig. 13. It can be seen again
that the OS-ELM and the nonadaptive RBF are the worst
predictors, as evidenced by their large test MSEs. Both the
LSTM and GRU also find hard to track this sunspot number
time series. The fixed GRBF predictor is much better but its
prediction accuracy is still poor. This is further confirmed in
Fig. 14, where it is clearly seen that the fixed GRBF one-step
predictor cannot track the monthly recorded sunspot number
adequately. Again the results demonstrate that our fast adaptive
GRBF attains the best prediction accuracy, while imposing the
lowest ACTpS.

Fig. 15 depicts the multi-year prediction performance using
the two best methods, the fast tunable RBF and fast adaptive
GRBF. Clearly, our method significantly outperforms the fast

TABLE V
COMPARISON OF ONE-STEP PREDICTION PERFORMANCE OF DIFFERENT PREDICTORS FOR SUNSPOT NUMBER TIME SERIES

Method Model Type Model Size MSE (dB) MAE Online ACTpS (ms)

LSTM All fixed
100 35.8631 49.7342

-200 34.3286 39.5836
500 31.2763 31.3537

GRU All fixed
100 33.1912 9.4791

-200 33.1240 39.2050
500 32.2065 35.6460

OS-ELM Structure fixed, weights tunable 100 37.5291 64.3362 0.34

RBF All fixed 30 37.7580 66.5073 -50 37.7064 66.6155

GRBF All fixed 30 22.9400 6.8343 -50 22.2310 7.4127
Fast tunable RBF All tunable 10 1.2514 0.1126 0.43

Proposed All tunable 10 -4.3712 0.4756 0.06

12

1 2 3 4 5 6 7 8 9 10

Prediction step (Year)

2

4

6

8

10

12

14

16
M

S
E

 (
dB

)
Fast tunable RBF
Proposed

Fig. 15. MSE performance of two multi-year-ahead prediction models for
sunspot time series. Both the fast tunable RBF and fast adaptive GRBF have
10 hidden nodes. A-year-ahead corresponds to 12-step-ahead.

tunable RBF. It is interesting to note that the both methods
achieve the lowest prediction errors in the 10-year-ahead
prediction. This may be due to the fact that the sunspot number
exhibits approximately a 10-year cycle feature as can be seen
from the sunspot series shown in Fig. 14. Fig. 16 further
compares the 10-year predictions obtained by the fast tunable
RBF and fast adaptive GRBF. It can be seen that the fast
tunable RBF has difficulty to predict the sunspot series points
where rates and gradient signs are changing. By contrast, our
fast adaptive GRBF is inherently immune to this difficult.

2) Modeling of EEG data: The EEG data set used is
available publicly from University of Bonn [60], which is
sampled at a sampling rate of 173.61 Hz. When constructing
one-step predictor, we use 6 seconds of the EEG signals. The
first second of observations are used for the initial training,
while the signals from 2 s to 6 s are used for online prediction.
The embedding vector’s dimension is chosen to be M = 4.
The algorithmic parameters of the fast adaptive GRBF are
empirically chosen to be ε = 10−4 and p = 2, with the
regularization parameter set to β = 10−6. The same ε and
p are also used for the fast tunable RBF, while its step size

1964 1974 1984 1994 2004 2014

Year

0

20

40

60

80

100

120

140

160

180

S
un

sp
ot

 n
um

be
r

Prediction by Proposed
Prediction by tunable RBF
Actual number

Fig. 16. Comparison of 10-year-ahead sunspot number predictions using the
fast tunable RBF and the proposed fast adaptive GRBF. The both models have
10 hidden nodes.

and the maximum number of iterations are set to 0.01 and 5,
respectively. Again the LSTM and GRU predictors employ the
same structure settings with the previous simulation. Because
the sampling rate is 173.61 Hz, one-second-ahead prediction
corresponds to 173-step-ahead. As a result, when constructing
one-second-ahead predictor, the desired outputs are the EEG
series from 1 s to 2 s, and we use the EEG series from 2 s to
7 s for evaluating the test performance. Likewise, for 5-second-
ahead prediction, the EEG series from 6 s to 11 s are user for
test evaluation.

Table VI compares the performance of different one-step
prediction models, while the corresponding MSE learning
curves are depicted in Fig. 17. Not surprisingly, the OS-
ELM as well as fixed RBF and fixed GRBF predictors can
hardly capture the highly time-varying nonlinear dynamics
of this EEG signal. Even the nonadaptive GRBF predictor
performs poorly as can be clearly seen from Fig. 18. The
LSTM and GRU have better prediction performance than
the OS-ELM, fixed RBF and fixed GRBF, but they are still
considerably inferior to the fast tunable RBF. Our fast adaptive
GRBF predictor tracks this EEG signal extremely well. From

TABLE VI
COMPARISON OF ONE-STEP PREDICTION PERFORMANCE OF DIFFERENT PREDICTORS FOR EEG SIGNAL

Method Model Type Model Size MSE (dB) MAE Online ACTpS (ms)

LSTM All fixed
100 28.8516 18.1790

-200 26.4762 11.6579
500 24.2097 6.5774

GRU All fixed
100 24.8655 10.1818

-200 24.6749 9.9119
500 24.3787 9.5523

OS-ELM Structure fixed, weights tunable 100 31.6739 30.1018 0.36

RBF All fixed 30 31.6839 30.0054 -50 31.6715 30.1061

GRBF All fixed 30 32.0200 30.3387 -50 31.7180 24.0683
Fast tunable RBF All tunable 10 18.2253 3.3985 1.27

Proposed All tunable 10 10.2885 2.0574 1.31

13

100 200 300 400 500 600 700 800

Sample (t)

5

10

15

20

25

30

35
M

S
E

 (
dB

)

Proposed

RBF, OS-ELM

GRBF
GRU

LSTM

Tunable RBF

Fig. 17. Comparison of MSE learning curves of various one-step prediction
models for EEG signal. The RBF and GRBF models both have 50 hidden
nodes, and the LSTM and GRU models both have 500 hidden nodes.

1 2 3 4 5 6

Time (Sec)

-200

-150

-100

-50

0

50

100

150

200

E
E

G
 (

uV
)

Prediction by Proposed
Prediction by GRBF
Original signal

Fig. 18. One-step EEG signal predictions using the GRBF of size 50 and
the fast adaptive GRBF of size 10.

Table VI, it is seen that the one-step fast adaptive GRBF
predictor outperforms the one-step fast tunable RBF predictor
by about 8 dB in prediction accuracy, although it imposes a
slightly higher ACTpS in this case.

The multi-second-ahead prediction performance of the two
best methods are shown in Fig. 19, where it can be seen that
our fast adaptive GRBF predictor consistently outperforms the
fast tunable RBF predictor. The 5-second predictions of the
two models are illustrated in Fig. 20, which again conforms
the superior performance of our fast adaptive GRBF predictor.

V. CONCLUSIONS

In this paper, we have proposed a novel fast adaptive
GRBF network with adaptive tunable nodes for nonlinear
and nonstationary time series modeling and prediction. By
exploiting the local predictor property of hidden GRBF node,
a compact initial GRBF network can readily be constructed
using the OLS algorithm during initial training, which encodes
the underlying dynamics seen from the training data in its
hidden nodes. With the number of hidden nodes fixed, during
online operation, our fast adaptive GRBF model automatically

1 2 3 4 5

Prediction step (Sec)

11

12

13

14

15

16

17

18

19

20

M
S

E
 (

dB
)

Fast tunable RBF
Proposed

Fig. 19. Prediction accuracy comparison of two multi-second-ahead predic-
tors for EEG signal. Both the fast tunable RBF and fast adaptive GRBF have
10 hidden nodes.

6 7 8 9 10 11
Time (Sec)

-100

-50

0

50

100

150

E
E

G
 (

uV
)

Prediction by Proposed
Prediction by tunable RBF
Original signal

Fig. 20. Comparison of 5-second-ahead EEG signal predictions using the
fast tunable RBF and fast adaptive GRBF. The both models have 10 hidden
nodes.

replaces the worst performing hidden node in the current
signal environment with a new hidden node which encodes the
newly emerging signal dynamics. It has been shown that the
optimization of this new replacement node is straightforward
and imposes little computation. We have demonstrated that the
proposed fast adaptive GRBF model has excellent adaptability
and plasticity. Extensive experiments have been conducted,
involving two chaotic time series and two real-world sig-
nals. The results obtained have shown that our proposed fast
adaptive GRBF network consistently outperforms the existing
state-of-the-art fast tunable RBF network, in terms of both
prediction accuracy and online computational complexity.

REFERENCES

[1] S. Chen, “Nonlinear time series modelling and prediction using Gaussian
RBF networks with enhanced clustering and RLS learning,” Electronics
Letters, vol. 31, no. 2, pp. 117–118, Jan. 1995.

[2] I. Rojas, et al., “Time series analysis using normalized PG-RBF network
with regression weights,” Neurocomputing, vol. 42, nos. 1-4, pp. 267–
285, Jan. 2002.

[3] C.-M. Lee and C.-N. Ko, “Time series prediction using RBF neural
networks with a nonlinear time-varying evolution PSO algorithm,”
Neurocomputing, vol. 73, nos. 1-3, pp. 449–460, Dec. 2009.

14

[4] S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal least squares
learning algorithm for radial basis function networks.” IEEE Trans.
Neural Networks, vol. 2, no. 2, pp. 302–309, Mar. 1991.

[5] S. Chen, “Local regularization assisted orthogonal least squares regres-
sion,” Neurocomputing, vol. 69, nos .4-6, pp. 559–585, Jan. 2006.

[6] S. Chen, S. A. Billings, and W. Luo, “Orthogonal least squares methods
and their application to non-linear system identification,” Int. J. Control,
vol. 50, no. 5, pp. 1873–1896, 1989.

[7] S. Chen, X. Hong, and C. J. Harris, “Sparse kernel regression mod-
elling using combined locally regularized orthogonal least squares and
D-optimality experimental design,” IEEE Trans. Automatic Control,
vol. 48, no. 6, pp. 1029–1036, Jun. 2003.

[8] S. Chen, X. Hong, C. J. Harris, and P. M. Sharkey, “Sparse modelling
using orthogonal forward regression with PRESS statistic and regular-
ization,” IEEE Trans. Systems, Man and Cybernetics, Part B, vol. 34,
no. 2, Apr. pp. 898–911, 2004.

[9] X. Hong, et al., “Model selection approaches for non-linear system
identification: A review,” Int. J. Systems Science, vol. 39, no. 10,
pp. 925–946, Oct. 2008.

[10] E. Levin, “Hidden control neural architecture modeling of nonlinear time
varying systems and its applications,” IEEE Trans. Neural Networks,
vol. 4, no. 1, pp. 109–116, Jan. 1993.

[11] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representa-
tions by back-propagating errors,” Nature, vol. 323, no. 9, pp. 533–536,
Oct. 1986.

[12] P. J. Werbos, “Backpropagation through time: what it does and how to
do it,” Proc. IEEE, vol. 78, no. 10, pp. 1550–1560, March. 1990.

[13] J. L. Elman, “Distributed representations, simple recurrent networks, and
grammatical structure,” Machine learning, vol. 7, no. 2, pp. 195–225,
Sep. 1991.

[14] Y. Gao and M. J. Er “NARMAX time series model prediction: feedfor-
ward and recurrent fuzzy neural network approaches,” Fuzzy Sets and
Systems, vol. 150, no. 2, pp. 331–350, Mar. 2005.

[15] M. Han, J. Xi, S. Xu, and F.-L. Yin, “Prediction of chaotic time series
based on the recurrent predictor neural network,” IEEE Trans. Signal
Processing, vol. 52, no. 12, pp. 3409–3416, Dec. 2004.

[16] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE Trans. Neural Networks, vol. 5,
no. 2, pp. 157–166, Mar. 1994.

[17] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[18] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: encoder-decoder approaches,”
arXiv:1409.1259, 2014.

[19] K. Cho, et al., “Learning phrase representations using RNN encoder-
decoder for statistical machine translation,” arXiv:1406.1078, 2014.

[20] Y. Li, et al., “EA-LSTM: evolutionary attention-based LSTM for time
series prediction,” Knowledge-Based Systems, vol. 181, pp. 1–8, Oct.
2019.

[21] H. Wan, et al., “CTS-LSTM: LSTM-based neural networks for corre-
lated time series prediction,” Knowledge-Based Systems, vol. 191, pp. 1–
10, Mar. 2020.

[22] D. Hsu, “Time series forecasting based on augmented long short-term
memory,” arXiv:1707.00666, 2017.

[23] X. Yuan, L. Li, and Y. Wang, “Nonlinear dynamic soft sensor mod-
eling with supervised long short-term memory network,” IEEE Trans.
Industrial Informatics, vol. 16, no. 5, pp. 3168–3176, May 2020.

[24] Z. Zhou, N. V. Chawla, Y. Jin, and G. J. Williams, “Big data oppor-
tunities and challenges: Discussions from data analytics perspectives,”
IEEE Computational Intelligence Mag., vol. 9, no. 4, pp. 62–74, Nov.
2014.

[25] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learning in non-
stationary environments: A survey,” IEEE Computational Intelligence
Mag., vol. 10, no. 4, pp. 12–25, Oct. 2015.

[26] N. I. Sapankevych and R. Sankar, “Time series prediction using support
vector machines: A survey,” IEEE Computational Intelligence Mag.,
vol. 4, no. 2, pp. 24–38, May 2009.

[27] J. L. Lobo, et al., “Evolving spiking neural networks for online learning
over drifting data streams,” Neural Networks, vol. 108, pp. 1–19, Dec.
2018.

[28] J. Liu and D.-S. Chen, “Nonstationary fault detection and diagnosis for
multimode processes,” AIChE Journal, vol. 56, no. 1, pp. 207–219, Jan.
2010.

[29] J. Shan, H. Zhang, W. Liu, and Q. Liu, “Online active learning ensemble
framework for drifted data streams,” IEEE Trans. Neural Networks and
Learning Systems, vol. 30, no. 2, pp. 486–498, Feb. 2019.

[30] I. Bogunovic, J. Scarlett, and V. Cevher, “Time-varying Gaussian process
bandit optimization,” in Proc. 19st Int. Conf. Artificial Intelligence and
Statistics (Cadiz, Spain), May 9-11, 2016, pp. 314–323.

[31] F. M. Nyikosa, Adaptive Bayesian Optimization for Dynamic Problems.
PhD thesis, University of Oxford, 2018

[32] S. Chen and S. Billings, “Recursive prediction error parameter estimator
for non-linear models,” Int. J. Control, vol. 49, no. 2, pp. 569–594, 1989.

[33] G. B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine:
Theory and applications,” Neurocomputing, vol. 70, nos. 1-3, pp. 489–
501, Dec. 2006.

[34] N. Liang, G. B. Huang, P. Saratchandran, and N. Sundararajan, “A
fast and accurate online sequential learning algorithm for feedforward
networks,” IEEE Trans. Neural Networks, vol. 17, no. 6, pp. 1411–1423,
Nov. 2006.

[35] X. Wang and M. Han, “Online sequential extreme learning machine
with kernels for nonstationary time series prediction,” Neurocomputing,
vol. 145, pp. 90–97, Dec. 2014.

[36] X. Wang and M. Han, “Improved extreme learning machine for multi-
variate time series online sequential prediction,” Engineering Applica-
tions of Artificial Intelligence, vol. 40, pp. 28–36, Apr. 2015.

[37] H. Chen, Y. Gong, X. Hong, and S. Chen, “A fast adaptive tunable RBF
network for nonstationary systems,” IEEE Trans. Cybernetics, vol. 46,
no. 12, pp. 2683–2692, Dec. 2016.

[38] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time
Series Analysis: Forecasting and Control (5th edition). Hoboken, NJ:
Wiley, 2015.

[39] E. S. Chng, S. Chen, and B. Mulgrew, “Gradient radial basis function
networks for nonlinear and nonstationary time series prediction,” IEEE
Trans. Neural Networks, vol. 7, no. 1, pp. 190–194, Jan. 1996.

[40] H. Akaike, “A new look at the statistical model identification,” IEEE
Trans. Automatic Control, vol. AC-19, no. 6, pp. 716723, Dec. 1974.

[41] D. Lowe, “Adaptive radial basis function nonlinearities, and the problem
of generalisation,” in Proc. 1st IEE Int. Conf. Artificial Neural Networks
(London, UK), Oct. 16-18, 1989, pp. 171–175.

[42] S. Haykin, Neural Networks and Learning Machines (3rd Edition).
Upper Saddle River, NJ: Prentice Hall, 2009.

[43] S. Kitayama and K. Yamazaki, “Simple estimate of the width in Gaus-
sian kernel with adaptive scaling technique,” Applied Soft Computing,
vol. 11, no. 8, pp. 4726–4737, Dec. 2011.

[44] S. Chen, X. X. Wang, and D. J. Brown, “Orthogonal least squares
regression with tunable kernels,” Electronics Letters, vol. 41, no. 8,
pp. 484–486, Apr. 2005.

[45] S. Chen, X. X. Wang, and D. J. Brown, “Sparse incremental regression
modeling using correlation criterion with boosting search,” IEEE Signal
Processing Letters, vol. 12, no. 3, pp. 198–201, Mar. 2005.

[46] S. Chen, X. Hong, C. J. Harris, and X. X. Wang, “Identification
of nonlinear systems using generalized kernel models,” IEEE Trans.
Control Systems Technology, vol. 13, no. 3, pp. 401–411, May 2005.

[47] S. Chen, X. X. Wang, and C. J. Harris, “NARX-based nonlinear system
identification using orthogonal least squares basis hunting,” IEEE Trans.
Control Systems Technology, vol. 16, no. 1, pp. 78–84, Jan. 2008.

[48] S. Chen, X. Hong, B. L. Luk, and C. J. Harris, “Non-linear system iden-
tification using particle swarm optimisation tuned radial basis function
models,” Int. J. Bio-Inspired Computation, vol. 1, no. 4, pp. 246–258,
2009

[49] S. Chen, X. Hong, B. L. Luk, and C. J. Harris, “Construction of tunable
radial basis function networks using orthogonal forward selection,” IEEE
Trans. Systems, Man, and Cybernetics, Part B, vol. 39, no. 2, pp. 457–
466, Apr. 2009.

[50] S. Chen, X. Hong, and C. J. Harris, “Particle swarm optimization aided
orthogonal forward regression for unified data modelling,” IEEE Trans.
Evolutionary Computation, vol. 14, no. 4, pp. 477–499, Aug. 2010.

[51] S. Grossberg, “Nonlinear neural networks: Principles, mechanisms, and
architectures,” Neural networks, vol. 1, no. 1, pp. 17–61, 1988. .

[52] H. Chen, Y. Gong, and X. Hong, “Online modeling with tunable RBF
network,” IEEE Trans. cybernetics, vol. 43, no. 3, pp. 935–947, Jun.
2013.

[53] F. Ding and T. Chen, “Performance analysis of multi-innovation gradient
type identification methods,” Automatica, vol. 43, no. 1, pp. 1–14, Jan.
2007.

[54] K. Lüdge (editor), Nonlinear Laser Dynamics: From Quantum Dots to
Cryptography. Weinheim, Germany : John Wiley & Sons, 2012.

[55] E. N. Lorenz, “Deterministic nonperiodic flow,” J. J. Atmospheric Sci.,
vol. 20, no. 2, pp. 130–141, Mar. 1963.

[56] H. Tong, Threshold Models in Non-linear Time Series Analysis. New
York: Springer-Verlag, 1983.

15

[57] A. Miranian and M. Abdollahzade, “Developing a local least-squares
support vector machines-based neuro-fuzzy model for nonlinear and
chaotic time series prediction,” IEEE Trans. Neural Networks and
Learning Systems, vol. 24, no. 2, pp. 207–218, Feb. 2013.

[58] Y. Li, et al., “Time-varying system identification using an ultra-
orthogonal forward regression and multiwavelet basis functions with
applications to EEG,” IEEE Trans. Neural Networks and Learning
Systems, vol. 29, no. 7, pp. 2960–2972, Jul. 2018.

[59] Y. Li, H.-L. Wei, S. A. Billings, and P. G. Sarrigiannis, “Identification
of nonlinear time-varying systems using an online sliding-window and
common model structure selection (CMSS) approach with applications
to EEG,” Int. J. Systems Science, vol. 47, no. 11, pp. 2671–2681, 2016.

[60] R. G. Andrzejak, et al., “Indications of nonlinear deterministic and
finite-dimensional structures in time series of brain electrical activity:
Dependence on recording region and brain state,” Physical Review E,
vol. 64, no. 6, pp. 061907-1–061907-8, Nov. 2001.

Tong Liu received the B.Sc. degree in automation
from the College of Automation, Chongqing Uni-
versity, Chongqing, China, in 2016, where he is
currently pursuing the Ph.D. degree in control the-
ory and control engineering. From September 2018
to September 2019, he was a Visiting Ph.D. Stu-
dent with the School of Electronics and Computer
Science, University of Southampton, Southampton,
U.K. His current research interest include online
learning, system identification, neural networks, ma-
chine learning and intelligent control system design.

Sheng Chen (M’90-SM’97-F’08) received his BEng
degree from the East China Petroleum Institute,
Dongying, China, in 1982, and his PhD degree from
the City University, London, in 1986, both in control
engineering. In 2005, he was awarded the higher
doctoral degree, Doctor of Sciences (DSc), from the
University of Southampton, Southampton, UK.

From 1986 to 1999, He held research and aca-
demic appointments at the Universities of Sheffield,
Edinburgh and Portsmouth, all in UK. Since 1999,
he has been with the School of Electronics and

Computer Science, the University of Southampton, UK, where he holds the
post of Professor in Intelligent Systems and Signal Processing. Dr Chen’s
research interests include neural network and machine learning, wireless
communications, and adaptive signal processing. He has published over 650
research papers. Professor Chen has 14,100+ Web of Science citations with
h-index 53, and 29,500+ Google Scholar citations with h-index 75.

Dr. Chen is a Fellow of the United Kingdom Royal Academy of Engineer-
ing, a Fellow of IET, a Distinguished Adjunct Professor at King Abdulaziz
University, Jeddah, Saudi Arabia, and an original ISI highly cited researcher
in engineering (March 2004).

ShanLiang received his M.Sc. degree in control
science and engineering from the College of Au-
tomation, Chongqing University, Chongqing, China,
in 1995, and the Ph.D. degree from the Department
of Mechanical Systems Engineering, Kumamoto
University, Kumamoto, Japan, in 2004. His cur-
rent research interests include numerical modeling,
electromagnetic theory, nonlinear systems, adaptive
control, and sensor networks. He is a Member of
IEEE.

Shaojun Gan received the BEng degree in au-
tomation from Huainan normal University in 2010,
and the PhD degree in control engineering from
the School of Automation, Chongqing University,
China, in 2016. From 2014 to 2016, He was a
visiting PhD student at the School of Electron-
ics, Electrical Engineering and Computer Science,
Queen’s University Belfast, UK. From 2017 to 2019,
He was a research fellow at the School of Electronic
and Electrical Engineering, University of Leeds,
UK. Currently, he is an assistant professor with the

College of Metropolitan Transportation, Beijing University of Technology,
China. His main research interests include system modelling and machine
learning methods, with the applications to manufacturing energy systems and
intelligent transportation systems.

Chris J. Harris received his BSc and MA degrees
from the University of Leicester and the University
of Oxford in UK, respectively, and his PhD de-
gree from the University of Southampton, UK, in
1972. He was awarded the higher doctoral degree,
the Doctor of Sciences (DSc), by the University
of Southampton in 2001. He is Emeritus Reseach
Professor at the University of Southampton, having
previously held senior academic appointments at
Imperial College, Oxford and Manchester Univer-
sities, as well as Deputy Chief Scientist for the UK

Government.
Professor Harris was awarded the IEE senior Achievement Medal for Data

Fusion research and the IEE Faraday Medal for distinguished international
research in Machine Learning. He was elected to the UK Royal Academy
of Engineering in 1996. He is the co-author of over 500 scientific research
papers during a 50 year research career.

