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Mingchen Zhang, Xiaojun Yuan, Senior Member, IEEE, and Zhen-Qing He

Abstract—We propose a compressed sensing algorithm termed
variance state propagation (VSP) for block-sparse signals, i.e.,
sparse signals that have nonzero coefficients occurring in clusters.
The VSP algorithm is developed under the Bayesian framework.
A hierarchical Gaussian prior is introduced to depict the clus-
tered patterns in the sparse signal. Markov random field (MRF)
is introduced to characterize the state of the variances of the
Gaussian priors. Such a hierarchical prior has the potential to
encourage clustered patterns and suppress isolated coefficients
whose patterns are different from their respective neighbors. The
core idea of our algorithm is to iteratively update the variances in
the prior Gaussian distribution. The message passing technique
is employed in the design of the algorithm. For messages that
are difficult to calculate, we correspondingly design reasonable
methods to achieve approximate calculations. The hyperparame-
ters can be updated within the iteration process. Simulation results
demonstrate that the VSP algorithm is able to handle a variety
of block-sparse signal recovery tasks and presents a significant
advantage over the existing methods.

Index Terms—compressed sensing, variance state propagation,
sparse Bayesian learning, block-sparse signal recovery

I. INTRODUCTION

In recent years, the compressed sensing (CS) technique, as
a new signal acquisition scheme beyond Nyquist sampling,
has attracted great interest with a wide range of applications
in signal processing [1], [2] and wireless communications [3],
[4]. Mathematically, given a measurement matrix A ∈ CM×N
(M � N), the goal of CS is to reconstruct an unknown sparse
signal x ∈ CN from the noise-corrupted linear measurements

y = Ax+w (1)

where w ∈ CM is an additive noise. This problem has been
well studied and a variety of algorithms that with guaranteed re-
covery performance have been proposed, including orthogonal
matching pursuit (OMP) [5], compressive sampling matching
pursuit (CoSaMP) [6], basis pursuit method [7], and sparse
Bayesian learning (SBL) methods [8].

Since the advent of compressed sensing, much research
attention has been paid to the reconstruction of a type of sparse
signals with additional structure, i.e., sparse signals with the
nonzero entries appearing in clusters, namely, block-sparse
signals. Block-sparsity arises naturally in a variety of practical
signals. For instance, in wireless communications, due to the
effect of limited local scattering in the propagation environ-
ment, the massive multi-input multi-output (MIMO) channel
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in the virtual angular domain exhibits a block sparsity [9],
[10]. In a video surveillance system, foreground moving objects
usually occupy a small portion of the camera view, leading
to natural block sparsity. Block-sparse patterns also appear in
the multiple measurement vector (MMV) problem that deals
with the recovery of multiple sparse signal vectors sharing a
common nonzero support [11], [12].

For the reconstruction of block-sparse signals, algorithms
making an explicit use of the additional block-sparse pattern
can yield provably better reconstruction performance than the
conventional CS algorithms in which the signals for recovery
are assumed to be randomly sparse. A number of CS algorithms
are specifically designed for the recovery of block-sparse sig-
nals, e.g., Block-OMP [13], mixed `2/`1 norm-minimization
[11], and group LASSO [14]. These algorithms require strong
prior knowledge of the block structure, such as the locations and
the lengths of the associated blocks, which are often unavail-
able in practical applications. Algorithms for structure-agnostic
block-sparse signal recovery are also developed. For example,
in [15], a hierarchical Bayesian Bernoulli-Gaussian prior model
was adopted to model both the sparse prior and the cluster prior,
and a Markov chain Monte Carlo (MCMC) sampling method
is employed in the inference; in [16], the block-sparse pattern
is modeled by a Boltzman machine, and a greedy method was
used to simplify the maximum a posteriori probability (MAP)
estimator; in [17], the components of the signal are modeled by
a number of overlapping blocks, and an expanded block sparse
Bayesian learning (EBSBL) was proposed to adaptively exploit
intra-block correlation; in [18], a pattern-coupled hierarchical
Gaussian framework was proposed to encourage block-sparse
patterns, where the sparsity of each coefficient is controlled by
the linear combination of the hyperparameters of itself and its
neighbors. Although they require little or even do not require
the prior information of the sparse patterns, these algorithms
typically perform far away from the genie bound in which the
location of nonzeros is known a priori.

Due to its outstanding performance and low complexity,
the message passing technique has been employed in the de-
sign of CS algorithms for a decade. Representative message
passing based CS algorithms include approximate message
passing (AMP) [19], generalized approximate message pass-
ing (GAMP) [20], expectation-maximization Gaussian-mixture
approximate message passing (EM-GM-AMP) [21], and turbo
compressed sensing (Turbo-CS) [22]. Message passing based
CS algorithms for block-sparse signals have also been proposed
in [23]–[25]. In [23], structured turbo compressed sensing
(STCS) was developed for massive MIMO channel estimation.
By combining a Markov prior into the Turbo-CS framework,
STCS fully utilizes the knowledge of block sparsity and shows
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superior recovery performance. It is known that message pass-
ing based CS algorithms are sensitive to the choice of mea-
surement matrices, since the sum-product rule used in message
calculation requires the independence of relevant messages.
The convergence of the AMP is guaranteed when the elements
of the measurement matrixA are independently and identically
distributed Gaussian and the length of the signalN is large [19].
Turbo-CS relaxes the requirement onA such thatA is allowed
to consist of rows randomly selected from an orthogonal basis
[23] or is right-rotationally invariant [22]. However, the perfor-
mance of the message passing based algorithms may deteriorate
severely when other measurement matrices are involved. It
is therefore desirable to design a message passing based CS
algorithm that is able to handle a wider range of applications.

In this paper, we propose a new message passing based
CS algorithm for the reconstruction of block-sparse signals. A
novel hierarchical Gaussian framework is deployed to model
the sparse prior, in which the unknown signal components are
modeled as independent Gaussian variables with zero mean and
certain variances. Each variance is still regarded as a random
variable and assigned a Bernoulli-Gamma prior with a support
indicator. These support indicators, a.k.a. the state variables,
are assigned as a Markov random field (MRF) to capture
the block sparsity. Such a prior has the potential to encour-
age block-sparse patterns and suppress “isolated coefficients”
whose pattern is different from that of its neighboring coeffi-
cients. Message passing is performed based on the hierarchical
probability model and an iterative algorithm is accordingly
developed to estimate the block-sparse signal. For messages
difficult to compute, we give approximate calculation methods.
The model hyperparameters are updated during the iteration.
Since the state of the variances plays a crucial role in message
propagation, we refer to our proposed algorithm as variance
state propagation (VSP). Our numerical results show that VSP
inherits the superior performance of the message passing based
compressed sensing algorithms while maintaining the robust-
ness to the choice of measurement matrices.

The rest of the paper is organized as follows. In Section II, we
introduce the MRF-combined hierarchical probability model
that characterizes the sparse prior and the pattern dependencies
among the signal components. An iterative message passing
algorithm is developed in Section III to estimate the block-
sparse signal. Section III contains approximate methods for
messages that are difficult to compute, and learning methods
for model hyperparameters. Simulation results are provided in
Section IV, followed by concluding remarks in Section V.

II. PROBABILITY MODEL

The goal of this work is to recover a block-sparse signal x ∈
CN from the noise-corrupted measurements

y = Ax+w (2)

where A ∈ CM×N (M < N) is the measurement matrix, and
w ∈ CM is a circularly symmetric complex Gaussian (CSCG)
noise with zero mean and covariance matrix σ2I . We use a
hierarchical Gaussian prior model to characterize the block-

sparse structure of the unknown signal x in (2). Specifically,
x is assigned a conditional Gaussian prior

p(x|v) =

N∏
i=1

p(xi|vi) (3)

where x = [x1, . . . , xN ]T , v = [v1, . . . , vN ]T , and p(xi|vi) =
CN (xi; 0, vi) is a CSCG distribution with zero mean and vari-
ance vi. Note that each vi is the variance of signal component
xi to control the sparsity. When vi approaches zero, the corre-
sponding component xi becomes zero. In this work, each vi is
assigned a conditionally independent distribution given by

p(vi|si) = Gamma(vi; a, b)δ(si − 1) + δ(vi)δ(si + 1), (4)

where si ∈ {−1, 1} is a hidden binary state; δ(·) denotes the
Dirac delta function; Gamma(vi; a, b) is the Gamma distribu-
tion defined as

Gamma(vi; a, b) =


bava−1i e−bvi

Γ(a)
, vi > 0

0, otherwise
(5)

with Γ(a) =
∫∞
0
ta−1e−tdt being the Gamma function. We

use the Gamma distribution to characterize the nonzero part of
each nonnegative sparse random variable vi. In addition, when
there is no prior knowledge of the random variable, a and b can
be set to a small value (e.g., 10−10) to make the distribution
noninformative. Let ρ be the fraction of nonzero elements in x,
the distribution p(si) is modeled as

p(si) =

{
ρ, si = 1

1− ρ, si = −1.
(6)

Then, the marginal distribution of vi can be expressed as

p(vi) =
∑
si

p(vi|si)p(si)

= ρGamma(vi; a, b) + (1− ρ)δ(vi). (7)

Furthermore, we use a Markov random field (MRF) prior to
describe the block-sparse structure of v. The hidden state
variables can be modeled by the classic Ising model [26] as

p(s) ∝ exp

(
N∑
i=1

(
1

2

∑
k∈Di

βsk − α

)
si

)
(8)

where Di ⊂ {1, . . . , N}\i is the neighbors of index i; α and β
are parameters of the MRF. A larger β implies a larger size of
each block of non-zeros, and a larger α encourages a sparser x.

We proceed to perform Bayesian inference based on the
proposed hierarchical model. From the Bayesian rule, the joint
probability of p(y,x,v, s) can be decomposed as

p(y,x,v, s) = p(y|x)p(x|v)p(v|s)p(s)

= p(y|x)

N∏
i

p(xi|vi)p(vi|si)p(s). (9)

The dependencies of the random variables in the factorization
(9) can be shown by a factor graph as depicted in Fig. 1(a),
where circles represent variable nodes and squares represent
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Fig. 1: (a) The factor graph characterizes the hierarchical probability model assumed in (9). (b) An example of the 4-connected MRF with
dimension 3× 3.

factor nodes. The factor nodes {fi}, {gi}, l, and γ in Fig. 1(a)
are defined as

fi : p(vi|si), (10a)
gi : p(xi|vi) = CN (xi; 0, vi), (10b)

l : p(y|x) = CN (y −Ax; 0, σ2I), (10c)

γ : p(s) ∝

(
N∏
i=1

∏
k∈Di

ϕ(si, sk)

) 1
2 N∏
i=1

ψ(si) (10d)

where

ϕ(si, sk) = exp(βsisk), (11a)
ψ(si) = exp(−αsi). (11b)

The factor graph in Fig. 1(a) includes two modules, namely, the
linear module that handles the linear constraint in (2) and the
MRF module that handles the MRF prior of s in (8). We further
see that, with γ in (10d), the MRF module can be expanded as
a sub-factor graph. In this paper, we will mostly focus on the
commonly used 4-connected MRF as illustrated in Fig. 1(b),
though our algorithm can be readily applied to other forms of
MRFs including the one-dimensional Markov chain.

Based on the above probability model, an optimal solution of
x can be found by solving maxx p(x|y). However, solving this
problem is computationally infeasible even for moderate values
of M and N . In this paper, we propose a low-complexity yet
near-optimal message passing algorithm, termed variance state
propagation, as detailed in what follows.

III. VARIANCE STATE PROPAGATION ALGORITHM

A. Sum-Product Message Passing

We will basically follow the sum-product rule for message
passing over the factor graph in Fig. 1(a). We start from the
output messages of the linear module. In Fig. 1(a), suppose that
variable node vi receives a message νgi→vi from the factor node
gi. The message from vi to fi is still given by νgi→vi . Then the
message from fi to si is a Bernoulli distribution given by

νfi→si ∝
∫
vi

p(vi|si)νgi→vi (12a)

= πfi→siδ(si − 1) + (1− πfi→si)δ(si + 1) (12b)

where

πfi→si =

∫
vi
νgi→viGamma(vi; a, b)∫

vi
νgi→viGamma(vi; a, b) +

∫
vi
νgi→viδ(vi)

.

(13)
With the inputs {νfi→si}, we are now ready to describe the
messages involved in the MRF. For simplicity, we give the de-
tails of the messages passed in the 4-connected MRF as shown
in Fig. 1(b). The left, right, top, bottom neighbors to node si
are indexed by il, ir, it, ib, respectively, i.e.,Di = {il, ir, it, ib}.
The left, right, top, and bottom input messages of each variable
si are represented as Bernoulli distributions ν li, ν

r
i , ν

t
i , and νbi ,

respectively. The input message of si from the left is given by

ν li ∝
∫
sil

νfil→sil

∏
k∈{l,t,b}

νkilψ(sil)ϕ(si, sil)

= λliδ(si − 1) + (1− λli)δ(si + 1) (14)

where λli is shown in (15) (at the top of the next page). The
messages from the right, the top, and the bottom have similar
representations. The output message of the MRF for each si can
be calculated as

νsi→fi = πsi→fiδ(si − 1) + (1− πsi→fi)δ(si + 1) (16)

where

πsi→fi =
e−α

∏
k∈{l,r,t,b} λ

k
i

e−α
∏
k∈{l,r,t,b} λ

k
i + eα

∏
k∈{l,r,t,b}(1− λki )

.

(17)
Then, the message from fi to vi is a Bernoulli-Gamma distri-
bution given by

νfi→vi ∝
∫
si

p(vi|si)νsi→fi (18a)

= πsi→fiGamma(vi; a, b) + (1− πsi→fi)δ(vi).
(18b)

With νvi→gi = νfi→vi , the message from gi to xi is given by

νgi→xi
∝
∫
vi

p(xi|vi)νvi→gi . (19)
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λli =
πfil→sil

∏
k∈{l,t,b} λ

k
il
e−α+β + (1− πfil→sil )

∏
k∈{l,t,b}(1− λkil)e

α−β

(eβ + e−β)
(
πfil→sil e

−α∏
k∈{l,t,b} λ

k
il

+ (1− πfil→sil )e
α
∏
k∈{l,t,b}(1− λkil)

) (15)

The message from xi to l is νxi→l = νgi→xi . We now consider
the message from factor node l back to variable node xi. From
the sum-product rule, νl→xi

can be expressed as

νl→xi
∝
∫
x\i

p(y|x)
∏
i′ 6=i

νxi′→l

=

∫
x\i

p(y|x)
∏
i′ 6=i

∫
vi′

p(xi′ |vi′)νvi′→gi′ (20)

for i′ 6= i, where x\i denotes all the entries of x except the i-th
entry. Clearly, νxi→gi = νl→xi ,∀i. Then, the messages νgi→vi
and νvi→fi can be computed as

νvi→fi = νgi→vi ∝
∫
xi

νxi→gip(xi|vi) (21)

where νxi→gi = νl→xi . The above messages are calculated
iteratively until convergence.

B. Update of νgi→vi
The algorithm in Subsection III-A is a straightforward ap-

plication of the sum-product rule for message passing. This
algorithm, however, is difficult to implement due to the high
computational complexity involved in evaluating the integrals
in (20) and (21). To reduce complexity, we propose to approxi-
mate the outputs of the linear module {νgi→vi} as follows. By
substituting νxi→gi = νl→xi in (20), the message νgi→vi in
(21) can be written as

νgi→vi ∝
∫
xi

p(xi|vi)
∫
x\i

p(y|x)

∫
v\i

∏
i′ 6=i

(
νvi′→gi′p(xi′ |vi′)

)
∝
∫
v\i

∏
i′ 6=i

νvi′→gi′

(∫
x

p(y|x)p(x|v)

)
∝
∫
v\i

p(y|v)
∏
i′ 6=i

νvi′→gi′ . (22)

The integral in (22) is difficult to solve. To simplify the message
calculation, we propose to replace the output of the linear
module for node vi by the mean µgi→vi = Eνgi→vi

[vi],
where the expectation E is taken over the distribution νgi→vi .
Similar ideas for message replacements and approximations
have been previously employed, e.g., in denoising-based turbo
compressed sensing [27] in which a denoiser is used for mes-
sage approximation when the probability model of a node is
incomplete or unavailable. While Eνgi→vi

[vi] is still difficult to
evaluate, we further approximate µgi→vi by

µgi→vi = arg max
vi

p(y|v)|{vi′=µv
i′→g

i′
,∀i′ 6=i}, (23)

where µvi→gi is the input mean of vi for the linear module, i.e.

µvi→gi = Eνvi→gi
[vi],∀i. (24)

It is interesting to compare (23) with (22). We may treat each
νvi′→gi′ as the prior of vi′ , for i′ 6= i. Then νgi→vi in (22) can

be regarded as the likelihood of vi given y, and Eνgi→vi
[vi] is

the corresponding mean. In contrast, (23) only requires the prior
mean µvi′→gi′ of each vi′ rather than the whole distribution
νvi′→gi′ . Thus, µgi→vi in (23) can be treated as the maximum
likelihood of vi given y and µvi′→gi′ , i

′ 6= i. From the
estimation theory, it is known that µgi→vi given by (23) is
always inferior to µgi→vi calculated based on (22), provided
that the prior distributions {νv′i→g′i} are accurate. We next
present two methods to solve µgi→vi in (23). For notational
convenience, denote

S = {vi = µvi→gi ,∀i} (25a)
S\i = {vi′ = µvi′→gi′ ,∀i

′ 6= i}. (25b)

C. Gradient Method for Solving (23)
For the problem in (23), a straightforward solution is to find

a stationary point of p(y|v)|S\i with respect to vi via gradient
descent (GD). We note that p(x|y,v) ∝ p(y|x)p(x|v) is
a complex Gaussian distribution with the mean m and the
covariance Φ given by

m = σ−2ΦAHy (26)

Φ =
(
σ−2AHA+D−1

)−1
(27)

where D is a diagonal matrix with the i-th diagonal element
equal to vi. Then, p(y|v) can be expressed as

p(y|v) =

∫
x

p(y|x)p(x|v)

=
exp

(
mHΦ−1m− σ−2yHy

)
|Φ|

(πσ2)M |D|

∫
x

CN (x;m,Φ)

=
exp

(
−σ−2yHy

)
(πσ2)M

·
exp

(
mHΦ−1m

)
|Φ|∏N

i=1 vi
. (28)

The first term in (28) is independent of v. Thus, problem (23)
can be equivalently written as

µgi→vi = arg min
vi

χ(y,v)|S\i , (29)

where

χ(y,v) , − ln
exp

(
mHΦ−1m

)
|Φ|∏N

i=1 vi

= −mHΦ−1m− ln |Φ|+
N∑
i=1

ln vi. (30)

It is difficult to obtain an analytical solution to problem (29). We
propose to use the gradient descent to find a stationary point of
(29), with the update rule given by

µgi→vi = µvi→gi − εi
∂χ

∂vi
|vi=µvi→gi

(31)

where εi is an appropriate step size that can be selected from
the backtracking line search to satisfy

χ(y,v)|S\i,vi=µgi→vi
≤ χ(y,v)|S . (32)
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The closed-form expression of the partial derivative ∂χ
∂vi

is given
by

∂χ

∂vi
= −

(
yHAui
σ2vi

)2

− Tr [EiΦ] +
1

vi
, (33)

where ui is the i-th column of Φ, and

Ei ,

0
1
v2i

0

 (34)

is a diagonal matrix with only one nonzero element 1
v2i

in the
i-th diagonal position. The detailed derivation of (33) is given
in Appendix A. We can update all the entries of v based on
(31) in a sequential manner. However, when N is large, using
backtracking to calculate εi for every single vi sequentially
imposes a heavy computational burden. We consider to use a
common step size for all {vi}, i.e.

µ(new) = µ(old) − ε∇χ(y,µ(old)) (35)

where µ(old) , [µv1→g1 , . . . , µvN→gN ]
T , the gradient

∇χ(y,v) is defined by

∇χ(y,v) ,

[
∂χ

∂v1
, . . . ,

∂χ

∂vN

]T
, (36)

and ε is the common step size obtained from the backtracking
line search rule satisfying

χ(y,µ(new)) ≤ χ(y,µ(old)). (37)

Thus, by letting [µg1→v1 , . . . , µgN→vN ] = µ(new), we obtain an
update of {µgi→vi}. The above approximate solution to (22) is
referred to as the GD-based solver, as summarized in Algorithm
1. We note that iteration is introduced in Algorithm 1 to find a
stationary point of (23).

D. ELBO-Based Method for Solving (23)

The gradient descent method described above, though con-
ceptually simple, suffers from slow convergence and high com-
plexity. This inspires us to develop an alternative solution to
(23) with improved performance. Let q(x) be a distribution
function of x, and define

η(vi) , ln p(y|v)|S\i
= L(vi, q(x)) +DKL(q(x)||p(x|y,v)|S\i) (38)

where L(vi, q(x)) is the evidence lower bound (ELBO) defined
by

L(vi, q(x)) ,
∫
x

q(x) ln
p(y,x|v)|S\i

q(x)
, (39)

and

DKL(q(x)||p(x|y,v)|S\i)

, −
∫
x

q(x) ln
p(x|y,v)|S\i

q(x)
(40)

is the Kullback-Leibler divergence between q(x) and
p(x|y,v)|S\i . Equation (38) holds for any choice of q(x)
and vi. Since DKL(q(x)||p(x|y,v)|S\i) ≥ 0, L(vi, q(x)) is

indeed a lower bound of η(vi). Thus, to approximately solve
(23), we turn to maximize L(vi, q(x)) as

µgi→vi = arg max
vi

L(vi, q(x)) (41)

where q(x) is chosen as

q(x) = p(x|y,v)|S . (42)

The following proposition ensures that the choice of q(x) in
(42) yields a good approximate solution to (23).

Proposition 1. With µgi→vi given by (41), the following in-
equality holds:

p(y|v)|S\i,vi=µgi→vi
≥ p(y|v)|S . (43)

The proof of Proposition 1 is given in Appendix B. The
following Proposition gives the solution of (41).

Proposition 2. The solution of (41) is given by

µgi→vi = |mi|2 + φi,i, (44)

where mi denotes the i-th entry of m in (26), and φi,i denotes
the i-th diagonal element of the covariance matrix Φ in (27).

The proof of Proposition 2 is given in Appendix C. In this
way, we obtain an update of µgi→vi for each i. The above
approximate solution to (22) is referred to as the ELBO-based
solver as summarized in Algorithm 2. Similarly to the GD-
based solver, iteration is introduced to ensure a better perfor-
mance.

E. Update of πfi→si
Recall from (23) that we replace the message νgi→vi by

the mean µgi→vi . As a consequence, πfi→si in (12) cannot
be calculated by using (13) since νgi→vi is not available. To
carry out message passing from fi to si, we need to find a new
approach to update πfi→si .

In (24) we notice that µvi→gi is set to the mean of vi ∼
νvi→gi , and νvi→gi is a Bernoulli-Gamma distribution shown
in (18b). Thus, µvi→gi is calculated by using

µvi→gi = Eνvi→gi
[vi] =

a

b
πsi→fi , (45)

where a
b is the mean of the Gamma distribution

Gamma(vi; a, b). Equation (45) shows that under the
probability model specified in Section II, µvi→gi is simply the
product of πsi→fi and the mean a

b of Gamma(vi; a, b). Inspired
by this, we propose a moment matching method that mimics
the relationship between πsi→fi and µvi→gi to establish a map
between µgi→vi and πfi→si , i.e.

µgi→vi =
a

b
πfi→si . (46)

Here, for µgi→vi given by the linear module, πsi→fi may be
greater than 1 and therefore is not necessarily a valid prob-
ability. To avoid this, we need to limit πsi→fi to the range
of [0, 1]. That is, given µgi→vi and the parameters {a, b} of
Gamma(·; a, b), πfi→si can be approximated as

πfi→si = min

(
µgi→vi
a/b

, 1

)
, (47)
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Algorithm 1: GD-based solver for (23)
Input: y,A, {µvi→gi}, Tin, σ2

1 t = 0;
2 µ̂ = [µv1→g1 , . . . , µvN→gN ]T ;
3 while t < Tin do
4 Compute∇χ(y, µ̂) based on (33);
5 Find ε that satisfies χ (y, µ̂+ ε∇χ(y, µ̂)) ≤ χ(y, µ̂)

using the backtracking line search;
6 µ̂ = µ̂− ε∇χ(y, µ̂);
7 t = t+ 1;

Output: [µg1→v1 , . . . , µgN→vN ]T = µ̂

Algorithm 2: ELBO-based solver for (23)
Input: y,A, {µvi→gi}, Tin, σ2

1 t = 0;
2 µ̂(0) = [µv1→g1 , . . . , µvN→gN ]T ;
3 while t < Tin do
4 D = diag(µ̂);
5 Computem and Φ according to (26) and (27);
6 Update µ̂ = [µ̂g1→v1 , . . . , µ̂gN→vN ]

T with each
µ̂gi→vi = |mi|2 + φi,i;

7 t = t+ 1;

Output: [µg1→v1 , . . . , µgN→vN ]T = µ̂

where πfi→si is cropped to 1 to ensure that it is a valid proba-
bility. Then νfi→si in (12) can be constructed by using πfi→si
in (47). Subsequent message passing can therefore proceed.

F. Parameter Tuning

In this subsection, we discuss the choice of model parame-
ters. The noise variance σ2 is considered as a priori known in
the previous sections. In practice, σ2 can be learned under the
expectation-maximization (EM) framework in a similar way as
in the SBL [5].

Parameters α and β of the MRF can also be learned by the
EM algorithm. However, we find in numerical experiments that
the algorithm performs well when α and β are fixed to empirical
values, and learning α and β by EM yields a marginal gain.

The update of the two parameters a and b of the check
function fi in (4) is more crucial. At the beginning of the
iteration, since there is not much prior information of the
sparse signal x, we set a and b to very small values (e.g.,
a = b = 10−10) to ensure that the Gamma distribution part
in fi is noninformative. As the iteration proceeds, we update a
and b to make the calculation of the messages more accurate.
In (45) and (47), we notice that when calculating µvi→gi and
πfi→si , only a/b (the mean of Gamma(vi; a, b)) is used. So
in the update of fi, we fix a and only update b to adjust
the mean of Gamma(vi; a, b). In iteration, each vi receives an
update µgi→vi that is an estimate of vi. From the probability
model, we see that {vi} are drawn from (7). Thus, with high
probability, vis with the largest values of µgi→vi are nonzeros
drawn from the Gamma distribution part Gamma(vi; a, b) in fi.
Based on this observation, we propose to update a

b as follows.
Let µ1 ≥ µ2 ≥ . . . ≥ µN be the reordered sequence of

Algorithm 3: VSP algorithm

Input: y,A, a, b, Tout, Tin, α, β, ρ, ϑ, σ2

1 t = 0, µvi→gi = 0,∀i;
2 while t < Tout do
3 Call Algorithm 1 or 2 to update {µgi→vi};
4 if t < T − 1 then
5 Compute κ based on (48);
6 ∀i ∈ {1, . . . , N}, compute πfi→si based on (49);
7 ∀i ∈ {1, . . . , N}, compute πsi→fi based on (17);
8 ∀i ∈ {1, . . . , N}, compute µvi→gi based on (50);

9 t = t+ 1;

10 Compute the posterior meanm of x in (26) based on
{µgi→vi};

Output: x̂ = m

µg1→v1 , . . . , µgN→vN . We assume that those vis corresponding
to the K ′ largest entries, i.e., {µ1, . . . , µK′}, are drawn from
Gamma(vi; a, b). Then, by approximating the statistical mean
by a sample mean, we obtain

a

b
= κ ,

1

K ′

K′∑
h=1

µh. (48)

For the choice of K ′, it is found in the experiments that the best
performance is achieved when K ′ = bϑKe with coefficient
ϑ ∈ [1, 2], where bue is a function which returns the nearest
integer to u ∈ R, and K is the number of nonzero elements in
x. Based on the above discussion, the calculations of πfi→si
and µvi→gi are changed to

πfi→si = min
(µgi→vi

κ
, 1
)

(49)

µvi→gi = κπsi→fi . (50)

G. Overall Algorithm
The overall VSP algorithm is summarized in Algorithm 3.

The input argument y is the noise-corrupted measurement; A
is the measurement matrix; µ(0) is the initial estimate of v; a, b
are the shape and the rate parameter of the Gamma distribution;
Tout is the number of the outer iteration; Tin is the number of
iterations in the GD-based and ELBO-based solvers; α and
β are the parameters of the Markov random field; ρ is the
proportion of nonzero elements in x; ϑ is the coefficient; σ2

is the variance of the Gaussian noise. In the outer iteration of
VSP, the algorithm first calls the GD-based solver or the ELBO-
based solver to calculate an estimate [µg1→v1 , . . . , µgN→vN ]T

of v. The estimate [µg1→v1 , . . . , µgN→vN ]T is then passed into
the Markov random field for further processing to encourage the
block sparsity of {µgi→vi} (Lines 6 to 9 of Algorithm 3). The
output [µv1→g1 , . . . , µvN→gN ]

T is taken as the initial value of
the GD-based/ELBO-based solver in the next iteration (Line 10
of Algorithm 3). In a sense, the role of the Markov random field
in VSP is to iteratively adjust the initial variances of the GD-
based/ELBO-based solver according to the block-sparse prior
of x. The final estimate of x is given by {µgi→vi} via (26).
Since the state of the variances (i.e., {si}) plays a crutial role
in message propagation, we refer to our proposed algorithm as
variance state propagation.
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TABLE I: Properties of VSP and Other Popular Compressed Sensing Algorithms

Algorithm Complexity1 Number
of Blocks2

Size of
Blocks2

Location
of Blocks2

Sparsity2 Robustness3 Description

OMP [5] O(KMN) – – – 3 Yes Naive greedy algorithms that require a large
number of measurements for reliable
recovery.CoSaMP [6] O(TMN) – – – 3 Yes

SBL [8] O(TM3) – – – 7 Yes

A Bayesian-based algorithm that repeatedly
calculates the posterior distribution of the
signal and updates the parameters of the
model prior.

IHT [28] O(TMN) – – – 3 Yes A representative iterative thresholding algo-
rithm.

Block-OMP [13] – 3 3 3 3 Yes Improved greedy algorithms specified for
block-sparse signal recovery. It requires
strong prior knowledge.

Block-CoSaMP [13] – 3 3 3 3 Yes
Struct-OMP [29] – 3 7 7 3 Yes

CluSS–MCMC [15] O(TN2) 7 7 7 7 Yes

A Bayesian based algorithm that adopts
a Bernoulli-Gaussian hierarchical model as
the prior. Since the posterior distribution can
not be derived analytically, MCMC sampling
is employed in inference.

PC-SBL [18] O(TM3) 7 7 7 7 Yes

An improved algorithm specified for block-
sparse signals based on the SBL framework.
A new pattern-coupled Gaussian probability
model is employed as the prior.

PCSBL-GAMP [30] O(TMN) 7 7 7 7 No

A modified PC-SBL algorithm which re-
duces the complexity of PC-SBL by using
message passing, but at the same time in-
creases the sensitivity to the measurement
matrix.

STCS [23] O(TM3) 7 7 7 7 No Message passing algorithms that have
superior performance when the
measurement matrix satisfies certain
conditions, but have no performance
guarantee when the conditions are not met.CGAMP [25] O(TMN) 7 7 7 7 No

VSP O(TM3) 7 7 7 7 Yes
A new message-passing based algorithm that
has near-optimal performance and is robust
to the choice of the measurement matrix.

1 “Complexity” here is evaluated for a general measurement matrix. The complexities of some algorithms (such as STCS) can be reduced when the measurement
matrix takes a special structure. “T ” stands for the total number of iterations. Particularly, T = TinTout for VSP.

2 “3” denotes “necessary” for the corresponding algorithm. “7” denotes “unnecessary” for the corresponding algorithm. “–” denotes no consideration for the
corresponding algorithm.

3 “Robustness” here means the robustness of the algorithm to the choice of the measurement matrix.

H. Further Discussions

The total complexity of the VSP algorithm consists of the
implementation of Algorithm 1 (or Algorithm 2) and the mes-
sage passing steps of Algorithm 3. The complexities of both
Algorithms 1 and 2 are dominated by the calculation of Φ in
(27). According to the Woodbury matrix identity, this N × N
matrix inversion can be converted to an M ×M matrix inver-
sion, which requires O(M3) flops per iteration. Consequently,
the complexities of Algorithms 1 and 2 are both O(TinM

3).
The calculation of the messages in steps 6–10 of Algorithm 3
requires the complexity of O(N). Therefore, by considering
the outer iteration, the total complexity of the VSP algorithm
is O(ToutTinM

3).
Table I shows the complexity and the required prior infor-

mation of VSP and some other popular compressed sensing
algorithms. Compared with other methods, VSP has a signif-
icant advantage in its near-optimal performance and robustness
to the measurement matrix, while its computational complexity

is acceptable. VSP introduces variance variables in the prob-
ability model, resulting in a much lower correlation between
messages passed on the factor graph. VSP thus inherits the
superior performance of the message passing-based algorithms
and maintains a good robustness to the measurement matrix.
Further, by using the Markov random field to model the states
of the variance variables, VSP well exploits the prior knowledge
of block sparsity. The performance of VSP is examined in the
next section.

IV. NUMERICAL RESULTS

We now carry out simulations to illustrate the performance of
our proposed VSP algorithm. We first test the performance of
the VSP algorithm using the GD-based solver (VSP-GD) and
the VSP algorithm using the ELBO-based solver (VSP-ELBO)
under a relatively simple environment, and then compare VSP
with the other existing block-sparse signal recovery algorithms
in several practical applications.
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Fig. 2: NMSE performances of VSP-GD and VSP-ELBO under different K′. N = 50, K = 10, L = 1, M = 25, and Tout = 2. The NMSE
of SBL is also provided as benchmark. (a) NMSEs of VSP-GD versus the SNR under different K′. For the GD–based solver, Tin = 7000. (b)
NMSEs of VSP-ELBO versus the SNR under different K′. For the ELBO–based solver Tin = 30.
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Fig. 3: NMSE performances of VSP-GD and VSP-ELBO under different Tin respectively. N = 50, K = 10, L = 1, M = 25, K′ = 2K, and
Tout = 2. (a) NMSEs of VSP-GD versus the SNR under different Tin. (b) NMSEs of VSP-ELBO versus the SNR under different Tin. The NMSE
of SBL is also provided as a benchmark.

A. GD Solver vs. ELBO Solver

In this subsection we compare the performance of VSP-GD
and VSP-ELBO under different parameter settings. To evaluate
the recovery performance, we introduce the normalized mean
square error (NMSE) metric, which is calculated by averaging
normalized squared errors ||x̂ − x||22/||x||22 over independent
trials, where x̂ denotes an estimate of x. In our experiments, the
block-sparse signals are generated in a similar way as in [18].
The sparse signal x ∈ CN contains K nonzero coefficients
partitioned into L blocks, and the location and the size of each
block are randomly assigned. The block sizes {Bl}Ll=1 are de-
termined as follows: we randomly generate L positive random
variables {rl}Ll=1 with their sum equal to one. Then we set
Bl = dKτle for the first L−1 blocks andBL = K−

∑L−1
l=1 Bl

for the last block, where dxe denotes the ceiling operator that

gives the smallest integer no smaller than x. Similarly, we
partition the N -dimensional vector into L super-blocks using
the same set of values {rl}Ll=1, and place each of the L nonzero
blocks into one unique super-block with a randomly gener-
ated starting position, where the starting position is carefully
selected to prevent the nonzero block from going beyond the
super-block. The nonzero coefficients and the elements of the
measurement matrix {xk}Kk=1 are independently drawn from
the standard complex Gaussian (SCG) distribution [31] with
zero mean and unit variance. The given results are averaged
by 200 independent trails.

We first test the impact of the choice of K ′ on the perfor-
mance of VSP-GD and VSP-ELBO. In (48) we notice that
when updating parameters of the check function fi = p(vi|si),
the sparsity K is needed to determine K ′. In practice, accurate
knowledge ofK is a pretty strong prior that may be unavailable.
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Fig. 4: NMSEs of the respective algorithms under Gaussian measurement matrices. (a) NMSEs versus the SNR. N = 200, K = 30, L = 1,
and M = 75. (b) NMSEs versus the number of measurements. N = 200, K = 30, L = 1, and SNR = 20 dB.
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Fig. 5: NMSEs of the respective algorithms under cropped-Hermitian measurement matrices. (a) NMSEs versus the SNR. N = 100, K = 20,
L = 2, and M = 60. (b) NMSEs versus the number of measurements. N = 100, K = 20, L = 2, and SNR = 20 dB.

In many cases, we may only know the approximate number
of nonzero elements in x. Therefore, we hope that the VSP
algorithm is not sensitive to the value of K ′. In our simulation,
we test the sensitivity of VSP to K ′ by fixing K and adjusting
ϑ. The NMSEs of VSP-GD and VSP-ELBO versus the signal-
noise-ratio (SNR) are presented in Fig. 2. The SNR is defined as
20 log{||Ax||2/σ} in dB, where A is the measurement matrix
in (2), and σ is the standard deviation of the complex Gaussian
noise. Fig. 2(a) and Fig. 2(b) show the NMSE curves for VSP-
GD and VSP-ELBO at different values of K ′, respectively. The
NMSE curve of SBL is also provided for comparision. We see
that when K ′ ranges from K to 2K, both VSP-GD and VSP-
ELBO exhibit significant performance gains over the baseline
SBL, and more importantly, the performance gains are gener-
ally not sensitive to the value of K ′. In Fig. 2(a) we observe
that, when the SNR is less than 10 dB, the NMSE performance
of VSP-GD is relatively insensitive to K ′. When the SNR is

greater than 10 dB, a larger K ′ brings a slight gain. In Fig.
2(b) we also observe that a larger K ′ (1.6K ∼ 2K) makes
the performance of VSP-ELBO slightly better. Comparing Fig.
2(a) and Fig. 2(b), we find that as the SNR increases, the gap
between VSP-GD and SBL narrows, whereas VSP-ELBO does
not suffer from this problem.

We now examine the impact of Tin for VSP. We choose
K ′ = 2K and Tout = 2. The block-sparse signals and the
measurement matrices are generated in the same way as in
the previous experiment. Fig. 3 shows the NMSE of VSP-
GD versus SNR with different Tin. The NMSE of SBL versus
SNR is also provided for comparision. In Fig. 3(a), we observe
that VSP-GD needs a large Tin (Tin = 7000) to ensure good
performance. In contrast, VSP-ELBO achieves a significant
NMSE gain over SBL at a relatively small Tin value (Tin = 10
in Fig. 3(b)).

Through the above two sets of experiments, we find that
VSP-ELBO is superior to VSP-GD in terms of both recov-



10

6 9 12 15 18 21 24 27 30

SNR (dB)

-25

-20

-15

-10

-5

0

5

10

15
N

M
S

E
 (

dB
)

OMP
SBL
PC-SBL
STCS
VSP
Genie bound

(a)

100 115 130 145 160 175 190

Number of Measurements

-20

-15

-10

-5

0

5

10

15

N
M

S
E

 (
dB

)

OMP
SBL
PC-SBL
STCS
VSP
Genie bound

(b)

Fig. 6: NMSEs of respective algorithms under concatenated-exponential-Gaussian measurement matrices. (a) NMSEs versus the SNR. N = 300,
K = 50, L = 3, and M = 120. (b) NMSEs versus the number of measurements. N = 300, K = 50, L = 3, and SNR = 20 dB.

ery performance and computational complexity. In subsequent
experiments for comparision with the other existing methods,
“VSP” always refers to “VSP-ELBO” with Tout = 2, Tin = 30,
and K ′ = 2K.

B. Synthetic Data

In this subsection we evaluate the recovery performance of
the VSP for synthetic block-sparse signals. We consider three
different measurement matrix structures to test the robustness
of the VSP algorithm. Here, the block-sparse signals are gen-
erated in the same manner as described in Section IV-A. The
existing algorithm for sparse signal recovery, including the
orthogonal matching pursuit (OMP) [5], conventional sparse
Bayesian learning (SBL) [8], pattern-coupled sparse Bayesian
learning (PC-SBL), clustered Gaussian approximate message
passing (CGAMP) [25], and structured turbo compressed sens-
ing (STCS) [23] are taken into account for comparison.

The NMSEs of the respective algorithms versus the SNR and
the number of measurements are depicted in Fig. 4, Fig. 5, and
Fig. 6. The SNR is defined in the same way as in the preceding
subsection. We also plot a genie bound as a benchmark, which
is obtained by a linear minimum mean-square error (LMMSE)
estimator with perfectly known non-zero positions of x. The
results are averaged by 500 realizations.

Fig. 4 is obtained under complex Gaussian measurement
matrices, namely, the elements of A are independently drawn
from the SCG distribution. In Fig. 4(a) we observe that the
NMSEs of STCS and CGAMP almost coincide with the genie
bound predicted by the LMMSE. This is consistent with our
expectation since A here is a right-rotationally invariant (RRI)
matrix. The excellent performance of the message passing
algorithms under this scenario has been previously confirmed
in [23], [25]. From Fig. 4(a), we observe that although the
performance (in NMSE) of VSP is not as good as CGAMP
and STCS at low SNR, the NMSE of VSP can asymptoti-
cally approach the genie bound as the SNR increases. At the
same time, VSP performs better than OMP, SBL, and PC-

SBL throughout the entire observation range. In Fig. 4(b), we
note that the NMSE of CGAMP almost coincides with the
genie bound. STCS has a similar performance with CGAMP
when a large number of measurements is avaiable, but exhibits
instability when the number of measurements is less than 90.
VSP performs significantly better than SBL and PC-SBL in the
entire observation range, and its gap from the genie bound is
always kept small (within 1 dB).

Fig. 5 is obtained under cropped-Hermitian measurement
matrices, namely, the measurement matrixA ∈ CM×N in each
independent trial is generated in the following manner. First we
generate a square matrix A1 ∈ CN×N from the SCG distribu-
tion and accordingly form a Hermitian matrixA2 = A1×AH

1 .
The measurement matrixA consists of the first M rows ofA2.
Under this settingA is not a RRI matrix. In Fig. 5(a) we observe
that, the performance of STCS deteriorates seriously compared
to that in Fig. 4(a). The corresponding NMSE can not approach
the genie bound any more. CGAMP performs even worse than
STCS. The NMSE of CGAMP is not given in Fig. 5, since
otherwise it will make the other curves indistinguishable. It is
seen that the SBL-based compressed sensing algorithms still
work well under this measurement matrix, and the proposed
VSP is clearly the best among them. As the SNR increases,
the NMSE curve of the VSP gradually approaches the genie
bound. When the SNR is 30 dB, the NMSE gap between VSP
and genie bound is within 1dB. In Fig. 5(b), we observe that
the NMSE curve of VSP decreases smoothly as the number of
measurements increases. In the entire observation range, VSP
outperforms the other algorithms by a substantial margin.

Fig. 6 is obtained under concatenated-exponential-Gaussian
measurement matrices: In each independent trial, the measure-
ment matrix A ∈ CM×N is a concatenation of two matrices
A3 ∈ CM×N/2 and A4 ∈ CM×N/2, i.e., A = [A3 A4]. Each
element in A3 is randomly drawn from the SCG distribution,
and the real part and the imaginary part of each element in A4

are randomly drawn from an exponential distribution with the
rate = 3. A measurement matrix with such unevenly distributed
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Fig. 7: Original image of handwritten digit “0” and the reconstructed images by SBL, PCSBL-GAMP, and VSP under the Gaussian measurement
matrix. SNR = 10 dB.

Original SBL PCSBL-GAMP VSP

Fig. 8: Original image of handwritten digit “3” and the reconstructed images by SBL, PCSBL-GAMP, and VSP under the concatenated-
exponential measurement matrix. SNR = 10 dB.

energy is very unfriendly to message passing based algorithms.
In Fig. 6, we see that the STCS does not work well under this
circumstance. The performance of CGAMP is omitted for the
same reason as in Fig. 5. We observe that VSP again surpasses
the other algorithms in terms of both recovery ability and the
amount of measurements required.

C. Handwritten Digits Image Recovery

We now test the proposed VSP algorithm on two-
dimensional block-sparse signals. We carry out experiments
on two handwritten digit images (28 × 28 pixels) drawn from
the MNIST data set [32]. Digit “0” with 176 (22.45% of total
pixels) nonzero pixels and digit “3” with 200 (25.51% of total
pixels) nonzero pixels are the 2nd and 8th samples in the
MNIST training set, respectively. The gray values of each im-
age are normalized to a range of [0, 1]. Most of the pixels in the
image are zeros and the nonzero coefficients exhibit irregular
block patterns. The compressed measurements are corrupted by
an additive i.i.d. Gaussian noise, i.e., y = Ax +w, where the
image is represented as a one-dimensional vector x. Here we
compare the recovery performance of the proposed VSP with
those of SBL and PCSBL-GAMP. The PCSBL-GAMP algo-
rithm is a generalization of the PC-SBL for two-dimensional
block-sparse signals and uses Gaussian approximate message
passing techniques to reduce computational complexity. In our
simulations we set M = 400. The SNR is set to 10 dB. Fig.
7 and Fig. 8 depict the original images and the reconstructed
images under two different settings of the measurement matrix,
respectively. Fig. 7 is obtained under a Gaussian measurement
matrix, in which the elements are randomly drawn from a
normal distribution. It can be observed that the proposed VSP
algorithm provides the best visual quality with recognizable
digit. The digit reconstructed by the SBL has a poor quality
and can not even distinguish the boundary of the digit. The
PC-SBL gives a clear boundary, but does not eliminate the

noise well. The VSP not only recovers the boundary sharply,
but also significantly suppresses the noise. Fig. 8 is obtained
under a concatenated-exponential measurement matrix that is
a concatenation of two matrices A5 and A6. Elements of A5

andA6 are randomly drawn from two exponential distributions
with the rates = 3 and = 1, respectively. In Fig. 8, it is seen
that the PCSBL-GAMP totally fails due to the sensitivity of
the GAMP algorithm to the measurement matrix structure. We
see that in both cases, the proposed VSP offers a clearly better
image recovery quality as compared with the other methods.

D. Background Subtraction

Background subtraction, also known as foreground detec-
tion, is a technique used to automatically detect and track
moving objects in videos from static cameras. Usually, the
foreground interests are sparse in the spatial image domain. By
exploiting this sparsity, the sparse foreground interests within a
scene can be reconstructed by using compressed measurements,
which improves the real-time performance of signal processing.
Specifically, the idea is to reconstruct the foreground image
from the noisy corrupted difference between the compressed
measurements of the background image and the compressed
measurements of the test image

yf = yt − yb + w = A(xt − xb) + w = Axf + w (51)

where xt and xb represent the test and background images,
respectively; yt and yb denote the compressed measurements of
the test and background images, respectively; w is the additive
Gaussian noise; and xf is the foreground image to be recovered.
In our experiments, we use the UCSD background subtraction
data set [33]. The data set consists of 18 video sequences
collected by static cameras. We choose the 70-th frame and the
86-th frame of the “rain” subset as the background image xb
and the test image xf , respectively. The background image, the
test image, and the foreground image are shown in the top line
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Fig. 9: Top line from left to right: the background image xb (the 70-th frame of the UCSD-rain background subtraction data set), the test image
xt (the 86-th frame of the UCSD-rain background subtraction date set), the foreground image xf . Bottom line from left to right: foreground
images reconstructed by SBL, PCSBL-GAMP, VSP-SBL under concatenated-exponential measurement matrix. SNR = 10 dB.

of Fig. 9. The foreground image is regarded as the groundtruth
image. This foreground image, however, does not have a pure
background since xf = xt − xb is not an exactly sparse
signal and contains many small nonzero components. In our
experiments, the original images of 228×308 pixels are resized
to 114× 154 pixels. For the resized foreground image, we have
a total number of 3294 coefficients (18.76% of total pixels)
whose magnitudes are greater than 10−2. Images reconstructed
by the SBL, the PC-SBL, and the VSP are depicted in the
bottom line of Fig. 9, whereM = 8000 and SNR = 10 dB. The
measurement matrix A is randomly generated with each entry
independently drawn from a normal distribution. We see that
our proposed PCSBL-GAMP method provides the best image
quality with a clear appearance of the vehicle, whereas the
object silhouettes recovered by the other methods are seriously
disturbed by noise.

V. CONCLUSION

In this paper, we developed a new sparse Bayesian learning
method for recovery of block-sparse signals. A novel hierar-
chical Gaussian prior was proposed to characterize the block-
sparse patterns of the unknown signals. The core idea of our
algorithm is to iteratively update the variances in the prior
Gaussian distributions. A Markov random field is combined to
model the state variables of the variances of the independent
Gaussian distributions. The proposed MRF-combined hierar-
chical model is effective and flexible to cope with various kinds
of block-sparse structures. Our algorithm was developed based
on the message passing principle, where for messages that are
difficult to calculate, we have designed reasonable methods to
achieve approximate calculations. In addition, hyperparameters
can be updated within the iterative process. Simulation results
show that our proposed algorithm demonstrates a superior

performance over the other existing popular methods for block-
sparse signal recovery.

APPENDIX A
GRADIENT CALCULATION

The partial derivative of χ(y,v) in (30) w.r.t. vi is given by

∂χ

∂vi
= −∂m

HΦ−1m

∂vi
− ∂ ln |Φ|

∂vi
+
∂ ln vi
vi

. (52)

Furthermore,

∂mHΦ−1m

∂vi
= σ−4yHA

∂Φ

∂vi
AHy (53)

and

∂Φ

∂vi
=
∂
(
D−1 + σ−2AHA

)−1
∂vi

= −Φ
∂
(
D−1 + σ−2AHA

)
∂vi

Φ

= ΦEiΦ. (54)

∂ ln |Φ|
∂vi

can be calculated by

∂ ln |Φ|
∂vi

=
1

|Φ|
· ∂|Φ|
∂vi

= Tr
[
Φ−1

∂Φ

∂vi

]
. (55)

Then, by plugging (53)–(55) into (52), we obtain (33).

APPENDIX B
PROOF OF PROPOSITION 1

From (41), we obtain

L(µgi→vi , q(x)) ≥ L(µvi→gi , q(x)), (56)
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where q(x) is given by (42). Since
DKL(p(x|y,v)|S\i,vi=µgi→vi

||p(x|y,v)|S)) ≥ 0, we obtain

η(µgi→vi) = L(µgi→vi , q(x))

+DKL(q(x)||p(x|y,v)|S\i,vi=µgi→vi
)) (57a)

≥ L(µvi→gi , q(x)) +DKL(q(x)||q(x)) (57b)
= η(µvi→gi). (57c)

By noting the monotonicity of the logarithm function, we arrive
at (43).

APPENDIX C
PROOF OF PROPOSITION 2

With q(x) in (42), we obtain

L(vi, q(x)) =

∫
x

q(x) ln
p(y,x|v)|S\i

q(x)

=

∫
x

p(x|y,v)|S ln p(x|v)|S\i −
∫
x

q(x) ln q(x)

+

∫
x

p(x|y,v)|S ln p(y|x)

= Q(vi) + C1, (58)

where C1 is a constant independent of vi and

Q(vi) =

∫
x

p(x|y,v)|S ln p(x|v)|S\i . (59)

Thus (41) can be recast as

µgi→vi = arg max
vi

Q(vi). (60)

Plugging p(x|v) in (10b) into (59) leads to

Q(vi) = − ln vi −
1

xi

∫
x

p(x|y,v)|S |xi|2 + C2 (61)

where C2 is another constant independent of vi. Further we
notice ∫

x

p(x|y,v)|S |xi|2 = |mi|2 + φi,i (62)

where mi denotes the i-th entry of m in (26), and φi,i denotes
the i-th diagonal element of the covariance matrix Φ in (27).
Taking the derivative of (61) with respect to vi and setting the
result to zero, we obtain (44).
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