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Abstract—While globally optimal solutions to many convex
programs can be computed efficiently in polynomial time, this
is, in general, not possible for nonconvex optimization problems.
Therefore, locally optimal approaches or other efficient subopti-
mal heuristics are usually applied for practical implementations.
However, there is also a strong interest in computing globally
optimal solutions of nonconvex problems in offline simulations
in order to benchmark the faster suboptimal algorithms. Global
solutions often rely on monotonicity properties. A common
approach is to reformulate problems into a canonical monotonic
optimization problem where the monotonicity becomes evident,
but this often comes at the cost of nested optimizations, increased
numbers of variables, and/or slow convergence. The framework
of mixed monotonic programming (MMP) proposed in this
paper avoids such performance-deteriorating reformulations by
revealing hidden monotonicity properties directly in the original
problem formulation. By means of a wide range of application
examples from the area of signal processing for communications
(including energy efficiency for green communications, resource
allocation in interference networks, scheduling for fairness and
quality of service, as well as beamformer design in multiantenna
systems), we demonstrate that the novel MMP approach leads
to tremendous complexity reductions compared to state-of-the-
art methods for global optimization. However, the framework is
not limited to optimizing communication systems, and we expect
that similar speed-ups can be obtained for optimization problems
from other areas of research as well.

Index Terms—Resource allocation, global optimization, inter-
ference networks, monotonic optimization, branch-and-bound

I. INTRODUCTION

In point-to-point communication systems without interfer-

ence, the optimization of various performance metrics can be
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Conference versions of two application examples can be found in [1], [2].
This journal version gives a more general perspective on the framework, gives
more details on algorithmic aspects, and discusses many further application
examples.

formulated as convex programs such as in rate maximization

[3] or mean square error minimization [4]. More complicated

objective functions in the context of energy efficiency opti-

mization can be shown to be pseudoconvex or quasiconvex

[5]. Even in advanced scenarios with multiple antennas or

parallel transmission on orthogonal carriers, these optimization

problems can be solved with efficient methods from convex

optimization [4] or fractional programming [5], and sometimes

even in closed form [3]. However, in multi-terminal scenarios

with interfering users, performance optimization typically in-

volves nonconvex problems. This is often due to interference

terms that make the rate equations nonconcave or due to

product operations contained in multiuser utility functions.

Apart from special cases where efficient solutions exist,1

performance optimization in interference networks is, thus,

usually tackled by locally optimal approaches or subopti-

mal heuristics. Examples are gradient ascent algorithms [8]–

[11], successive allocation methods [12], [13], successive

(pseudo-)convex approximation [14], [15], alternating opti-

mization [16]–[19], distributed interference pricing [20], or

game-theoretic methods [21]–[24]. Such heuristics are good

candidates for practical implementation due to their low

computational complexity and/or the possibility of distributed

implementation. However, there is also a strong interest in

globally optimal solutions to assess the fundamental limits of

the considered multiuser communication systems and to have

benchmarks for the heuristic methods.

In order to obtain such global solutions, researchers have

applied methods from the field of monotonic optimization

[25]–[28] to optimization problems in various communication

systems. For instance, monotonic programming was applied

in interference channels [7], [29]–[36], in broadcast channels

with linear transceivers [11], [37]–[40], in interfering broadcast

channels [41], in relaying scenarios [23], [34], and in satellite

systems [42] with the aim of maximizing weighted sum rates

[7], [29]–[31], [33], fairness-based performance metrics [32],

[33], [36]–[38], [41], or the energy efficiency [23], [34], [35],

[40] as well as minimizing the required sum transmit power

[11], [39], [42]. Some of these applications include solutions

for multiantenna systems [7], [11], [29], [30], [36]–[39], [41],

allow to average data rates over several time slots [32], [33],

[36], [37], [39], and/or incorporate additional robustness con-

siderations [41]. Moreover, monotonic optimization can also

1E.g., in multiple-input/multiple-output (MIMO) broadcast channels
with dirty paper coding [6] or for rate balancing problems in
multiple-input/single-output (MISO) interference channels with interference
treated as noise [7].

http://arxiv.org/abs/1910.07853v2
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be applied on the medium access control layer. One example

is optimizing the transmit probabilities in the slotted ALOHA

protocol [33]. A wider overview with further application

examples can be found in [33], [34], [43].

A common approach is to reformulate the objective func-

tion2 as a difference f+(x) − f−(x) of nondecreasing func-

tions f+ and f−. The resulting difference-of-monotonic (DM)

problem can be reformulated further into a canonical mono-

tonic optimization problem where a nondecreasing function is

maximized over a normal set.3 For instance, instead of max-

imizing f+(x) − f−(x) over a box [r, s], we can maximize

the nondecreasing function f+(x) + t under the additional

constraints f−(x) + t ≤ 0 and t ∈ [−f−(s),−f−(r)]
which form a normal set.4 The resulting canonical monotonic

optimization problem can then be solved with the so-called

Polyblock Algorithm (PA) [28, Sec. 11.2] as was done, e.g.,

in [29], [30]. An important drawback is that the number of

optimization variables is increased by introducing the auxiliary

variable t. This negatively affects the convergence speed

because the PA has exponential worst-case complexity in the

number of variables [43].

As an alternative, DM problems can be solved by means of

branch-and-bound (BB) techniques as described in [27]. This

approach, which was pursued in [11], [39], [41], [42], avoids

the overhead of the additional optimization variable t, but still

suffers from drawbacks that will be observed in Section IV-A.

Just like the PA, BB methods rely on calculating utopian

bounds to the objective function, and their convergence speed

depends heavily on the quality of these bounds. Unfortunately,

DM bounds are, in general, not very tight.

Therefore, several authors have proposed to improve

the speed of convergence by reparameterizing an

optimization problem in terms of a new set of

monotonic variables. For instance, [31]–[33] use the

signal-to-interference-plus-noise ratio (SINR) values of the

users as optimization variables instead of their transmit

powers, while [7], [11], [36]–[39] use the achievable rates,

and [42] uses the received interference powers. The resulting

monotonic or DM problems can then be solved by means

of the PA [31]–[33], [36]–[38] or a BB algorithm [11], [39],

[42]. However, the change of variables usually makes the

evaluation of the objective and constraint functions more

costly. For instance, the SINR values and achievable rates

can be calculated analytically when the transmit powers are

used as optimization variables, but a fixed point iteration is

necessary to calculate the transmit powers if the SINR values

or the achievable rates are used as variables (see, [31]–[33]

and [7], [11], [36]–[39], respectively). Thus, a change of

variables might reduce the number of iterations required in

the monotonic programming method, but comes at the cost

of increasing the computational complexity of each iteration.

Moreover, not all optimization problems can be conveniently

rewritten in terms of monotonic functions or DM functions.

For instance, in the context of energy-efficient communica-

2Similar reformulations can be applied to the constraints if needed.
3A set G ⊂ R

+

0
is called normal if [0;x] ⊆ G for all x ∈ G [26].

4Please refer to [28, Thm. 11.1] for more details.

tions, we encounter objective functions that can be written

as fractions of DM functions. For this type of problems, the

fractional monotonic programming method proposed in [23],

[34], [35] uses a monotonic programming approach as an inner

solver inside Dinkelbach’s method for fractional programs.

This combination has the drawback that a highly complex

monotonic programming algorithm has to be executed not only

once but repeatedly in each iteration of the outer algorithm.

Moreover, it is no longer possible to obtain a rigorous guar-

antee that the obtained solution is indeed η-optimal, i.e., that

it is no more than a given constant η away from the exact

globally optimal solution.

In this paper, we propose the framework of

mixed monotonic programming (MMP) which avoids all

these drawbacks since it neither requires a reformulation of

the objective function nor a change of variables. Instead, the

main idea is that a function defined by several terms might

have different monotonicity properties in each term and

variable. Thus, the MMP approach does not consider whether

the whole function is monotonic in a variable, but takes the

monotonicity for each occurrence of a variable separately into

account by formulating a so-called mixed monotonic (MM)

function. If such an MM function can be constructed for a

given optimization problem, the problem can be solved by a

BB algorithm as discussed in Section III.5 In Section IV, we

show that a wide variety of optimization problems (including

the difficult fractional monotonic problems mentioned above)

can be solved with the MMP approach, and we demonstrate

significant advantages compared to state-of-the-art solutions

using the C++ implementation available at [44].

Note that there are several existing approaches that can

be considered as special cases of the MMP framework, the

most prominent being DM formulations. However, the MMP

approach is much more general and can be used to find

solution methods that are faster than the DM approach. This

will become clear after the formal definition of an MMP

problem in Section II. Moreover, some specialized solution

methods developed for particular optimization problems can be

identified to fall into the more general MMP framework. For

instance, [40] exploited a structure with a fraction of nonnega-

tive nondecreasing functions of a scalar variable, and [45], [46]

consider an optimization problem in a two-user interference

channel that can be identified as a two-dimensional special

case of the MMP framework. An implementation of the BRB

algorithm for MMP problems can, thus, be readily applied to

any of these special cases.

Notation: We use 0 for the zero vector, 1 for the all-

ones vector, and IL for the identity matrix of size L. Vectors

are written in bold-face lowercase and matrices in bold-face

uppercase. Inequalities between vectors are meant component-

wise, i.e., x ≥ y if and only if xi ≥ yi for all i, and

[r, s] = {x | r ≤ x ≤ s} denotes a box (hyperrectangle). We

use shorthand notations of the form (•k)∀k = (•1, . . . ,•K),
and we write CN (0, 1) for the circularly symmetric Gaussian

distribution with zero mean and unit variance.

5A branch-reduce-and-bound (BRB) algorithm is a special kind of BB
algorithm that includes a reduction step to speed up the convergence.
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II. MIXED MONOTONIC PROGRAMMING

Consider the optimization problem

max
x∈D

f(x) (P)

with continuous objective function f : Rn → R and compact

feasible set D ⊆ R
n. For now, we do not need any further

assumptions on D and postpone the discussion of its structure

to Section III-A. Let M0 = [r0, s0] be a box in R
n enclosing

D, i.e., M0 ⊇ D. Assume there exists a continuous function

F : Rn ×R
n → R such that

F (x,x) = f(x) (1)

for all x ∈ M0 and

F (x,y) ≤ F (x′,y) if x ≤ x′, (2a)

F (x,y) ≥ F (x,y′) if y ≤ y′. (2b)

for all x,x′,y,y′ ∈ M0. We call such a function a

mixed monotonic (MM) function. The optimization problem

(P) is said to be a mixed monotonic programming (MMP)

problem if its objective has an MMP representation, i.e., if

f satisfies (1) for some MM function F . In the following

section, we will show that MMP problems are especially well

suited for solution by a BB procedure.

As mentioned before, some well established problem for-

mulations can be identified as special cases of this novel

MMP framework. The most prominent among them are DM

programs [26], i.e.,

max
x∈D

f+(x)− f−(x) (3)

where f+ and f− are nondecreasing functions. A MMP

representation of that objective is F (x,y) = f+(x)− f−(y).
However, the MMP approach is much more versatile. For

example, consider the fraction

p+(x)− p−(x)

q(x)
(4)

with nondecreasing p+, p−, and q, where we assume p+(x)−
p−(x) ≥ 0 and q(x) > 0 for all x. Maximizing this function

with monotonic programming requires the combination of

Dinkelbach’s algorithm [47] as outer and monotonic program-

ming as inner solver [35]. This approach has the drawbacks

that the inner global optimization problem needs to be solved

several times and the stopping criterion does not guarantee an

η-optimal solution. Instead, (4) can be optimized directly by

the algorithm proposed in Section III since it is easily verified

that

F (x,y) =
p+(x)− p−(y)

q(y)
(5)

is an MMP representation of (4).

It is important to note that the MMP representation of f is

never unique. This can be observed in the following simple

example. Let F be an MMP representation of f . Then, it is

easy to verify that

F̃ (x,y) = F (x,y) +

N∑

i=1

(xi − yi) (6)

fulfills the requirements in (1) and (2) as well. Intuitively, F̃
can be understood as an MMP version of

f̃(x) = f(x) +
N∑

i=1

(xi − xi). (7)

However, while we obviously have f̃(x) = f(x), the differ-

ence between the MMP representations F̃ and F is crucial.

As we will see later, F leads to tighter bounds than F̃ which,

in turn, leads to faster convergence of the BB algorithm.

Another, practically more relevant, example for the non-

uniqueness of F is throughput maximization in wireless in-

terference networks [35]

max
0≤p≤P

K∑

i=1

log

(

1 +
αipi

σ2
i +

∑K

j=1 βi,jpj

)

(8)

with positive constants αi, σi, and nonnegative βi,j . Con-

ventionally, (8) is converted into a DM program (3) with

f+(x) =
∑K

i=1 log(αixi + σ2
i +

∑K
j=1 βi,jxj) and f−(x) =

∑K

i=1 log(σ
2
i +

∑K

j=1 βi,jxj). This yields the MMP represen-

tation in the text below (3). A more direct approach to obtain

F from (8) is

F (x,y) =

K∑

i=1

log

(

1 +
αixi

σ2
i + βi,ixi +

∑

j 6=i βi,jyj

)

. (9)

This example will be continued in Section IV-A. An important

aspect discussed there is how the precise choice of F directly

impacts the convergence speed of the developed algorithm.

To conclude this section, we state some useful properties

of MM functions. Let Fi(x,y) be MM functions for i =
1, . . . ,K . Then,

(x,y) 7→
K∑

i=1

Fi(x,y), (10)

(x,y) 7→ max
i=1,...,K

Fi(x,y), (x,y) 7→ min
i=1,...,K

Fi(x,y) (11)

are MM functions, i.e., the properties of MM functions are

preserved by summation and by taking the pointwise minimum

or maximum of several MM functions. Moreover, if g(x) is a

real-valued, nondecreasing function, and h(x) is a real-valued,

nonincreasing function, the composed functions

(x,y) 7→ g(Fi(x,y)), (x,y) 7→ h(Fi(y,x)) (12)

are MM functions as well. Note that the nondecreasing and

nonincresing variables are swapped in case of a composition

with a nonincreasing function, i.e., to ensure that the com-

position of h and Fi is nondecreasing in its first argument

and nonincreasing in the second one, the first argument of

the composition has to be plugged into Fi as the second

argument and vice versa. In particular, it follows from (12)

that (x,y) 7→ −F (y,x) and (x,y) 7→ 1/F (y,x) are MM if

F (x,y) is a positive MM function. If in addition Fi(x,y) ≥ 0
for all i = 1, . . . ,K and x,y ∈ X for some X ⊆ R

n, then

(x,y) 7→
∏K

i=1
Fi(x,y) (13)

is an MM function on X , i.e., the product of nonnegative MM

functions is MM as well.
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III. GLOBAL OPTIMAL SOLUTION OF (P)

We design a BRB algorithm to determine a global η-optimal

solution of (P), i.e., a feasible point x̄ ∈ D such that f(x̄) ≥
f(x) − η for all x ∈ D. The core idea of any BB algorithm,

including the considered BRB variant, is to relax the feasible

set D and subsequently partition it such that upper bounds on

the objective value can be determined easily.6 This is where

the MMP representation F of the objective function f comes

in handy as it is well suited to compute upper bounds over

rectangular sets. Let M = [r, s] be a box in R
n. Then,

max
x∈M∩D

f(x) ≤ max
x∈M

F (x,x) ≤ max
x,y∈M

F (x,y) = F (s, r)

(14)

gives an upper bound U(M) = U([r,s]) = F (s, r) on

the optimal value of f(x) on M ∩ D. Thus, rectangular

subdivision [28, Sec. 6.1.3], where a box M is partitioned

along a hyperplane parallel to one of its facets, is an excellent

choice to partition D. Given a point v ∈ M and index

j ∈ {1, 2, . . . , n}, we divide M along the hyperplane xj = vj .

The resulting partition sets are the subrectangles

M− = {x | rj ≤ xj ≤ vj , ri ≤ xi ≤ si (i 6= j)} (15a)

M+ = {x | vj ≤ xj ≤ sj , ri ≤ xi ≤ si (i 6= j)}. (15b)

This is referred to as a partition via (v, j) of M. A partition

of M via (12 (s+ r), j) where j ∈ argmaxj sj − rj is called

a bisection of M.

We say that {Mk} is a decreasing sequence of sets if, for

all k, Mk+1 ⊂ Mk, i.e., Mk+1 is a descendent of Mk.

The following proposition is an important property for the

convergence of BB methods.

Lemma 1 ([28, Corollary 6.2]): Let {Mk} be a decreasing

sequence of sets such that Mk+1 is a descendent of Mk in

a bisection along a longest side of Mk. Then, the diameter

diam(Mk) of Mk tends to zero as k → ∞.

Besides the subdivision procedure and computation of

bounds, the selection of the next box (or branch) for further

partitioning is crucial for the convergence and implementation

of a BB procedure. A widely used selection criterion is

Mk ∈ argmax{U(M) |M ∈ Rk−1}. (16)

where U(M) is the upper bound chosen for the BB method —

in our case the MMP bound defined below (14) — and Rk−1

holds all undecided boxes from the previous iteration [28,

Sec. 6.2], i.e., all boxes for which it is not yet clear whether or

not they contain the global optimum. However, this selection

might not be the best choice from an implementation point

of view. To guarantee convergence, it suffices if the selection

satisfies the following condition.

Definition 1 ([25, Def IV.6]): A selection operation is said to

be bound improving if, at least each time after a finite number

of steps, Mk satisfies (16).

By construction, (16) satisfies Definition 1. An alternative is

to select one of the oldest elements in Rk−1, i.e., define for

every M by σ(M) the iteration index of its creation and select

Mk ∈ argmin{σ(M) |M ∈ Rk−1}. (17)

6Please refer to [48, Chapter 3], [25, Chapter 4], or [28, Chapter 6] for a
thourough introduction to BB methods.

Due to the finiteness of Rk every set M ∈ Rk will be deleted

or selected after finitely many iterations [25, p. 130].

The final BRB procedure is stated in Algorithm 1. It is

initialized in Step 0 where an initial box M0 = [r0, s0]
containing the feasible set D is required, i.e.,

r0i ≤ min
x∈D

xi s0i ≥ max
x∈D

xi (18)

for all i = 1, 2, . . . , n. In Step 1, a box is selected for

partitioning with any bound improving selection rule, e.g., (16)

or (17), and then bisected along one of its longest dimensions.

Step 2 is optional and discussed separately in Section III-B.

For each newly constructed box, a feasible value is computed

in Step 3. If necessary, the current best known feasible solution

x̄k (the “incumbent”) and current best known value γk are

updated. Infeasible boxes, i.e., new boxes that do not contain

any feasible points, are deleted (pruned) in Step 4. Note that

the box selected in Step 1 is replaced by the new boxes and,

thus, removed from the partition Rk. In Step 5, the algorithm

is terminated if the partition is empty or if none of the

remaining boxes can contain any better solution. Otherwise,

the algorithm continues in Step 1. Convergence of Algorithm 1

Algorithm 1 BRB Algorithm for MMP Problems

Step 0 (Initialization) Choose M0 ⊇ D and η > 0. Let k = 1
and R0 = {M0}. If available or easily computable, find
x̄

0 ∈ D and set γ0 = f(x̄0). Otherwise, set γ0 = −∞.
Step 1 (Branching) Select a box Mk = [rk, sk] ∈ Rk−1 and

bisectMk via ( 1
2
(sk+r

k), j) with j ∈ argmaxj s
k
j −rkj .

Let Pk = {M−

k ,M+

k } with M−

k , M+

k as in (15).
Step 2 (Reduction) For each M∈Pk, replace M by M′ such

that M′ ⊆M and

(M\M′) ∩ {x ∈ D |F (x,x) > γk} = ∅. (19)

Step 3 (Incumbent) For each M ∈ Pk, find x ∈ M ∩ D and
set α(M) = f(x). IfM∩D = ∅, set α(M) = −∞. Let
αk = max{α(M) |M ∈ Pk}. If αk > γk−1, set γk =
αk and let x̄k ∈ D such that αk = f(x̄k). Otherwise, let
γk = γk−1 and x̄

k = x̄
k−1.

Step 4 (Pruning) Delete every M = [r, s] ∈ Pk with M ∩
D = ∅ or F (s, r) ≤ γk + η. Let P

′

k be the collection of
remaining sets and set Rk = P

′

k ∪ (Rk−1 \ {Mk}).
Step 5 (Termination) Terminate if Rk = ∅ or, optionally, if

{[r, s] ∈ Rk |F (s,r) > γk + η} = ∅. Return x̄
k as

a global η-optimal solution. Otherwise, update k ← k+1
and return to Step 1.

to an η-optimal solution of (P) is established below7 for any

F satisfying (1) and (2).

Theorem 1: Algorithm 1 converges towards a global η-

optimal solution of (P) if the selection is bound improving.

Proof: In Step 2, let D′ = {x ∈ D |F (x,x) > γk} ⊆ D
and observe that D \D′ does not contain any solutions better

than the current best solution. Thus, if M′ satisfies (19), no

solutions better than the current incumbent are lost and the

reduction does not affect the solution of (P).

7We combine the convergence proof from [49, Prop. 5.6], [28, Prop. 6.1]
with the idea of a general selection criterion from [25, Thm. IV.3].
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If the algorithm terminates in Step 5 and iteration K , then

F (s, r) ≤ γK + η for all [r, s] ∈ RK and, since F (x,y) >
−∞, γK > −∞. Hence, x̄K is feasible and

γK = f(x̄K) ≥ F (r, s)− η ≥ max
x∈M∩D

f(x)− η (20)

for every M ∈ RK . Now, for every x ∈ D, either x ∈
D ∩ ⋃M∈RK

M or x ∈ D \ ⋃M∈RK
M. In the first case,

f(x) − η ≤ f(x̄K) due to (20). In the latter case, x ∈ M′

for some M′ = [r′, s′] ∈ Pk′ \ P ′
k′ and some k′ since

M0 ⊇ D. Because {γk} is nondecreasing and due to Step 4,

f(x) ≤ F (s′, r′) ≤ γk′ + η ≤ γK + η. Hence, for every

x ∈ D, f(x) ≤ f(x̄K) + η.

It remains to show that Algorithm 1 is finite. Suppose this

is not the case. Then, due to the bound improving selection,

there exists an infinite decreasing subsequence of sets {Mkq
}q

such that Mkq
∈ argmax{F (s, r) | [r, s] ∈ Rkq

}. Because

Mkq
∩ D 6= ∅, there exists an xkq ∈ Mkq

∩ D. Due to

Lemma 1, diamMkq
→ 0 as q → ∞. Thus, xkq , skq , and

rkq all converge towards a common limit, and, together with

(1), F (skq , rkq ) → F (xkq ,xkq ) = f(xkq ). Since α([r, s]) ≤
supx∈[r,s]∩D f(x) ≤ F (s, r) ≤ F (skq , rkq ) for all [r, s] ∈
Rkq

, F (skq , rkq ) → γkq
and, hence, F (skq , rkq ) = γkq

+ δkq

with δkq
≥ 0 and limq→∞ δkq

= 0. Thus, there exists a K̃

such that δk ≤ η for all k > K̃ , and F (s, r) ≤ γk + η for

all [r, s] ∈ Rk and k > K̃ . Then, either the algorithm is

directly terminated in Step 5 or the remaining sets in Rk are

successively pruned in finitely many iterations until Rk = ∅.

Remark 1 (Relative Tolerance): Algorithm 1 determines an

η-optimal solution of (P), i.e., a feasible solution x̄ of (P) that

satisfies f(x̄) ≥ f(x)−η for all x ∈ D. Instead, by replacing

all occurrences of “γk + η” in Algorithm 1 with “(1 + η)γk”,

the tolerance η becomes relative to the optimal value and the

algorithm terminates if the solution satisfies (1 + η)f(x̄) ≥
f(x) for all x ∈ D. The necessary modifications of Theorem 1

are straightforward. ♦

Remark 2 (Non-Uniqueness of MMP Representations): The

proof of Theorem 1 is valid for any F satisfying (1) and (2).

Thus, the non-uniqueness of the MMP representation F does

not impair the convergence proof of Algorithm 1. However,

the actual choice of F has an impact on the tightness of the

obtained bounds and, thus, on the convergence speed. For

the example in (6), we can calculate F̃ (s, r) − F (s, r) =
∑N

i=1(si − ri) ≥ 0 to see that the MMP representation

F never leads to worse bounds than the alternative F̃ . A

practical example in which the influence of the choice of

the MMP representation on the convergence speed can be

observed is studied in detail in Section IV-A, and a more

general discussion of this important aspect is provided in

Section V-A. ♦

A. Properties of D and Implementation of the Feasibility

Check

To implement the BRB method as described in Algorithm 1,

it is necessary to have means to perform the feasibility check

in Step 3 (and Step 4). Let us first discuss cases in which this

can be easily done. Afterwards, we comment on workarounds

that can be used if no conclusive feasibility check is available.

A conclusive feasibility test based solely on the properties

of MM functions is not possible. Consider a feasible set

D = {x |Gi(x,x) ≤ 0, i = 1, . . . ,m} (21)

where Gi satisfies (2a) and (2b). These properties lead to the

following sufficient conditions for (in-)feasibility of M.

Proposition 1: Let M = [r, s] and D as in (21). Then,

∀i ∈ {1, . . . ,m} : Gi(s, r) ≤ 0 ⇒ M∩D =M6= ∅ (22a)

∃i ∈ {1, . . . ,m} : Gi(r, s) > 0 ⇒ M∩D = ∅. (22b)

Proof: From (2a) and (2b), Gi(x,x) ≤ Gi(s, r) and

Gi(x,x) ≥ Gi(r, s) for all x ∈ M. Thus, if Gi(s, r) ≤ 0
for all i = 1, . . . , l, then Gi(x,x) ≤ 0 for all i and x ∈ M.

Hence, (22a). Similarly, if Gi(r, s) > 0 for some i = 1, . . . , l,
then also Gi(x,x) > 0 for this i and all x ∈ M. Thus, x /∈ D
and (22b) holds.

In general, there exist boxes for which neither (22a) nor (22b)

holds, so that it remains open whether M contains a feasible

point. However, we could consider the special case where

Gi

(
∑

j∈I

xjej ,
∑

k∈Ic

ykek

)

= Gi(x,y), ∀x,y ∈ R
n (23)

for some index set I ⊆ {1, . . . , n} and all i = 1, . . . ,m
where Ic = {1, . . . , n} \ I. That is, each function gi(x) =
Gi(x,x) is nondecreasing in the variables xj , j ∈ I, and

nonincreasing in the remaining variables xk, k ∈ Ic. In this

case, the following proposition is a simple feasibility test based

on MM properties.

Proposition 2: Let M = [r, s] and D be defined as in

(21) by MM functions Gi(x,y) satisfying (2) and (23). Then,

M∩D 6= ∅ if and only if Gi(r, s) ≤ 0 for all i = 1, . . . ,m.

In that case,
∑

j∈I rjej +
∑

k∈Ic skek ∈ M∩D with I and

Ic as in (23).

Proof: Let ξ = (r1, . . . , rκ, sκ+1, . . . , sK)T. Then, for all

i and due to (23), Gi(ξ, ξ) = Gi(r, s). Thus, if Gi(r, s) ≤ 0,

then ξ ∈ D. Since, trivially, ξ ∈ M, ξ ∈ D∩M 6= ∅. Finally,

from (22b) follows M∩D 6= ∅ ⇒ Gi(r, s) ≤ 0.

Corollary 1: Let M = [r, s] and D be a normal set, i.e.,

D = {x | gi(x) ≤ 0, i = 1, . . . ,m} (24)

with gi being nondecreasing functions. Then, D ∩M 6= ∅ if

and only if gi(r) ≤ 0 for all i = 1, . . . ,m.

Corollary 2: Let M = [r, s] and D be a conormal set, i.e.,

D = {x |hi(x) ≥ 0, i = 1, . . . ,m} (25)

with hi being nondecreasing functions. Then, D ∩M 6= ∅ if

and only if hi(r) ≥ 0 for all i = 1, . . . ,m.

Proposition 2 and Corollaries 1 and 2 cover a wide range of

feasible sets. However, none of these properties is necessary

as long as we have other means to perform a feasibility check.

For instance, consider the case where we can express D by

gi(x) ≤ 0, i = 1, . . . ,m, hj(x) = 0, j = 1, . . . , l (26)

where gi are convex functions and hj are affine functions. In

this case, D is a closed convex set and the feasibility check can
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be solved with polynomial complexity by standard tools from

convex optimization [50], [51]. In particular, (26) includes

polyhedral sets where gi are affine functions.

Let us now discuss workarounds for cases where a feasibil-

ity test as described above is not available, but the constraints

can be written as MM functions as in (21). The first possible

workaround is to alter Algorithm 1 such that, in Step 3, a feasi-

ble point is only required if available, and, in Step 4, boxes are

only pruned if (22b) is met. Due to this modification, we can

use Proposition 2 instead of a fully conclusive feasibility test.

Then, by a similar argument as in [27, Prop. 7.4] and according

to the proof of Theorem 1, there exists an infinite decreasing

sequence of sets {Mkq
}q such that Gi(r

kq , skq ) ≤ 0, for all i
and q = 1, 2, . . .. Since diamMkq

→ 0, rkq and skq approach

a common limit point x. Due to the continuity of Gi, this point

satisfies Gi(x,x) ≤ 0 for all i. Altering Theorem 1’s proof

accordingly, it can be shown that the modified algorithm is

infinite and, whenever it generates an infinite sequence {rk},

every accumulation point of this sequence is a global optimum.

Please refer to [48, Sec. 6.3.1] for more details.

In practice, an infinite algorithm often converges in finite

time (see the numerical example in Section IV-F), but there

are no theoretical guarantees for this, and for some problem

instances, the resulting algorithm can have very slow conver-

gence.

Another widely accepted workaround is to accept an η-

optimal point that is approximately feasible as solution, i.e.,

a point x̄ satisfying f(x̄) ≥ f(x) − η for all x ∈ D and

Gi(x̄, x̄) ≤ ε for all i = 1, . . . ,m and some small ε > 0.

Such a point is called (ε, η)-approximate optimal solution.

This second method restores finite convergence, but gives

rise to numerical problems. If ε is not chosen sufficiently small,

the (ε, η)-approximate optimal solution might be far from the

true optimum. The issue is that it is usually unclear how small

is “sufficient” to guarantee a good approximate solution [28,

Sec. 7.5]. Even worse, if the true optimum is an isolated point,8

any change in the tolerances ε, η can lead to drastic changes in

the (ε, η)-approximate optimal solution [53, Sec. 4]. We thus

generally do not recommend the (ε, η)-approximate approach.

A more suitable method for optimization problems with

such “hard” feasible sets is the successive incumbent tran-

scending scheme from [53], which algorithmically excludes

all isolated feasible points and provides an elegant solution

to the feasibility check issues. An optimization framework

based on this scheme is published in [52] along with source

code, and could be combined with the MMP concept. Besides

its numerical stability, this scheme also improves efficiency

for problems that are only nonconvex due to some of their

variables [52].

We stress the fact that none of the above workarounds is re-

quired if a fully conclusive feasibility test can be implemented

(preferably with low computational complexity), so that the

unmodified algorithm as stated in Algorithm 1 can be used.

8A feasible point is called isolated if it is at the center of a ball containing
no other feasible points. Please refer to [52] for a numerical example showing
the existence of isolated feasible points in a radio resource allocation problem.

B. The Reduction Procedure in Step 2 of Algorithm 1

In Step 2 of Algorithm 1, each box M ∈ Pk is replaced

by a smaller box M′ that still contains all feasible points

that might improve the current best known solution. This step

speeds up the convergence since smaller boxes result in tighter

bounds. However, it also increases the computation time per

iteration and, thus, slows down the algorithm. Ultimately, it

depends on the problem at hand, especially the structure of

the feasible set D, and the implementation of the reduction

procedure whether Step 2 speeds up Algorithm 1 or not.

Hence, an important observation is that Step 2 is entirely

optional since choosing M′ = M satisfies the above condition.

Moreover, note that (19) is also satisfied if M′ satisfies

(M\M′) ∩D = ∅.

For D convex (or even linear), we refer the reader to the vast

literature on convex (or linear) optimization regarding possible

implementations of the reduction. Here, we just mention the

most straightforward approach, namely to solve the convex

(linear) optimization problems

r′i = min
x∈M∩D

xi s′i = max
x∈M∩D

xi (27)

for all i = 1, . . . , n, and let M′ = [r′, s′].
For a feasible set defined by MM constraints as in (21), the

reduction can be carried out in a similar fashion as for DM

programming problems [28, Sec. 11.2.1]. Let M = [r, s] and

observe from (22b) that if, for some i = 1, . . . ,m, Gi(r, s) >
0, then M∩D = ∅ and M′ = ∅. Moreover, if F (s, r) ≤ γk,

then {x ∈ M|F (x,x) > γk} = ∅ and M′ = ∅ satisfies (19).

Otherwise, i.e., if Gi(r, s) ≤ 0 for all i and F (s, r) ≥ γk, let

M′ = [r′, s′] with

r′ = s−
n∑

i=1

αi(si − ri)ei, s′ = r′ +

n∑

i=1

βi(si − r′i)ei

(28)

and, for all i = 1, . . . , n,

αi = sup
{

α ∈ [0, 1]
∣

∣

∣
F (s− α(si − ri)ei, r) > γk,

Gj(r, s− α(si − ri)ei) ≤ 0, j = 1, . . . ,m
}

(29a)

βi = sup
{

β ∈ [0, 1]
∣

∣

∣
F (s, r′ + β(si − r

′

i)ei) > γk,

Gj(r
′ + β(si − r

′

i)ei, s) ≤ 0, j = 1, . . . , m
}

.

(29b)

The proof that (19) holds for this reduction procedure is an

extension of [28, Lem. 11.1] and can be found in [48, Sec. 6.4].

Equations (29a) and (29b) can be implemented efficiently by a

low precision bisection. It is important though that the obtained

solutions are greater (or equal) than the true αi, βi. Otherwise,

feasible solutions might be lost.

IV. APPLICATION EXAMPLES

To demonstrate the usefulness and exceptional performance

of the proposed MMP approach, we consider examples of var-

ious applications in the area of signal processing for communi-

cations. Where available, existing globally optimal approaches

are discussed and compared to the proposed framework. Run

time comparisons show tremendous gains over the state-of-

the-art solutions. For the example considered in Section IV-A,
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we even provide an analytical justification why the proposed

method outperforms previous DM formulations.

The complete source code is available on GitHub [44]. All

reported performance results were obtained on Intel Haswell

nodes with Xeon E5-2680 v3 CPUs running at 2.50 GHz.

The presented applications are only meant as examples: we

are aware of further optimization problems for which the MMP

framework can be useful, and we are convinced that further

applications can also be identified in other research areas.

A. Weighted Sum Rates in the K-User Interference Channel

As a first application example, we consider weighted sum

rate maximization in a K-user interference channel (IC) under

the assumption that the input signals are proper Gaussian and

that interference is treated as noise. Letting αk denote the

gains of the intended channels, and βkj with j 6= k the gains

of the unintended channels, we can write the achievable rates

as

rk = log2

(

1 +
αkpk

σ2 +
∑K

j=1 βkjpj

)

(30)

where σ2 is the noise variance and pk is the transmit power of

user k. Due to the possibility of modeling self-interference or

hardware impairments by choosing βkk 6= 0, this formulation

is more general than in some of the previous works mentioned

below. Note that there are several other system models for

which the rate expressions can be brought to a form equivalent

to (30), e.g., certain massive MIMO, cellular, and relay-aided

scenarios [14], [54].

The weighted sum rate maximization problem with mini-

mum rate constraints is

max
0≤p≤P

K∑

k=1

wkrk s. t. rk ≥ Rmin,k, k = 1, . . . ,K.

(31)

For this problem, various approaches can be found in the

literature. In the MAPEL framework [31], [33], the problem

is parametrized in terms of SINRs as

max
(γk)∀k∈G

K∑

k=1

wk log2(1+γk) s. t. γk ≥ γmin,k, ∀k (32)

where the set of possible SINR combinations G is approxi-

mated from the outside by means of the PA [26] until the

global optimal solution is found. Instead, the authors of [7]

formulate the problem as

max
ρ∈R

K∑

k=1

wkρk s. t. ρk ≥ Rmin,k, k = 1, . . . ,K (33)

where R is the achievable rate region defined by (30) and the

power constraints. The rate region is then approximated by

the PA. This special case of the framework in [36], [37] is

termed as “Ratespace PA” in the numerical results below. A

disadvantage of both methods is that in every iteration an inner

problem with considerable computational complexity has to be

solved to project points from outside the feasible set onto its

boundary.

Another approach to apply the monotonic optimization

framework [26] is to rewrite the rates as DM functions

rk = log2

(

αkpk+σ2+

K∑

j=1

βkjpj

)

−log2

(

σ2+

K∑

j=1

βkjpj

)

.

(34)

This problem can either be solved via the PA by introducing

an auxiliary variable [26], [55] (termed as “PA”) or directly

via the BB method for DM problems [27] (“BB DM”).9

Among the state-of-the-art, this BB approach is most closely

related to the proposed MMP framework. Indeed, finding an

MMP representation of (34) is straightforward as explained in

Section II: all powers in the first log-term of (34) are replaced

by nondecreasing variables xi, and all powers in the second

log-term are replaced by nonincreasing variables yi. However,

we will show below in (38) that this leads to looser bounds and,

thus, slower average convergence speed than the new MMP

representation proposed below.

By calculating the partial derivatives of rk in (30), it is easy

to verify that rk is nondecreasing in pk (regardless of the value

of pj) and nonincreasing in pj for j 6= k (regardless of the

value of pk). Thus, the MM function

Rk(x,y) = log2

(

1 +
αkxk

σ2 + βkkxk +
∑

j 6=k βkjyj

)

(35)

is an MMP representation of (30). Using (10) and (12), an

MMP representation of the objective of (31) is obtained as

F (x,y) =
K∑

k=1

wkRk(x,y). (36)

An MMP formulation of the feasible set is given by (21) with

Gk(x,y) = Rmin,k −Rk(y,x), k = 1, . . . ,K. (37)

The average convergence speed of BB methods depends

strongly on the quality of the bounds, i.e., tighter bounds lead,

in general, to faster convergence [27]. Consider a single rate

rk and the bounds obtained by (34) and (35) evaluated for a

box [x,y]. The difference between (35) and (34) is

Rk(x,y)− (38a)

log2

(

αkxk + σ2 +

K∑

j=1

βkjxj

)

− log2

(

σ2 +

K∑

j=1

βkjyj

)

= log2

(

αkxk + σ2 + βkkxk +
∑K

j 6=k βkjyj

αkxk + σ2 + βkkxk +
∑K

j 6=k βkjxj

)

+

log2

(

σ2 + βkkyk +
∑K

j 6=k βkjyj

σ2 + βkkxk +
∑

j 6=k βkjyj

)

≤ 0 (38b)

where we have exploited that the numerator is greater or equal

than the denominator in both fractions due to y ≥ x. This

shows that the MMP bound is always tighter than the DM

bound.10

9The BB algorithm in [27] includes a reduction step similar to the one
described in Section III-B. However, for the problem under consideration,
omitting the reduction step leads to faster performance.

10For problems without self-interference, the above comparison simplifies
as the second logarithm in (38b) vanishes, but the conclusion remains the
same.
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Fig. 1. Average number of iterations in Algorithm 1 to solve (31) with
bounds obtained by (35) with best- and oldest-first selection, respectively,
and (34) with best-first selection. Results are averaged over 100 i.i.d. channel
realizations.

The results in Fig. 1 illustrate this theoretical intuition

numerically. The plot displays the average number of iter-

ations required by Algorithm 1 to solve (31) versus the

number of variables. Each data point is averaged over 100
independent and identically distributed (i.i.d.) channel realiza-

tions with αi = |α′
i|2 and βij =

∣
∣β′

ij

∣
∣
2

where α′
i, β

′
ij ∼

CN (0, 1) for all i and j 6= i. Further, η = 0.01, σ2 = 0.01,

Pk = 1, wk = 1, βkk = 0, Rmin,k = 0 for all k, and no

reduction is used. It can be observed that MMP with best-

first selection (16) and MM function (35), labeled as “MMP,”

requires three orders of magnitude less iterations than the same

algorithm with MM function obtained from (34), named “BB

DM,” to solve (31) with K = 8 variables. From a practical

perspective, this means that the MMP framework is able to

solve (31) with 18 variables in the same time that state-of-the-

art monotonic programming requires for 8 variables. A further

observation from Fig. 1 is that the oldest-first selection rule

(17), labeled as “MMP oldest-first,” requires only slightly more

iterations to converge than the best-first rule. The benefits of

the oldest-first selection will be further evaluated below.

A comparison based on iterations works well for algorithms

with similar computational complexity per iteration. However,

when evaluating algorithms as different as BB algorithms and

the PA, comparing the number of iterations is meaningless: the

PA typically requires much less iterations but each iteration

takes much longer than in a BB algorithm. Thus, we resort

to measuring the average run time of the algorithms in the

C++ implementation available at [44]. We have taken great

care to implement the state-of-the-art algorithms with the same

rigor and amount of code optimization as the proposed method

to make this benchmark as fair as possible. The average run

time and memory consumption of all discussed approaches is

displayed in Figs. 2 and 3, respectively. The same parameters

as in the computation of Fig. 1 were used.

First, observe that all algorithms scale both in run time

and memory consumption exponentially in the number of

variables. Since problem (31) is NP hard [56, Thm. 1], better

asymptotic complexity is most likely not achievable. However,

it is obvious that the computational complexity still may have

very different slope and some algorithms are significantly

more efficient than others. The proposed MMP framework

solves problem (31) in considerably less time and memory

requirements than all other state-of-the-art methods. The PA

3 6 9 12 15 18
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Fig. 2. Average run time required to solve (31) with different algorithms.
Results are averaged over 100 different i.i.d. channel realizations.
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Fig. 3. Average memory consumption of different algorithms to solve (31).
Results are averaged over 100 different i.i.d. channel realizations.

based methods all consume more memory than the BB based

methods starting from three optimization variables. In terms of

run time, they are already outperformed by at least 1.5 orders

of magnitude for 2 variables and soon reach our run time

limit of 8 h. For the BB methods, the observations from Fig. 1

continue to hold in Fig. 2. From the memory consumption, it

can be observed that good bounds are not only critical for fast

convergence but also for memory efficiency. In this example,

the MMP method was able to solve problems more than twice

the size of the DM BB method within a memory limit of

2.5 GB.

Finally, observe that the best-first approach consumes con-

siderably more memory than the oldest-first rule, e.g., 3.4×
or 546 MB more at 18 variables. Further, observe that while

requiring less iterations, the best-first rule has longer run times

than the oldest-first rule. This can be explained from Fig. 3

since the memory consumption is directly proportional to the

number of boxes in Rk. The best-first rule is the mathematical

description of a priority queue. While accessing the top-

element in a priority queue has complexity O(1), insertion

has worst-case complexity O(log n) [57, pp. 148–152], where

n is the number of elements in the data structure. Compared
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to the other operations during each iteration of the algorithm,

which have polynomial complexity in the number of variables,

O(log n) is extremely small except when the size of the queue

is very large. Instead, the implementation of the oldest-first

rule is a queue, i.e., a first in, first out (FIFO) list. Here, the

insertion, deletion, and access to the front element all require

constant time O(1) and do not grow with the number of stored

elements.

B. Energy Efficiency Optimization

The global energy efficiency (GEE) is a key performance

metric for 5G and beyond networks measuring the network

energy efficiency [5], [14], [34]. It is defined as the benefit-

cost ratio of the total network throughput in a time interval T
and the energy necessary to operate the network during this

time:

GEE =
TB

∑K

k=1 rk
T (φTp+ Pc)

=
B
∑K

k=1 rk
φTp+ Pc

[
bit

J

]

, (39)

where rk is the achievable rate of link k, B is the bandwidth,

φ ≥ 1 contains the inverses of the power amplifier efficiencies

and Pc is a constant modeling the constant part of the circuit

power consumption.

Maximizing the GEE for interference networks with treating

interference as noise, i.e., where rk is as in (30), results in the

nonconvex fractional programming problem [34], [58]

max
0≤p≤P

∑K

k=1 rk
φTp+ Pc

(40)

where we have omitted the inessential constant B and min-

imum rate constraints that are already discussed in Sec-

tion IV-A. As the objective includes the sum rate as a special

case for φ = 0 and Pc = 1, this problem is also NP-hard

due to [56, Thm. 1]. As already mentioned below (4), the

state-of-the-art approach to solve (40) is to combine Dinkel-

bach’s Algorithm [34], [47] with monotonic programming.

This was first proposed in [23] and subsequently developed

into the fractional monotonic programming framework in [35].

Dinkelbach’s Algorithm solves (40) as a sequence of auxiliary

problems

max
0≤p≤P

K∑

k=1

rk − λφTp+ Pc (41)

with non-negative parameter λ. Problem (41) can be solved by

monotonic programming much in the same way as discussed

in Section IV-A. While most works use the PA to solve (41)

(e.g., [23], [35]), we have already demonstrated above that BB

with DM bounds [27] outperforms the classical PA [26].

The MMP framework even allows to solve (40) without the

need of Dinkelbach’s Algorithm. An MMP representation of

(39) can be obtained similar to (4). Specifically, with (35) and

the identities in (10), (12) and (13), we obtain

F (x,y) =
B
∑K

k=1 Rk(x,y)

φTy + Pc

(42)

with Rk(x,y) as in (35).

The run time performance of both algorithms is evaluated

in Fig. 4 where φk = 5, for all k, and Pc = 1. The remaining
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Fig. 4. Average run time to solve (40) with MMP and Dinkelbach’s Algorithm
where the inner problem is solved by Algorithm 1 with DM rate expressions
(34). Results are averaged over 100 different i.i.d. channel realizations.

parameters were chosen as in Section IV-A. It can be observed

that MMP requires significantly less time to solve (40) than

the legacy approach employing Dinkelbach’s Algorithm. For

example, with K = 6 variables, MMP is on average almost

five orders of magnitude faster than fractional monotonic pro-

gramming. The memory consumption (not displayed) scales

almost identically to the run time with MMP using four orders

of magnitude less memory than Dinkelbach’s Algorithm for

six variables. Besides showing much better run time and

memory performance, the MMP method also guarantees an

η-optimal solution. By contrast, Dinkelbach’s Algorithm does

not provide any guarantees on the solution quality since an

inaccuracy of η in the inner solver might propagate to larger

inaccuracies in the overall results.

Other energy efficiency (EE) metrics can be maximized

with the MMP framework in a similar manner. For example,

in interference networks with rate function (30), the weighted

minimum EE (WMEE) has the objective [35]

WMEE = min
k=1,...,K

wk

Brk
φkpk + Pc,k

(43)

with nonnegative weights w1, . . . , wK and MMP representa-

tion

FWMEE(x,y) = min
k=1,...,K

wk

BRk(x,y)

φkyk + Pc,k

, (44)

and the weighted sum EE (WSEE) has the objective [35]

WSEE =

K∑

k=1

wk

Brk
φkpk + Pc,k

(45)

with MMP representation

FWSEE(x,y) =

K∑

k=1

wk

BRk(x,y)

φkyk + Pc,k

. (46)

The WMEE can be maximized similarly to the GEE with

a combination of the Generalized Dinkelbach Algorithm and

monotonic programming [35]. Instead, optimizing the WSEE

with monotonic optimization is much more challenging since

neither Dinkelbach’s Algorithm nor its generalization are

applicable. In [35], it is proposed to transform (45) into a

single fractional program, i.e.,
∑K

k=1 wkBrk
∏

i6=k(φipi + Pc,i)
∏K

k=1(φkpk + Pc,k)
(47)

and then apply fractional monotonic programming. While

this works in theory, it is shown in [54] that this approach
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has very poor convergence. Instead, the MMP framework

allows to directly optimize both metrics without cumbersome

transformations and without using Dinkelbach’s Algorithm or

its generalized version.

C. Proportional Fair Rate Optimization with Scheduling

The weighted sum rate utility in (31) can also be replaced

by a utility function that accounts for the fairness between

users, such as the proportional fair utility

U (r1, . . . ,rK) =

K∑

k=1

ln rk. (48)

In this context, a common approach (e.g., [32], [33], [36],

[37]) is to increase the flexibility in the optimization by

scheduling different transmit strategies in multiple time slots

and averaging the data rates, i.e.,

max
(0≤p

(ℓ)
k

≤Pk)∀k∀ℓ

L∈N,τ≥0:1Tτ=1

U (r̄1, . . . ,r̄K) s. t. r̄k ≥ Rmin,k, ∀k (49)

with

r̄k =

L∑

ℓ=1

τℓr
(ℓ)
k , r

(ℓ)
k = log2

(

1 +
αkp

(ℓ)
k

σ2 +
∑

j 6=k βkjp
(ℓ)
j

)

.

(50)

In this application example, we restrict ourselves to the pro-

portional fair utility (48) since this problem was shown to be

NP hard [56] for all L ≥ 3 even though the utility is concave

in the per-user rates.

In [32], [33], an algorithm called S-MAPEL for nondecreas-

ing utility functions was proposed. The approach is based on

the PA and makes use of the reformulation (32) as well as of

the observation that the rates are nondecreasing functions of

the time fractions τℓ. By arguing that no more than L = K+1
strategies are necessary due to the Carathéodory theorem, the

approach from [32], [33] uses LK = (K + 1)K optimization

variables in total.11 This leads to a significant computational

complexity. A second disadvantage of this approach is as

follows. The optimizer of (49) is not unique since any re-

indexing of the time index ℓ leads to an optimal solution as

well, but when directly solving (49) this inherent symmetry

is not exploited. The authors of [32], [33] thus proposed

an accelerated algorithm called A-S-MAPEL which employs

a heuristic (with an additional tolerance parameter εtol) to

exploit the symmetry, but the resulting strategy is no longer

guaranteed to be η-optimal.

We focus on the following alternative method for concave

utility functions from [36], [37], which avoids increasing the

number of variables at the cost of having to solve a series of

monotonic optimization problems. To obtain an efficient algo-

rithm, we combine this approach with the MMP framework.

11In fact, the number of strategies can be reduced to L = K due to an
extension to the Carathéodory Theorem discussed in [59], yielding a total
number of LK = K2 variables.

We rewrite problem (49) as

max
(0≤p

(ℓ)
k

≤Pk)∀k∀ℓ

(ρk≥Rmin,k)∀k

L∈N,τ≥0:1Tτ=1

U (ρ1, . . . ,ρK) s. t. r̄k ≥ ρk ∀k (51)

and consider the Lagrangian dual problem

min
µ≥0

max
(0≤p

(ℓ)
k

≤Pk)∀k∀ℓ

(ρk≥Rmin,k)∀k

L∈N,τ≥0:1Tτ=1

U (ρ1, . . . ,ρK) +

K∑

k=1

µk(r̄k − ρk) (52)

where r̄k depends on the optimization variables via (50). Since

averaging the rates can be interpreted as optimizing over the

convex hull of the achievable rate region, (51) can be rewritten

as a convex program to show that strong duality holds [36],

[37], i.e., (52) has the same optimal value as (51).

We note that p(ℓ) can be optimized separately for each ℓ,
and that these inner problems are all equivalent, i.e.,

max
(0≤p

(ℓ)
k

≤Pk)∀k∀ℓ

L∈N,τ≥0:1Tτ=1

µT
L∑

ℓ=1

τℓr
(ℓ) (53a)

= max
L∈N,τ≥0:1Tτ=1

L∑

ℓ=1

τℓ

︸ ︷︷ ︸
=1

max
(0≤p

(1)
k

≤Pk)∀k

µTr(1) (53b)

which implies that the choice of L and τ in the dual problem

is arbitrary. Thus, the dual problem (52) can be rewritten as

min
µ≥0

uµ(ρ
⋆(µ)) + vµ(p

⋆(µ)) (54)

where

ρ⋆(µ) = argmax
(ρk≥Rmin,k)∀k

uµ(ρ), uµ(ρ) = U(ρ)− µTρ (55a)

p⋆(µ) = argmax
(0≤pk≤Pk)∀k

vµ(p), vµ(p) = µTr. (55b)

In total, we have to solve three optimization problems in

(54). The outer minimization is a convex problem in the dual

variables µ and can be solved by the cutting plane method

[60], [61] which successively refines outer approximations

min
µ≥0,z∈R

z (56a)

s. t. z ≥ uµ(ρ
(ℓ)) + vµ(p

(ℓ)) ∀ℓ ∈ {1, . . . ,L}. (56b)

For given constant vectors ρ(ℓ) and r(ℓ), this is a linear

program in µ and z. By solving for the optimal µ⋆, setting

(ρ(L+1),p(L+1)) = (ρ⋆(µ⋆),p⋆(µ⋆)), and incrementing L,

a refined approximation is obtained. In every iteration, a

feasible approximate solution to the primal problem (51) can

be recovered by solving the dual linear program of (56). These

solutions converge from below to the global optimum [60,

Sec. 6.5]. Note that primal recovery implicitly performs the

convex hull operation corresponding to the rate averaging in

(50) if needed [37, Sec. 3.3.2]. In addition, each iteration

delivers a feasible value of the dual problem in (54), which

acts as an upper bound to the global optimum of (51). As a

termination criterion, we thus check whether the difference of

these values is below a predefined accuracy threshold εCP.
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In each iteration of the cutting plane method, evaluating

ρ⋆ and p⋆ requires solving the inner problems (55). The first

maximization (55a) is a convex program due to the assumption

of a concave utility. In the special case of the proportional fair

utility (48) it can even be solved in closed form.

The challenging nonconvex problem (55b) is a weighted

sum rate maximization, which can be tackled by any of the

methods discussed in Section IV-A. In [36], [37], it was pro-

posed to apply the PA with the rates as optimization variables.

Motivated by the run time comparison from Section IV-A, we

instead use Algorithm 1 together with the reduction procedure

from Section III-B. Combining this approach with the cutting

plane method for the outer problem, we get the guarantee that

the obtained solution lies at most η+εCP away from the global

optimum, i.e., it is (η + εCP)-optimal.

For a run time comparison using the implementation in

[44], we reconsider the example from [32] with K = 4
interfering links and channel gains derived from a path loss

model for the network topology given in [32, Fig. 5]. As in

[32], we maximize the proportional fair utility (48) without any

constraints on the per-user rates. Since the original S-MAPEL

algorithm did not converge within a reasonable amount of time,

we use the A-S-MAPEL heuristic with accuracy η = 10−2

and εtol = 10−3. Unlike S-MAPEL, this accelerated heuristic

cannot give a rigorous guarantee for the quality of the obtained

solutions [32], but we can use its run time of 3146 seconds

as a (very loose) lower bound for the actual run time of S-

MAPEL. Instead, the proposed combination of the cutting

plane algorithm and the MMP framework with total tolerance

of η + εCP = 9 · 10−3 + 1 · 10−3 = 10−2 converged in only

1.77 seconds.

D. Coded Time-Sharing and Rate Balancing

The combination of a Lagrangian dual approach and the

MMP framework can be extended to solve several other

problems. For instance, we can consider coded time-sharing

[62] where not only the rates but also the transmit powers

are averaged. In this case, we have to dualize the resulting

average power constraints
∑L

ℓ=1 τℓp
(ℓ)
k ≤ Pk in addition to

the rate constraints. Moreover, we could replace the fairness

optimization by a so-called rate balancing problem, which can

be used to characterize the Pareto boundary of the rate region

[63] and to guarantee the quality of service of all users.

As an example, let us combine both mentioned modifica-

tions in an IC under the assumptions of Gaussian inputs, coded

time-sharing, and treating interference as noise. The resulting

rate balancing problem with coded time-sharing is

max
(p

(ℓ)
k

≥0)∀k∀ℓ

L∈N,R∈R

τ≥0:1Tτ=1

R s. t.

L∑

ℓ=1

τℓr
(ℓ)
k ≥ ρkR, ∀k (57a)

L∑

ℓ=1

τℓp
(ℓ)
k ≤ Pk, ∀k (57b)

for given relative rate targets ρk, k = 1, . . . ,K , and with r
(ℓ)
k

from (50). After introducing dual variables µ and λ for the rate

constraints and power constraints, respectively, and performing

some reformulations similar to the ones in Section IV-C, the

dual problem of (57) can be written as [46]

min
µ≥0,λ≥0

ρTµ=1

(
K∑

k=1

λkPk + max
(pk≥0)∀k

(µTr − λTp)

)

. (58)

The inner maximization is no longer a pure weighted sum rate

problem, but using the MM function

F (x,y) =

K∑

k=1

(µkRk(x,y)− λkyk) (59)

it can still be solved via the MMP framework.

In [46], this problem was considered for the special case

of a two-user single-input/single-output IC, and a BB solution

was proposed for the inner maximization. In fact, this solution

can be considered as a special case of the MMP framework

with MM function (59). For further details and numerical sim-

ulations of the rate balancing problem, the reader is referred

to [46].

E. Multiantenna Interference Channels

The MMP framework can also be used in multiantenna

scenarios. In a single-input/multiple-output (SIMO) IC

yk =
K∑

j=1

hkjxj + σ2
k (60)

the achievable rates with Gaussian codebooks, interference

treated as noise, and without self-interference can be expressed

as [8]

rk = log2

(

1 + pkh
H
kk

(

IMk
+
∑

j 6=k

pjhkjh
H
kj

)−1

hkk

)

(61)

where Mk is the number of antennas at receiver k and IMk

is the identity matrix of this size. By replacing the rate

(30) by (61), we can formulate the weighted sum rate max-

imization (Section IV-A), the energy efficiency optimizations

(Section IV-B), the scheduling problem (Section IV-C), and

the rate balancing problem (Section IV-D) for the SIMO IC.

By calculating the partial derivatives with respect to x and

y in order to study monotonicity, it can be verified that

Rk(x,y) = log2

(

1 + xkh
H
kk

(

IMk
+
∑

j 6=k

yjhkjh
H
kj

)−1

hkk

)

(62)

is a MMP representation of (61). We can thus directly apply

the MMP framework to solve all of the above-mentioned

problems in the SIMO IC.

For the MISO IC with multiple antennas at the transmitter

side, the optimization is more involved since transmit covari-

ance matrices or beamforming vectors need to be designed

instead of transmit powers. In the following, we present a

beamformer-based method for the two-user MISO IC

yk = hH
kkxk + hH

kjxj + ηk (63)

with j = 3 − k. The transmit signals xk =
√
pkbksk are

generated from scalar Gaussian inputs sk ∼ CN (0,1), where

bk is a normalized beamforming vector with ‖bk‖ = 1.
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The approach is based on [30], which uses param-

eters ζk to construct a convex combination of the

maximum ratio transmission (MRT) beamformer and the

zero-forcing (ZF) beamformer, which is provably sufficient

to parameterize all Pareto-optimal transmit strategies in the

considered scenario. We thus use the beamforming vectors

bk = b̃k ‖b̃k‖
−1
, b̃k = ζkb

MRT
k + (1 − ζk)b

ZF
k , (64a)

bMRT
k = hkk ‖hkk‖−1

, bZF
k = Π

⊥
hjk

hkk ‖Π⊥
hjk

hkk‖
−1

(64b)

where Π
⊥
hjk

= IMk
− hjkh

H
jk

hH
jk

hjk
is the orthogonal projection

onto the orthogonal complement of the span of hjk , and ζk,

k = 1,2 are auxiliary variables that need to be optimized. The

achievable rates with Gaussian codebooks, interference treated

as noise, and without self-interference can then be expressed

as [30]

rk=log2

(

1 +
pk|hH

kkbk|2
σ2
k + pj|hH

kjbj |2
)

=log2

(

1 +
pkαk(ζ)

σ2 + pjβj(ζ)

)

(65)

where

αk(ζ) = |hH
kkbk|2 =

(ζkγkk + (1 − ζk)γkj)
2

1− 2ζk(1− ζk)(1− γkj

γkk
)
≥ 0, (66a)

βk(ζ) = |hH
kjbj |2 =

ζ2kδ
2
kjγ

−2
kk

1− 2ζk(1 − ζk)(1− γkj

γkk
)
≥ 0 (66b)

with γkk = ‖hkk‖, γkj = ‖Π⊥
hjk

hkk‖, and δkj = |hH
kkhkj |

[2], [30]. Since αk(ζ) and βk(ζ) are nondecreasing in both

components of ζ (see [30] for a proof), we can use (10), (12)

and (13) to establish the MMP rate expression

Rk

([
ζ
p

]

,
[
ξ
q

])

= log2

(

1 +
pkαk(ζ)

σ2 + qjβj(ξ)

)

. (67)

We can thus optimize the global energy efficiency in the

two-user MISO IC by replacing Rk in (42) by (67) with

x = [ζT,pT]T and y = [ξT, qT]T. This means that we apply

Algorithm 1 in a four-dimensional space.

In a similar manner, all other optimization problems for

the single-antenna interference channel that could previously

be formulated by means of the MMP rate expression Rk from

(35) can be easily extended to the two-user MISO interference

channel by using the MMP rate expression (67) instead. An

example for this is the rate balancing problem (57) in the

MISO IC which we considered in [2]. For the special case

of weighted sum rate maximization without minimum rate

constraints, the problem can be simplified since, in this case,

it is optimal for both users to exploit their full power budget

[21, Proposition 1]. Hence, Algorithm 1 has to be applied only

for the two auxiliary variables ζ.

The MMP framework can also be applied to nonconvex

optimization problems in other multiantenna scenarios, such as

the K-user MISO broadcast channel with linear transceivers.

An example is the method in [64, Sec. 7.3.1.2], which is in

fact a special case of the MMP framework.

F. Probability Optimization for Slotted ALOHA

To demonstrate that the proposed MMP framework can

also be useful for solving problems on the medium access

control layer, we study the problem from [33, Ch. 7] where

the transmission probabilities in the slotted ALOHA protocol

with K users were optimized, i.e.,

max
0≤θ≤1

U (r1(θ), . . . ,rK(θ)) (68a)

s. t. rk(θ) ≥ Rmin,k ∀k (68b)

with an increasing (not necessarily concave) utility function

U , and average per-user throughput

rk(θ) = ckθk
∏

j∈I(k)
(1 − θj). (69)

Here, θ = [θ1, . . . ,θK ]T contains the probabilities θk that user

k attempts to transmit a packet in any time-slot, and I(k)
contains the indices of all users that cause interference to

receiver k. The data rates rk are given by the product of the

data rate ck of a successful transmission and the probability

of a collision-free transmission.

The first solution approach in [33, Ch. 7] transforms the

problem to a canonical monotonic optimization problem

max
θ≥0,θ̂≥0

U
(

r̂1(θ,θ̂), . . . ,r̂K(θ,θ̂)
)

(70a)

s. t. r̂k(θ,θ̂) ≥ Rmin,k ∀k (70b)

θ + θ̂ ≤ 1 (70c)

with

r̂k(θ,θ̂) = ckθk
∏

j∈I(k)
θ̂j (71)

and solves it by means of the PA. As an alternative, this

problem could also be solved with the BRB algorithm for

DM problems from [27, Sec. 7]. However, no matter which

algorithm is applied, the formulation in (70) suffers from the

doubled dimensionality of the optimization problem, which

has drastic consequences [33, Ch. 7] since the worst-case

complexities of the PA and BB algorithm grows exponentially

in the number of variables [43].

Therefore, a second approach

max
υ≥0

U (c1υ1,, . . . ,cKυK) s. t. υ ∈ Y (72)

was proposed in [33, Ch. 7], where

Y =
{
υ | ckυk ≥ Rmin,k, ∀k and

∃(0 ≤ θ ≤ 1) : ckυk = rk(θ), ∀k
}
. (73)

As a result, the PA algorithm can be implemented with only K
variables, but this comes at the cost that a geometric program

(for details see [33, Ch. 7]) has to be solved to perform the

projection to υ ∈ Y in each iteration of the PA.

To avoid the drawbacks of both methods, we reformulate

(68) in terms of the MMP framework with MM objective and

MM constraint functions given as

F (x,y) = U (R1(x,y), . . . ,RK(x,y)) , (74a)

Gk(x,y) = Rmin,k −Rk(y,x), (74b)

with Rk(x,y) = ckxk

∏

j∈I(k)
(1− yj). (74c)
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TABLE I
MEAN AND MEDIAN RUN TIMES OF VARIOUS SOLUTION METHODS FOR

(68).

3 Users 4 Users
Mean Median Mean Median

(70) & PA > 23 h — —
(70) & DM BB (no reduction) 88.250 s 21.305 s — —
(70) & DM BRB (reduction) 23.182 s 5.919 s — —
(72) & PA 3.629 s 0.961 s 13.4 h 22.935 s
MMP (74) (no reduction) 0.769 s 0.172 s 150.1 s 4.838 s
MMP (74) (reduction) 1.413 s 0.364 s 256.0 s 8.139 s

Note that these constraints do not fulfill the additional

requirements in (23). Thus, Proposition 2 is not applicable

and (68) with MMP representations (74) needs to be solved

with the modified, infinite version of Algorithm 1 described in

Section III-A. However, although the algorithm is infinite in

theory, it turns out to have very fast convergence in practice.

It is important to note that the auxiliary variables y in the

MMP method are used only as a vehicle to compute bounds,

without considering them as additional optimization variables.

Thus, unlike the canonical monotonic reformulation (70), the

MMP method does not increase the dimensionality of the

problem. Moreover, the MMP formulation avoids an additional

inner solver as needed in the geometric programming based

formulation (72).

For the numerical results in Table I, we have used a three-

user system with proportional fair utility (48), full interference

I(k) = {j | j 6= k}, and ck = log2(1+ |α′
k|

2
) with i.i.d. α′

k ∼
CN (0, 1) for all k. To create a variety of challenging scenarios

in which some of the minimum rate constraints are active, we

have generated Rmin,k = ckχk with χk ∼ N
( (K−1)2

K2 , .052
)

since Rmin,k = (K−1)2

K2 ck, ∀k would be the boundary to in-

feasibility in case of full interference. All infeasible scenarios

among the generated ones have been discarded, and the results

are averaged over 100 feasible scenarios. As all algorithms

have fundamentally different per-iteration complexities, it does

not make sense to count iterations. We thus again fall back

to comparing computation times of the C++ implementations

[44].

In addition to the significantly lower run time of the MMP

method, another remarkable aspect can be observed. The

reduction step (28) reduces the run time of the DM approach

while it increases the run time of the MMP approach. As

stated before, it depends on the problem under consideration

whether or not performing a reduction leads to an overall

gain in computation time. An example where the reduction

step proves to be very helpful in combination with the MMP

method is the rate balancing problem with time-sharing in [2].

V. DISCUSSION

The mixed monotonic programming (MMP) framework

that we propose in this article can directly exploit hidden

monotonicity of single terms in a function expression even if

the function as a whole is neither monotonic nor a difference

of monotonic functions. This allows us to derive bounds

that are tighter than previously used DM bounds, leading

to faster convergence in BB algorithms. Moreover, the

MMP framework enables us to derive bounds even for a

wide range of problems for which no DM reformulation

exists, so that we can avoid previously proposed nested

algorithms, e.g., for fractional monotonic problems. Due

to these advantages, solutions based on the new MMP

framework achieve tremendous reductions of run time and

memory consumption compared to state-of-the-art solutions

in all numerical examples that we considered. These examples

come from the area of signal processing for communications,

but we are convinced that the proposed framework can help to

speed up global optimization in many other areas of research

as well.

An interesting theoretical aspect of the MMP framework

is that it can be considered as a generalization of the DM

approach and of other special cases previously studied in the

literature. From a practical perspective, we have discussed the

oldest-first selection rule and a reduction method for MMP

problems as additional methods to speed up the implemen-

tation in specific scenarios. In the code repository [44], we

provide a C++ implementation of the proposed BRB algorithm

for MMP, which can be easily adapted to arbitrary MMP

problems, as well as the simulation code for all numerical

examples discussed in this paper.

A. Convergence Speed and the Optimal Choice of F

We have established convergence of the BRB algorithm for

MMP problems (Algorithm 1) to an η-optimal solution of (P)

within a finite number of iterations in Theorem 1. Establishing

this kind of convergence is an important theoretical result

as pointed out by Donald Knuth [65, Sect. 1.1]. In case

of Algorithm 1, it holds for any MMP representation F of

f , i.e., any continuous function F that satisfies (1) and (2).

Thus, from a theoretical perspective, the non-uniqueness of

MMP representations is not an issue for the convergence of

Algorithm 1.

However, we have seen in Section IV that the actual

convergence speed depends strongly on the precise choice of

F . It would be beneficial to have means of obtaining the

optimal F for a given objective function f . This raises the

question of how to define optimality in terms of a bounding

function. From a theoretical perspective, the tightest bound

leads to fastest convergence. Practically, however, this bound

can be costly to compute and might lead to longer run times

than less tight bounds. In some problem instances, a tighter

bound might even lead to slower convergence because the

branching is performed in a different order and better feasible

points are encountered earlier.

Even when leaving all these considerations aside and simply

assuming that the optimal F is the MMP representation of

f that leads to the tightest bound, it is still challenging to

obtain general quantitative statements that are not limited to

a particular problem instance. Indeed, obtaining tight (not

even the tightest) bounds is not only relevant for MMP, or

monotonic optimization in general, but also in other fields

of nonconvex optimization, both for global optimal solutions

and heuristic algorithms [66]. For example, every successive

convex approximation algorithm benefits from tight bounds,
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but in many cases it is already a noticeable achievement to

obtain some suitable bound. This is where one of our main

contributions lies: We provide the theoretical and algorithmic

framework for a novel bounding methodology that enables

the derivation of powerful bounds for functions that were

previously intractable (cf. Section IV-B).
Another aspect is comparing the convergence behavior

of different algorithms (e.g., PA and MMP) and bounding

schemes (e.g., DM and MMP) analytically. The common

methodology is to examine the rate of convergence defined

as the number p ∈ N such that

U(Mk)− γk ≤ C diam(Mk)
p (75)

for some fixed constant C > 0. This is an active area

of research in the operations research community and leads

to worst-case bounds on the number of required iterations.

However, supported by the results in [67], we would expect

a rate of convergence p ≤ 2 for DM and MMP bounds.

Moreover, we expect this rate to be equal for both bounding

schemes since DM bounds are a special case of MMP bounds.

Thus, supporting the experimental results in Section IV by

theoretical results would require an approach that goes beyond

the usual rate of convergence analysis and determines the

constant C in (75) analytically. Again, the challenge would

be to obtain quantitative statements that are not specific to

a particular problem instance. Moreover, since such results

will only be worst-case bounds without direct implications for

the average run time, it is not clear whether this approach

is a viable method to quantify the experimentally verified

performance gain of MMP. For all these reasons, such an

analysis goes beyond the scope of this paper and is left open

for future research.
Apart from these theoretical questions, we have demon-

strated that the MMP framework helps to find much faster

globally optimal solution methods for many relevant problems.

This can be observed numerically from the broad selection of

examples in Section IV, it can be justified analytically in some

cases such as in Section IV-A, and it is obvious from the fact

that the MMP framework helps to avoid nested optimization

in other cases. Especially in cases where a DM representation

is not available but an MMP representation can be found,

MMP leads to tremendous speed-ups over the state-of-the-

art, even though we might not have a theoretical guarantee

to have found the optimal MMP representation. Moreover, in

some of these cases it even enables the solution of previously

intractable problems.
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