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Abstract

Restricted Isometry Property (RIP) is of fundamental importance in the theory of

compressed sensing and forms the base of many exact and robust recovery guarantees

in this field. Quantitative description of RIP involves bounding the so-called RIP con-

stants of measurement matrices. In this respect, it is noteworthy that most results in

literature concerning RIP are upper bounds of RIP constants, which can be interpreted

as theoretical guarantee of successful sparse recovery. On the contrary, the land of lower

bounds for RIP constants remains uncultivated. Lower bounds of RIP constants, if ex-

ist, can be interpreted as the fundamental limit aspect of successful sparse recovery. In

this paper, the lower bound of RIP constants Gaussian random matrices are derived,

along with a guide for generalization to sub-Gaussian random matrices. This provides

a new proof of the fundamental limit that the minimal number of measurements needed

to enforce the RIP of order s is Ω(s log(eN/s)), which is more straight-forward than

the classical Gelfand width argument. Furthermore, in the proof we propose a useful

technical tool featuring the concentration phenomenon for top-k sum of a sequence of

i.i.d. random variables, which is closely related to mainstream problems in statistics

and is of independent interest.
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1 Introduction

Compressed sensing is one of the major achievements in signal processing in the past years.

The model of compressed sensing can be typically described as retrieving some data x ∈
R
N from linear measurements y = Ax, where the measurement matrix A ∈ R

n×N is a

underdetermined matrix, i.e. n < N . Apparently, this task is impossible without proper

restrictions on x. The most common restrictions on x is the sparsity assumption, which

requires x has at most s non-zero entries, where s ≪ N . If this is the case, x can be

efficiently recovered by numerous algorithms, for example, the so-called ℓ1-minimization:

x̂ = arg min
z
‖z‖1 s.t. y = Az.

Restricted Isometry Property (RIP) has played a dominant role in analysis of such

algorithms since it was proposed in [1]. The great power of this concept enables researchers

to derive theoretical guarantees for many popular compressed sensing algorithms including

ℓ1-minimization, Orthogonal Matching Pursuit (OMP), Compressive Sampling Matching

Pursuit (CoSaMP), Iterative Hard Thresholding (IHT), Hard Thresholding Pursuit (HTP)

and so on. Proof of such guarantees is based on the mode of showing or borrowing some

upper bounds of the RIP constants of the sensing matrix and then using these upper bounds

to analyze specified algorithms. This accounts for the extensive study in the literature on

upper bounds of RIP constants. In contrast, few results on the lower bound of RIP constants

are known. Similar to the fact that upper bound of RIP constants plays the role of success

guarantee for sparse recovery, lower bound of RIP constants could give more insights to the

fundamental limit of sparse recovery.

In this paper we give such a lower bound for Gaussian random matrices and provide

the method to generalize this result to sub-Gaussian random matrices. We also show that

the lower bound is tight by proving a new upper bound of RIP constants, which is a slight

improvement on previous results. With this approach we partially rediscover the fact that

the minimal number of measurements needed to enforce the RIP of order s is Ω(s log(eN/s)).

Compared with the classical proof using Gelfand width, our proof bears less generality but

is much more straight-forward.

Furthermore, we identify a useful tool among the lines of our proof, which we call by

concentration of sum of top order statistics. In the literature of probability and statistics,

asymptotic behaviour and concentration phenomenon of order statistics have raised much
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attention [2]. They are also closely related to the study of empirical process, which is one

of the mainstream problems in statistics. On the other hand, sum of top order statistics is

another classical topic [3] within this field. However, known results on joint and individual

concentration of order statistics appear to yield inequalities for sum of top order statistics

that are far from optimal. This suggests that more tailored techniques are required to find

the optimal bound, as we will do in this paper. To the best of our knowledge, this paper

is the first one to establish an exponential concentration inequality for sum of top order

statistics. We believe this result is of interest in other fields besides compressed sensing.

We will elucidate the backgrounds and explain our contributions in more technical detail

in Section 3.

1.1 Notations

Bold upper case letters, e.g. A, are used to denote matrices, while bold lower case letters,

e.g. x, are used to denote vectors. The s-th RIP constant of a matrix A, to be defined

in Section 2, is denoted by δs(A), or simply by δs when there is no confusion. P(·) is

the probability of an event. E(·) and V(·) denotes respectively the expectation and the

variance of a random variable. By convention, a Gaussian matrix is a matrix with i.i.d.

standard Gaussian entries. Ψs denotes the set of non-zero s-sparse unit vectors in R
N , c.f.

Section 2. Denote by C a positive constant that may vary upon each appearance. We write

a(n) ∼ b(n) if limn→∞ a(n)/b(n) = 1, a(n) . b(n) if a(n) ≤ Cb(n) for some constant C,

and a(n) ≍ b(n) if both a(n) . b(n) and b(n) . a(n) are true.

1.2 Organization

The rest of this paper is organized as follows. Our main results are presented in Section 2,

where we also demonstrate the important corollary on minimal measurements required for

successful recovery. Section 3 is a more involved discussion on backgrounds and motivations

of these results. Section 4, 5, and 6 are devoted to the proof of the main results. For sim-

plicity, these results are stated for Gaussian matrices, but most of them can be generalized

easily to sub-Gaussian cases. We sketch how such generalization could be done in Section

7. In Section 8, our new bounds are plotted in comparison with previous results. Finally

in Section 9, we conclude the paper.
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2 Main Results

We begin with necessary definitions. A vector x is called s-sparse, or ‖x‖0 ≤ s, if at most

s entries of x are non-zero. The s-th RIP constant of a matrix A characterizes how close

A is to an isometry when restricted to the set of s-sparse vectors.

Definition 1 The s-th RIP constant δs of a matrix A is defined to be the smallest nonneg-

ative number such that for any s-sparse vector x, the following holds:

(1− δs)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δs)‖x‖2.

RIP constants of random matrices are often asymmetric in the sense that the minimal

δ satisfying (1− δ)‖x‖2 ≤ ‖Ax‖2 for all s-sparse x is essentially different from the minimal

δ satisfying ‖Ax‖2 ≤ (1 + δ)‖x‖2 for all s-sparse x. For this reason we need more intricate

notations for RIP constants. Denote by Ψs the set of non-zero unit vectors x in R
N such

that ‖x‖0 ≤ s. Define

δ+s = sup
x∈Ψs

‖Ax‖2 − 1, (1)

δ−s = 1− inf
x∈Ψs

‖Ax‖2. (2)

It is then obvious that

δs = max(δ+s , δ
−
s ). (3)

Hence it suffices to study δ+s and δ−s separately.

The first one of our main results is a lower bound for RIP constants of random matrices.

For simplicity, we only state and prove the corresponding results for Gaussian matrices.

However, Theorem 1 can be easily generalized to sub-Gaussian distributions, and Propo-

sition 2 is even more universal. Desired readers may find relevant discussions in Section

7.

Theorem 1 Let A be a Gaussian matrix in R
n×N . Then for some constant C > 0 and

with probability at least 1− Ce−nε2/C , the RIP constants of Φ = 1√
n
A satisfy

δ+s ≥
(

(1 +
√
pT )(1− δ) +

1

2
pT 2

)1/2

− 1,

δ−s ≥1−
(

1−√
pT + (1 +

√
pT )δ +

1

2
pT 2

)1/2

,
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where s/N < 1/5, p = s
n , δ = ε + (n log N

s )
−1/2, and T is defined as follows: let Y be a

χ2
1 random variable and t be the (1 − s−1

N−1)-quantile of Y (i.e. P(Y > t) = s−1
N−1), then

T =
√

E(Y
∣

∣Y > t).

The above lower bound is tight in comparison with the following upper bound:

Proposition 1 Let A be a Gaussian matrix in R
n×N . Then the RIP constants of Φ = 1√

n
A

satisfy

δs =
√
pT +

C
√

n log N
s

+
1

2n
+ ε

with probability at least 1 − 2e−nε2/2, where p = s
n < 1/5 and T is defined as follows: let

Y be a χ2
1 random variable and t be the (1 − s

N )-quantile of Y (i.e. P(Y > t) = s
N ), then

T =
√

E(Y
∣

∣Y > t).

Remark 1 The upper bound presented is in fact of the same order as the classical one, see

Theorem 2. The only improvement is a better multiplicative constant. Such improvement,

despite being minor, makes the new upper bound very close to the new lower bound given in

Theorem 1, demonstrating the tightness of the lower bound.

The proof of Theorem 1 and Proposition 1 makes crucial use of another main result

in this paper, namely the concentration of top sum of order statistics. Recall that for a

sequence of i.i.d. random variables X1, . . . ,Xn, the order statistics X(1), . . . ,X(n) are its

non-increasing rearrangement.

Proposition 2 Let Y1, . . . , Yn be a sequence of i.i.d. χ2
1 random variables, and Y(1), . . . , Y(n)

be their order statistics. Assume that k/n < 1/5. Define

Tk =

√

√

√

√

1

k

k
∑

i=1

Y(i), (4)

and

T =
√

E(Y1

∣

∣Y1 > t), (5)

where t is defined by P (Y1 > t) = k
n , then

|ETk − T | ≤ C
√

k log n
k

, (6)

where C is a positive constant, and

P

(

|Tk − T | > C
√

k log n
k

+ ε

)

≤ 2e−
kε

2

2 , ∀ε > 0. (7)
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We briefly discuss some corollaries of these results, of which the most important one is

the minimal number of measurements for successful recovery. First we need an asymptotic

estimation of t and T in Theorem 1.

Proposition 3 In the asymptotic regime N → ∞, s/N → 0, we have

t ∼ 2 log
N

s
, T ∼

√

2 log
N

s
. (8)

As a consequence, in the asymptotic regime N → ∞, s/N ≤ γ for some constant γ ∈
(0, 1/5), we have

t ≍ log
N

s
, T ≍

√

log
N

s
.

Proof See Section 10.

Corollary 1 (Minimal number of measurements) The minimal number of random Gaus-

sian measurements to enforce RIP is Ω(s log(N/s)).

Proof By Theorem 1, the RIP is enforced only if pT 2 is bounded by some constant. From

the foregoing asymptotic analysis we see that T ≍
√

log N
s . Thus n = s/p = sT 2/(pT 2) =

Ω(s log N
s ).

3 Related Works

3.1 Restricted Isometry Property

In the literature of compressed sensing, RIP is a powerful tool to prove exact and robust

recovery results for various algorithms. Here exact recovery means that the algorithm

recovers x exactly from the measurements y = Ax for all s-sparse x, and robust recovery

means that the algorithm returns from noisy measurements y = Ax+ e an estimate x̃ of x

with accuracy

‖x− x̃‖2 ≤ C1
σs(x)1√

s
+ C2τ

for all vectors x, where C1, C2 are positive constants, σs(x)p is the ℓp-compressibility of x,

defined as

σs(x)p = inf
‖z‖0≤s

‖x− z‖p,

and τ is a deterministic upper bound of the noise level satisfying τ ≥ ‖e‖2. We partly

borrow from [4] the following Table 1 on the state-of-art results of RIP requirements for
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Table 1: Requirements on RIP constants for various recovery algorithms [4].

Algorithm Requirements

ℓ1-minimization δs <
1
3 or δ2s <

4√
41

OMP δs <
1

1+
√
s
or δ13s <

1
6

CoSaMP δ4s ≤
√√

11/3−1

2

IHT, HTP δ3s <
1√
3

various algorithms to ensure successful exact and robust recovery for s-sparse vectors. All

of these results can be found, for instance, in [5] and the references therein.

Ideally, if one may effectively evaluate the RIP constants of a given matrix A, not much

is left to worry about: with the precise value of RIP constants it can be inferred from Table 1

whether we have theoretical guarantee for any of our favourite algorithms. Unfortunately,

this is impossible due to the NP-hardness of evaluating RIP constants [6]. In fact, even

qualitatively certifying RIP is NP-hard [7]. A common substitute for the precise values

of RIP in theoretical anlysis is the upper bound of RIP constants, which would suffice to

guarantee successful recovery. The RIP upper bound for sub-Gaussian matrices, stated as

below, is a landmark of such results.

Theorem 2 [8] Let A be a n×N random matrix with i.i.d. (centered) sub-Gaussian entries

of variance 1 and sub-Gaussian norm uniformly bounded by K > 0. Then the RIP constants

of Φ
△
= 1√

n
A satisfies

P(δs > δ) ≤ 2

(

N

s

)

exp(−c1δ
2n+ c2s) (9)

where c1, c2 are some positive constants that depend only on K.

Corollary 2 For measurement matrix Φ as in Theorem 2, there exists some positive con-

stant C that depends only on K, such that δs ≤ δ holds with probability at least 1 − ε

whenever

n ≥ Cδ−2(s log(eN/s) + log(2ε−1)). (10)

The above corollary indicates that when the number of measurements n & s log(eN/s),

successful recovery is guaranteed with high (in fact, 1− 2 exp(−C ′δ−2m)) probability.

7



We turn to the opposite side of the problem: what is the minimal number of mea-

surements when successful recovery is to be expected? A classical argument by estimat-

ing Gelfand width [9] solves this problem by showing that for any measurement ma-

trix A ∈ R
n×N and any recovery algorithm ∆, interpreted as a map R

n → R
N , if

‖x−∆(Ax)‖2 ≤ Cσs(x)1 holds for all x, we necessarily have

n & s log

(

eN

s

)

This, when combined with Table 1, yields the following corollary (in a stronger form).

Corollary 3 If the s-th RIP constant of A ∈ R
n×N satisfies δs <

1√
3
, then

n ≥ cs log

(

eN

s

)

(11)

for some constant c > 0 depending only on δs.

Taking ε = 1/2 in (10) and comparing (10) and (11), one readily checks that the bound in

(10) is optimal up to a multiplicative constant. These pieces when put together constitutes

an almost-conclusive answer to the problem of minimal number of measurements required

for successful recovery. However, two issues remain unsolved: i) Theorem 2 is a standard

application of random matrix theory, which is a tool intimate for compressed sensing society,

while the proof using Gelfand width is indirect and even involves analysis of ℓ1-minimization

algorithm; ii) (9) gives a probabilistic bound of RIP constants, while (11) is deterministic.

We therefore pose the following questions:

• Is there a more direct (i.e. random-matrix-theoretic) proof of (11)?

• Can we find a probabilistic lower bound of RIP constants, possibly by bounding the

probability P(δs ≤ δ) for small δ?

Theorem 1 is an affirmative answer to these questions.

3.2 Concentration of Order Statistics

Distribution of order statistics is a well-investigated topic; the well-known Rényi’s represen-

tation provides an explicit formula for their distribution function [3]. On the other hand,

concentration of order statistics is still an active field of research [2]. Many researches in

this vein were inspired by the concentration of measure phemonenon [10]. However, general

8



principles in concentration of measure theory do not supply satisfactory bounds for order

statistics. For example, it is known that V(X(⌊n/2⌋)) = O(1/n), while the powerful loga-

rithmic Sobolev inequality in concentration of measure theory implies only V(X(⌊n/2⌋)) ≤ 1.

Additional efforts are in need to establish tight bounds for concentration of order statistics.

The most notable results on concentration of order statistics are a series of inequalities

stemming from Glivenko-Cantelli theorem. We record here one of such inequalities for

reference.

Theorem 3 (Dvoretzky-Kiefer-Wolfowitz inequality1, [11]) Let X1, . . . ,Xn be i.i.d.

random variables with cumulative distribution function F (x). Denote by Fn the associated

empirical distribution function, defined by

Fn(x) =
1

n

n
∑

i=1

1{Xi≤x}.

Then for any ε > 0 the following holds:

P

(

sup
x∈R

|Fn(x)− F (x)| > ε

)

≤ 2 exp(−2nε2).

In probability theory, quantities in the form of 1{X≤x} are (heuristically) considered

to be of zero-th order, in contrast with first (second, third, . . . ) order quantities such as

X (X2, X3, . . . ). One may thus regard Theorem 3 as a zero-th order joint concentration

theorem for order statistics. Concentration theorem in higher order for any individual

of order statistics is also available in the literature, c.f. [2], but is described in a rather

complicated form which does not imply convenient tail bound. On the other hand, first

order joint concentration theorem, i.e. a tail bound on concentration of
∑k

i=1 X(i), is almost

unknown. Our result may hopefully fill this vacancy.

4 Proof of Theorem 1

For convenience we first set up some notations. Let

σs
max(A) = sup

x∈Ψs

‖Ax‖,

σs
min(A) = inf

x∈Ψs

‖Ax‖.

1 A weaker form of this theorem is well-known to statisticians as Kolmogorov-Smirnov test.
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By definition we have

δ+s (Φ) =
1√
n
σs
max(A)− 1, (12)

δ+s (Φ) = 1− 1√
n
σs
min(A). (13)

In this section we assume that A is a random matrix with i.i.d. standard Gaussian

entries. For an N -dimensional unit vector v = (v1, v2, . . . , vN ), we have

‖Av‖2 = v21‖a1‖2 + 2v1

N
∑

i=2

vi〈a1,ai〉+
N
∑

i,j=2

vivj〈ai,aj〉. (14)

Set

xi =
〈a1,ai〉
‖a1‖

,

bi = ai − xi
a1
‖a1‖

, (15)

for i = 2, . . . , N . By a well-known property of Gaussian distribution, {a1, x2, . . . , xN} are

jointly independent and are all standard Gaussian vectors/variables. Conditioning on a1,

we see that

{x2, . . . , xN ,b2, . . . ,bN}

are jointly independent, and bi’s are Gaussian vectors with covariance matrix

Σ = I− a1a
T
1

‖a1‖2
.

With (15) and the fact that 〈a1,bi〉 = 0, (14) can be expressed as

‖Av‖2 =v21‖a1‖2 + 2v1‖a1‖
N
∑

i=2

vixi +

N
∑

i,j=2

vivj(xixj + 〈bi,bj〉)

=v21‖a1‖2 + 2v1‖a1‖
N
∑

i=2

vixi +

(

N
∑

i=2

vixi

)2

+

N
∑

i,j=2

vivj〈bi,bj〉. (16)

We are interested in extremal values of ‖Av‖2 as v ranges over the set of s-sparse unit

vectors. To establish the lower bound in Theorem 1, we will designate some specific values

of v to estimate these extremal values. That is, for any specific choice of s-sparse unit

vectors v′, we have

(σs
max(A))2 ≥ ‖Av′‖2, (17)

and

(σs
min(A))2 ≤ ‖Av′‖2. (18)
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In case that ‖Av′‖2 is sufficiently close to maxv∈Ψs
‖Av‖2 (resp. minv∈Ψs

‖Av‖2) and is

easy to compute, the above method will provide a satisfactory lower bound for maxv∈Ψs
‖Av‖2

(resp. minv∈Ψs
‖Av‖2).

Next we show how to construct such v′. Take v′1 = 1/
√
2. By the proof of Cauchy-

Schwarz inequality, there exists a suitable choice of (v′2, . . . , v
′
N ) which is (s− 1)-sparse and

fulfills

N
∑

i=2

v′2i =
1

2
,

N
∑

i=2

v′ixi =

√

√

√

√

N
∑

i=2

v′2i

√

√

√

√

s−1
∑

j=1

x2(j).

Moreover, such choice makes v′ a (x2, . . . , xN )-measurable random vector. Combining

the above equations, we have

‖Av′‖2 =1

2
‖a1‖2 + ‖a1‖

√

√

√

√

s−1
∑

j=1

x2(j) +
1

2

s−1
∑

j=1

x2(j) +

N
∑

i,j=2

v′iv
′
j〈bi,bj〉. (19)

On the other hand, taking

v′′ =
[

v′1,−v′2,−v′3, . . . ,−v′N
]T

,

we have

‖Av′′‖2 =
1

2
‖a1‖2 − ‖a1‖

√

√

√

√

s−1
∑

j=1

x2(j) +
1

2

s−1
∑

j=1

x2(j) +

N
∑

i,j=2

v′iv
′
j〈bi,bj〉. (20)

A lower bound (resp. upper bound) of ‖Av′‖2 (resp. ‖Av′′‖2), hence of maxv∈Ψs
‖Av‖2

(resp. minv∈Ψs
‖Av‖2), is obtained immediately as a consequence of Proposition 2 and

standard concentration inequalities for Gaussian quadratic forms. In fact, from Bernstein

inequality we see that for some universal constant C > 0 and any ε > 0, the following holds:

P

(

1

n

∣

∣

∣
‖a1‖2 − n

∣

∣

∣
> ε

)

≤ 2 exp(−Cnmin(ε, ε2)).

Similarly, setting

Γε
△
=







1

n

∣

∣

∣

∣

∣

∣

N
∑

i,j=2

v′iv
′
j〈bi,bj〉 − (n− 1)(1 − v21)

∣

∣

∣

∣

∣

∣

> ε







,

11



and by conditional independence of v′ and bi, we have

P

(

Γε

∣

∣

∣
a, v′1, . . . , v

′
n

)

≤2 exp

[

−Cnmin

(

ε

1− v21
,

ε2

(1− v21)
2

)]

≤2 exp(−Cnmin(ε, ε2)),

which follows from Hanson-Wright inequality [12]. Thus by integrating we obtain

P(Γε) ≤ 2 exp(−Cnmin(ε, ε2)). (21)

Applying Proposition 2 to
∑s−1

j=1 x
2
(j) and taking into account the foregoing arguments,

the conclusion of Theorem 1 follows immediately.

5 Proof of Proposition 1

The proof is a slight modification of the standard one. From the definition of σs
max and

σs
min, it is readily verified that

Proposition 4 σs
max(A), σs

min(A) is 1-Lipschitz in A. In other words, for A1,A2 ∈ R
n×N ,

we have

σs
max(A1)− σs

max(A2) ≤ ‖A1 −A2‖F , (22)

σs
min(A1)− σs

min(A2) ≤ ‖A1 −A2‖F . (23)

where ‖·‖F denotes the Frobenius norm. In fact, (22) and (23) hold even if Frobenius norm

is replaced by operator norm.

By Proposition 4 and concentration of measure (Appendix 11), we have

P (σs
max(A) > Eσs

max(A) + ε) ≤ e−
ε
2

2 , (24)

P (σs
min(A) < Eσs

min(A)− ε) ≤ e−
ε
2

2 . (25)

To prove Proposition 1, it suffices to bound Eσs
max(A) and Eσs

min(A). For such purpose

we need a well-known comparison lemma for Gaussian process depicted in Appendix 11,

Lemma 3. Specifically, we shall use the following consequence of Lemma 3.

Lemma 1 Let g,h be standard Gaussian random vectors. Define two Gaussian processes

Xu,v and Yu,v on the set {u ∈ S
n−1,v ∈ Ψk} as following:

Xu,v = 〈Au,v〉 ,

Yu,v = 〈g,u〉 + 〈h,v〉 ,
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then we have

E max
v∈Ψk

max
u∈Sn−1

Xu,v ≤ Emax
v∈Ψk

max
u∈Sn−1

Yu,v,

E min
v∈Ψk

max
u∈Sn−1

Xu,v ≥ E min
v∈Ψk

max
u∈Sn−1

Yu,v.

Proof See Section 11.

5.1 Upper Bound of Eσs
max(A)

By Lemma 1, we have

Eσs
max(A) =Emax

v∈Ψs

max
u∈Sn−1

uTAv

≤E max
u∈Sn−1

〈g,u〉+ Emax
v∈Ψs

〈h,v〉

=E ‖g‖+ E

∥

∥

∥
h♯
k

∥

∥

∥
(26)

where

h♯
k = [h(1), . . . , h(k), 0, . . . , 0]

T ∈ R
N

is a k-sparse vector obtained from h by expunging all entries of h except those k entries

with largest magnitudes. Here h(i) denotes the entry in h with i-th largest magnitude. Note

that h2(i) can be viewed as the i-th order statistic of i.i.d. χ2
1 random variables h21, . . . , h

2
n.

Thus

E‖h♯
k‖ = E

√

√

√

√

k
∑

i=1

h2(i)

can be bounded with Proposition 2. We have

E

√

√

√

√

k
∑

i=1

h2(i) ≤
√
kT +

C
√

log N
k

. (27)

On the other hand, it is well-known that

E‖g‖ =

√
2Γ(n+1

2 )

Γ(n2 )
, (28)

and by Kazarinoff’s inequality for binomial coefficients [13] (or simply by Cauchy-Schwarz)

we have

E‖g‖ ≤
√
n. (29)

Thus

Eσs
max(A) ≤

√
n+

√
kT +

C
√

log N
k

. (30)

13



5.2 Lower Bound of Eσs
min(A)

Similar to (26), one may invoke Lemma 1 to obtain

Eσs
min(A) =E min

v∈Ψs

max
u∈Sn−1

uTAv

≥E max
u∈Sn−1

〈g,u〉 + E min
v∈Ψs

〈h,v〉

=E ‖g‖ − E

∥

∥

∥
h♯
k

∥

∥

∥
. (31)

Now by Kazarinoff’s inequality we have

E ‖g‖ ≥
√

n− 1

2
. (32)

Combining (27), (31), and (32), we have

Eσs
min(A) ≥

√

n− 1

2
−

√
kT − C

√

log N
k

. (33)

Note that
√

n− 1
2 ≥ √

n − 1
2
√
n
. The conclusion of Proposition 1 then follows from (12),

(13), and (24), (25), (30), (33).

6 Concentration of order statistics

In this section we will prove Proposition 2. The quantity of interest here is the sum
∑k

i=1X(i), where X(1) ≥ . . . ≥ X(n) are the order statistics of i.i.d. non-negative ran-

dom variables X1, . . . ,Xn. We begin with a concentration inequality for X(k) which can be

regarded as a local version of Theorem 3.

Lemma 2 Let X1, . . . ,Xn be a sequence of i.i.d. non-negative random variables with dis-

tribution function F , and X(1), . . . ,X(n) be theirs order statistics. Denote α = k/n < 1/2.

Assume t−, t+ are positive real numbers such that

P(X1 > t−) = α+ δ,

P(X1 > t+) = α− δ,

where δ is a small positive constant, e.g. δ ∈ (1− α,α). Then

P(X(k+1) ≤ t−) ≤ exp

(

−nδ2
(

1

α
+

1

1− α

)

log
e

2

)

, (34)

P(X(k−1) > t+) ≤ exp

(

−nδ2
(

1

α
+

1

1− α

)

log
e

2

)

. (35)

14



In particular, since X(k+1) ≤ X(k) ≤ X(k−1), we have

P(t− < X(k) ≤ t+) ≥ 1− 2 exp

(

−nδ2
(

1

α
+

1

1− α

)

log
e

2

)

.

Proof Observe that X(k+1) ≤ t− is equivalent to
∑n

i=1 1{Xi>t−} ≤ k. Since 1{Xi>t−} are

i.i.d. Bernoulli variables with

P(1{Xi>t−} = 1) = P(Xi > t−)

= α+ δ,

we see that
∑n

i=1 1{Xi>t−} follows binomial distribution B(n, α + δ). Thus one may apply

classical entropy-type tail bounds (see [14] for example) to obtain

P

(

n
∑

i=1

1{Xi>t−} ≤ k

)

≤ exp(−nD(α‖α+ δ)), (36)

where D(α‖α + δ) is the relative entropy given by

D(α‖α + δ) = α log
α

α+ δ
+ (1− α) log

1− α

1− α− δ
.

Equivalently, we have

D(α‖α + δ) = −α log

(

1 +
δ

α

)

− (1− α) log

(

1− δ

1− α

)

.

For x ∈ (−1, 1), we have the following elementary inequality:

log(1 + x) ≤ x−
(

log
e

2

)

x2,

hence

D(α‖α + δ) ≥ δ2
(

1

α
+

1

1− α

)

log
e

2
. (37)

Plugging (37) into (36) completes the proof of (34). The proof of (35) is verbatim.

Remark 2 The quantile t− and t+ in Lemma 2 does exist for any (reasonable) δ when the

distribution F is continous on [0,∞). Assume further that F is absolutely continous on

[0,∞) and f is its density, then

P(|X(k) − t| > ε) ≤ 2 exp
(

−Knδ2(α−1 + (1− α)−1)
)

, (38)

where t is such that

P(X1 > t) = 1− α,

and

K =
(

log
e

2

)

inf
|x−t|≤ε

f2(x).
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The proof proceeds as following. Note that

|Tk − T | ≤ |Tk − ETk|+
∣

∣

∣

∣

ETk −
√

ET 2
k

∣

∣

∣

∣

+

∣

∣

∣

∣

√

ET 2
k − T

∣

∣

∣

∣

.

We will analyze the three terms in the right hand side to prove the required concentration

inequality for |Tk − T |. The bound of |ETk − T | is obtained as a byproduct.

It follows from rearrangement inequality that Tk is a
√

1
k -Lipschitz function in X =

(X1, . . . ,Xn). By concentration of measure (Appendix 11), we have

P(|Tk − ETk| > ε) ≤ 2e−
kε

2

2 , ∀ε > 0. (39)

and consequently

P(|T 2
k − (ETk)

2| > t2 + 2tETk) ≤ 2e−
kt

2

2 . (40)

To bound ETk −
√

ET 2
k , we instead inspect ET 2

k − (ETk)
2. Let

f(x) =
1√
2πx

e−
x

2

and F (x) be the p.d.f. and the c.d.f. of χ2
1 distribution respectively.

Observe that

∣

∣ET 2
k − (ETk)

2
∣

∣ ≤E
∣

∣T 2
k − (ETk)

2
∣

∣

=

∫ ∞

0
P
(
∣

∣T 2
k − (ETk)

2
∣

∣ > x
)

dx

≤
∫ ∞

0
P
(
∣

∣T 2
k − (ETk)

2
∣

∣ > x
)

dx

≤
∫ ∞

0
2e−

kx
2

2 d(x2 + 2xETk)

=
4

k
+

2
√
2πETk√
k

. (41)

Next, we bound the difference between ET 2
k and T 2.

Given X2
(k+1), T 2

k can be seen as a function of k i.i.d. random variable Y1, . . . , Yk

with Yi ∼ X2
∣

∣X2 > X2
(k+1), where T 2

k = 1
k

∑k
i=1 Yk and X2 ∼ χ2

1, then the conditional

expectation of T 2
k is

E

(

T 2
k

∣

∣X2
(k+1)

)

= E
1

k

k
∑

i=1

Yi

= EY1. (42)
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We inspect the quantity E(X2|X2 > s). By straight-forward computation, we have

E
(

X2
∣

∣X2 > s
)

=

∫∞
s xf(x)dx
∫∞
s f(x)dx

=
s

E

√

s
s+Y

+ 1, (43)

where Y ∼ Exp(12 ). In fact, integrating by parts leads to
∫ ∞

s
xf(x)dx =

∫ ∞

s

√

x

2π
e−

x

2 dx

=

√

2s

π
e−

s

2 +

∫ ∞

s
f(x)dx,

while the change of variable yields
∫ ∞

s
f(x)dx =

∫ ∞

s

√

1

2πx
e−

x

2 dx

=

√

2

πs
e−

s

2

∫ ∞

0

√

s

s+ x

1

2
e−

x

2 dx.

From (43) it is obvious that

T 2 = E(X2
∣

∣X2 > t) > t (44)

and
∣

∣E
(

X2
∣

∣X2 > s1
)

− E
(

X2
∣

∣X2 > s2
)∣

∣ ≤ C|s1 − s2| (45)

for some positive constant C when s1, s2 is bounded away from zero. In particular, we have

∣

∣ET 2
k − T 2

∣

∣ =
∣

∣

∣
E

(

ET 2
k

∣

∣X2
(k+1)

)

− T 2
∣

∣

∣

=
∣

∣

∣
E

(

ET 2
k

∣

∣X2
(k+1)

)

− E

(

T 2
k

∣

∣X2
(k+1) = t

)
∣

∣

∣

≤CE|X2
(k+1) − t| (46)

≤C

√

t

k log n
k

, (47)

where the last inequality follows from [2] and Lemma 2. This proves

|ETk − T | ≤ C
√
t

T
√

k log n
k

. (48)

But (44) implies T >
√
t, thus

|ETk − T | ≤ C
√

k log n
k

. (49)

The proof is concluded by invoking (39) to obtain

P

(

|Tk − T | > C
√

k log n
k

+ ε

)

≤ 2e−
kε

2

2 . (50)
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7 Discussions

In this section we discuss the extension of Theorem 1 to sub-Gaussian matrices and that

of Proposition 2 to general distributions. Revisiting the proof of Theorem 1, one finds that

there are two places where being Gaussian is critical:

1. Applying Proposition 2.

2. Bounding
∑N

i,j=2 v
′
iv

′
j〈bi,bj〉 by independence and Hanson-Wright inequality.

To resolve these issues, we first discuss the extension of Proposition 2 to non-Gaussian

cases. It is evident that the use of concentration of measure in proving Proposition 2 is

redundant: one may instead try to bound Tk − T and ETk − T by utilizing Lemma 2 only.

The main difficulty arising in doing so is that (38) is no longer applicable and

T 2
k

∣

∣

∣
X(k+1)

(d)
=

1

k

∑

Yi

no longer holds for discontinuous distributions as in (42). However, if F is close to chi-

squared distribution, hence has small jumps, it is still possible to control the deviation

probability in (38) by δ. As for (42), we show a simple trick that reduces the situation to

continous case. Let G be the generalized inverse function of F , defined by

G(x) = inf{t : F (t) ≥ x}

and let U1, . . . , Un be i.i.d. random variables following uniform distribution on [0, 1]. Then

(

X(1), . . . ,X(n)

) (d)
=
(

G
(

U(1)

)

, . . . , G
(

U(n)

))

.

Note that G is monotonically increasing. Hence G
(

U(k+1)

)

= s is equivalent to U(k+1) ∈
[α, β] for some 0 ≤ α ≤ β ≤ 1. Thus T 2

(k)

∣

∣{X(k+1) = s} has the same distribution as
∑

G2
(

U(i)

)
∣

∣{U(k+1) ∈ [α, β]}. Since the distribution of U(i) is continuous, what we desire

follows from controlling
∑

G2
(

U(i)

) ∣

∣U(k+1) by the same argument in Proposition 2 and

integrating.

In a word, we have sketched a proof that: Proposition 2 holds with slight modification

for distributions that are sufficiently close to chi-squared. By central limit theorem, the

distribution of xi defined after (14) converges to Gaussian, and consequently the distribution

of x2i converges to χ2
1. This implies that Proposition 2 remains valid for sub-Gaussian

matrices, hence resolving the issue 1) above.
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Issue 2) is more delicate and requires some modifications in the statement of Theorem 1

to generalize to sub-Gaussian matrices. To avoid unnecessary technicalities, we will not

explicitly state these modifications here, but instead explain the main strategy for such

generalization as follows. It follows from our construction that (v′2, . . . , v
′
n) is (s−1)-sparse,

hence we have

1

n

∣

∣

∣

∣

∣

∣

(n− 1)(1 − v21)−
N
∑

i,j=2

v′iv
′
j〈bi,bj〉

∣

∣

∣

∣

∣

∣

≤
(

2δs−1(B) + δ2s−1(B)
)

(1− v21),

where

B =
1√
n
[b2, . . . ,bN ] ∈ R

n×(N−1).

Note that B is a submatrix of PA, where P is the orthogonal projection onto the or-

thogonal complement of a1. It follows from, for instance, Cauchy interlacing law that

δs−1(B) ≤ δs(A). For sub-Gaussian random matrices A, upper bounds of δs(A) are well-

known (Theorem 2). Thus the term
∑N

i,j=2 v
′
iv

′
j〈bi,bj〉 is of the same order as Tk with over-

whelming probability. To get rid of such weakness, one may take v1 to be properly close to 1,

which yields faster decay of the term (1−v21)δs−1(B) than the decay of
√

1− v21

√

∑s−1
j=1 x

2
(j),

so the error term will be eventually dominated by
√

1− v21

√

∑s−1
j=1 x

2
(j). The error term this

approach gives is actually worse than that in Theorem 1 by a constant, which should not

be a serious concern in most applications, for instance, in Corollary 1.

8 Numerical Experiments

We present some numerical calculations in this section to provide an intuition of our new

lower and upper bounds for the RIP constant described in Theorem 1 and Proposition 1.

We fix sparsity levels s/N = (0.1, 0.01, 0.001), N = 10000 and compute the 99%-confidence

intervals for different compression rates, see Figure 1. We find that when the compression

rate N/n is not too large, our new bounds are quite tight compared to previous ones.

9 Conclusion

In this paper we gave a lower bound of RIP constants for Gaussian random matrices and dis-

cussed the strategy to generalize this result to sub-Gaussian random matrices. For Gaussian

random matrices, this bound was shown to be tight by comparing with a new upper bound
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Figure 1: Plot of the lower bound and the upper bound of the RIP constant derived in this

paper comparing with previous results. The x-coordinate is compression rate. The sparsity

level s/N is taken to be 0.1, 0.01, 0.001 respectively in three figures. Parameters N are

fixed to 1000, and confidence level is 0.99. All curves are truncated above by 2 for visual

convenience.

of RIP constants which is better than previous results by a multiplicative constants in most

cases. The new lower bound of RIP constants implies the fact that the minimal number of

sub-Gaussian measurements needed to enforce the RIP of order s is Ω(s log(eN/s)), which

was proved in literature by with a much more sophisticated approach. In our proof we also

established a concentration inequality for sum of top order statistics, which we believe to

be of interest in other fields besides compressed sensing.

10 Appendix: Proof of Proposition 3

It is well-known that Gaussian tail bound is asymptotically equivalent to 2
xe

−x2/2:

P(|X| > x) ∼ 2

x
e−x2/2, (51)
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Thus
s

N
∼ P(X2 > t) ∼ 2√

t
e−t/2. (52)

Taking logarithms on both sides, we obtain

t+ log t ∼ 2 log
N

s
(53)

As s/N → ∞, t also tends to infinity, thus log t = o(t). It follows that

t ∼ 2 log
N

s
. (54)

To prove T ∼
√

2 log N
s , we will use (43). By bounded convergence theorem we see

lim
s→∞

E

√

s

s+ Y
= 1.

This combined with (43) implies

E(X2
∣

∣

∣
X2 > t) ∼ t,

hence

T =

√

E(X2
∣

∣

∣
X2 > t) ∼

√
t ∼

√

2 log
N

s
. (55)

11 Appendix: Tools from Probability Theory

In this appendix we collect some tools from probability theory that play a role (but are not

essential) in our proof.

Theorem 4 (Concentration of measure, [10]) Let X be a standard Gaussian vector

taking values in R
n and f : Rn → R a K-Lipshitz function, i.e.

|f(x)− f(y)| ≤ K‖x− y‖, for all x,y ∈ R
n.

Then we have

P(f(X)− Ef(X) > t) ≤ e−
t
2

2K2 ,

P(f(X)− Ef(X) < −t) ≤ e−
t
2

2K2 .

The next lemma is on comparison of Gaussian processes that plays an important role

in proving Proposition 1.
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Lemma 3 (Slepian-Fernique lemma, [15]) Let (Xs,t)s∈S,t∈T and (Ys,t)s∈S,t∈T be two

Gaussian processes defined on the index set S × T . Assume that for any s, s′ ∈ S, t, t′ ∈ T ,

s 6= s′ we have

E|Xs,t −Xs,t′ |2 ≤ E|Ys,t − Ys,t′ |2,

E|Xs,t −Xs′,t′ |2 ≥ E|Ys,t − Ys′,t′ |2.

Then

Emin
s∈S

max
t∈T

Xs,t ≤ Emin
s∈S

max
t∈T

Ys,t.

Corollary 4 Let (Xt)t∈T and (Yt)t∈T be two Gaussian processes defined on the index set

T . Assume that for any t, t′ ∈ T we have

E|Xt −Xt′ |2 ≤ E|Yt − Yt′ |2.

Then

Emax
t∈T

Xt ≤ Emax
t∈T

Yt.

Proof of Lemma 1 We first check that

E|Xu,v −X
u
′,v|2 = E|Yu,v − Y

u
′,v|2. (56)

In fact, the left hand side is equal to ‖u−u′‖2‖v‖2, while the right hand is equal to ‖u−u′‖2.
This implies (56) since ‖v‖ = 1 by definition of Ψk.

Next we show

E|Xu,v −Xu
′,v′ |2 ≤ E|Yu,v − Yu

′,v′ |2,

for all u,u′ ∈ S
n−1, v,v′ ∈ Ψk. A little computation shows this is equivalent to

∑

i

∑

j

|uivj − u′iv
′
j|2 ≤ ‖u− u′‖2 + ‖v − v′‖2. (57)

By expanding |uivj − u′iv
′
j |2 as

(ui − u′i)
2v2j + u′2i (vj − v′j)

2 + 2(ui − u′i)vju
′
i(vj − v′j),

equation (57) is reduced to

(1− 〈u,u′〉)(1 − 〈v,v′〉) ≥ 0,

which readily follows from Cauchy-Schwarz inequality.

The upper bound in Lemma 1 is an easy corollary of (57) and Corollary 4, while the

lower bound follows from (56), (57) and Lemma 3.
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