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Abstract—We present a novel stagewise strategy for improving
greedy algorithms for sparse recovery. We demonstrate its effi-
ciency both for synthesis and analysis sparse priors, where in both
cases we demonstrate its computational efficiency and competitive
reconstruction accuracy. In the synthesis case, we also provide
theoretical guarantees for the signal recovery that are on par
with the existing perfect reconstruction bounds for the relaxation
based solvers and other sophisticated greedy algorithms.

I. INTRODUCTION

In this paper we consider the generic linear inverse problem
of recovering a vector x ∈ Rn from an incomplete set of
measurements y ∈ Rm (m < n) available via

y = Mx+w, (1)

where M ∈ Rm×n is the measurement matrix, w is an additive
noise, and x is assumed to have a parsimonious representation.

A. The sparse synthesis model

The first parsimonious model we consider is the sparse
synthesis framework. It assumes x to be a sparse vector, i.e.,
‖x‖0 = k, k � m, where ‖ · ‖0 is the `0 pseudo-norm that
counts the number of non-zeros in a vector. This prior has
received a lot of attention in the signal processing and statistics
communities, and been used in areas such as regression [50],
signal and image restoration [4], and compressed sensing [20],
[22]. Finding the best k-term approximation of y is proven
to be NP-hard [41], [14], unless some regularity conditions
applies to M [16], [8], [45].

A popular condition on M is the Restricted Isometry
Property (RIP) [6] that constrains its subsets of columns.

Definition I.1 (RIP). A matrix M satisfies the RIP of order
k with a constant δk ∈ (0, 1) if

(1− δk)‖v‖2 ≤ ‖MTv‖2 ≤ (1 + δk)‖v‖2, (2)

holds ∀|T | = k,v ∈ Rk, where the matrix MT is comprised
of the columns of M corresponding to the indices of a support
T of size k.

One of the common methods for sparse signal estimation
under this assumption is the `1-regularized convex optimization
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[11], [50]. This approach leads to a stable recovery of the sparse
vector under some conditions on the RIP (e.g. the work in [5]
proves that δk < 1/3 is a sharp bound). Yet, the `1-method
usually requires more computations than another widespread
methodology, the greedy strategy.

Two popular greedy algorithms are the orthogonal matching
pursuit (OMP) and the orthogonal least squares (OLS)1. OMP
and OLS obtain a representation by greedily selecting one
atom of the dictionary M at a time. OMP chooses the most
correlated atom in M to the residual error. OLS on the other
hand, improves over OMP by picking the atom (column) that
would yield the smallest approximation error when added to the
chosen set. In the statistics literature, this is sometimes called
forward-selection. However, OLS comes with an additional
computational cost (order of k times the OMP complexity).
Optimized OMP (OOMP) [44] has been proposed to accelerate
OLS, but it requires storing and updating an additional copy
of the dictionary. In this paper, we propose a more space
and time efficient method for accelerating OLS. Indeed, other
OLS acceleration strategies exist [30], [33], [55], [56]. Yet,
for completeness we present our acceleration variant for OLS
below, as the tools we use to construct it serve us later to
propose our efficient replacement based techniques that achieve
better performance as we show hereafter.

Both OLS and OMP use a one-off strategy, where an atom
never leaves the selected support after it enters. One option
for improving one-off programs is called back-tracing, the
re-consideration of atoms in the selected support. Pursuit
algorithms that use this approach include: CoSaMP [42] and
its signal space variants [13], [28], [52], Subspace Pursuit (SP)
[12], iterative hard thresholding (IHT) [2], hard-thresholding
pursuit (HTP) [23] and OMP with Replacement (OMPR) [31],
which received a lot of attention for their `1-like reconstruction
guarantees, e.g., δ3k ≤ 0.4859 and δ4k ≤ 0.3843 for SP and
CoSaMP respectively, [21], [46]. Note that though the existing
guarantees for OMPR are also based on the RIP, they impose an
additional constraint on the mutual coherence of M (δ2) and on
a parameter of this algorithm that requires tuning. In [48], [54],
OLS based algorithms with replacement have been proposed

1 The OLS algorithm entertains a plethora of designations in the literature
being rediscovered under different names several times. For example, in
statistics it is known as forward stepwise regression [37]. Other names include
least squares orthogonal matching pursuit (LSOMP) [18], forward-selection,
and order recursive matching pursuit (ORMP) [20] to name a few. See [3] for
a discussion on the matter
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but without RIP based recovery guarantees. We believe that
the theory developed here can be applied also to [48], [54].

B. The analysis cosparse model

The second framework we consider is the more recent
cosparse analysis model [19]. The signal x is assumed to
be sparse after an analysis operator Ω ∈ Rp×n is applied to it.
In this case k = ‖Ωx‖0 is the sparsity, and l = p− k is the
number of rows in Ω that are orthogonal to x, denoted as the
cosparsity of x. The subspace dimension in which x resides
is n − rank(ΩΛ) where Λ (|Λ| = l) is the set of rows from
the analysis operator that are orthogonal to x. In the analysis
model, one strives to enlarge l, i.e. make the signal ΩΛx as
sparse as possible. In this model, one aims at minimizing

x̂ = argminx ‖Ωx‖0 s.t. y = Mx. (3)

For more details on this model, we refer the reader to [9], [19],
[27], [40], [53] and references therein.

Solving (3) is also NP-hard [40], [51]. Thus, approximation
strategies have been proposed for (3) as well. As in the
synthesis model, a popular reconstruction technique is relaxing
the `0 pseudo-norm in (3) to the `1 norm. The work in [27]
proposed analysis versions of SP, CoSaMP, IHT and HTP.
Another popular algorithm for the analysis model is the greedy
analysis pursuit (GAP) [40]. It can be thought of as the analysis
equivalent of OMP. Unlike OMP, GAP operates backwards
instead of forward, i.e. it starts with all the rows of Ω inside the
cosupport and eliminates one row at a time until a cosupport of
a desired size is reached or the norm of ΩΛx̂ is small, where
Λ and x̂ are the current cosupport and estimate respectively.
Having found the cosupport Λ, GAP uses it to approximate
the solution by solving the following optimization problem.

Definition I.2 (Relaxed analysis objective function). Given a
set of indices Λ, where ΩΛ is a matrix comprised of the rows
of Ω indexed by Λ, the quantity GAP seeks to minimize is

x̂ = arg min
x
‖ΩΛx‖2 s.t. ‖y −Mx‖2 = 0. (4)

Recovery guarantees also exist for the analysis model, but
unlike the synthesis case, having M that satisfies a restricted
isometry condition is not enough and a restriction on Ω is also
required [9], [27], [35], [43]. In [40], the relationship between
minimizing (4) and solving (3) has been studied. Recovery
guarantees have been developed for the `1 strategy for the cases
that Ω is a frame (see e.g. [9], [35]) or the finite difference
operator (e.g. [43]), among else. For the greedy algorithms,
similar guarantees have been developed under the assumption
that Ω is a frame [25] or that some near-optimal projection
exists for it [27].

C. Paper contribution

In this work, we utilize the OLS selection heuristic. It can
be thought of as a general approach where an item is selected
based on its effect on the residual rather than relying on a
simple correlation with that residual. We propose new greedy
synthesis and analysis methods for sparse approximation that
resemble OMP and GAP in their computational complexity

but have better theoretical guarantees than OMP and empirical
reconstruction performance than both of them. The proposed
strategy resembles other efficient methods that have been
recently proposed such as OMPR [31]. It attains a competitive
theoretical guarantees compared to it: on the one hand the RIP
condition of OMPR is slightly better than the one we derive
for our algorithms, yet, on the other hand OMPR requires an
additional (mild) assumption on the coherence of the dictionary,
which is not required by our guarantees.

Our proposed pursuits are designed such that their stopping
criteria is either the desired sparsity level or the target residual
error similar to OMP, OLS, and GAP.

Due to the fact that our methods are based on the OLS
criterion for selecting (and removing) atoms, which is known
to be more resilient to cross correlation between dictionary
atoms (see [47] for a comparison to the OMP criterion), they are
more resilient to correlations in the dictionary. We supply RIP
based guarantees for these methods when the measurement is
noise-free or corrupted by Gaussian noise. While for OLS, the
best known guarantees require m = O(k2) measurements for
getting perfect reconstruction guarantees [56], for our proposed
schemes it is required to have only m = O(k log(k/n)).

Equipped with the notion that the OLS heuristic is ad-
vantageous with highly correlated dictionaries, we derive
an algorithm for the analysis model which is equivalent to
OLS, and improve it further by using backtracking to achieve
better estimation. Simulations demonstrate the advantage our
algorithms have in various scenarios.

D. Organization

The remainder of this paper is organized as follows. Section
II contains the synthesis algorithms and their properties.
It briefly describes the OLS algorithm and presents some
preliminary lemmas that aid speeding-up the calculations in
the techniques presented. Then it introduces our proposed
methods and demonstrates empirically their supremacy in
various scenarios. In Section III, we develop their theoretical
performance guarantees. Section IV focuses on the analysis
model. It proposes a novel efficient analysis OLS-like greedy
strategy with replacement. This technique is shown to have
superior performance to other programs designed for the analsys
framework. Section V concludes the paper.

E. Notation

We summarize here the notation used in this paper: a is a
vector, #»a = a/‖a‖ is its normalized version, a is a scalar, and
A is a matrix. a(i) is the ith entry of a; a\i is the vector a
without entry i; A\i is A without the ith column; and the ith
column and row are deleted from A to get A\i,\i; ‖ · ‖ is the
`2 norm; and m(i) designates the ith atom of the dictionary
M ∈ Rm×n (and we assume ‖m(i)‖ = 1 ∀i). x ∈ Rn is
the unknown vector with sparsity k = ‖x‖0 in the synthesis
case and k = ‖Ωx‖0 in the analysis case, and y = Mx+w
is the signal we have. Uppercase non-bold letters are sets of
indices (e.g. T ). Unless stated otherwise, A = MT denotes
the sub-matrix of M made of the columns indexed by T ,
whereas ΩΛ is comprised of the sub-matrix of Ω made of



3

the rows indexed by Λ. This has only one exception in the
paper, namely, LΛ, which contains a subset of columns of L ,
QT

M⊥Ω
T . The estimate of x using the atoms in T is denoted

as x̂A = x̂T = (ATA)−1ATy; the orthogonal projection
onto the column space of A as PA = PT = A(ATA)−1AT ;
and the orthogonal complement RA = RT = I − PA. In the
analysis part of the paper, the projection is defined onto the
row span. Finally, � represents an element-wise multiplication.

II. EFFICIENT LEAST-RESIDUAL TECHNIQUES FOR THE
SYNTHESIS MODEL

A. Preliminaries

The following are known preliminary lemmas that will aid
us in the derivation of two new greedy techniques as well
as their theoretical recovery guarantees. We start with two
variants of the matrix inversion lemma for a column addition
and deletion that follow from a straight forward application
of the formula for the inverse of a two by two block matrix
using the Schur complement.

Lemma II.1 (Matrix inversion lemma for column addition).
Let B = (ATA)−1 and Ã =

[
A a

]
. Then we may calculate

B̃ = (ÃT Ã)−1 as follows:

B̃ =

[
B 0
0 0

]
+

1

r

[
ê
−1

] [
êT −1

]
, (5)

where ê = A†a, and r = ‖RAa‖2.

A straight forward consequence of Lemma II.1 is the
following update for column removal:

Lemma II.2 (Matrix inversion lemma for column removal).
Let B̃ = (ÃT Ã)−1 with Ã =

[
A a

]
. Then we may calculate

B = (ATA)−1 as follows:

ê = −B̃\i(:, i), r = B̃(i, i)−1, B = B̃\i,\i − rêêT . (6)

Note that in order to use Lemma II.1 for column insertion at
a general location in A, simply insert a at the last index and
permute Ã and B̃ afterwards. We present now several other
helpful lemmas. Their proofs are deferred to Appendix A.

Lemma II.3 (Error change). Let the estimation error of y
using A be ‖y −Ax̂A‖2 = ‖RAy‖2, and let Ã =

[
A a

]
.

Then the difference in norm of the residual before and after
the addition of a to the support, may be written as:

〈 #       »

RAa,y〉2 = ‖RAy‖2−‖RÃy‖
2 = ‖PÃy‖

2−‖PAy‖2. (7)

Lemma II.4 (The value of x̂A(i)). The least squares estimate
of x̂A = (ATA)−1ATy can be written as the representation
of y in a bi-orthogonal basis for the space spanned by the
columns of A, i.e., its i-th entry is

x̂A(i) =
〈
RA\im(i),y

〉
/‖RA\im(i)‖2. (8)

The following lemma is an interesting consequence of the
ones above.

Lemma II.5. Let x̂ = B̃ÃTy, with B̃ = (ÃT Ã)−1,
then the least contributing column i of Ã (i.e., the column
whose removal has the smallest effect on the error) for the

Algorithm I: Orthogonal Least Squares (OLS)

Input: dictionary M , measurement y, target cardinality k or error εt
Output: x̂ with k elements or εt residual error, and T its support

init
T ← {}, ε0 ← ‖y‖2, r ← y

while |T | < k or ε0 > εt

i← arg maxi

{〈
r,m(i)

〉2
/‖RTm(i)‖2

}
T ← T ∪ {i}
ε0 ← ε0 −

〈
r,m(i)

〉2
/‖RTm(i)‖2

r ← RTy
end while
return T , x̂ = M†Ty

least squares estimate of x from y is the one whose index
corresponds to

arg min
i
x̂(i)2/B̃(i, i). (9)

Using the above lemmas, we are now equipped to describe
OLS and the differences it bears to OMP.

1) Orthogonal least squares (OLS): Lemma II.3 implies
that given a set of columns, A = MT , used for the
estimation of a signal, adding to it a column that satisfies
d = arg maxd∈M 〈y,

#       »

RAd〉2 yields the smallest residual
among all atoms in the dictionary. This notion is the basis
for OLS. Notice that in OMP (and other methods such as
SP, CoSaMP and OMPR) the selection criterion is based
on arg maxd∈M 〈y, RAd〉2, lacking the normalization by
‖RAd‖2. OLS enlarges its selected support iteratively, where
at each step a new atom that satisfies Lemma II.3 is selected.
The pseudo-code for OLS can be found in Algorithm I.

B. Proposed algorithms

We introduce two new algorithms that use a similar approach
to OLS, by selecting atoms for inclusion/exclusion based
on 〈 #               »

RTm(i),y〉 as the metric. Before describing them, we
present first an accelerated version of the standard OLS. Our
acceleration is based on the matrix inversion lemma (similar
to a strategy presented in [49]). Note that this is not the only
possible acceleration technique; for example, some methods
use the QR or Cholesky factorization [36], [37], [49].

1) Fast orthogonal least squares (FOLS): The main com-
putational burden of regular OLS as presented in Algorithm I
is that in each iteration it requires calculating the projection
over all the atoms. Our goal is to perform these calculations
efficiently using the fact that we only add one atom to the
support at each iteration. Thus, we use the matrix inversion
lemma to get the FOLS method in Algorithm II. It calculates
OLS using a single dictionary application.

In this algorithm, we introduce two length n vectors with
an efficient update scheme that requires a single dictionary-
vector multiplication. To formulate this update scheme recall
Lemma II.3. We calculate 〈 #               »

RTm(i),y〉2 for each of the atoms
in the dictionary by dividing the square of the elements of
c(i) = 〈RTm(i),y〉 by the elements of ρ(i) = ‖RTm(i)‖2.
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Algorithm II: Fast Orthogonal Least Squares (FOLS)

Input: dictionary M , measurement y, target cardinality k or error εt
Output: x̂ with k elements or εt residual error, and T its support

init
T ← {}, ε0 ← ‖y‖2, ρ← 1n×1, c←MTy

while |T | < k or ε0 > εt -Only one condition is tested
i← arg maxi/∈T c(i)

2/ρ(i) -Atom that reduces the error the most
T ← T ∪ {i} -Add atom to the support
ε0 ← ε0 − c(i)2/ρ(i) -Update the residual
v ← RTm(i) -Auxiliary
ρ̃←MT v -Auxiliary
c← c− c(i)

‖v‖2 ρ̃ -Auxiliary
ρ← ρ− 1

‖v‖2 ρ̃� ρ̃ -Auxiliary
end while
return T , x̂ = M†Ty

Upon the addition of m(i) to the support, the updates of c and
ρ relies on the following equalities:

c(i) =
〈
RT ′m(i),y

〉
=
〈
RTm(i),y

〉
−
〈

#»v ,m(i)

〉
〈 #»v ,y〉

= cprev(i)− ρ̃(i)cprev(i)/‖v‖2 (10)

ρ(i) = ‖RT ′m(i)‖2 =
〈
RTm(i),m(i)

〉
−
〈

#»v ,m(i)

〉2
= ρprev(i)− ρ̃(i)2/‖v‖2, (11)

where we denote cprev , ρprev the vectors before the update, i
the index of the atom that enters the support, and v = RTm(i),
ρ̃ = MTv, T ′ = T ∪ i. Notice that these operations makes
FOLS more efficient than OLS as they spare the inversion
operation at each iteration.

2) Orthogonal least squares with replacement (OLSR):
Having a fast version for OLS, we propose now a novel algo-
rithm that is based on it that we name OLS with replacement
(OLSR). The idea behind OLSR is very simple. It generates an
initial support of size k + 1, e.g., using FOLS, and then keeps
replacing the least contribution atom (to reducing the error) in
its current approximated support with the most contributing
atom outside of the support. This technique stops when the
atom outside the support contributes less than the atom that
has been just removed. Thus, ending with a reconstruction x̂
with support of size k.

3) Iterative orthogonal least squares with replacement
(IOLSR): The second improvement introduced in this paper
to OLS (which has the same computational cost) is IOLSR. It
resembles Efroymson’s algorithm ([37], Section 3.3) for the
popular stepwise regression. At each step a new atom enters
the support according to the regular OLS selection rule (7),
and a test is performed to see if taking out one of the other
atoms in the support will lower the residual compared to the
beginning of the iteration (i.e. if the least-contributing column
(9) is different than the one just added). If yes, a column is
removed from the selected support. Otherwise, the selection
set length is enlarged by 1.

4) Efficient implementation for OLSR and IOLSR: Both
OLSR and IOLSR require a single multiplication by M at
each loop iteration, similar to OMP. In general, this costs
O(mn) flops, but for specific operators it might be lower, e.g.,
for DCT it is O(n log n). Moreover, calculating the least and
most contributing atoms directly is computationally demanding
(as one needs to remove/add each candidate atom and then

Algorithm III: OLS with Replacement (OLSR)

Input: dictionary M , measurement y, cardinality k
Output: x̂ of (at most) k elements, and T its support

{T, c,ρ, ε0} ←FOLS(M ,y, k + 1)
if ε0 ≈ 0 and |T | ≤ k

return T , x̂ = M†Ty
init
c0 ←MTy, B = (MT

TMT )−1, x̂← Bc0T
loop
j ← arg minj∈T

{
x̂(j)2/B(j, j)

}
-Find least contributing atom

{c,ρ} ← updRem(M ,B, T, x̂, c,ρ, j) (Alg. V)
remove m(j) from B using (6) -Matrix inversion lemma
T ← T \ {j} -Remove atom from the support
i← arg maxi/∈T

{
c(i)2/ρ(i)

}
-Atom most reducing the error

exit loop if c(i)2/ρ(i) ≥ x̂(j)2/B(j, j) Check if replacing helps
update B with m(i) using (5) -Matrix inversion lemma
T ← T ∪ {i} -Add atom to the support
x̂← Bc0T -Calculate current estimate to solution
{c,ρ} ← updAdd(M ,B, T, x̂, c,ρ) (Alg. V)

end loop
return T , x̂

perform least square approximation with it only for calculating
the error it produces in the reconstruction). To facilitate these
accelerations, we introduce two length n vectors similar to
FOLS, as described in (10) and (11). While in FOLS we have
only added elements to T , OLSR and IOLSR require also the
removal of atoms from T , which is achieved in a similar way:
The addition operator in (10) and (11) is replaced by subtraction
because by subtracting an element the residual grows and the
subspace spanned by MT is reduced. Algorithm V describes
how to perform both procedures efficiently. It is based on (10),
(11), and lemmas II.4 and II.5 relying on the updated value of
B and x̂ from the previous iteration. We turn now to introduce
our accelerations to both algorithms.

Algorithm III presents our efficient implementation for
OLSR. We provide here an explanation for its steps. After
producing a support estimation of size k + 1 using FOLS, it
efficiently removes and adds atoms. The least contributing atom
is found using the formula in Lemma II.5. The found atom is
then removed using the matrix inversion lemma for column
removal (Lemma II.2). To do this efficiently, we keep some
auxiliary variables in the memory, which are updated using
the “updRem” procedure from Algorithm V. Then, if an atom
exists such that the residual after its inclusion in the support
will be lower than the beginning of the iteration, it is inserted
to the chosen set. The algorithm stops when no atom in the
dictionary satisfies this condition, ending up with a support
of size k. The steps for selecting the new atom that reduces
the error the most and adding it are the same ones used in
Algorithm II for FOLS (i.e., seeking the atom that minimizes
the condition in Lemma II.5). The auxiliary variables used for
the column addition in OLSR are updated in the “updAdd”
procedure in Algorithm V.

We also provide an efficient implementation for IOLSR in
Algorithm IV. At each iteration of this algorithm we first find
the atom that reduces the error the most and add it (in the
same way as in OLSR). We calculate the updated estimate of
the solution with the updated support that includes now the
new atom. Then we look for the least contributing atom in the
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Algorithm IV: Iterative OLS with replacement (IOLSR)

Input: dictionary M , measurement y, target cardinality k or error εt
Output: x̂ with k elements or εt residual error, and T its support

init:
T ← {}, ε0 ← ‖y‖2 , ρ← 1N×1, j ← 1, c0 ←MTy, c← c0

while (|T | < k + 1) or (ε0 > εt) -Only one is tested
i← arg maxi/∈T

{
c(i)2/ρ(i)

}
-Atom most reducing the error

update B with m(i) according to (5) -Matrix inversion lemma
T ← T ∪ {i} -Add atom to the support
x̂← Bc0T -Calculate current estimate to solution
ε0 ← ε0 − x̂(|T |)2/B(|T |, |T |) Update residual
{c,ρ} ← updAdd(M ,B, T, x̂, c,ρ) (Alg. V)
j ← arg minj

{
x̂(j)2/B(j, j)

}
-Find least contributing atom

if j 6= |T | Check if j is the atom just added
{c,ρ} ← updRem(M ,B, T, x̂, c,ρ, j) (Alg. V)
ε0 ← ε0 + x̂(j)2/B(j, j) -Update residual
remove m(j) from B using (6) -Matrix inversion lemma
T ← T \ {j} -Remove atom from the support

end if
end while
if |T | > k -Only for the case of k based stopping criterion

perform: T ← T \ {j} -Remove atom from the support
return T , x̂ = M†Ty

support (using Lemma II.5). If it is the same as the atom just
added then we continue to the next iteration. Otherwise, we
remove the least contributing atom using Lemma II.2 (we also
update the auxiliary variables as we have done in OLSR). The
stopping criterion for the algorithm is either support size based,
i.e., the algorithm stops when the size of the support is k + 1
(greater then k), or error based. In the first case, after the final
iteration we remove one atom from the support to make its
size k. We perform the final reconstruction using least squares
with the updated support.

5) IOLSR and OLSR properties: IOLSR and OLSR share
the same performance guarantees in theorems III.1 and III.3. We
provide convergence speed analysis for OLSR in Theorem III.2.
Note that in simulations IOLSR execution time demonstrates
linear dependency on k with a similar slope as OMP and
OLSR. Another difference worth noting between IOLSR and
OLSR, as well as other methods that enable backtracking such
as subspace pursuit [12] or CoSaMP [42], is that IOLSR is
able to run with a target residual norm (designated εt) similarly
to OMP and OLS, rather than target sparsity. Target residual
as a stopping condition is usually more preferable in many
applications leading to better results [18].

The sparse approximation provided by IOLSR is usually
better than the one of OLSR. This is due to the fact that the
IOLSR subspace is sequentially optimized (i.e. the back tracing
is performed on subspaces of increasing sizes rather than on a
subspace of constant size), in comparison to OLSR and other
methods that begin with a given support.

C. Synthesis model numerical experiments

We turn now to numerically evaluate the performance of
our methods2. The results appear in Fig. 1 in four plots:
(a) A phase transition diagram, following the methodology

of [15]. We fix m and variate n and k according to

2Matlab routines available at web.eng.tau.ac.il/~raja

Fig. 1: (a) Phase transition diagram ([15]) for m = 400. Areas
below the lines of each method represent an error threshold of
‖x̂− x‖2/‖x‖2 ≤ 10−4 (higher lines are better).
(b) Error (‖x̂ − x‖) vs. sparsity in the presence of noise
σ = 0.01‖y0‖/

√
m (yielding an average noise amplitude of

1% of ‖y0‖) compared to an oracle that knows the true support;
n = 600, m = 200.
(c) Error as a function of a coherency damaging parameter µ;
n = 300, m = 100, k = 30.
(d) Number of iterations of OLSR and IOLSR compared to
OMP in the experiment in (b).

two auxiliary variables. We use a threshold of ‖x −
x̂‖2/‖x‖2 ≤ 10−4 and plot the resulting curve. M is a
normalized random Gaussian matrix, and x is a sparse
signal with the support selected uniformly at random with
values drawn from the normal distribution. Results are
averaged over 50 realizations. We compare to OMP, SP
and BP. For BP [11] we used the CVX package [29] to
solve min ‖x‖1 s.t y = Mx, and then we improve its
recovery using debiasing.

(b) An experiment with noise, where we fix the size of the
dictionary, corrupt the measurements by AWGN with
σ = 0.01 · ‖y0‖/

√
m, where y0 = Mx, and plot the

recovery error vs. the sparsity. Results are averaged over
1000 instances of M and x, drawn as in (a). We compare
to OMP, OMPR, CGIHT, SP, ALPS (ALgebraic PursuitS)
[10] and an oracle that has the true support L of the x:

x̂oracle = M †
Ly. (12)

For ALPS we use the 0-ALPS variant3. We have compared
also to BPDN, using the method in [11] but do not present
it in the graph since it has performed worse than OMP.

(c) A test of the resilience to correlation in the dictionary.
For a fixed n,m, k we generate M from a Gaussian

3We used the code from lions.epfl.ch/alps with the default parameters therein.
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Algorithm V: Fast update procedures for the auxiliary vectors in OLSR and IOLSR

updAdd(M ,B, T, x̂, c,ρ)
v ←MTB(:, |T |)
ρ̃←MT v
c← c− (x̂(k)/B(τ, τ))ρ̃
ρ← ρ− (1/B(τ, τ))ρ̃� ρ̃
return c,ρ

updRem(M ,B, T, x̂, c,ρ, j)
v ←MTB(:, j)
ρ̃←MT v
c← c+ (x̂(k)/B(τ, τ))ρ̃
ρ← ρ+ (1/B(τ, τ))ρ̃� ρ̃
return c,ρ

distribution. We then increase the correlation in the
dictionary by performing d(i) = d(i) + µd(i+1) for each
atom, repeating the process five times to increase the
effect. Results are averaged over 1000 realizations. We
compare to OMP, OMPR, CGIHT, OLS, SP and ALPS.
OMPR is very close to OMP for large coherence values.

(d) Comparison between the number of iterations required
to perform OLSR and IOLSR compared to OMP as a
function of k (same setup of experiment (b)). Recall that
the computational cost of each iteration of our proposed
methods is similar to OMP.

One may notice from the graphs the advantage that OLSR
and IOLSR have on the other techniques both in the noisy and
noiseless cases. In particular, notice the high coherence case,
where the advantage of our strategies is more significant. Also
note that OMPR is sensitive to high coherence in a similar
way to OMP, where our approach shows better performance
than all methods. IOLSR shows better performance than OLSR
but requires a larger computational time. Yet, the number of
iterations in both methods is relatively close to OMP.

III. THEORETICAL PERFORMANCE GUARANTEES OF THE
SYNTHESIS LEAST-RESIDUAL TECHNIQUES

The OLSR and IOLSR performance guarantees are presented
hereafter using a series of lemmas and theorems. To this end,
the following notations are used: L is the true support s.t.
x(j) 6= 0, ∀j ∈ L, and 0 otherwise; T is a set of k indices
that represent the chosen support of an algorithm at a specific
iteration; L̃ , L \T , T̃ , T \L; x̃(i) = x(i) ∀i ∈ L̃, and 0
otherwise; ỹ = Mx̃; finally, κ denotes the number of atoms
in the true support that are not yet identified (κ = |L̃| = ‖x̃‖0).
In the proofs here we rely on the following lemma from [34].

Lemma III.1 (Lemma 2.1 in [34]). Given x1,x2, such that
‖x1‖0 + ‖x2‖0 ≤ 2k, x1 ⊥ x2, and a dictionary M with a
RIP constant δ < 1 of order 2k, then:

| cos∠(Mx1,Mx2)| ≤ δ. (13)

Remark 1. By using the fact that ỹ = Mx̃ and PT ỹ = Mx0

for some x0 with a support T (which is disjoint with the one
of x̃), we have from Lemma III.1 that

‖PT ỹ‖2 = ‖PT ỹ‖‖ỹ‖ cos∠(PT ỹ, ỹ) ≤ ‖PT ỹ‖‖ỹ‖δ.

Hence
‖PT ỹ‖2 ≤ δ2‖ỹ‖2. (14)

Because ‖PT ỹ‖2 + ‖RT ỹ‖2 = ‖ỹ‖2, we also have

‖RT ỹ‖2 ≥ (1− δ2)‖ỹ‖2. (15)

Another lemma that we use is the following:

Lemma III.2. The square of the maximum cosine of the angle
between RTm(i), where i ∈ L̃, and RT ỹ obeys

max
i∈L̃

(
cos∠(RTm(i), RT ỹ)

)2 ≥ 1

κ
cδ, (16)

where cδ = (1− δ2)(1− δ).

Proof. We prove by contradiction, inspired by the proof of
Theorem 2.2 in [34]. Consider ‖RT ỹ‖:

‖RT ỹ‖ = |〈RT ỹ,RT ỹ〉|
‖RT ỹ‖ =

|〈∑i∈L̃ x(i)RTm(i),RT ỹ〉|
‖RT ỹ‖ (17)

≤
∑
i∈L̃ |x(i)〈RTm(i),RT ỹ〉|

‖RT ỹ‖ .

This leads to:

‖RT ỹ‖
(a)

≤
∑
i∈L̃

|x(i) cosαi|
(b)
<

√
1

κ
cδ‖x̃‖1

(c)

≤
√
cδ‖x̃‖,

(18)
where we define αi = ∠(RTm(i), RT ỹ), and use the fact that
‖RTm(i)‖2 ≤ ‖m(i)‖2 = 1 in transition (a). For step (b) we
assume that for some positive constant cδ , | cosαi| <

√
cδ/κ,

for all i ∈ L̃. For (c) we use the inequality ‖x̃‖1 ≤
√
κ‖x̃‖.

On the other hand, by (15) and the RIP we have:

‖RT ỹ‖ ≥
√

1− δ2‖ỹ‖ ≥
√

1− δ2
√

1− δ‖x̃‖. (19)

Combining (18) and (19), we get that in order to produce a
contradiction we can set

√
1− δ2

√
1− δ =

√
cδ .

While Lemma III.2 may be used to bound the contribution
of a member of L̃ from below, the following lemma gives an
upper bound (in the noiseless case) for the contribution to the
estimation error (defined in Lemma II.3) of at least one of the
erroneously selected atoms in the chosen support.

We will use this lemma, combined with Lemma III.2, to
prove that all time OLSR or IOLSR did not converge to
the true support, we may find a “correct” atom outside the
estimated support that contributes more to the estimation error
than a “wrong” atom contained in the current support. This
will lead us to Theorem III.1 below that shows that both
techniques perfectly reconstruct the signal in the noiseless case
(under some RIP conditions). An extension to the noisy case
is provided afterwards in Theorem III.3.

Lemma III.3. Let y = Mx. For a given support T with ζ
atoms that are not in the true support of x, there exists an
atom m(j), j ∈ T̃ , such that:

1

ζ

δ2

1− δ
‖ỹ‖2 ≥

〈
#                    »

RT\jm(j),y
〉2

. (20)
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Proof. Denote ˆ̃x = (ATA)−1AT ỹ (where A = MT ). We
start with a bound on the norm of PT ỹ from below as follows:

‖PT ỹ‖2
(a)

≥ (1− δ)‖ ˆ̃x‖2

(b)
= (1− δ)

∑
q∈T

1

‖RT\qm(q)‖4
〈
RT\qm(q), ỹ

〉2
(c)

≥ (1− δ)
∑
j∈T̃

1

‖RT\jm(j)‖2
〈
RT\jm(j),y

〉2
= (1− δ)

∑
j∈T̃

〈
#                    »

RT\jm(j),y
〉2

,

where (a) follows from the RIP, (b) follows from (8), and (c)
is due to the fact that we sum on fewer atoms |T̃ | < |T |, reduce
the power in the denominator from 4 to 2, and replace ỹ with
y since RT\jm(j) ⊥m(q),∀j ∈ T̃ , q ∈ T \ T̃ . The assertion
in Lemma III.3 now follows by noting that the smallest value
of 〈 #                    »

RT\jm(j),y〉2 for j ∈ T̃ is not bigger than the average
on ζ atoms in T̃ , and that δ2‖ỹ‖2 ≥ ‖PAỹ‖2 from (14).

Using the upper and lower bounds developed in the two
previous lemmas, we can arrive at the following bound:

Theorem III.1 (RIP bound). Given y = Mx, where ‖x‖0 =
k and M satisfies the RIP of order 2k with a constant δ ≤
0.445, the OLSR and IOLSR algorithms yield perfect support
reconstruction, T = L.

We present now the proof for both OSLR and IOLSR. We
consider the case of support-size based stopping condition for
both techniques and error-based stopping condition for IOLSR
(where εt = 0 since we analyze here the noiseless case).

Proof of Theorem III.1 . Assume that the algorithms con-
verged to a support T , where T̃ 6= ∅. Using Lemma III.2
we get that there exists i ∈ L̃ 6= ∅ such that:〈

#               »

RTm(i),y
〉2 (a)

=
〈

#               »

RTm(i), RT ỹ
〉2

= ‖RT ỹ‖2| cosαi|2 ≥ ‖RT ỹ‖2
1

κ
cδ, (21)

where in transition (a) we used RTy = RT ỹ that holds because
(y − ỹ) ∈ span{MT }.

OLSR case: In this part of the proof, T is the support at the
stopping point of OLSR. At this stage, the support T is of size
k. OLSR stops when there are no atoms that can replace the
one that has been extracted (the condition for replacement is
that the new residual is lower than the previous one). In (21),
we have a lower bound on the error change (see Lemma II.3)
at this stage. We will now turn to provide an upper bound for
this error given that T̃ 6= ∅. Showing that the upper bound is
smaller than the lower bound will contradict this assumption.

Denote by j the index of the last atom extracted. Then before
its extraction, the support was T ∪{j}. Since |T | = k, we have
that |T \ L| = |L \ T | = κ and thus ζ = |T ∪ {j} \ L| ≥ κ.
Combining the fact that the removal of the atom j causes the
smallest error change with the result of Lemma III.3 (note that
the rhs of (20) is the error change), leads to〈

#               »

RTm(j),y
〉2

≤ 1

κ

δ2

1− δ
‖ỹ‖2. (22)

Combining (15) and (21) yields〈
#               »

RTm(j),y
〉2

≥‖RT ỹ‖2
1

κ
cδ ≥ ‖ỹ‖2

1

κ
(1− δ2)cδ.

Therefore, to contradict the assumption that T̃ 6= ∅ (with
which we started the proof), i.e., that the stopping criterion
was reached with a reconstruction that includes a wrong atom
in its support, the following needs to hold:

‖ỹ‖2 1

κ
(1− δ2)cδ ≥

1

κ

δ2

1− δ
‖ỹ‖2.

By eliminating the common terms (‖ỹ‖ and κ), substituting cδ
from Lemma III.2 and reorganizing the terms, this inequality
is equivalent to

(1− δ2)2(1− δ)2 ≥ δ2.

It is easy to see that this inequality holds if δ ≤ 0.445.
IOLSR case: IOLSR differs from OLSR in that the new

candidate is first inserted into the support, and then an atom
for elimination is selected. (In OLSR the opposite happens:
First an atom is removed, and then a new one that improves
the residual is inserted if there is such a one). Thus, the proof
is similar except for few changes and the bound is identical.

Denote by T the selected set at the beginning of the current
iteration, by i the atom added to T , by j the candidate atom
to be removed at this iteration, and T ′ = T ∪{i}. Assume that
the current size of T is k and that T̃ 6= ∅. Notice that we will
continue removing i and adding j all the time that〈

#               »

RTm(i), ỹ
〉2

>
〈

#                           »

RT ′\{j}m(j), ỹ
〉2

, (23)

i.e., when the decrease in error due to adding i to T is greater
than the increase in error due to the removal of j from T ′.
Notice that once this condition does not hold, the algorithm
enlarges the support by one. Thus, for a support-size based
stopping criterion the algorithm will stop. For an error-based
stopping condition the algorithm will continue unless T̃ = ∅
and then IOLSR will stop as the error will be zero. Therefore,
for proving that this method achieves perfect reconstruction for
both stopping criteria, we show now that all time that T̃ 6= ∅,
the inequality in (23) holds.

Setting ỹ′ = ỹ +m(i)x(i), leads to

‖RT ỹ‖2 ≥ ‖RT ỹ‖2 −
〈

#               »

RTm(i), ỹ
〉2

(a)
= ‖RT∪iỹ′‖2

(b)

≥ (1− δ2)‖ỹ′‖2, (24)

where for transition (a) we use (7) and the fact that RT∪iỹ′ =
RT∪iỹ, and for (b) we use (15). Now, combining (21) with
(24) leads to〈

#               »

RTm(i), ỹ
〉2

≥ 1− δ2

κ
cδ‖ỹ′‖2. (25)

Applying the result of Lemma III.3 (with T ′ and ỹ′ instead
of T and ỹ respectively, where again we have ζ ≥ κ as in the
case of OSLR)) provides us with

1

κ

δ2

1− δ
‖ỹ′‖2 ≥

〈
#                           »

RT ′\{j}m(j), ỹ
〉2

. (26)

Using simple arithmetic operations (similar to the OLSR
case), we have that the condition δ ≤ 0.445 is sufficient for
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(23) to hold. Thus, it is guaranteed that if (23) does not hold,
then T̃ = ∅ and we have converged to the correct support.

Theorem III.2. Let γ = cδ − δ2/cδ , with cδ defined by (16).
The number of iteration that noiseless OLSR needs for converge
to a solution with a residual lower than εt is bounded by

b = k

(
1 +

1

γ
ln

(
‖y‖2

εtecδ

))
. (27)

Note that this is a worst case analysis. Empirically, only
several iterations are required for convergence in addition to the
OLS ones (used to get an initial k-sparse solution for OLSR).

Proof. Notice that the first k iterations of OLSR are actually the
ones of OLS (which provides its initial estimate). Therefore, we
denote by Tn the estimated support of OLSR at its nth iteration,
where 1 ≤ n ≤ k actually referes to the OLS iterations. To
analyze the convergence speed of OLSR, we first provide a
bound on the error at the first k iterations performed by OLS
and then compute the additional error decrease that happens
at the subsequent iterations of OLSR.

Let a be the atom added by OLS at iteration n + 1. By
recalling (7) in Lemma II.3 and then applying Lemma III.2,
we have that the change in the residual error is given by

‖RTny‖2 − ‖RTn+1y‖2 =
〈

#         »

RTna,y
〉2

≥ ‖RTny‖2
cδ
κ
, (28)

By reorganizing the terms, we have the following relationship
between the residuals in subsequent iterations of OLS:

‖RTn+1
y‖2 ≤

(
1− cδ

κ

)
‖RTny‖2.

As we can replace 1/κ with 1/k to get a more restrictive
bound and using the fact that R0y = y, we get

‖RTky‖2 ≤ (1− cδ/k)
k ‖y‖2.

For large enough k this converges to ‖RTn=k
y‖2 ≤ e−cδ‖y‖2.

Turning to the “replacement part” of the OLSR algorithm,
assume that tk (t > 0) additional iterations were performed
at this stage. From Lemma III.3, we have that at each step
we take out of the support an atom with at most δ2

κ(1−δ)‖ỹ‖
2

contribution to the residual error. Using (15) we bound this
error increase by δ2

κcδ
‖RTn ỹ‖2. On the other hand, from (21),

we have that the atom added to the support reduces the error
by 1

κcδ‖RTn ỹ‖
2. Thus, we get that the error change obeys

‖RTn ỹ‖2 − ‖RTn+1
ỹ‖2 ≥ cδ − δ2/cδ

k
‖RTn ỹ‖2. (29)

This leads to ‖RTn+1
ỹ‖2 ≤

(
1− cδ−δ2/cδ

k

)
‖RTn ỹ‖2. Thus,

‖RTtk+ky‖2 ≤
(

1− γ

k

)tk
‖RTky‖2 (30)

≤
(

1− γ

k

)tk
e−cδ‖y‖2,

where γ = cδ − δ2/cδ (note that δ < 0.445 yields γ > 0).
Notice that for the estimation error to be less than εt we need
t ≥ γ−1 ln(‖y‖2/εtecδ). Thus, (1 + t)k is an upper bound on
the number of iterations.

We turn now to deal with the case that the measurements are
corrupted by an additive white Gaussian noise (AWGN). To this

end, we use the following notation y0 = Mx, y = y0 +w,
w ∼ N (0, σ2I), where σ2 is the noise variance.

Theorem III.3. Given measurements corrupted by AWGN
with variance σ2, and a parameter a ≥ 0, perfect support
reconstruction is achieved by OLSR and IOLSR with probability
exceeding 1− (

√
π(1 + a) log nna)−1 if

‖y0‖2

σ2k
≥ (1 +

√
1− δ)2(2(1 + a) log n)

((1− δ)(1− δ2)− δ)2
.

Proof. The proof is very similar to the proof of Theorem III.1.
The only difference is that the lower and upper bounds used
change due to the noise. Therefore, we describe here the
changes that are needed to be done compared to the proof
of Theorem III.1. Again we assume that T̃ 6= ∅. We describe
the proof for κ = k (i.e., we have completely erred in the
selection of the support), since this is the most restrictive case.
The proof can be easily generalized and verified for the case
κ < k. Thus, we assume ỹ = y. Throughout this proof, the
following notation is used:

wT =
PTw

‖y0‖
, wi =

〈
#               »

RTm(i),w
〉

‖y0‖
. (31)

Consider the proof of Lemma III.3. Since we assume ỹ = y,
then all the steps in this proof holds also for the case here
except of the last step that bounds ‖PTy‖. Substituting it with

‖PTy‖ = ‖PTy0 + PTw‖ ≤ ‖PTy0‖+ ‖PTw‖ (32)
≤ (δ + ‖wT ‖)‖y0‖,

leads to the following noisy form of the bound in Lemma III.3:

δ + ‖wT ‖√
k(1− δ)

‖y0‖ ≥ min
j∈T

∣∣∣〈 #               »

RTm(j),y
〉∣∣∣ . (33)

We now turn to bound
∣∣∣〈 #               »

RTm(i),y
〉∣∣∣ from below, where

i is an index of an atom in the true support (that has not been
selected). First, notice that from the triangle inequality∣∣∣〈 #               »

RTm(i),y
〉∣∣∣ =

∣∣∣〈 #               »

RTm(i),y0 +w
〉∣∣∣ (34)

≥
∣∣∣〈 #               »

RTm(i),y0

〉∣∣∣− ∣∣∣〈 #               »

RTm(i),w
〉∣∣∣ .

By using (31) and the facts that RT is a projection (RT = R2
T ,

RT = RTT ) and ‖ #               »

RTm(i)‖ = 1 followed by applying Lemma
III.2 and (15), we get∣∣∣〈 #               »

RTm(i),y
〉∣∣∣ ≥ ‖RTy0‖| cosαi| − ‖y0‖|wi|

≥ ‖y0‖

(√
cδ(1− δ2)

k
− |wi|

)
, (35)

Having these updated version of the bounds (of the lemmas) for
the noisy case, we can repeat the same steps of Theorem III.1
for both OLSR and IOLSR, where the only difference is that
we plug these inequalities instead of the ones for the noiseless
case. As in the proof of Theorem III.1, we aim at contradicting
the assumption that the methods converged with m(i) out of
the estimated support. To this end, combine (33) and (35) and
replace cδ with its value. This leads to the condition

(1− δ)(1− δ2)− δ ≥ ‖wT ‖+
√
k(1− δ)|wi|. (36)
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As a sanity check notice that if we set w = 0, we get back to
the condition of the noiseless case.

Note that wi and wT reside in sub-spaces orthogonal to
each other and that wT is with dimension k whereas wi is of
dimension 1. Therefore, we can use the following confidence
interval developed in [7]:

Pr

(
sup

m(j),1≤j≤n

∣∣〈m(j),w
〉∣∣ > σ

√
2(1 + a) log n

)
(37)

≤
(√

π(1 + a) log nna
)−1

.

Thus, with probability exceeding 1−
(√

π(1 + a) log nna
)−1

,
we can bound the right hand side of (36) by

‖wT ‖+
√
k(1− δ)|wi| ≤

√
k(1 +

√
1− δ)σ

√
2(1 + a) log n

‖y0‖
.

(38)

Combining (36) and (38) concludes the proof.

The following is a consequence of Theorem III.3:

Corollary III.3.1. If σ ≤ c1‖y0‖/
√
k holds as in Theo-

rem III.3, the error of the estimation x̂ of x by OLSR
and IOLSR is bounded with probability exceeding 1 −(√

π(1 + a) log nna
)−1

by

‖x− x̂‖ ≤
√

2(1 + a) log n

1− δ
√
kσ. (39)

.

Proof. Assuming the conditions of Theorem III.3 are satisfied,
implies that we get a perfect support reconstruction. Let A =
ML be the vectors comprising the true support, then:

‖x− x̂‖ = ‖x− (ATA)−1AT (Ax+w)‖
= ‖(ATA)−1Aw‖ ≤ ‖(ATA)−1‖‖Aw‖

≤ 1

1− δ
σ
√

2k(1 + a) log n (40)

where in the first transition we write the expression for x̂
explicitly, the third uses a matrix-norm inequality, and the
fourth uses (37) and the bound min eig(ATA) ≥ 1− δ due to
the RIP condition on M .

Corollary III.3.1 implies that under a perfect support recon-
struction we have an error proportional to

√
kσ. Yet, if the

condition in Theorem III.3 is violated (i.e., support recovery
is not guaranteed) the error in the worst-case is still bounded
by the following corollary:

Corollary III.3.2. The worst case error of the estimation x̂ of
x by OLSR and IOLSR is bounded with probability exceeding

1−
(√

π(1 + a) log nna
)−1

by

‖x− x̂‖ ≤ c2
√

2kσ2(1 + a) log n,

where

c2 =
(1 + δ2)(1 +

√
1− δ)

(1− δ)(1− δ2)− δ
+

1

1− δ
.

The proof of this corollary, analyzes the worst case scenario,
where we have recovered erroneously all the atoms.

Proof. We start by bounding the error norm as in Corollary
III.3.1:

‖x− x̂‖ = ‖x− (ATA)−1AT (Ax+w)‖
≤ ‖x‖+ ‖(ATA)−1ATAx‖+ ‖(ATA)−1ATw‖

≤ (1 + δ)‖y0‖+ δ(1 + δ)‖y0‖+
1

1− δ
σ
√

2k(1 + a) log n.

(41)

where in the third transition we used the RIP condition and
the results of Corollary III.3.1, and assumed that the selected
support is entirely erroneous; thus, (14) holds. Now, to get
Corollary III.3.2, compare (41) and the bound in Corollary
III.3.1. Notice that here (where σ > c1‖y0‖/

√
k) we have an

additional factor of (1 + δ)2‖y0‖, i.e., we have a “step” at
σ = c1‖y0‖/

√
k. Thus, to provide an upper bound that covers

all values of σ, we need to calculate the straight line (in σ)
that goes through the point(

c1‖y0‖√
k

, (1 + δ)2‖y0‖
)
,

and add it to the bound of Corollary III.3.1,.

Corollaries III.3.1 and III.3.2 imply that the IOLSR and
OLSR errors are proportional, up to O(log n), to the error
(
√
kσ) of an oracle estimator that knows the true support.

These results are similar to other near-oracle bounds developed
for other methods including SP and CoSaMP [1], [7], [26].

IV. EFFICIENT LEAST-RESIDUAL TECHNIQUES FOR THE
ANALYSIS MODEL

We turn now to extend the OLS approach to the analysis
model, and improve it further by allowing backtracking. Notice
that GAP, in a similar way to OMP, relies on correlations to
select what rows from Ω to remove in its iterative process,
although its objective is minimizing (4). Thus, in a similar way
to what we have done with FOLS and IOLSR, we propose here
an efficient technique to re-calculate (4) when elements from
the cosupport are added/removed. This allows us to propose
GALS that removes columns from the cosupport directly using
(4) and GALSR that, in a similar way to OLSR, replaces
elements in the cosupport based on the target objective (4).

A. Preliminaries for the analysis model algorithms

We start with some preliminary lemmas that will aid us in the
derivation of two new algorithms for the analysis model. The
first provides a variant of the restricted isometry property (RIP)
for the analysis case [27]. We use it to ensure the existence of a
solution to the analysis minimization problem in Definition I.2.

Definition IV.1 (Ω-RIP). A matrix M is said to satisfy the
Ω-RIP of order s with constant δΩ

s , if for any x such that Ωx
has more than s zeros (i.e. x is orthogonal to at-least s rows
from Ω)

(1− δΩ
s ) ‖x‖2 ≤ ‖Mx‖2 ≤ (1 + δΩ

s ) ‖x‖2 .

A large range of sampling operators satisfy the Ω-RIP with
very high probability, e.g., random Gaussian or sampled Fourier
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matrices with similar probabilities to the regular RIP [27]. The
definition of the Ω-RIP leads us to the following lemma.

Lemma IV.1. Given that δΩ
s < 1, the matrix

BΛ = MTM +ΩT
ΛΩΛ, (42)

is invertible whenever |Λ| ≥ s.

Proof. Assume by contradiction that ∃x 6= 0 such that

xTBΛx =

∥∥∥∥[ MΩS

]
x

∥∥∥∥2

= 0.

This implies that both Mx = 0 and ΩS = 0. Yet, according
to the Ω-RIP, if ΩΛx = 0 and δΩ

s < 1 then Mx 6= 0.

Notice that here and below, we just use the lower inequality
in the RIP condition, which is basically equivalent to requiring
that M does not have s-cosparse vectors in its null-space. This
is a very mild assumption that we take in this work as it is
clear that if Mx = 0 it is impossible to recover x.

Lemma IV.2. If δΩ
|Λ| < 1, then the solution to (4) satisfies[

BΛ MT

M 0

] [
x̂
z

]
=

[
MTy
y

]
, (43)

where BΛ is defined in (42) in Lemma IV.1.

Proof. Let x̂ be a solution to Mx̂ = y satisfying (43). We
will demonstrate that x̂ has the minimal ‖ΩΛx̂‖2, implying
that it is the solution to (4). To this end, let x̂2 6= x̂ be
another possible solution (i.e.Mx̂2 = y). Then, by substituting
x̂2 = x̂2 − x̂+ x̂, we have

‖ΩΛx̂2‖2 = ‖Ω(x̂2 − x̂)‖2 + ‖Ωx̂‖2 (44)
+2(x̂2 − x̂)TΩT

ΛΩΛx̂.

By the assumption that (x̂2− x̂)TMT = 0 and using the rela-
tionship defined in (43), we have that 2(x̂2 − x̂)TΩT

ΛΩΛx̂ =
2(x̂2 − x̂)TBΛx̂ = 2(x̂2 − x̂)TMT (y − z) = 0. Combining
this with (44), we have that

‖ΩΛx̂2‖2 = ‖Ω(x̂2 − x̂)‖2 + ‖Ωx̂‖2 > ‖Ωx̂‖2 , (45)

To justify the strict inequality we need to prove that Ω(x̂2 −
x̂) 6= 0. If this does not hold then ΩΛ(x̂2 − x̂) = 0 for any
Λ. Thus, from the RIP condition, we have M(x̂2 − x̂) 6= 0,
which contradicts the fact that Mx̂2 also satisfies Mx̂2 = y.
This completes the proof.

Lemma IV.3. Let δΩ
|Λ| < 1 and define CΛ = (MB−1

Λ MT )−1.
Then the value for x̂ in (4) can be written as

x̂ = B−1
Λ MTCΛy. (46)

Proof. We start by inverting the matrix in Lemma IV.2. From
the block version of the matrix inversion lemma, we have[

BΛ MT

M 0

]−1

(47)

=

[
B−1
Λ −B

−1
Λ MTCΛMB−1

Λ B−1
Λ MTCΛ

CΛMB−1
Λ −CΛ

]
.

Plugging (47) into (43) leads to

x̂ = (B−1
Λ −B

−1
Λ MTCΛMB−1

Λ )MTy +B−1
Λ MTCΛy.

Noticing that the first term is equal to zero, which yields the
desired outcome.

In our proposed algorithms we rely on a partition of Rn
into two parts using the following orthogonal matrix

Q =
[
QM QM⊥

]
∈ Rn×n, (48)

where QM ∈ Rn×m is an orthogonal basis for the row span
of M , and QM⊥ ∈ Rn×(n−m) spans the subspace orthogonal
to Q (i.e., spans the null-space of M ). The matrix QM is
calculated using the SVD decomposition of M . The definition
of Q leads to the following lemma that relates it to the
projection onto Ω.

Lemma IV.4. Let δΩ
|Λ| < 1 and define LΛ = QT

M⊥Ω
T
Λ ∈

R(n−m)×|Λ|.4 Then the minimzer of (4) satisfies

‖ΩΛx̂‖2 = yT (CΛ − I)y =
∥∥RLΛΩΛM

†y
∥∥2
, (49)

where RLΛ = I − PLΛ .

Proof. According to Lemma IV.3 we have

‖ΩΛx̂‖2 = yTCΛMB−1
Λ ΩT

ΛΩΛB
−1
Λ MTCΛy.

Plugging ΩT
ΛΩΛ = BΛ −MTM (see (42)) into the above

expression, we get

‖ΩΛx̂‖2 = yT (CΛ − I)y. (50)

This is the first equality in the Lemma. The second equality is
proven in Appendix D.

Lemma IV.5. Let Λ be a set of indices, and i /∈ Λ an index
of a row in Ω. Let x̂1 be the solution to (4) with Λ and x̂2

be the solution to (4) with Λ ∪ i. The change in error is then

‖ΩΛ∪ix̂2‖2 − ‖ΩΛx̂1‖2 =
(β − γ)2

1 + α
, (51)

where α = qT (LΛL
T
Λ)−1q, q = QT

M⊥ω(i), β = ωT(i)M
†y0,

γ = qT (L†Λ)TΩΛM
†y0.

In the lemma ω(i) is the ith row of Ω. Its proof appears
in Appendix E. In the noiseless case (y = y0), we have that
β = b(i) and γ = qTγ = γ(i) and α = α(i), where b,γ and
α are auxiliary vectors used in algorithms VI and VII.

Lemma IV.6. Set Λ, α, β, γ as in Lemma IV.5, and let i ∈ Λ
be an index of a row in Ω. Let x̂1 be the solution to (4) with
Λ and x̂2 be the solution to (4) with Λ \ i. The change in error
is then

‖ΩΛx̂1‖2 −
∥∥ΩΛ\ix̂2

∥∥2
=

(β − γ)2

1− α
. (52)

The proof is similar to the proof of Lemma IV.5.

B. Proposed analysis greedy least squares based methods

1) Greedy analysis least squares (GALS): GALS operates
similarly to GAP with the objective function (4) in Definition
I.2. Staying true to the OLS selection criteria, the atom to
be deleted from Λ at each iteration is the one that will lower
the residual the most (we refer to ‖ΩΛx‖2 as the residual
in this context). The selection rule is as defined by Lemma
IV.6, where at each iteration we seek the entry corresponding
to an atom in the current cosupport whose entry is maximal.

4Following our notation, in the analysis case Λ subscript denotes a subset
of rows. Yet, LΛ is an exception; in this case it denotes a subset of columns.
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Algorithm VI: Greedy analysis least squares (GALS)

Input: operator Ω, measurement y, sensing matrix M ,
either cosparsity l or target residual εt

Output: x̂, and Λ its cosupport with either |Λ| = l or ‖ΩΛx̂‖2 ≤ εt
init:
Λ← {1, . . . , p}, b← ΩM†y
calculate QM⊥ according to (48)
L← QT

M⊥
ΩT -Auxiliary

Γ ← (LLT )−1, γ ← LTΓLb, α← diag(LTΓL) -Auxiliary
ε0 ← ‖b‖2 − ‖γ‖2 -Initial residual

while |Λ| > l or ε0 > εt -Only one condition is tested
i← arg maxi∈Λ |b(i) − γ(i)|2/(1−α(i))(***) -Find row to remove
Λ← Λ \ i -Remove row from cosupport
{α,γ,Γ } ← updRemA(Ω,QM⊥ , b,Γ ,γ,α, i) (Alg. VIII)
ε0 ← ‖bΛ‖2 − ‖γΛ‖2 -Update residual

end while
return Λ, x̂ = minx̂ ‖ΩΛx̂‖2 s.t. y = Mx̂

The stopping criterion is either a target error or a pre-defined
cosupport size. Notice that the GALS technique only removes
atoms from the cosupport as the GAP strategy does, but with
a least squares criterion. Therefore, as GAP is the analysis
version of OMP, GALS may be viewed as the analysis version
of OLS. Thus, we would expect to get better performance with
it compared to GAP.

The pseudo-code of an efficient implementation of GALS
is described in Algorithm VI. This algorithm starts with a
full cosupport and then iteratively removes atoms from it. To
find the row to be removed efficiently, our strategy uses the
criterion in Lemma IV.6. Then it updates the residual efficiently
also using the auxiliary variables. We postpone the discussion
related to the update rules of the different auxiliary variables
required by GALS to Section IV-B3.

2) Greedy analysis least squares with replacement
(GALSR): As the analysis-model equivalent to OLSR, we
now propose a novel algorithm that is based on GALS that we
name GALS with replacement (GALSR). As a first step it uses
GALS to produce a cosupport estimation of size l. Then it
iteratively reduces the error by replacing atoms in the support.
It first finds the atom that improves the error the most and
adds it, and then it removes the atom that least contributes to
the error. The algorithm halts if the error stops decreasing.

Our efficient implementation of GALSR is described in
Algorithm VII. The atoms addition and removal are performed
according to Lemmas IV.5 and IV.6, respectively, until con-
vergence occurs. At each of the GALSR iterations, it adds an
atom from the complement of the currently selected cosupport
by seeking the minimizer of (51) in Lemma IV.5. Then, the
atom that will lower the residual the most as defined in
(52) in Lemma IV.6 is excluded from the cosupport. The
algorithm stops when the error stops decreasing. It outputs a
reconstruction with a cosupport of a pre-defined size l that is
given as an input to the algorithm.

3) Update routines for the GALS and GALSR auxiliary
variables: Unlike the synthesis case where an addition of
two length n vectors was sufficient for FOLS and OLSR,
in the analysis case we need to keep more data in memory.
We use the following auxiliary variables in their calculation:
QM⊥ ∈ Rn×(n−m), LΛ and Γ , where Λ is a given cosupport.

Algorithm VII: Greedy analysis least squares with replacement
(GALSR)

Input: operator Ω, measurement y, sensing matrix M , cosparsity l
Output: x̂, and Λ its cosupport with |Λ| = l

init:
{Λ,α,γ,Γ , b, ε0} ←GALS(Ω,y,M ,l)

loop
j ← arg minj /∈Λ |b(i) − γ(i)|2/(1 +α(i)) (**) Find row to add
Λ← Λ+ j Add row to the cosupport
{α,γ,Γ } ← updAddA(Ω,QM⊥ , b,Γ ,γ,α, j) (Alg. VIII)
i← arg maxi∈Λ |b(i) − γ(i)|2/(1−α(i)) (***) -Find row to remove
Λ← Λ \ i Remove row from the cosupport
{α,γ,Γ } ← updRemA(Ω,QM⊥ , b,Γ ,γ,α, i) (Alg. VIII)
exit loop if ε0 ≤ ‖bΛ‖2 − ‖γΛ‖2 -Check if residual decreased
ε0 ← ‖bΛ‖2 − ‖γΛ‖2 -Update residual

end loop
return Λ, x̂ = minx̂ ‖ΩΛx̂‖2 s.t. y = Mx̂

• QM⊥ ∈ Rn×(n−m) is the orthogonal complement to
the range of M . Refer to (48) for its mathematical
formulation. It can be calculated by performing a QR
decomposition or SVD of M , among else.

• LΛ = QT
M⊥Ω

T
Λ ∈ R(n−m)×p is as in Lemma IV.4. LΛ is

used to compute Γ (defined next). It needs to be calculated
explicitly only in the GALS initialization phase, where
LΛ = L since Λ = {1, . . . , p} and ΩΛ = Ω. Note that in
the rest of the algorithm we do not calculate LΛ directly.

• Γ = (LΛL
T
Λ)−1 ∈ R(n−m)×(n−m) is updated in Algo-

rithm VIII by the matrix inversion lemma when Λ changes.
Notice that we also use the routines “updAddA” and “up-

dRemA” in Algorithm VIII that update the auxiliary variables
used in the GALS and GALSR methods upon atom addition
and deletion. These procedures use three additional auxiliary
variables b,γ and α, which are used for calculating efficiently
the updated error (as in Lemma IV.5 and IV.6).

4) Properties and complexity of GALS and GALSR: Once
the initialization phase is finished, the most computationally
expensive stage is the calculation of Ωv in Algorithm VIII,
which costs pn flops. This is in par with the complexity required
by GAP, but the algorithms we propose alleviate the need to
calculate x̂ at each stage explicitly, which might save some
running time. On the initialization stage, the inversion of a
n−m× n−m size matrix to create Γ is the most expensive
stage, comparable to the complexity of calculating the initial
least squares estimate in GAP. The second time consuming
step is the calculation of QM⊥ that can be calculated using the
QR decomposition of M . This has a complexity of O(mn2).
In case that the same M and Ω are used for more than one
measurement, these calculations can be done only once. This
may save a considerable execution time.

5) Accelerating computation for special cases: In most
scenarios where the dimension of the data is large, there are fast
ways to calculate Mx and Ωx instead of expensive matrix
vector multiplication. Several well known examples where
such "fast-multiply" exists are the Fourier, Haar, wavelet, and
2D difference transforms, making their use as analysis and
or sampling operators appealing for high-dimensional data.
Efficient multiplication schemes can be used to accelerate the
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Algorithm VIII: Update procedures for the auxiliary variables in GALS and GALSR

updAddA(Ω,QM⊥ , b,Γ ,γ,α, j)
v ← QM⊥ΓQ

T
M⊥

ω(j)

Γ ← Γ − 1
1+α(j)

vvT

γ ← γ +
b(j)−γ(j)
1+α(j)

Ωv

α← α− 1
1+α(j)

Ωv �Ωv
return α,γ,Γ

updRemA(Ω,QM⊥ , b,Γ ,γ,α, i)
v ← QM⊥ΓQ

T
M⊥

ω(i)

Γ ← Γ + 1
1−α(i)

vvT

γ ← γ − b(i)−γ(i)
1−α(i)

Ωv

α← α+ 1
1−α(i)

Ωv �Ωv
return α,γ,Γ

* ’�’ designates element-wise multiplicaton

calculation of matrix inverses (where the matrix is defined
as the successive application of an operator and its adjoint).
In this section, we demonstrate one such acceleration for the
case where M is a sub-sampled 2D Fourier transform and
Ω is the 2D circular difference operator. To this end denote
by ΛM the indices of the 2D-FFT used in the sampling, i.e.
Mx = FFTΛM

(x). In this case (and other cases where M
is orthogonal), calculating QM⊥x amounts to calculating the
FFT of x and taking the complement of ΛM .

The acceleration we propose in this case is as follows. Let
x be a s × s image, n = s2, m = |ΛM |, and F be the 1D-
DFT matrix of size s× s. Then FFT(x) = (F ⊗ F )x where
⊗ denotes the Kronecker product. For D, the 1D circular
difference operator,D(i, i−1 : i) = [1,−1], ∀i ∈ {1 . . . s−1},
D(0, 0) = −1, D(0, s− 1) = 1. Thus,

M = (F ⊗ F )ΛM
; Ω =

[
D ⊗ I
I ⊗D

]
. (53)

The calculation of the first operation in both updAddA and
updRemA, which is the most time-consuming one, becomes:

QM⊥ΓQT
M⊥ω(j) ⇒ FFTΛcM (Γ · IFFTΛcM (w(j))),

which can be calculated in a fast manner. We remain with
the need to calculate Γv for some vector v. To this end,
note that the rows of the Fourier matrix are the eigen-vectors
of the second derivative operator DTD. More specifically,
the matrix T = FDTDF T is diagonal with diag(T ) =
−4 sin(πs 0 : s− 1). Now, by recalling that Γ−1

Λ = LΛL
T
Λ =

QT
M⊥Ω

T
ΛΩΛQM⊥ , for Γ0 = ΓΛ={1..p}, we get:

Γ−1
0 = IΛcMF ⊗ F (DTD ⊗ I + I ⊗DTD)F T ⊗ F T ITΛcM

= IΛcM (FDTDF T ⊗ I + I ⊗ FDTDF T )ITΛcM
= IΛcM (T ⊗ I + I ⊗ T )ITΛcM

which is also diagonal. Denoting t = diag(Γ0), using
ΩT
ΛΩΛ = ΩTΩ−ΩT

ΛcΩΛc and applying the Woodbury matrix
identity, leads to the following relationship for some vector v:

ΓΛv = t�FFTΛcM

(
ΩT
Λc Γ̃ΛcΩΛc · IFFTΛcM (t� v)

)
+t�v,

where Γ̃Λc is a k × k matrix. This results in a much cheaper
operation as multiplying ΩΛc is only k × n flops.

6) Extension to noisy measurements: In the preceding
sections we have introduced a new approach to the analysis
model signal reconstruction based on the noiseless objective
function in Definition I.2. In many practical applications, a
noise is present and taking the noise into consideration in
the program is paramount for practical applications. To this
end, GAP with noise (GAPn) has been introduced in [39].
This technique replaces the y = Mx̂ constraint in (4) in

Definition I.2 with ‖y −Mx̂‖2 ≤ εw, where εw is the energy
of the noise vector w in (1). The value εw in GAPn should be
set depending on the problem at hand. During the experiments,
we saw ambiguous results where in some cases setting εw
proportional to the noise power has been the option with the
better reconstruction accuracy, while in other cases setting it
to a small constant has led to a better results.

We use a similar approach to GAPn to extend our strategies
to the noisy case. To retain a reasonable run time we propose
to use an alternating minimization scheme, where we introduce
a vector ŵ that is calculated in the following way. Let Λ be
the selected cosupport. Then

ŵ = argmin‖w‖=εw
∥∥RLΛΩΛM

†(y −w)
∥∥2
, (54)

where we get (54) by extending (49) in Lemma IV.4 to the
noisy case (adding the perturbation w that represents the noise).

To use the proposed scheme in GALS and GLASR we
replace the rows marked with either (**) or (***) in algorithms
VI and VII with the procedure in Algorithm IX, and use the
augmented vectors γ̃ and b̃ in the selection step (denoted by
either ‘arg min’ or ‘arg max’).

There are several ways to solve the minimization problem in
(54), which is part of Algorithm IX. We provide three methods
hereafter and leave the choice of which to choose to the reader.

The first option is the strategy Nam et al. take in [39]. They
proposed to relax their equivalent of (54) with

min
w

∥∥RLΛΩΛM
†(y −w)

∥∥2
+ λ ‖w‖2 ,

where a search for a suitable λ is performed in each iteration.
The second approach is to replace

∥∥RLΛΩΛM
†(y −w)

∥∥2

in (54) with its equivalent from Lemma IV.4, (y −w)T (C −
I)(y −w). This leads to the following minimization problem

ŵ = argmin‖w‖=εw(y −w)T (C − I)(y −w). (55)
Using Lagrange multipliers yields

ŵ = (C − (1− λ)I)−1(C − I)y,

where λ should be determined such that ‖ŵ‖ = εw. Storing
the m eigenvalues and eigenvectors of C − I in memory and
updating them when an atom is added or removed from Λ,
mitigates the need to solve multiple least-squares problems
each time at the cost of tracking the eigenspace of C−I under
rank-1 updates (e.g. by using one of the methods in [38] and
references therein).

The third applicable approach is finding the value of λ
that correponds to solving (55) analytically [24]. This can be
done by determining the minimal eigenvalue of the following
quadratic eigenvalue problem

λ̂ = arg min
λ

{
H2 − 1

ε2w
HyyTH − 2λH + λ2I

}
,
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Algorithm IX: Update procedure for GALS and GALSR in
the presence of noise

solve ŵ = argmin‖w‖=εw ‖bΛ − γΛ −RLΛΩΛM
†w‖

b̃ = b−ΩM†ŵ
γ̃ = γ − PLΛΩM

†ŵ
for (**) perform: j ← arg minj /∈Λ |b̃(i) − γ̃(i)|2/(1 +α(i))

for (***) perform: i← arg maxi∈Λ |b̃(i) − γ̃(i)|2/(1−α(i))

Fig. 2: Phase transition of (a) GAP; (b) GALS; and (c) GALSR.

where H = C−I and e is the resulting eigenvector. A solution
of this optimization can be obtained, e.g., by solving

λ̂ = argminλ s.t.(
λI +

[
−2H H2 − 1

ε2w
HyyTH

I 0

])[
λe
e

]
= 0.

C. Analysis model numerical experiments

We turn to demonstrate empirically the performance of
GALS and GALSR for synthetic signals and various images.

1) Synthetic signals: Following the experiment in [27], we
generate M to be with random Gaussian i.i.d. entries and Ω to
be a random Gaussian tight frame with d = 120 and p = 144.
Figure 2 presents the phase transition diagram [17] of GAP,
GALS and GALSR5. The experiment is repeated 50 times for
each pair of m, l. The gray level in each cell corresponds to
the amount of times perfect reconstruction was achieved, i.e.
white cells correspond to perfect reconstruction in all tests,
and black cells correspond to 0% success. It can be seen that
GALSR reaches the largest white area in the phase diagram.

2) Shepp-Logan phantom reconstruction: The second test
is reconstructing the Shepp-Logan phantom. The results are
presented in Fig. 3. The sampling operator is a sub-sampled
two dimensional Fourier transform that measures only a certain
number of radial lines in the Fourier domain of the image, and
the analysis operator is the 2D difference operator. The stopping
criteria for all algorithms is set to the actual cosparsity of the
image under this operator (l = 128014 for a 256×256 size
image). Fig. 3 (a) presents the original Shepp-Logan image;
(b) shows the PSNR as a function of the amount of radial
lines used in the image reconstruction in the noiseless case. In
(c) AWGN is added to y with varying energy (x−axis) and
the PSNR is averaged over 10 realizations of the noise. For
this part we use a smaller image size 64× 64 with 10 radial
lines. Figures 3(d)-(f) show the restoration results of GALS,
GALSR, and GAP respectively from 30 radial Fourier lines of

5We refer the reader to [27] for a comparison to other methods in the same
experiment. We have chosen GAP as it has given there the best results.

Fig. 3: Shepp-Logan reconstruction from a set of sub-sampled
Fourier radial lines: (a) Input image of size 256 × 256; (b)
PSNR as a function of the number of radial lines used to
sample the Fourier transform of (a) without noise. Results
higher than 47db were truncated for display purposes (GLASR
achieves perfect reconstruction as soon as the number of
radial lines is larger than 14); (c) PSNR as a function of
the AWGN level (‖w‖/‖y0‖); (d) GALS reconstruction; (e)
GALSR reconstruction; and (f) GAP reconstruction. The PSNR
for reconstructions (d)-(f) is slightly larger than 40db with a
small advantage for GALSR.

Fig. 4: MRI image reconstruction: (a) original; (b) GALS
(PSNR = 31.05 dB); and (c) GALSR (PSNR = 31.65 dB).

the 256×256 Phantom image corrupted with AWGN with std
of 3% (‖w‖/‖y0‖). The PSNR for all methods was slightly
larger than 40db with a small advantage for GALSR.

3) MRI Image Reconstruction: The last experiment is
related to the issue of having only an approximate signal model.
Namely, the signals we meet in practice are not exactly cosparse.
For this experiment, we have chosen (256 × 256 crop of) a
MRI image generated from the FSL MNI152 T1 0.5mm image
data [32]. The setting of the problem is similar to the Shepp-
Logan case in the previous subsection, and the measurements
of the image are obtained along 60 radial lines in the Fourier
domain. However, no noise has been added. Fig. 4 presents
the reconstruction results of GALS and GALSR in this case,
which is better than the naive reconstruction of padding with
zeros and then applying the inverse transform (25.58 dB). It
can be seen that also in this case, where the cosparsity model
is inexact, we get a good reconstruction using our methods.
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V. CONCLUSION

In this work, we have presented two new pursuits for sparse
recovery under the synthesis model, along with a theoretical
study of their properties. We have shown that they provide
a good alternative to OMP and OLS with better theoretical
guarantees, which are similar (if not better) to the ones of SP
and CoSaMP, while not requiring a prior knowledge of the
size of the support (in the case of IOLSR). Both IOLSR and
OLSR are simple to implement and demonstrate little overhead
compared to OMP. While in this work, we have used the
matrix inversion Lemma to provide an efficient implementation
for them, other possibilities such as the QR or Cholesky
decomposition exist, which may be also used to improve the
computational efficiency [36], [49].

We posit that this kind of fast-converging strategy may
be helpful in applications suffering from highly coherent
dictionaries, as the correlation of an atom to the selected
support is built into the algorithms (in the form of the vector
ρ) and does not require additional computations.

We have also introduced two novel techniques for the
analysis cosparse model: An OLS like algorithm, called GALS,
and a version of it that incorporate replacements of atoms in the
support, named GALSR. Both are provided with an efficient
implementation. We have shown that in some applications this
approach can be favorable compared to other existing strategies.
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APPENDIX

A. Proof of Lemma II.3

Proof. By using lemma II.1, we may write

‖RÃy‖
2

= ‖y − PÃy‖
2 (56)

(a)
= ‖y‖2 − yTABATy − 1

r

(
yT
[
A a

] [ ê
−1

])2

,

where (a) follows from (5) and some simple algebraic steps.
Since ‖RAy‖2 = ‖y‖2−‖PAy‖2 = ‖y‖2−yTABATy, we
have,

‖RÃy‖
2 = ‖RAy‖2 −

1

r

(
yT (Aê− a)

)2
(57)

= ‖RAy‖2 − (yT
#       »

RAa)2.

Reordering (57) together with the fact that ‖PAy‖2 = ‖y‖2−
‖RAy‖2 leads to (7).

B. Proof of Lemma II.4

Proof. Without loss of generality, we prove this formula for
the last entry of x̂A (i.e. i = k). Let Ã =

[
A a

]
be with k

columns and consider the k-th entry of the expression x̂Ã =

(ÃT Ã)−1ÃTy = B̃ÃTy. Using Lemma II.1 together with
the notation therein we may rewrite x̂Ã as (recall A = Ã\k):

x̂Ã(k) =
1

‖RAa‖2
(aT − aTABAT )y,

which equals (8) for i = k. By permuting the entries of x̂ and
Ã, the same can be proved for all i ∈ [1, k].

C. Proof of Lemma II.5
Proof. From Lemma II.4, we have that

x̂A(i)2 =
1

‖RA\ia‖4
〈 #       »

RAa,y〉2.

Combining this with the expression for r in (6) that specifies
the value of the diagonal of B̃, we get that 〈 #       »

RAa,y〉 =
x̂(i)2/B̃(i, i). From Lemma 7 we have ‖RAy‖2−‖RÃy‖2 =

〈 #       »

RAa,y〉, which validates the claim.

D. Proof of second equality in (49) in Lemma (IV.4)
We provide here the proof for the equality

yT (CΛ − I)y =
∥∥RLΛΩΛM

†y
∥∥2
, (58)

where RLΛ = I − PLΛ and LΛ = QT
M⊥Ω

T
Λ ∈ R(n−m)×|Λ|.

Proof. In this proof, we will use the following identity (where
∼ mark cells that are not important for the proof):[

A B
C D

]−1

=

[
(A−BD−1C)−1 ∼

∼ ∼

]
(59)

Let M = USQT
M be the SVD decomposition of M where

S ∈ R{m×m} is a diagonal matrix with the singular values of
M , and U ∈ R{m×m} and QM ∈ R{n×m} are the left and
right singular-vector matrices respectively. From Lemma IV.3,

CΛ =
(
M(MTM +ΩT

ΛΩΛ)−1MT
)−1

.

Substituting in it

MT = Q

[
QT

MM
T

0

]
, ΩT

Λ = Q

[
QT

MΩ
T
Λ

LΛ

]
,

leads to
C−1
Λ =

[
MQM 0

]
(60)

·
[
QT

M (MTM +ΩT
ΛΩΛ)QM QT

MΩ
T
ΛL

T
Λ

LΛΩΛQM LΛL
T
Λ

]−1

·
[
QT

MM
T

0

]
,

where Q has canceled out due to its orthogonality. Notice that
LΛ has full-row rank, which follows from Lemma IV.1.6 Now,
using (59), we have
C−1
Λ =

[
MQM 0

]
·
[ (
QT

MM
TMQM +QT

MΩ
T
ΛRLΛΩΛQM

)−1 ∼
∼ ∼

]
·
[
QT

MM
T

0

]
= MQM

(
QT

MM
TMQM +QT

MΩ
T
ΛRLΛΩΛQM

)−1

·QT
MM

T ,

6To see this, first note that QM⊥ has full rank and thus LΛ is not of full
row rank only if ∃v 6= 0 such that u = QM⊥v and ΩΛu = 0. By the
definition of QM⊥ , we have that Mu = 0. Thus, we get that BΛu = 0 for
u 6= 0 in Lemma IV.1, which leads to a contradiction.
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where in the last equation, we have just opened the brackets.
Noticing that F ,MQM = US is invertible, we have that

CΛ =
(
F
(
F TF +QT

MΩ
T
ΛRLΛΩΛQM

)−1
F T
)−1

= F−T
(
F TF +QT

MΩ
T
ΛRLΛΩΛQM

)
F−1.

By opening the brackets, and then using the expression for F ,
we get

CΛ = I + F−TQT
MΩ

T
ΛRLΛΩΛQMF

−1

= I +US−1QT
MΩ

T
ΛRLΛΩΛQMS

−1UT

= I +MT†ΩT
ΛRLΛΩΛM

† ,

where in the last equality, we use the fact that M = USQT
M .

To complete the proof subtract I from the resulting expression
and multiply by y from both sides

E. Proof of Lemma IV.5

Proof. Let α, β, γ, and q be as in the Lemma, and de-
note ΓΛ∪i = (LΛ∪iL

T
Λ∪i)

−1 and vΛ∪i = ΩΛ∪iM
†y. We

first write the expression for ‖PLΛ∪ivΛ∪i‖
2 in terms of

‖PLΛvΛ‖
2 and the constants above. By definition PLΛ∪i =

LTΛ∪iΓΛ∪iLΛ∪i. Thus,

‖PLΛ∪ivΛ∪i‖
2

=
∥∥LTΛ∪iΓΛ∪iLΛ∪ivΛ∪i∥∥2

(a)
=

∥∥∥∥LTΛ∪i(ΓΛ − 1

1 + α
ΓΛqq

TΓΛ)(LΛvΛ + βq)

∥∥∥∥2

(b)
=

∥∥∥∥LTΛ∪i(ΓΛLΛvΛ +

(
β − γ

1 + α
− βα

1 + α

)
ΓΛq)

∥∥∥∥2

c
=

∥∥∥∥LTΛ∪i(ΓΛLΛvΛ +
β − γ
1 + α

ΓΛq)

∥∥∥∥2

d
=

∥∥∥∥LTΛ(ΓΛLΛvΛ +
β − γ
1 + α

ΓΛq)

∥∥∥∥2

+

∥∥∥∥qT (ΓΛLΛvΛ +
β − γ
1 + α

ΓΛq)

∥∥∥∥2

=

∥∥∥∥LTΛ(ΓΛLΛvΛ +
β − γ
1 + α

ΓΛq)

∥∥∥∥2

+

(
γ + α

β − γ
1 + α

)2

e
=

∥∥∥∥LTΛ(ΓΛLΛvΛ +
β − γ
1 + α

ΓΛq)

∥∥∥∥2

+
(γ + βα)2

(1 + α)2

f
= ‖PLΛvΛ‖

2
+ 2

β − γ
1 + α

γ +
(β − γ)2

(1 + α)2
α+

(γ + βα)2

(1 + α)2

g
= ‖PLΛvΛ‖

2
+ β2 − (β − γ)2

1 + α
, (61)

where the following steps were used in the transitions: In
step (a) we used the Sherman-Morrison formula on ΓΛ∪i =

(LΛL
T
Λ + qqT )−1 and LΛ∪ivΛ∪i =

[
LΛ q

] [ vΛ
β

]
=

LΛvΛ + βq. For step (b) multiply the brackets and substitute
the values for α, β, and γ in the appropriate places. Step (c)
follows from scalar algebra. Step (d) can be derived by noticing
that LTΛ∪i has |Λ|+ 1 rows and that its squared-norm can be
written as the sum of the first |Λ| rows plus the last row (namely,
qT , assuming, w.l.o.g., that i is the last entry in ΩΛ∪i). In step
(e), we use again the definition of α and γ and the fact that a
norm of a scalar is just its square value. Step (f) follows from

opening the remaining norm in the expression. Finally step
(g) is the result of the following expansion (set the common
denominator to be (1 + α)2 and look at the nominator):

2γ(β − γ)(1 + α) + (β − γ)2α+ (γ + βα)2

= 2γ(β + βα− γ − γα) + α(β2 − 2βγ + γ2)

+ γ2 + 2αβγ + β2α2

= 2γβ − γ2 − γ2α+ αβ2 + 2γβα+ β2α2

= (1 + α)2β2 − β2α− β2 + 2γβ − γ2 − γ2α+ 2γβα

= (1 + α)2β2 − (β2 − γ2)(1 + α)

Now, to conclude the proof, expand the expression for the
error from Lemma IV.4 for Λ ∪ i and combine with (61):

‖ΩΛ∪ix̂2‖2 =
∥∥RLΛ∪iΩΛ∪iM

†y
∥∥2

= ‖vΛ∪i‖2 − ‖PLΛ∪ivΛ∪i‖
2

= ‖vΛ‖2 + β2 − ‖PLΛ∪ivΛ∪i‖
2

= ‖vΛ‖2 + ‖PLΛvΛ‖
2

+
(β − γ)2

1 + α

= ‖ΩΛx̂1‖2 +
(β − γ)2

1 + α
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