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Fast Convolutional Dictionary Learning off the Grid
Andrew H. Song, Student Member, IEEE, Francisco J. Flores, and Demba Ba, Member, IEEE

Abstract—Given a continuous-time signal that can be mod-
eled as the superposition of localized, time-shifted events from
multiple sources, the goal of Convolutional Dictionary Learning
(CDL) is to identify the location of the events–by Convolutional
Sparse Coding (CSC)–and learn the template for each source–by
Convolutional Dictionary Update (CDU). In practice, because we
observe samples of the continuous-time signal on a uniformly-
sampled grid in discrete time, classical CSC methods can only
produce estimates of the times when the events occur on this
grid, which degrades the performance of the CDU. We introduce
a CDL framework that significantly reduces the errors arising
from performing the estimation in discrete time. Specifically,
we construct an expanded dictionary that comprises, not only
discrete-time shifts of the templates, but also interpolated vari-
ants, obtained by bandlimited interpolation, that account for
continuous-time shifts. For CSC, we develop a novel computation-
ally efficient CSC algorithm, termed Convolutional Orthogonal
Matching Pursuit with interpolated dictionary (COMP-INTERP).
We benchmarked COMP-INTERP to Contiunuous Basis Pursuit
(CBP), the state-of-the-art CSC algorithm for estimating off-
the-grid events, and demonstrate, on simulated data, that 1)
COMP-INTERP achieves a similar level of accuracy, and 2) is
two orders of magnitude faster. For CDU, we derive a novel
procedure to update the templates given sparse codes that can
occur both on and off the discrete-time grid. We also show that 3)
dictionary update with the overcomplete dictionary yields more
accurate templates. Finally, we apply the algorithms to the spike
sorting problem on electrophysiology recording and show their
competitive performance.

Index Terms—Convolutional Dictionary Learning, Convolu-
tional Sparse Coding, Convolutional Orthogonal Matching Pur-
suit, Non-integer shift

I. INTRODUCTION

IN recent years, the problem of decomposing an observed
signal into a sparse linear combination of elements drawn

from a known dictionary, often referred to as sparse approxi-
mation [1], has been of great interest to the signal processing
community. Specifically, representing the signal as the su-
perposition of time-shifted (or shift-invariant) templates with
local support has received special attention [2]. This is due
to the observation that many examples of real-world signals
can be modeled in this manner. For instance, signals arising
from electrophysiological recordings of neural activity can be
modeled as the sum of distinct action potentials produced by
the neurons near recording electrodes [3]. In studies involving
electroencephalography (EEG) or magnetoencephalography
(MEG), there is growing evidence that the signal should be
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studied in terms of the aggregation of transient events with
specific templates [4].

A generative model for these signals is the convolution in
continuous time between templates, a collection of which is
referred to as dictionary, and a set of scaled and time-shifted
delta functions, referred to as codes. The amplitude and the
location of each code correspond to the magnitude and the
time when an event occurs, respectively. Given an observed
signal, the goal of Convolutional Dictionary Learning (CDL)
frameworks is to estimate the templates and the codes under
the generative model, and with sparsity constraints on the
codes. These frameworks typically alternate between two
steps, a Convolutional Sparse Coding (CSC) step to estimate
the codes, and a Convolutional Dictionary Update (CDU) step
to estimate the dictionary.

One of the drawbacks of existing CDL frameworks is
the assumption that the signal of interest occurs in discrete
time, when in fact the underlying signal occurs in continu-
ous time. The discrete-time approximation of the generative
model introduces errors known as time-quantization errors [5].
Specifically, if an event in the continuous-time model were to
occur at a time that does not coincide with any point on the
discrete-time sampling grid, the CSC step would inaccurately
identify the event as occurring at a time on the grid. Increasing
the sampling rate to obtain a finer grid is a viable solution, but
is not always possible for two reasons. First, practically, the
sampling rate is limited by hardware specifications and the
amount of memory available for storage. Second, the large
number of samples will increase the computation time of the
CSC and CDU steps.

Continuous Basis Pursuit (CBP) [6], a convex sparse re-
gression framework, was introduced to address such limi-
tations of the conventional approaches for CSC. The CSC
step of CBP begins with the derivation, from the original
dictionary, of an alternate dictionary that approximates the
subspace of continuous-time-shifted copies of the templates
(the continuous-time shifts are not necessarily multiples of the
sampling interval). Then, using the new dictionary, it solves a
`1-regularized convex regression problem. Despite the method
being more accurate, compared to discrete-time approaches,
in estimating the times when events occur, it does not scale
well with the size of modern datasets. Moreover, because CBP
does not include a CDU step, it is not a CDL framework.

With the increasing ability to record larger datasets, there
is a need for an efficient CDL framework that addresses
the time-quantization issue. As our primary motivation is
efficiency, we focus on extending CDL frameworks based on
greedy methods, which are known to be less computationally
demanding than basis pursuit and `1-regularized methods [7],
[8], [9]. To address the time-quantization issue, we build an
overcomplete and interpolated dictionary that accounts for
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events that occur off the discrete-time sampling grid. Unlike
in CBP, this approach also allows us to learn the templates
while incorporating the amplitudes and the times of events
that occur off the grid.

Our contributions are the following:
• A fast convolutional greedy pursuit algorithm We

introduce an efficient algorithm for convolutional greedy
pursuit under a discrete-time generative model. When
the events from the continuous-time model occur on
the sampling grid, we term this algorithm Convolutional
Orthogonal Matching Pursuit (COMP). COMP is much
faster than the alternative based on the basis-pursuit
algorithm. Compared to Convolutional Matching Pursuit
(CMP), the computational overhead from COMP is neg-
ligible (Table III, IV).

• A CSC framework that handles non-integer delays We
introduce a discrete-time generative model that accounts
for events from the continuous-time model that do not
occur on the discrete-time sampling grid. This model is
inspired by the concept of bandlimited interpolation in
digital signal processing. To perform the CSC, we extend
COMP and call the resulting algorithm COMP-INTERP.
Compared to conventional CSC frameworks, COMP-
INTERP is more accurate in identifying the times when of
off-the-grid events occur and achieves an accuracy similar
to CBP (Figure 5). Moreover, COMP-INTERP is much
faster than CBP (Table III, IV).

• A dictionary update framework that handles non-
integer delays For the first time, we introduce a CDU
algorithm that accounts for estimates of the sparse codes
from the CSC step that correspond to events off the
grid. When compared to conventional dictionary update
algorithms, the templates learned from our approach are
more accurate (Figure 6). In addition, our algorithm is
more robust to varying noise levels (Figure 7).

The rest of our treatment begins in Section II, where we
introduce the generative model of interest and formulate the
CDL objective functions. In Section III, we review existing
work relevant to our CDL framework. In Section IV, we
introduce an efficient framework, termed COMP-INTERP, for
performing CSC while accounting for events that occur off the
grid. In Section V, we introduce a CDU step that can handle
events off the grid. We used simulated and real datasets to
demonstrate the performance of our algorithms in Section VI.
We conclude in Section VII.

II. GENERATIVE MODEL AND PROBLEM SETUP

A. Notations

Table I summarizes our notational conventions. We intro-
duce additional notation as necessary, at the beginning of the
section that uses it first. We use the expressions event off the
grid and event with a non-integer delay interchangeably.

B. Continuous and discrete-time generative models

Let y(t) be an observed continuous signal in interval (0, T ]
and {hc(t)}Cc=1 be templates (filters) from C sources. We

TABLE I: Notations

Symbol Description

H Matrix
h Vector
S Set
Hi ith column from H
Hc cth block column from H
h[j] jth entry from h
Si ith element from set S
Sj jth set

IL×L Identity matrix of size L× L

r(t) r at tth iteration
0L a length-L vector with all entries equal to 0
nc
j,i ith event from source c in jth window
∗ , ? convolution / cross-correlation
‖·‖p `p norm

assume that the templates each have the same length and
are localized in time. The shift-invariant continuous generative
model expresses y(t) as follows

y(t) =

C∑
c=1

Nc∑
i=1

xcihc(t− τ ci ) + ε(t), (1)

where Nc denotes the number of events from source c, τ ci and
xci denote the position and the amplitude of the ith event from
source c, respectively. The variable ε(t) denotes i.i.d. white
noise.

To formulate a discrete-time analogue of Eq. 1, let ∆
denote the length of a sampling interval and fs = 1

∆ the
associated sampling frequency. The number of intervals of size
∆ in (0, T ] is N = b T∆c. Further let n = 1, · · · , N ∈ N+

be the discrete-time index, and nci denote the discrete-time
approximation of τ ci , which is such that nci∆ ≤ τ ci <
(nci + 1)∆. Finally, we denote by hc ∈ RL the discrete time
analogue of hc(t), which we assume is normalized such that
‖hc‖2 = 1,∀c. Using this notation, we can obtain discrete-
time samples y[n] = y(n∆) of y(t) that satisfy

y[n] =

C∑
c=1

(
xci ∗ hc

)
[n] + εεε[n], (2)

where we refer to xc[n] =
∑Nc

i=1 x
c
iδ[n − nci ], for n =

1, · · · , N −L+ 1, as the code, and xc =
[
xc[1], · · · ,xc[N −

L+ 1]
]T

as the code vector.
We can express Eq. 2 in linear-algebraic form as follows

y = Hx + εεε, (3)

where H =
[
H1
∣∣∣ · · · ∣∣∣HC

]
∈ RN×C(N−L+1) is a block-

Toeplitz matrix with cth block Hc ∈ RN×(N−L+1) for
c = 1, · · · , C and x = [(x1)T, · · · , (xC)T]T ∈ RC(N−L+1).
The columns of the Toeplitz matrix Hc represent delayed
versions (time-shifts) of hc, with integer delay between 0 and
N − L, that have been zero-padded to have length N . For
each c, the non-zero entries of xc represent the discrete-time
indices {nci}Nc

i=1 when source c appears in the signal y[n].
Fig. 1 illustrates Eq. 3.

In practice, we divide the signal y into J non-overlapping
windows, each of length W and such that N = WJ . We
assume that L << W << N , so that the filters from
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Fig. 1: A schematic of Eq. 2. The Toeplitz matrix Hc rep-
resents all possible time-shifts of hc with integer delay. The
non-zero elements of each block xc from x are the times when
source c appears in the signal y, c = 1, · · · , C.

each source are localized within the signal y[n] and within
a window. We denote by Y ∈ RW×J the matrix whose jth

column is Yj =
[
y[(j − 1)W + 1], · · · ,y[jW ]

]T ∈ RW ,
namely the jth window from y[n]. Similarly, we denote by
X ∈ RC(W−L+1)×J the coefficient matrix whose jth column
Xj = [(x1

j )
T , · · · , (xCj )T]T ∈ RC(W−L+1) is the code vector

associated with window j.

C. Optimization objective

The goal of Convolutional Dictionary Learning (CDL) is
to estimate {hc}Cc=1 and {Xj}Jj=1 that minimize the error
of reconstructing the Yj in each window using its linear
approximation HXj . We impose a sparsity constraint on the
total number of nonzero elements of {Xj}Jj=1 for two reasons.
First, without additional constraints, the problem as posed
leads to an under-determined system of equations that does
not have a unique solution. Second, in many applications, the
rate of occurrence of events from the the sources of interest
is small compared to T , implying that each block xcj of
the vector Xj is sparse. For example, in electrophysiological
recordings of neural activity, we expect a sparse number
the action potentials from neurons due to their biophysical
properties [10]. Following [11], we use the `0 quasi-norm
‖Xj‖0, which counts the number of non-zero elements of a
vector, to express the sparsity constraint. This lets us express
the problem mathematically as follows

min
{hc}Cc=1,{Xj}Jj=1

J∑
j=1

∥∥∥Yj −HXj

∥∥∥2

2
s.t. ‖Xj‖0 ≤ β1, (4)

where β1 is a pre-defined sparsity threshold. We refer to
this optimization as the CDL problem. One limitation of this
approach comes from approximating the continuous-domain
generative model (Eq. 1) with the discrete-domain generative
model (Eq. 2). This approximation results in time-quantization
errors, which manifest themselves in two ways: 1) a mismatch
between the time when the event occurs in continuous time
and its approximation in discrete time, τ cj,i 6= ncj,i∆ and

2) template mismatch, hc[m − ncj,i] = hc(m∆ − ncj,i∆) 6=
hc(m∆ − τ cj,i). One of our contributions is to introduce, in
Section IV, a discrete-time generative model that mitigates
the effects of time-quantization errors.

CDL is a nonconvex optimization problem, due to the
simultaneous optimization over {hc}Cc=1 and {Xj}Jj=1, as
well as the `0 penalty. A popular approach is to alternatively
minimize the objective over one set of variables while the
other is fixed, until convergence. At iteration t + 1, X(t+1)

is computed based on H(t) through a sparse coding step,
after which H(t+1) is computed using X(t+1) through a
dictionary update step. If H is a convolutional matrix, we
refer to these steps as Convolutional Sparse Coding (CSC)
and Convolutional Dictionary Update (CDU), respectively.
Existing CSC approaches fall into two categories, which differ
with respect to how they enforce the sparsity constraint. One
class of approaches, which is the one we follow in this
work, uses greedy methods to solve the original problem
with the `0 quasi-norm. Another class of approaches relaxes
the `0 quasi-norm to the `1 norm, which converts the CSC
objective into a convex optimization problem [12], [13], [14].
The advantage of greedy approaches is that they are more
efficient computationally [7]. Existing CSC frameworks that
address time-quantization errors use the `1 norm to enforce
sparsity [6]. In the next section, we review both classes of
CSC approaches, as well as approaches to solve the CDU
step.

III. BACKGROUND FOR CDL

For notational simplicity, we use x instead of Xj and y
instead of Yj .

A. Convolutional Greedy Pursuit

Matching Pursuit (MP) [15] and Orthogonal Matching Pur-
suit (OMP) [16] are greedy methods to solve the CSC step.
We introduce the methods first when H is an arbitrary matrix,
and then discuss the convolutional case.

1) Classical greedy pursuit - MP and OMP: Both MP
and OMP iteratively select columns from H to produce an
approximation Hx of y. At iteration step t′ + 1, the column
of H with the maximal absolute inner product with the residual
r(t′) is selected and added to the active filter index set S(t′).
The initial conditions are r(0) = y and S(0) = {∅}. The two
methods differ in how the coefficients of the chosen columns
and the residuals are computed. Let h(t′) denote the template
chosen at iteration t′.
• MP The coefficient associated with h(t′) and the residual

are given, respectively, by 〈h(t′), r(t′)〉 and r(t′+1) =
r(t′) − 〈h(t′), r(t′)〉h(t′).

• OMP The coefficients associated with h(1), · · ·h(t′) are
those that minimize the squared error between y and its
linear reconstruction using the columns, i.e. those ob-
tained by least-squares. This is equivalent to projecting y
onto the span of h(1), · · · ,h(t′), and is called a projection
step.

The projection step implies two key differences between MP
and OMP. First, OMP is slower than MP, due to the matrix
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inversion and multiplication required in the former. Second,
as the residual r(t′) in OMP is orthogonal to the span of
previously selected columns, a different column of H is
selected at every iteration. This is not the case for MP, which
means that the same column can be selected multiple times.

2) Convolutional extensions: CMP has enjoyed popularity
in biomedical applications [17], [18] and image recognition
[19]. Convolutional OMP, however, has been less popular,
primarily because the projection step with a convolutional
matrix is computationally expensive. A previous work [20]
suggests a way to improve efficiency, at the expense of
accuracy, by projecting the residual onto a subset of the active
columns rather than all of them.

B. CSC for estimating continuous time-shifts

Continuous Basis Pursuit (CBP) CBP is a CSC framework
that uses the `1 norm to enforce sparsity, and addresses time-
quantization errors [6]. Let τ ci ∈ [(m− 1

2 )∆, (m+ 1
2 )∆) with

m ∈ N, and hc
(
t − τ ci

)
be a continuous-time shift of hc(t).

CBP first uses a local basis, in combination with integer shifts
{hc(t−m′∆)}m′ of hc(t) around τ ci , to define a new set of
functions {φφφcp}Pp=1 ∈ RL whose linear combination approxi-
mates the continuous-time shift. Both P and the number of
integer shifts m′ depend on the choice of basis. A popular
option is the Polar basis, where the set of approximating
functions are derived from trigonometric splines, with P = 3
and m′ ∈ [m,m ± 1]. Let {Φc,p}Pp=1 ∈ RN×(N−L+1) be
the convolutional dictionary constructed from the basis and
xcp ∈ RN−L+1 a sparse code vector associated with Φc,p.
Then, it solves the convex `1-regularized optimization problem

min
{~xc

i}

∥∥∥y − C∑
c=1

P∑
p=1

Φc,pxcp

∥∥∥2

2
+ λ

C∑
c=1

‖xc1‖1

s.t.
[
xc1[i], · · · ,xcP [i]

]
∈ H for i = 1, · · · , N − L+ 1,

(5)

where ‖xc1‖1 is the `1 norm of the amplitude of the first
basis element and H is convex constraint set that depends
on {φφφcp}C,Pc,p=1. Lastly, the code {xcp}C,Pc,p=1 is converted to
coefficients for the original basis {hc}Cc=1 through an inverse
mapping, which yield the times when the events occur and
their amplitudes. Fig. 2 shows an application of CBP, BP,
COMP and COMP-INTERP (COMP with interpolated dic-
tionary) to the estimation of the continuous-time shift and
amplitude of a single event from one filter (C = 1). CBP
and COMP-INTERP, the approach we propose in Section IV,
are able to estimate the continuous-time shift accurately. As
we demonstrate in Section VI, COMP-INTERP is orders of
magnitude faster than CBP. BP and COMP cannot capture the
continuous-time shift.
Continuous OMP In contrast with CBP that uses the `1 norm,
Continuous OMP [21] is a greedy method to solve Eq. 5. It
uses an extension of OMP to deal with the `0 norm. Being
greedy, continuous OMP is faster than CBP. Its downside is
that it requires the solution to a large number of optimization
problems both in the selection and the projection step.

COMP

COMP-INTERP

BP

CBP

Fig. 2: An application of several CSC methods, where an
event (black, flipped for clarity) occurs off the discrete-time
sampling grid. COMP and BP can only approximate the time
of occurrence of the event on the grid. Both CBP and COMP-
INTERP (COMP with interpolated dictionary) recover the time
of occurrence of the event accurately. COMP-INTERP is much
faster than CBP.

C. CDU frameworks

The majority of existing CDU frameworks estimate the
templates {hc}Cc=1 by minimizing the error of reconstructing
y using its linear approximation Hx. The key differences
between existing approaches are the constraints imposed on
the templates and the optimization methods used, as detailed
in a recent survey [12]. To the best of our knowledge, existing
CDU approaches do not address the problem of learning the
templates in the presence of time-quantization errors.

IV. CONVOLUTIONAL ORTHOGONAL MATCHING PURSUIT
WITH INTERPOLATED DICTIONARY

For the CSC step in the alternating-minimization approach
to CDL, we introduce an algorithm for off-the-grid sparse
coding called Convolutional OMP (COMP) with interpolated
dictionary (COMP-INTERP). This is a convolutional greedy
pursuit method that minimizes time-quantization errors. From
a computational perspective, COMP-INTERP is an efficient
alternative to the `1-based CSC frameworks, such as CBP.

We use x and y, instead of Xj and Yj , for notational
simplicity. We use t and t′ to denote alternating-minimization
iteration and COMP inner iteration, respectively. Since the dis-
cussion in this section involves a single iteration of alternating-
minimization procedure, we drop t.

A. Non-integer delay through smooth interpolation

The discrete-time model from Eq. 2 is restrictive because
events from the continuous-time generative model of Eq. 1 do
not necessarily occur at multiples of the sampling interval ∆.
We address this limitation by partitioning ∆ into finer intervals
of length ∆K := 1

K∆, and modifying H and x accordingly.
The resulting CSC framework, with finer resolution ∆K , can
approximate the time of occurrence of the event τ ci with m∆+
k∆K , where m ∈ N and k = 0, · · · ,K − 1, rather than with
m∆, which leads to reduction of time quantization error. That
is, |τ ci − m∆| ≥ |τ ci − (m∆ + k∆K)|. By definition, each
template hc corresponds to discrete-time samples of hc(t) with
resolution ∆. Our challenge is to modify H to account for
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Fig. 3: Illustration of the process for obtaining hck (red) from hc (blue). The two discrete-time templates in the rightmost
panel highlight the difference between hck and hc. The Interpolation and Resampling steps correspond, respectively, to D/C
(Discrete-to-Continuous conversion and C/D (Continuous-to-Discrete) conversion in digital signal processing theory.

versions of hc(t) delayed by a non-integer amount k∆K , that
is not an integer multiple of ∆, and sampled at resolution ∆.
Let hck ∈ RL denote hc(t) delayed by a non-integer amount
k∆K and sampled at resolution ∆. This definition motivates
us to reformulate Eq. 2 to account for non-integer shifts of the
templates at a finer scale ∆K

y[n] =

C∑
c=1

K−1∑
k=0

(
xck ∗ hck

)
[n] + εεε[n], (6)

where xc
k

denotes the code vector corresponding to hck . For
notational simplicity, we let hc0 = hc. Note that hc 6= hck
for k 6= 0, as illustrated in Fig. 3. The systematic method of
obtaining hck from hc will be discussed in the next section.
We use {hck}C,Kc,k=1 to construct the interpolated convolutional
dictionary H̃ ∈ RW×CK(W−L+1)

H̃ =
[
H̃10

∣∣∣ · · · ∣∣∣H̃1K−1
∣∣∣ · · · ∣∣∣H̃C0

∣∣∣ · · · ∣∣∣H̃CK−1
]
, (7)

where H̃ck is the Toeplitz matrix whose columns consists
of all integer shifts of hck . Note that when K = 1, we
get the original convolutional dictionary, i.e. H̃ = H. In
linear-algebraic form, we can write the generative model as
Y = H̃X + εεε, where X ∈ RCK(W−L+1)×J .

B. Smooth interpolation of hc

We use the concept of continuous-time operations on
discrete-time signals from digital signal processing theory [22]
to obtain hck from hc. The process consists of three steps:
interpolation, shifting by a non-integer amount, and resam-
pling. These steps, illustrated in Fig. 3, perform the following
operations

1) Interpolation Interpolate hc with a smooth interpolator
to obtain h̃c(t).

2) Non-integer shift Shift h̃c(t) to obtain h̃c(t− k∆K).
3) Resampling Resample h̃c(t− k∆K) with resolution ∆

to obtain hck .
The interpolated template h̃c(t) depends on the choice

of interpolator and does not necessarily coincide with the

continuous-time template hc(t). In the next section, we show
that a sinc interpolator yields h̃c(t) = hc(t).

C. Bandlimited interpolation of hc

Suppose hc(t) is bandlimited and that the sampling fre-
quency fs is above its Nyquist rate. The sinc interpolator then
guarantees that h̃c(t) = hc(t), namely that we can recover the
continuous-time filter from its discrete-time samples. Approx-
imating a continuous-time signal with discrete-time samples
in this manner is commonly referred to as bandlimited inter-
polation [22]. The intuition behind bandlimited interpolation
is two-fold: 1) convolving a signal with a sinc interpolator
is equivalent to multiplying the signal with an ideal low-
pass filter with unit gain in the frequency domain, and thus
the signal is not distorted upon interpolation, and 2) when
bandlimited hc(t) is sampled at fs, there is no aliasing of high
frequency content into low frequency bands. The bandlimited
assumption translates to the smoothness on hc(t), which
requires that the template does not change abruptly between
consecutive samples on the sampling grid. Interpolating hc
with a sinc interpolator sinc(t) = sinπt

πt yields

h̃c(t) = hc ∗
( sinπt

πt

)
=

m=∞∑
m=−∞

hc[m]
sinπ(t−m∆)

π(t−m∆)
.

(8)

To obtain hck , we shift h̃c(t) = hc(t) by k∆K and resample
with resolution ∆, where fk is defined as the discrete sinc
interpolator shifted by k∆K ,

hck [n] = hc(t− k∆K)
∣∣∣
t=n∆

=

m=∞∑
m=−∞

hc[m]
sinπ((n−m)∆− k∆K)

π((n−m)∆− k∆K)

= hc ∗
(

sinπ(n∆− k∆K)

π(n∆− k∆K)

)
︸ ︷︷ ︸

fk

.

(9)
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The three-step procedure described previously, and illus-
trated in Fig. 3, is equivalent to convolving hc with fk. In
practice, since the sinc interpolator has infinite support, we
use a truncated sinc interpolator to ensure that hck is of finite
length. The truncation provides a good approximation to the
infinite discrete sinc interpolator [22]. Let fk ∈ RL be the sinc
interpolator restricted to the support

[
− L−1

2 , L−1
2

]
. We obtain

the truncated hck by expressing the convolution as a matrix
multiplication: hck = Fkhc, where Fk ∈ RL×L is defined as

Fk =



fk[0] fk[−1] · · · fk[−L−1
2 ] 0T(

L−1
2

)
fk[1] fk[0] · · · fk[−L−1

2 ] 0T(
L−3

2

)
...

fk[L−1
2 ] · · · fk[−L−1

2 ]
...

0T(
L−1

2

) fk[L−1
2 ] · · · fk[0]


.

(10)
The matrix Fk is the Toeplitz (convolutional) matrix associated
with fk, truncated so that it is of L×L. The truncation ensures
that the resulting hck is of the same length as hc.

D. Efficient algorithm for COMP and COMP-INTERP

Matrix operations involving convolutional dictionaries H or
H̃ are expensive both in terms of computations and storage
requirements. This is because typical recordings can last on
the order of minutes, if not hours, and sampling rates can be on
the order of ∼ 104(Hz) for electrophysiology and 103(Hz)
for EEG, to name a few examples. Existing greedy algorithms
for CSC can handle high-dimensional data in the selection
step because it involves cross-correlation operations for which
efficient and scalable implementations exist. They fall short,
however, of addressing the inefficiency of the projection step
in high-dimensional settings. This has led to the wide adoption
of CMP and not COMP.

We explore efficient implementations of the selection
and the projection step for a convolutional matrix H (or
H̃), which lead to efficient implementations of COMP and
COMP-INTERP. An efficient implementation of the selection
step, which we restate for completeness, was proposed
in [20]. For notational simplicity, we focus on H, noting that
the same argument holds for H̃.

Selection step The selection step requires the inner product
between time-shifted hc and r(t′), expressed as HTr(t′). For
large H, explicit computation of the inner product is expen-
sive. However, the convolutional structure of H lets compute
C cross-correlations instead [23]

HTr(t′) =
[
(h1 ? r(t′))[1], · · · , (h1 ? r(t′))[N − L+ 1], · · · ,

(hC ? r(t′))[1], · · · , (hC ? r(t′))[N − L+ 1]
]T
,
(11)

where the cross-correlation index i indicates the time offset of
hc[1] relative to the r(t′)[1]. This formulation has two benefits:

1) We do not need to construct the convolutional matrix
H explicitly. We only require O(N) memory to store

{hc}Cc=1 and r(t′), as opposed to O(CN2) memory to
store the matrix.

2) We can compute the C cross-correlation operations
using the FFT, which is much more efficient than
computing them by multiplication of HT and r(t′).

Projection step In this step, we project the residual onto
the span of H

∣∣
t′

, which requires the inversion of H
∣∣T
t′
H
∣∣
t′

.
The matrix H

∣∣
t′
∈ RN×t′ refers to a convolutional dictionary

restricted to columns that have been selected by COMP up to
t′th iteration. Consequently, the code x|t′ ∈ Rt′ refers to the
nonzero coefficients from x ∈ RN−L+1 corresponding to the
columns H

∣∣
t′

. To avoid the computational cost of inversion
in the projection step, [24] suggested an efficient method
for computing the Cholesky factor L(t′), which is a lower
triangular matrix such that L(t′)

(
L(t′)

)T
= H

∣∣T
t′
H
∣∣
t′
∈ Rt′×t′ .

The key idea is that for OMP, H
∣∣
t′−1

and H
∣∣
t′

differ only by
one column, which is the column selected by OMP at step t′,
and therefore L(t′) can be easily computed from L(t′−1) as

L(t′) =

(
L(t′−1) 0

wT
√

1− ‖w‖22

)
where L(t′−1)w = H

∣∣T
t′−1

h(t′),

(12)

where h(t′) ∈ RN denotes the column of H selected at
iteration t′ of COMP. The code x

∣∣
t′

is obtained as the solution
to L(t′)

(
L(t′)

)T
x|t′ = H

∣∣T
t′
y, which can be solved more

efficiently than the linear system H
∣∣T
t′
H
∣∣
t′
x|t′ = H

∣∣T
t′
y.

We extend this idea to the convolutional case, noting that
Eq. 12 still requires us to construct H

∣∣
t′

and to perform
multiplications that are expensive in terms of memory
and computation. We replace the multiplication operation
involving H

∣∣T
t′

with a cross-correlation operation, as outlined
in Algorithm 1. To keep track of the selected filters, we
utilize two sets: 1) The set S of active template indices
chosen by COMP and defined in Section III, and 2) the set
I of times when events associated with each of the templates
from S occur. At COMP iteration t′, hS(t′)

i

refers to the

template selected at ith iteration, where i ≤ t, and I(t′)
i refers

to the time of occurrence of the corresponding template.
With S and I, neither the convolutional matrix H

∣∣
t′

, nor the
zero-padded filters are required, which makes COMP very
efficient. We emphasize that the efficiency gain from the
modified projection step outweighs that of the selection step,
as we demonstrate in Section VI. Specifically, the efficient
projection step essentially removes the huge performance gap
between the CMP and the COMP.

Algorithm We summarize the implementation of the ef-
ficient COMP-INTERP in Algorithm 2. When K = 1,
COMP-INTERP is equivalent to COMP with the original,
non-interpolated, dictionary. The INTERPOLATE function
refers to the process of obtaining interpolated templates. The
CHOLESKY function refers to the efficient projection step.
The superscript (∗) denotes the quantities at convergence. As
in OMP, the convergence criterion can either be when the
residual falls below a certain threshold or when a certain
sparsity level is reached.
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Algorithm 1: Cholesky factorization for CSC at t′

Input: L(t′−1), S(t′), I(t′), {hc}Cc=1, y
Output: L(t′), x|t′

1 Initialization: v ∈ Rt′−1, ααα ∈ RN
2 for i← 1 to t′ − 1 do
3 if

∣∣∣I(t′)
i − I(t′)

t′

∣∣∣ > L then
4 v[i] = 0
5 else
6 v[i] =

(
hS(t′)

i

? hS(t′)
t′

)[
I(t′)
i − I(t′)

t′

]
7 solve for w: L(t′−1)w = v

8 L(t′) ←
(

L(t′−1) 0

wT
√

1− ‖w‖22

)
9 for i← 1 to t′ do

10 ααα[i] = (hS(t′)
i

? y)
[
I(t′)
i

]
11 Solve for L(t′)

(
L(t′)

)T
x|t′ = ααα

Algorithm 2: COMP-INTERP

Input: y, {hc}Cc=1, ∆
K

Output: x(∗),S(∗), I(∗)

1 Initialization: r(0) = y, L(0) = 1, S(0), I(0) = {∅}
2 {hck}C,Kc,k=1 ←Interpolate({hc}Cc=1, ∆

K)
3 while t′ = 0 to convergence do
4 (Selection step)
5 (ck)∗, i∗ ← arg maxc,k,i{hck ? r(t′)[i]}C,K,N−L+1

c,k,i=1

6 S(t′+1) = S(t′) ∪ {(ck)∗}, I(t′+1) = I(t′) ∪ {i∗}
7 (Projection step)
8 L(t′+1),x|t′+1 ←CHOLESKY(θCHOL), where
9 θCHOL =

{
L(t′),S(t′+1), I(t′+1), {hck}C,Kc,k=1,y

}
10 r(t′+1) ← y
11 for i← 1 to t′ + 1 do
12 Subtract hS(t′+1)

i

x|t′+1 from the segment of

r(t′+1) that starts at I(t′+1)
i

E. Comparison with the continuous basis approach

The continuous-basis approximation methods, CBP and
continuous OMP, and COMP-INTERP all minimize the effect
of time quantization errors due to events off the grid. All
three methods assume that the continuous-time templates are
smooth. In the continuous-basis approximation approach, the
derivation of the mapping that relates the local basis and the
templates relies on the smoothness assumption. In COMP-
INTERP, the bandlimited assumption implies the smoothness
of the templates.

The two approaches differ in how the templates are used, as
illustrated in Fig. 4. As detailed in Section III, the continuous-
basis approach approximates continuous-time shifts of the
templates by using the linear combination of a set of functions
indexed by points on the discrete-time sampling grid. COMP-
INTERP takes an approach that is simpler and more direct:
it uses bandlimited interpolation to approximate continuous-

Fig. 4: Illustration of how CBP (polar basis) and COMP-
INTERP approximate ĥτ ' h(t−τ). (a) CBP constructs a cir-
cular arc to locally approximate the subspace of continuously-
translated h(t), and chooses the mostly likely point on the arc.
(b) COMP-INTERP directly places the original template h(t)
at the finer resolution ∆K .

time shifts of the templates by multiples of a arbitrarily
fine interval ∆K . This leads to an overcomplete, interpolated
dictionary, comprising the original templates and their interpo-
lated variants. In fact, the dictionary H̃, can be thought of as
a discrete approximation to the infinite-dimensional dictionary
that encodes all possible continuous-time shifts [25].

The advantages of our approach are its simplicity and
its speed. It is simpler as it requires neither a local basis
nor a mapping between said basis and the templates. It is
faster due to its greedy nature, and because of the efficient
implementations of operations that involve the convolutional
dictionary.

V. CONVOLUTIONAL DICTIONARY UPDATE WITH
INTERPOLATED DICTIONARY

COMP-INTERP is an algorithm to solve the CSC step of
CDL using a interpolated dictionary that can approximate
continuous-time shifts. In this section, we develop an algo-
rithm to solve the CDU step using the interpolated dictionary.

The CDU step involves an optimization problem with re-
spect to {hc}Cc=1. To simplify it, we first re-write HXj as

HXj =

C∑
c=1

Nc∑
i=1

xcj,iS
c
j,ihc, (13)

where we introduce the matrix representation Scj,i ∈ RW×L
of the linear operator that shifts hc by ncj,i samples. Scj,i is a
zero-padded identity matrix defined as follows

Scj,i =

 0nc
j,i×L

IL×L
0(W−L−nc

j,i)×L

 . (14)

Eq. 13 is a result of the commutativity of convolution opera-
tion. It allows us to re-write the optimization problem in Eq. 4,
with respect to {hc}Cc=1, as follows

min
{hc}Cc=1

J∑
j=1

∥∥∥Yj −
C∑
c=1

Nc∑
i=1

xcj,iS
c
j,ihc

∥∥∥2

2
. (15)

Compared to Eq. 4, Eq. 15 is simpler because hc appears
as a vector, as opposed to a matrix. Using the interpolated
dictionary H̃ to account for non-integer delays, we can write
the objective similarly
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min
{hc}Cc=1

J∑
j=1

∥∥∥Yj −
C∑
c=1

K∑
k=1

N
ck∑

i=1

xc
k

j,iS
ck

j,ihck
∥∥∥2

2

s.t. hck = Fkhc, ∀k, c,
(16)

where Fk is the sinc interpolator matrix defined previously.
The constraint enforces the fact we obtain hck from hc by
interpolation, as discussed in Section IV. As is customary in
the CDL literature, we assume the templates have unit norm,
a constraint that we enforce by normalizing the solutions of
Eq. 15 or Eq. 16.

A. CDU with basic dictionary

To solve Eq. 15, we can use any least-squares based
algorithm for dictionary. We focus on KSVD [11], specifically
shift-invariant KSVD [26]. Two key ideas from KSVD are
worth emphasizing: 1) the templates {hc}Cc=1 are updated
sequentially, i.e. one at a time, and 2) when updating a given
template, only windows of the data where the template occurs
need to be considered.

Suppose we want to update template hc. Let Ωc ⊂
{1, · · · , J} denote the set of indices of windows from which
COMP selects at least one occurrence of hc. For each window
j ∈ Ωc, we split the sum from Eq. 15 into two parts, namely
one that involves hc and another that involves the remaining
templates. The new estimate of hc, denoted by ĥc is given by

ĥc = arg min
hc

∑
j∈Ωc

∥∥∥∥∥Ej −
Nc∑
i=1

xcj,iS
c
j,ihc

∥∥∥∥∥
2

2

,

where Ej = Yj −
C∑
c6=c

Nc∑
i=1

xcj,iS
c
j,ihc,

(17)

is the residual from approximating Yj with templates other
than hc. Eq. 17 is a least-squares problem whose solution ĥc
is given by

ĥc =

( ∑
j∈Ωc

Nc∑
i=1

Nc∑
m=1

xcj,i

(
Scj,i

)T
Scj,mx

c
j,m

)−1

×
( ∑
j∈Ωc

Nc∑
i=1

xcj,i

(
Scj,i

)T
Ej

)
.

(18)

We can interpret Eq. 18 as the weighted average of segments
Ej , or

(
Scj,i
)T

Ej ∈ RL in which template hc occurs. The
average is normalized by a factor that accounts for occurrences
of hc that overlap: the term

(
Scj,i
)T

Scj,m ∈ RL×L is a matrix
that is non-zero only if the offset |ncj,i − ncj,m| between
occurrences of hc is less than the template length L.

B. CDU with interpolated dictionary (CDU-INTERP)

To solve Eq. 16, we follow an approach similar to that used
to solve Eq. 15. The constraint from Eq. 16 implies that

Sc
k

j,ihck = Sc
k

j,iF
khc = S̃c

k

j,ihc, (19)

where S̃c
k

j,i := Sc
k

j,iF
k is a modified shift operator (with Fk,

instead of IL×L, placed in the block starting from row nc
k

j,i).
Eq. 19 allows us to rewrite Eq. 16 as the unconstrained
optimization problem

min
{hc}Cc=1

J∑
j=1

∥∥∥Yj −
C∑
c=1

K∑
k=1

N
ck∑

i=1

xc
k

j,iS̃
ck

j,ihc

∥∥∥2

2
. (20)

Suppose we want to update template hc. Let Ω̃c = ∪Kk=1Ωck
be the set of indices of windows from which COMP selects
at least one occurrence of a template from the set {hck}Kk=1.
Re-arranging Eq. 20 yields the estimate ĥc of hc

ĥc = arg min
hc

∑
j∈Ωc

∥∥∥∥∥Ej −
K∑
k=1

N
ck∑

i=1

xc
k

j,iS̃
ck

j,ihc

∥∥∥∥∥
2

2

where Ej = Yj −
C∑
c6=c

K∑
k=1

N
ck∑

i=1

xc
k

j,iS̃
ck

j,ihc,

(21)

the solution of which is given by

ĥc =

( ∑
j∈Ω̃c

K∑
k=1

Nc∑
i=1

Nc∑
m=1

xc
k

j,i

(
S̃c

k

j,i

)T
S̃c

k

j,mx
ck

j,m

)−1

×
( ∑
j∈Ω̃c

K∑
k=1

Nc∑
i=1

xc
k

j,i

(
S̃c

k

j,i

)T
Ej

)
.

(22)

Similar to Eq. 18, we can interpret Eq. 22 as the weighted
average of the interpolated segments Ej in which template any
template from the set {hck}Kk=1 occurs.

C. CDL algorithm

We summarize the alternating-minimization procedure for
CDL in Algorithm 3. COMP-INTERP refers to the Algo-
rithm 2 and CDU refers to the CDU step. The ∗ notation
from Sj,(∗) and Ij,(∗) refer to the index sets for window at
COMP convergence. COMP-INTERP is parallelizable across

Algorithm 3: CDL

Input: Y, {h(0)
c }Cc=1,

∆
K

Output: X(∗), {h(∗)
c }Cc=1

1 while t = 0 to convergence do
2 (CSC step)
3 for j = 1 to J do
4 X

(t+1)
j , Sj,(∗), Ij,(∗)

5 ← COMP-INTERP
(
Yj , {h(t)

c }Cc=1,
∆
K

)
6

7 (CDU step)
8 {ĥc}Cc=1 ← {h(t)

c }Cc=1

9 for c = 1 to C do
10 ĥc

11 ←CDU(Y, {ĥc}Cc=1,{X(t+1)
j , Sj,(∗), Ij,(∗)}Jj=1, ∆

K)

12 {h(t+1)
c }Cc=1 ← {ĥc}Cc=1

J windows, and therefore amenable to implementation on
GPU and parallel computer architectures. The CDU step is not
parallelizable because it needs to aggregate the occurrences of
the templates across all J windows.
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VI. EXPERIMENTS

We apply the proposed CDL framework to simulated data
and the real electrophysiological data from the brain. We use
two criteria to evaluate performance: 1) the accuracy and speed
of the CSC step, and 2) the accuracy of the CDU step.

For the CSC step, we compare CBP to the following
convolutional greedy methods: COMP, CMP, COMP-slow, and
COMP-INTERP. CMP does not have a projection step. The
projection step from COMP-slow inverts H

∣∣T
t′
H
∣∣
t′

directly
without Cholesky factorization. Table II summarizes the sim-
ilarities and differences of the greedy methods.

TABLE II: Convolutional greedy methods

Efficient selection Efficient projection ∆K

COMP Yes Yes ∆
CMP Yes · ∆
COMP-slow Yes No ∆
COMP-INTERP Yes Yes ∆/K

A. Simulated Dataset

We simulated a signal according to the continuous-time gen-
erative model of Eq. 1. We used two 10-ms-long gamma-tone
templates [6] defined for t in the interval from −5 to 5 ms

h1(t) ∝
(
103t

)
exp

(
−
(
103t

)2)
cos
(π

2

(
103t

))
h2(t) ∝

(
103t

)
exp

(
−
(
103t

)2)
.

(23)

We assumed the same number of occurrences N1 = N2 of the
templates. We chose the times when events occur uniformly
at random, i.e. τ ci ∼ Uniform[0, T ] for c = 1, 2 and i =
1, · · · , N1. We chose the amplitude of each event uniformly
at random, i.e. xci ∼ Uniform[1, 2]. As explained in subsequent
sections, we used a range of values for the variables T and
N1. We used a sampling rate fs = 104 Hz and obtained the
discrete-time signal y by sampling y(t) at every ∆ = 10−4

seconds. We added white Gaussian noise εεε ∼ N (0, σ2I) in
discrete time, where σ was set according to a desired Signal-
to-noise ratio (SNR). We defined the SNR as follows

SNR = 10 log

(‖Hx‖22
‖ε‖22

)
(dB), (24)

where the variance estimate σ̂2 is σ̂2 =
‖ε‖22
N , with N = b T∆c.

We obtained h1,h2 ∈ R100 by acquiring 100 samples from
h1(t) and h2(t) and normalizing the resulting vectors to have
unit length: ‖h1‖2 = ‖h2‖2 = 1.

B. Results from simulations: CSC step

We set the sparsity level for greedy methods to be the number
of events, and fine-tuned the regularization parameter λ for
CBP (with polar basis) to match the same sparsity level. We
use the true templates h1,h2 as dictionary elements.
Sparse-coding computation time We computed the duration
of the CSC step, using CBP and the above-mentioned greedy
methods, as a function of data length T and total number of
events N1 +N2. Specifically, we ran two sets of experiments:
1) T ∈ [0.5, 1, 2, 3, 4, 5] s with fixed N1 + N2 = 30 and 2)

N1 + N2 ∈ [10, 20, 30, 40, 50] with fixed T = 3 s. For each
experiment, we report durations averaged over 50 independent
repeats (trials). Tables III and IV show the duration of the CSC
step for the various methods, respectively as a function of data
length and number of occurrences of events. We draw three
conclusions from the results

1) COMP is computationally much faster than CBP, with
two possible explanations. In terms of implementation,
CBP constructs the full convolutional dictionary for `1
regularization, whereas COMP does not. Moreover, it
is well-known that greedy methods are faster than ones
based on basis-pursuit like methods [7], [9].

2) COMP is as fast as CMP. This is true even for large T or
N1 + N2, which involve a computationally-demanding
projection step. This, along with a comparison of COMP
to COMP-slow highlights the importance of making the
projection step efficient. COMP reduces the computation
time of COMP-slow by 48% ∼ 85% on average.

3) The difference between COMP and COMP-INTERP
stems from the fact that the selection step of the former
requires C cross-correlation operations, while that of the
latter requires KC such operations. The computation
time of the projection step is the same for both.

TABLE III: Computation time (sec) as a function of T

0.5 1 2 3 4 5
COMP 0.041 0.066 0.114 0.175 0.223 0.271
CMP 0.027 0.049 0.089 0.131 0.180 0.237
COMP-slow 0.079 0.176 0.350 0.545 0.759 1.002
COMP-INTERP 0.243 0.445 0.781 1.161 1.565 2.038
CBP 4.24 13.55 51.75 145.27 · ·

TABLE IV: Computation time (sec) as a function of N1 +N2

10 20 30 40 50
COMP 0.096 0.204 0.267 0.340 0.438
CMP 0.082 0.168 0.218 0.276 0.345
COMP-slow 0.194 0.666 1.189 2.111 3.043
COMP-INTERP 0.744 1.416 1.811 2.377 3.112
CBP 152.44 134.25 135.10 132.60 133.53

Sparse coding accuracy We computed the average hit er-
ror [21] for COMP and CBP, and that for COMP-INTERP as
a function of the discretization ∆K . The average hit error
measures how far, in terms of absolute displacement, the
recovered sparse codes are relative to the true sparse codes. We
simulated 50 trials of data with T = 1 and N1 = N2 = 10
and computed the median average hit error across trials for
each method. The average hit error of both COMP and
CBP is independent of ∆K : COMP operates at the sampling
resolution ∆, while CBP operates in continuous time.

Fig. 5 shows that the average hit error for COMP-INTERP
is lower than that for COMP. The finer the discretization, the
greater the precision with which COMP-INTERP identifies
the sparse codes, resulting in the lower average hit error. The
reduction in average hit error is marginal below a certain
threshold (∆10 = 1

10∆). The finer the discretization, the more
correlated the interpolated templates and, in turn, the columns
of the dictionary are. Therefore, as discretization becomes
smaller, the returns, in terms of average hit error, from expand-
ing the dictionary diminish. With no discretization, COMP and
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Fig. 5: Average hit error as a function of ∆K , on a log scale,
for CBP, COMP, and COMP-INTERP. Each point represents
the median average hit error computed across 50 trials of
simulated data.

COMP-INTERP achieve the same average hit errors since the
original and the interpolated dictionary coincide. Fig. 5 also
shows that there is a small gap, between CBP and COMP-
INTERP. We observed in simulations that the difference comes
from the fact that COMP-INTERP is not as accurate as CBP in
the presence of significant template overlaps. Due to its greedy
nature, OMP has worse performance in resolving overlapping
templates than approaches based on basis pursuit [13], [27].
This can be mitigated by heuristics [28], which we leave it as
a future work.

C. Results from simulations: CDU step

Dictionary learning accuracy To assess the accuracy of the
CDU algorithms, we use the following error distance metric
[29] between two templates ĥc and h̃c

err(ĥc, h̃c) =

√
1− 〈ĥc, h̃c〉2
‖ĥc‖22‖h̃c‖22

. (25)

The lower the metric, the closer ĥc and h̃c are. If ĥc = h
(t)
c

and h̃c = hc, the metric measures how close the learned
template at iteration t is to the true template. If ĥc = h

(0)
c

and h̃c = h
(∗)
c , the metric measures how much the template

at convergence has changed from the initial template.
We compared the accuracy of the CDU step with the

interpolated and the original dictionary. We simulated 25 trials
of data, with T = 5 s and N1 = N2 = 200, for several
levels of SNR ranging from 8 to 26 dB. We obtained the
initial templates h

(0)
1 and h

(0)
2 by perturbing the original

templates h1 and h2 with Gaussian additive noise, such that
err(h(0)

c ,hc) ≥ 0.5 for c = 1, 2. We performed 15 iterations
of the alternating-minimization algorithm for CDL to obtain
h

(∗)
1 and h

(∗)
2 . We compared the following two methods:

1) COMP & CDU with discretization ∆ (CDL with ∆),
which corresponds to conventional CDU methods that use H
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Fig. 6: Illustration of the initial h
(0)
1 , learned h

(∗)
1 , and the

true template h1. (a) h
(∗)
1 learned with COMP & CDU with

discretization ∆ (CDL with ∆), (b) learned with COMP-
INTERP & CDU-INTERP with discretization ∆10 = 1

10∆
(CDL with ∆10). The latter approach learns the template more
accurately compared to the former. (c) The metric err(h(t)

1 ,h1)
as a function of alternating-minimization iterations.

instead of H̃, and 2) COMP-INTERP & CDU-INTERP with
discretization ∆10 = 1

10∆ (CDL with ∆10).
Fig. 6 shows the result of applying the two CDL algorithms

to the simulated data. The figure shows that CDL with ∆10 is
able to learn templates more accurately than CDL with ∆. This
is supported both visual inspection of the learned templates
(Fig. 6(a) and (b)), and the trajectory of err(h(t)

1 ,h1) as a
function of alternating minimization iteration t, for one of the
simulated trials. Although not shown here, we observed that
CDL with ∆10 learned h

(∗)
2 more accurately than CDL with

∆. CDL with ∆, which does not account account for the non-
integer shift, converges to an average of the non-integer shifts
of each of the true templates. Fig. 7 shows that both CDL
approaches are robust across a range of SNRs.

D. Real dataset: Application to spike sorting

We applied our framework to spike sorting. Given a record-
ing of extracellular voltage, the goal of spike sorting is to
learn the action potentials (templates) from neurons (sources)
near the electrode, and the times when the action potentials
occur [10]. We used a dataset that consists of an extracellular
recording from the rat hippocampus, along with a simultaneous
intracellular recording [30] from one neuron. The intracellular
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Fig. 7: Average, as a function of SNR, of the metric
err(h(∗)

1 ,h1) for CDL with ∆ and CDL with ∆10. Each point
represents err(h(∗)

1 ,h1) averaged over 25 independent trials.

recording provides the ground truth data, as it provides the
unequivocal occurrence of an action potential in a single
neuron, and thus enables us to evaluate and compare the
accuracy of the CDL frameworks. For this dataset, 620 events
occurred from the neuron that was recorded intracellularly. The
sampling rate of the extracellular data, which comprise 4 chan-
nels, is fs = 104 Hz. We used T = 150 seconds of data from
channel 1 and preprocessed them following the procedures that
are standard in the spike-sorting literature [31]. Specifically,
we applied to the data a high-pass filter with cut-off frequency
400 Hz, and whitened it. In addition, we identified peaks from
the data that crossed a pre-defined threshold [32] and extracted
a segment of length 81 samples centered around each peak.
The resulting collection Y ∈ R5000×81 of 5, 000 segments is
the input to our analyses of the real data.
Method setup We assumed C = 3, namely that the extracel-
lular recording can detect activity from 3 neurons. We used
templates {hc}3c=1 ∈ R41, each of length 4 ms. We applied
CDL, with COMP and COMP-INTERP in the CSC step,
to the extracellular data. We used the following procedure
to initialize the templates to

{
h

(0)
c

}3

c=1
. Following segment

extraction, we first performed PCA on Y for dimensionality
reduction, and then K-means clustering with three clusters
in the lower dimension space. We used the centroids of the
clusters to obtain

{
h

(0)
c

}3

c=1
. We used an estimate of the

variance of the background noise in the recording as the
termination criterion for the CSC step of COMP and COMP-
INTERP. We computed this estimate by extracting data from a
segment that remained below a pre-defined threshold for more
than 500 ms. We ran 15 iterations of the CDL algorithm to
obtain {h(∗)

c }3c=1.
We compared CBP with {h(0)

c }3c=1 to the CSC step of
COMP and COMP-INTERP using the filters, {h(∗)

c }3c=1,
learned by the respective CDU algorithms. For a given true
spike event from the intracellular data, we associate an event
identified using the extracellular data as a true positive if
the event is within 30 samples (3 ms) of a true event from
the intracellular data. Among the templates learned using the
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Fig. 8: Error curves for events associated with h1 (true spike
template). The curves, computed for CBP, COMP and COMP-
INTERP, show the trade-off between the false alarm rate and
the true miss rate for each method.

extracellular data, we associate the template with the highest
true positive count with the neuron from the intracellular data
and refer to it as h1. As we do not have access to the true h1,
we treat h

(∗)
1 as the best estimate of the true spike template.

E. Results from the real dataset

Detection error curve We used two statistics to evaluate
the ability of the methods to perform spike sorting on the
extracellular data. Following CSC, each method must set a
threshold to identify the times when action potentials (spikes)
occur. A true miss is a true spike from the intracellular data
within 3 ms of which no threshold-crossing event occurs in
the extracellular data. The true miss rate is the ratio of the
number of true misses to the number of intracellular events. A
false alarm is a threshold-crossing event from the extracellular
data that is not a true spike, i.e. within 3 ms of which no
events occur in the intracellular data. The false alarm rate
is the ratio of the number of false alarms to the number of
threshold crossing events. Varying the threshold leads to a
trade-off between true misses and false alarms. A threshold
with high amplitude typically leads to a low number of false
alarms and a large number of true misses, and vice versa for
a low-amplitude threshold.

Fig. 8 shows the result of sorting spikes associated with
h1 using CBP, COMP and COMP-INTERP. The figure shows
that the greedy approaches rival CBP, and are better in the
low true miss rate regime. The true miss rate for CBP does
not decrease below 5%, even with thresholds of low amplitude.
This indicates that CBP is not able to identify a subset of true
events that COMP and COMP-INTERP identify correctly.
Difference between `0 and `1 The discrepancy in the true
miss rate of CBP and COMP/COMP-INTERP motivated us to
further examine segments for which the number of errors from
CBP and the greedy methods differ. Fig. 9 shows examples
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of such segments. Fig. 9(a) shows that CBP fails to capture
the true spike event (red dot), resulting in a true miss event,
whereas COMP-INTERP (Fig. 9(b)) uses h1 to correctly iden-
tify the event. The failure of CBP and the success of COMP-
INTERP point to an important difference between the `1 and
`0-based methods for the CSC step. To minimize its objective
function, `1-based CBP must strike a balance between the
reconstruction error, which it can reduce by using additional
templates, and the `1 penalty, which can be reduced by using
fewer templates or ones with lower amplitude. In Fig. 9(a), the
choice of regularization parameter λ is such that CBP chooses
to use one template with large amplitude, thereby missing
the true event. Although a smaller regularization parameter λ
can be used to reduce the effect of the `1 penalty, thereby
identifying the true event and lowering the true miss rate,
this would result in spurious events that would increase the
number of false alarms. This discussion points to a limitation
of `1-based methods, namely the need to tune λ carefully.
COMP-INTERP (and COMP), on the other hand, can select
as many events as needed to make the reconstruction error
below the estimate of the variance of the background noise.
In Fig. 9(b), COMP-INTERP first selects h3, and then h1,
which corresponds to the true event.
Example of a non-integer shift Fig. 9(c) is an example of a
segment where COMP raises a false alarm event, but COMP-
INTERP does not (Fig. 9(d)). COMP is forced to use the
true spike template, h1, whereas COMP-INTERP uses h3 to
select the secondary peak. This likely happens because the
spike event does not occur on the discrete-time sampling grid,
and further highlights the benefits of using the interpolated
dictionary. That being said, we observe from Fig. 8 that the
two versions of COMP have similar performance, with COMP-
INTERP slightly outperforming COMP in the low true miss
regime.
Learned templates Fig. 10 shows the templates that were
learned by CDL using the extracellular data, and COMP-
INTERP in the CSC step. The fact that the shapes of the
learned templates are not significantly different from those
of the initial templates suggests that we initialized the tem-
plates well. To determine how different the learned templates
are from the initial ones, we computed err(h(0)

c ,h
(∗)
c ) for

c = 1, 2, 3, and then took the maximum of the three values.
We found that the maximum equaled 0.32, which indicates
that, although not obvious visually, the CDL algorithm did
learn new templates.

VII. DISCUSSION

We have introduced novel Convolutional Sparse Coding
(CSC) and Convolutional Dictionary Update (CDU) algo-
rithms for a class of continuous-time signals that consist of
time-shifted copies from multiple sources, each with its own
template. The algorithms operate in discrete-time and construct
an expanded, overcomplete, dictionary that accounts for the
fact that the templates from the continuous-time model do not
necessarily occur on the sampling grid of the discrete-time
model. Specifically, the elements of the expanded dictionary
consist of the original templates, along with their non-integer
shifts, obtained by bandlimited interpolation.
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Fig. 9: Example of applying CBP, COMP, and COMP-
INTERP to segments of real data (black trace). The red dot
shows where the true spike event occurs. The red, green and
blue traces are reconstructions of the segments using only h1

(true spike template), h2 and h3, respectively. (a) A segment
where CBP fails to correctly identify the occurrence of an
event from the extracellular data, and (b) COMP-INTERP
does. (c) A different segment where COMP incorrectly uses
h1, but (d) COMP-INTERP does not.
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The use of an expanded dictionary increases the compu-
tational demands of the algorithms, the CSC step in partic-
ular. To mitigate this, we chose to focus on greedy pursuit
methods and proposed an efficient implementation of convolu-
tional OMP (COMP) and COMP with interpolated dictionary
(COMP-INTERP). The efficient COMP algorithm exploits the
locality of the templates and is much faster than CBP, which
is the state-of-the-art algorithm for CSC in continuous-time.
Compared to convolutional MP, the overhead from the efficient
COMP algorithm is negligible. We also demonstrated a novel
algorithm to perform dictionary update with an expanded
convolutional dictionary that accounts for non-integer delays.
We showed empirically that more accurate templates were
learned with the interpolated dictionary and that the results
are robust across a wide range of SNRs. We conclude that our
approach is a simple yet efficient paradigm for convolutional
dictionary learning, that faithfully accounts for the continuous-
time nature of the signal of interest.

We believe that the current work can be extended in several
promising directions. First, we plan to extend this framework
to the multivariate case. This will be useful for performing
dictionary learning using recordings from sensor arrays, a
setting in which the spatial information becomes as important
as the temporal information of the signal. Then, we would like
to mitigate COMP sparse coding errors that are due to template
overlaps. Several interesting heuristics, such as bounded local
optimization [28], have been proposed for this. These can be
incorporated into our framework in efficient way. Next, since
the CSC step is embarrassingly parallelizable across windows,
we plan to implement the algorithm on GPU.
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