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Abstract

We consider the problem of detecting abrupt changes in the distribution of a multi-dimensional
time series, with limited computing power and memory. In this paper, we propose a new, simple
method for model-free online change-point detection that relies only on fast and light recursive
statistics, inspired by the classical Exponential Weighted Moving Average algorithm (EWMA).
The proposed idea is to compute two EWMA statistics on the stream of data with different
forgetting factors, and to compare them. By doing so, we show that we implicitly compare recent
samples with older ones, without the need to explicitly store them. Additionally, we leverage
Random Features (RFs) to efficiently use the Maximum Mean Discrepancy as a distance between
distributions, furthermore exploiting recent optical hardware to compute high-dimensional RFs
in near constant time. We show that our method is significantly faster than usual non-parametric
methods for a given accuracy.

1 Introduction

The goal of online change-point detection is to detect abrupt changes in the distribution of samples
in a data stream. One seeks to detect a change as soon as it occurs, while minimizing the number of
false alarms. Online change-point detection has numerous practical applications, for instance medical
monitoring via the segmentation of EEG, ECG and fMRI signals [7, 33, 41], or detections of changes
in audio [6] or video [1, 28] streams. We refer to [35] for a thorough review. In recent applications,
the need arises to perform such methods on embedded devices, for instance in video streams from
body-worn or surveillance video cameras [2], or on data collected by smart phones [27]. In addition
to being constrained by limited power and memory, such personal devices collect data that can be
potentially sensitive, hence the need to process the stream on-the-fly, ideally without storing any raw
data.

In this paper, we propose a new approach for online, non-parametric change-point detection, whose
main advantage is that it does not require to store any raw data in memory, but only appropriate
smoothed quantities. It is inspired by: a) the classical Exponentially-Weighted Moving Average
(EWMA), but requires less prior knowledge about the in-control distribution of the data, and b) a
simple Sliding Window (SW) strategy in its model-free version, but is more efficient in memory and
preserves data privacy.

1.1 Framework: model-free methods and generalized moments

We consider a stream of samples (xt)t∈N with values in Rd with potentially large d. The goal of
online change-point detection is to detect changes in the distribution of the samples xt in a sequential
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manner. We assume that the samples are independent and identically distributed (i.i.d.) before and
after each change, and that there may be multiple changes in a row to be detected on-the-fly. As
we will see, some methods assume prior knowledge about the distributions before (and sometimes
after) each change, however we will consider that no prior knowledge is available here, and develop a
so-called model-free method.

Historically, many methods assume that the distributions of interest belong to a parametric family
of distributions whose likelihood pθ is entirely specified (often Gaussians), and rely on a (generalized)
likelihood ratio (GLR) test. However, such a complete specification is not always available. In a
non-parametric context, some methods then rely on approximating generic discrepancies between
distributions such as the Kullback-Leibler (KL) divergence, the total variation [3] or some optimal
transport-based distances [9]. However, it is well-known [44] that most of these metrics are difficult to
estimate in high dimension d, and/or may be too costly to compute in an online framework. On the
contrary, simpler methods are designed to detect changes in some quantity related to the distribution
such as the mean or the variance [13]. We consider a generalization of this last concept, namely,

to detect changes in a collection of generalized moments θΨ(π)
def.
= Ex∼πΨ (x), where π is the

distribution of the samples, and Ψ : Rd → H is a mapping to a normed space (H, ‖·‖) (generally,
H = Rm or Cm). We therefore introduce the following pseudometric on distributions:

dΨ(π, π′)
def.
= ‖EπΨ (x)− Eπ′Ψ (x)‖ , (1)

which measures how different two distributions are in terms of these moments. For instance, when
Ψ = Id, then θΨ(π) = Ex, and the underlying assumption is that changes will occur in the mean of
the distribution of the samples. This also includes higher order moments (Ψ(x) = x⊗k) or histograms
(Ψ(x) = (1x∈Bi)

k
i=1 where the Bi are regions of space). If infinite-dimensional spaces H such as

Reproducing Kernel Hilbert Spaces (RKHS) are considered, this framework also includes the so-called
kernel change-point detection [19,25], and dΨ is then referred to as the Maximum Mean Discrepancy
(MMD) [22]. We note that this framework does not, strictly speaking, include centered moments such
as the variance, however one could modify the definition of dΨ to compute the variance from first
order and second-order moments. We do not consider centered moments here for simplicity.

If the user has prior knowledge about which quantity θΨ(π) is susceptible to change over time,
then Ψ can be chosen accordingly. If not, we will see in Sec. 4 that a somewhat “universal” embedding
can be obtained by taking Ψ as kernel random features [36], which allows to efficiently approximate
the MMD with high probability and controlled memory resources.

1.2 Prior knowledge on the in-control statistic

As mentioned above, some methods assume prior knowledge about the in-control distribution, that
is, the distribution before the change. In our framework, it corresponds to the knowledge of the
generalized moments θ? = θΨ(π?), where π? is the in-control distribution.

One such classical approach is the Exponential Weighted Moving Average (EWMA) algorithm [37],
which we describe1 in Alg. 1. EWMA computes recursively a weighted average of Ψ (xt), with expo-
nential weights that favor the more recent samples:

zt = (1− Λ)zt−1 + ΛΨ (xt)

where 0 < Λ < 1. When this average deviates too much from θ?, an alarm is raised. The exponential
weights (instead of, say, uniform weights) reduce the detection delay, and increase robustness to
potentially irrelevant data in the past.

When H = Rm, a classical multivariate extension of EWMA is called Multivariate-EWMA, and
rely on the fact that every dimension may not need the same forgetting factor, and therefore replace

1Note that our description of EWMA is similar to the original [37], with the addition that the data are transformed
by the mapping Ψ.
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Require: Stream of data xt, function Ψ, in-control value θ?, forgetting factor 0 < Λ < 1, threshold
τ > 0, initial value z0

for t = 1, 2, . . . do
zt = (1− Λ)zt−1 + ΛΨ (xt)
if ‖zt − θ?‖ ≥ τ then

Flag t as a change-point

Figure 1: EWMA [37]

Require: Stream of data xt, function Ψ, in-control value θ?, forgetting factor 0 < Λ < 1, threshold
τ > 0
Initialize z2B = 1

B

∑B
i=1 Ψ (xi), z′2B = 1

B

∑B
i=1 Ψ (xB+i)

for t = 2B + 1, . . . do
zt = zt−1 + 1

B (Ψ (xt−B)−Ψ (xt−2B))
z′t = z′t−1 + 1

B (Ψ (xt)−Ψ (xt−B))
if ‖zt − z′t‖ ≥ τ then

Flag t as a change-point

Figure 2: Sliding Window (SW) (e.g., [3])

Λ by a diagonal matrix diag (Λ1, . . . ,Λm). In our case there is no assumption on the marginals of the
distribution of the data, and moreover it is not clear how the presence of the mapping Ψ would affect
this strategy, hence we consider a single forgetting factor instead, and note however that our method
could be extended when Λ is a matrix, which we leave for future work.

From our point of view, when considering high-dimensional data, the main advantage of EWMA
is that it is extremely fast and have low memory footprint, due to its recursive nature: when a
new sample arrives, the cost of the update is essentially that of computing Ψ (x) once. Moreover, it
preserves data privacy, in the sense that it never stores raw samples but only a smoothed statistic
computed from them. However, EWMA requires the prior knowledge of θ?, which severely limits its
use in some cases where it is not available.

1.3 Methods without prior knowledge

To solve this last problem, methods with no prior knowledge requirement about the in-control distri-
bution were proposed. Many of them are two-steps adaptation of the previous class of approaches: the
parameter θ? is estimated from some training samples during a Phase I, before the actual detection
during a Phase II [26,47]. In the online setting, where several changes can happen during a continuous
run, this strategy is often adapted in a “sliding windows” approach: a window of recent samples is
compared against a window of samples that came immediately before [3,30,31]. In our settings, given
a window size B, the most natural approach is to compare an empirical average of Ψ (x) over the last
B samples with one computed on the B samples that came before, to approximate dΨ. When the
difference is higher than a threshold, an alarm is raised. We refer to this simple algorithm as Sliding
Window2 (SW, Alg. 2).

Such model-free methods are useful in a wide class of problems, since they can adapt to potentially
any in-control situation. Despite these advantages, they can have a high memory footprint, since they
store raw data that may be high-dimensional (see Tab. 1 in Sec. 3).

2While this simple algorithm appears several times in the literature [3, 30], as far as we know it does not have a
designated name.
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1.4 Contributions and outline of the paper

The main goal of this paper is to propose a method that gets the best of both worlds, that is, that
does not store any raw data, like EWMA, while being simultaneously free of prior knowledge like SW.
To this end, in Sec. 3, we introduce “No-prior-knowledge” EWMA (NEWMA), based on a simple
and intuitive idea: compute two EWMA statistics with different forgetting factors, and flag a change
when the distance between them crosses a threshold. We show that NEWMA mimics the behavior of
the SW algorithm by implicitly comparing pools of recent and old samples, but without having to keep
them in memory. In Sec. 4, we show how choosing Ψ as Random Features (RFs) [36] brings the method
closer to kernel change-point detection [25], and in particular its online version the so-called Scan-
B algorithm [30], while retaining low complexity and memory footprint. In Section 5, we examine
how to set the detection threshold. We first review two classical “parametric” approaches, which
are however generally not applicable in practice in model-free situations, then propose a numerical
procedure for computing on-the-fly a dynamic threshold τ , which empirically performs better than
a fixed threshold. Experiments over synthetic and real data are presented in Sec. 6, where we take
advantage of a sublinear construction of RFs [29] and, more strikingly, of a recent development in
optical computing [38] that can compute RFs in O (1) for a wide range3 of dimensions d and numbers
of features m. We show that our algorithm retrieves change-points at a given precision significantly
faster than competing model-free approaches.

2 Related Work

As mentioned before, the idea of using several forgetting factors in recursive updates has been pro-
posed in the so-called Multivariate EWMA (MEWMA) [27,32], which uses a different factor for each
coordinate of multivariate data, or to optimize the detection over different time-scales [24]. It is differ-
ent from NEWMA, which computes and compares two recursive averages over the same data. Closer
to NEWMA, it has been pointed out to us that the idea of using several forgetting factors is used in
a trading method called moving average crossover (which, to the best of our knowledge, has never
been published): it consists in computing two recursive averages over uni-dimensional data (such as
pricing data), and interpreting the time when they “cross” (change relative position) as indicating
a smoothed general trend of pricing going up or down. In addition to handling multi-dimensional
data (which nullifies the meaning of going “up” or “down”), NEWMA exploits these statistics in a
very different way: it compute the difference between the two recursive averages, in order to extract
time-varying information without keeping any sample in memory. To the best of our knowledge, the
key idea behind NEWMA has not been proposed before.

Dimension reduction methods such as sketching have been used in the context of high-dimensional
change-point detection [45]. In our notations, it corresponds to choosing a mapping Ψ which is
dimension-reducing (m � d). While the authors in [45] then considers classical parametric methods
in the new low-dimensional space, in a non-parametric context their approach could be combined with
NEWMA for additional memory gain.

As described in Section 4, when using RFs as the mapping Ψ, our framework bears connection
with the kernel change-point detection methodology [19, 25], in which the original estimator of the
MMD based on a U -statistic is considered [22] instead of averaged random features. In particular, an
online version of kernel change-point has been proposed in [30], with the so-called Scan-B algorithm.
It is a variant of the sliding window approach, which however compares a window of recent samples
with several past windows, instead of only one as in SW.

Finally, the use of low-dimensional mappings or RFs have been proposed for fast anomaly de-
tection (which is slightly different from change-point detection) in [16, 20], where the authors also
describe how to exploit low-rank approximations to accelerate the method. In our paper, we show

3The limitations are due to the optical hardware itself. Currently, state-of-the-art Optical Processing Units (OPU)
can compute random features in constant time for d and m in the order of millions.
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Require: Stream of data xt, function Ψ, forgetting factors 0 < λ < Λ < 1, threshold τ > 0, initial
value z0 = z′0
for t = 1, 2, . . . do

zt = (1− Λ)zt−1 + ΛΨ (xt)
z′t = (1− λ)z′t−1 + λΨ (xt)
if ‖zt − z′t‖ ≥ τ then

Flag t as a change-point

Figure 3: NEWMA (proposed)

how NEWMA offers a different kind of acceleration in the context of change-point detection, especially
when exploiting optical RFs [38].

3 Proposed algorithm

0

Weights of z

PresentIndex 0

Weights of z
Weights of z'

PresentIndex 0

Weights of z
Weights of z'

PresentIndex

Figure 4: Weights used in the empirical average computations in EWMA (top left), SW (top right),
and NEWMA (bottom) algorithms as a function of time. In orange (resp. blue), the weights associated
to the average zt (resp. z′t).

Table 1: Computational and memory footprint of the main algorithms discussed in this article. CΨ

(resp. MΨ) indicates time complexity (resp. the memory requirement) of computing Ψ (see Sec. 4.3).
In Scan-B, N is the number of windows of size B considered.

ALGORITHM TIME MEMORY

EWMA (Alg. 1) CΨ +m m+MΨ

Model-free:
SW (Alg. 2) CΨ +m Bd+m+MΨ

Scan-B [30] NBd NBd
NEWMA (Alg. 3) CΨ +m m+MΨ

In this section we introduce the proposed algorithm NEWMA (Alg. 3), give some of its basic
theoretical properties, and derive heuristics to choose some of its hyperparameters.

3.1 The NEWMA algorithm

NEWMA is based on the following idea: compute two EWMA statistics with different forgetting
factors λ < Λ, and raise an alarm when these two statistics are too far apart. The intuition behind
this idea is simple: the statistic with the larger forgetting factor Λ gives “more importance” to recent
samples than the one that uses λ, so the distance between them should increase in case of a recent
change.
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To help illustrate this, in Fig. 4, we schematically represent the three different weighting procedures
of EWMA, SW and NEWMA. As mentioned in the introduction: 1) EWMA computes recursively
one average with exponential weights, but requires prior knowledge of a control value to compare
with; 2) SW computes averages in two different time windows, but needs to keep in memory the last
2B samples for this purpose; and 3) by recursively computing two exponentially weighted averages
with different forgetting factors, NEWMA compares pools of recent and old samples (see Prop. 1 just
below), but does not need to store them in memory. By this point of view, NEWMA relies on the
same principle as SW (which will be our main baseline for comparison), but is expected to be more
efficient computationally.

Remark 1. Unlike SW, the NEWMA algorithm is very specific to the use of generalized moments.
Indeed, since SW has access to the raw data in two time windows, it could potentially estimate any
generic metric between batches of samples, such as the KL-divergence, the total variation [3] or the
Wasserstein distance [9], although we mentioned in the introduction their potential issues in high
dimension. On the contrary, NEWMA does not have access to the raw data, and is specifically based on
computing on-the-fly generalized moments with different forgetting factors. Although a finite number
of generalized moments can never capture all information for all probability distributions, we will see
in Section 4 how randomly chosen moments approximate the MMD, which is a true metric.

In Table 1, we compare their computational costs, along with the Scan-B algorithm of [30] described
in Sec. 2 and used in our experiments. We can see that the complexity of MA and Scan-B is generally
dominated by the storage of the raw data, while NEWMA has the same complexity as EWMA. A
crucial factor is the computational cost of Ψ, see Sec. 4 for the case of kernel random features.

3.2 Preliminary analysis of NEWMA

Let us formalize a bit the intuition behind NEWMA, by showing first that it indeed computes im-
plicitely a difference between empirical averages in two different time windows. The following, simple
proposition is showed in App. B.1 in the supplementary material.

Proposition 1 (Rewriting the detection statistic). Define B = B(λ,Λ)
def.
=
⌈

log(Λ/λ)
log((1−λ)/(1−Λ))

⌉
,

and run NEWMA (Alg. 3). Then, for any t > B,

zt − z′t = C

(
t∑

i=t−B+1

aiΨ (xi)−

(
b0z0 +

t−B∑
i=1

biΨ (xi)

))
,

where C = C(λ,Λ)
def.
= (1 − λ)B − (1 − Λ)B ∈ (0, 1), and ai, bi are positive numbers which depend

only on Λ and λ, such that
∑t
i=t−B+1 ai = 1 and

∑t−B
i=0 bi = 1. The exact expressions of ai and bi,

can be found in App. B.1.

We see that NEWMA indeed computes the difference between a weighted empirical average of
Ψ (xi) over the last B samples (where B depends on Λ and λ) and an empirical average over the
samples that came before, and therefore that its behavior intuitively mimics that of SW, without the
requirement to store raw data in memory.

Using Prop. 1 and simple concentration inequalities, we can show basic probabilistic bounds on
the detection statistic. We recall that we designed our algorithm to detect changes through the lens
of θΨ(π) = EΨ (x), and defined a pseudometric dΨ in (1). The following proposition shows simple
“pointwise” bounds on zt − z′t under the null or when there is a change in the last B samples. Its
proof, based on Mc Diarmid’s concentration inequality, is given in App. B.2 in the supplementary
material. We note that such pointwise results are different from usual quantity examined in change-
point detection such as the mean time between false alarm, which will be examined in Section 5.1.
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Proposition 2 (Bounds at a given time). Suppose that M
def.
= supx∈Rd ‖Ψ (x)‖ < ∞. Let t > B

be a fixed time point, and ρ ∈ (0, 1) be some probability of failure.

(i) Assume that all samples x1, . . . , xt are drawn i.i.d. from π. Then, with probability at least 1 − ρ,
we have

‖zt − z′t‖ ≤ ε1 + ε2 , (2)

where ε1 = 4
√

2M
√

(Λ + λ) log(1/ρ) and ε2 = [(1− λ)t − (1− Λ)t] ‖z0 − EπΨ (x)‖.

(ii) Assume that the last B samples are drawn i.i.d. from a distribution π′, and all the samples that

came before are drawn i.i.d. from π (that is, xt−B , . . . , xt
i.i.d.∼ π′ and x1, . . . , xt−B

i.i.d.∼ π). Then,
with probability at least 1− ρ on the samples, we have

‖zt − z′t‖ ≥ CdΨ(π, π′)− ε1 − ε2 . (3)

where C is defined as in Prop. 1.

Prop. 2 shows that, when no change occurs (under the null) the detection statistic is bounded with
high probability, and when the last B samples are distributed “differently” from the previous ones,
it is greater than a certain value with high probability. As expected, this difference is measured in
terms of the pseudometric dΨ. Note that a more precise statement can be found in App. B.2 in the
supplementary material.

Remark 2. For the sake of clarity, in Prop. 2, (ii), we assumed that exactly the last B samples were
drawn from π′, and that all samples that came before were drawn from π. In App. B.2, we show a
more general result which explicits robustness to slight deviations from this assumption.

3.3 Choice of the forgetting factors Λ and λ

Although the role of the hyperparameters (Λ, λ) in the NEWMA algorithm is simple to understand
intuitively, it is not clear how to set their values at this stage. On the contrary, the window size
B in Prop. 1 has a more interpretable meaning: it is the number of recent samples compared with
old ones. While it is known that the choice of a window size is a difficult problem and that there is
no “universally” good choice, we assume that practitioners are more familiar with choosing a proper
window size (sometimes by simple trial-and-error), than they are with choosing forgetting factors that
may be difficult to interpret. Hence, in this section, we derive a simple heuristic to set both parameters
(Λ, λ) for a given B, which we assume to be given by the user. Methods to guide the selection of B
are left for future investigations. We build upon the theoretical results of the previous section. We
note that choosing a forgetting factor for EWMA is also known to be a difficult problem [11].

Our starting point is the expression of the window size B derived in Prop. 1. We first note that a
possible parameterization of NEWMA is through B and one of the forgetting factors, say Λ: given B

and Λ > 1
B+1 , there is a unique λ = λΛ,B ≤ 1

B+1 such that log(Λ/λ)
log((1−λ)/(1−Λ)) = B in Prop. 1. Indeed,

f : x 7→ x(1 − x)B is increasing on [0, 1
B+1 ] and decreasing on [ 1

B+1 , 1], so the equation f(x) = f(Λ)
has exactly one solution in [0, 1] besides Λ itself. Thus λ is uniquely defined by (B,Λ). We now turn
to the choice of Λ given a user-defined window size B.

From Prop. 2, we can see that the null hypothesis is intuitively distinguishable from the alternative
if the bound under the null (2) is smaller than the guaranteed deviation (3) when there is a change,
that is, ε1 + ε2 ≤ CdΨ(π, π′)− ε1 − ε2 , which is equivalent to

dΨ(π, π′) ≥ 2(ε1 + ε2)/C .

Since we want our algorithm to be sensitive to the smallest possible change in dΨ(π, π′), the previous
reasoning suggest that a good choice for Λ is to minimize the right-hand side of this expression. Note
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that ε1 depends on the chosen probability of failure ρ: the smaller it is, the larger dΨ(π, π′) should
be, however at a mild logarithmic rate.

To obtain our final heuristic, we replace ‖z0 − EπΨ (x)‖ by the upper bound 2M in in the expression
of ε2, and we take t = 2B; since ε2 −−−→

t→∞
0 and intuitively we consider that our algorithm must be

“applicable” as soon as we have received twice the window size in data. In definitive, for a user-defined
B, we propose the following heuristic to choose4 Λ:

Λ?= arg min
Λ∈( 1

B+1 ,1)

√
λΛ,B + Λ + (1− λΛ,B)2B − (1− Λ)2B

(1− λΛ,B)B − (1− Λ)B
,

where we recall that λΛ,B is the unique λ such that log(Λ/λ)
log((1−λ)/(1−Λ)) = B. Once Λ? is chosen, we

naturally set the corresponding λ? = λΛ?,B to respect the window size B. We note that Λ? and λ? do
not have explicit expressions with respect to B, but they can easily be approximated by simple one-
dimensional optimization schemes. In practice, given Λ and B, we find λΛ,B with a simple gradient
descent, and we select Λ? with an exhaustive search over a fine grid of [0, 1].

This heuristic is seen to yield good results in practice in many situations. We leave for future work
a more rigorous proof of optimality in simpler settings (e.g., Gaussian data).

4 Choice of Ψ: Random Features

Let us now turn to the important choice of the embedding Ψ. We recall that Ψ is user-defined, and
that the algorithms studied in this paper are sensitive to variations in the collection of generalized
moments θΨ(π) = EπΨ (x). As mentioned before, if the practitioner knows in advance which statistic
is susceptible to vary, then Ψ can be chosen accordingly. However, one does not necessarily have a
priori knowledge on the nature of the change. In this section, we describe a generic embedding related
to kernel metric on distributions.

4.1 Maximum Mean Discrepancy

For most Ψ, dΨ(π, π′) is only a pseudometric on probability distributions: for instance, when Ψ (x) =
x, it can only distinguish distributions that have different means. Ideally however, one would like dΨ to
be a true metric, that is, we want dΨ(π, π′) = 0 if, and only if, π = π′. Unfortunately, for any mapping
Ψ with values in a finite-dimensional space, dΨ cannot be a true metric—otherwise θΨ(·) would be
an isometry between an infinite-dimensional space and a finite-dimensional space. In particular, this
is the case for any Ψ used in practice. Luckily, as described in the rest of this section, an interesting
strategy is to leverage the Random Features methodology to obtain random embeddings Ψ such that
dΨ(π, π′) approximates a true metric between distributions with high probability.

A possible choice for such a metric is the Maximum Mean Discrepancy (MMD, [22]). Given a pos-
itive definite kernel κ on Rd, take H as the Reproducing Kernel Hilbert Space (RKHS5) associated to
κ. If we set Ψ (x) = κ(x, ·) and ‖·‖ = ‖·‖H, then, in our notation, dΨ(π, π′) = ‖Eπκ(x, ·)− Eπκ(x, ·)‖H
is the MMD between π and π′, that we denote by MMD(π, π′). When the kernel κ is characteristic, it
is a true metric. Many conditions have been formulated over the years for κ to be characteristic [40],
and for instance the Gaussian kernel is characteristic. First introduced in the context of two-sample
test, the MMD appears quite naturally in the context of kernel change-point detection [19,25] and in
particular the online Scan-B algorithm [30].

4Note that we discard the multiplicative constants as well as log 1
ρ

, which we found to have negligible effect in

practice.
5A good introduction to the theory of RKHSs is e.g. [5]
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4.2 Random Features

In practice, since Ψ (x) = κ(x, ·) cannot be stored in memory to compute the theoretical MMD,
empirical estimates thereof are used. Such estimates usually make use of the so-called kernel trick,
and require the computation of a U -statistic depending on populations drawn from both distributions:
it is for instance the method used in the kernel Scan-B algorithm [30]. Since we do not want to
store samples when NEWMA is running, least of all perform costly computations on these samples,
we resort to kernel Random Features (RF, [36]), exploiting the simple fact the Euclidean distance
between averaged random features approximates the MMD with high probability over the features. RFs
and MMD have been combined together before, for accelerating the estimation of the MMD [42] or
as a mean to design random projections of distributions in an inverse-problem context [23]. We also
note that alternatives to RFs have been studied in the MMD literature [10], which is an interesting
path for future work.

Let us briefly describe the RF machinery. Assume that the kernel κ can be written as κ(x, x′) =
Eω∼Γφω(x)φω(x′) for a family of functions φω : Rd → C parameterized by ω ∈ Rq, and a probability
distribution Γ on Rq. This is for instance the case for all translation-invariant kernels [4, 36]: by

Bochner’s theorem, they can all be written under this form for complex exponentials φω(x) = eiω>x

and some symmetric distribution Γ. Using complex exponentials as φω is usually referred to as Random

Fourier Features (RFF). The most classical example is the Gaussian kernel κ(x, x′) = e−
‖x−x′‖2

2σ2 , which
is written under this form for a Gaussian distribution Γ = N (0, σ−2Id).

For some (large) integerm ∈ N, the RF paradigm consists in drawingm parameters ω1, . . . ,ωm
i.i.d.∼

Γ and defining Ψ : Rd → Cm as

Ψ (x)
def.
=

1√
m

(
φωj (x)

)m
j=1

, (4)

and taking ‖·‖ as the classical Hermitian norm on Cm. A simple computation (see the proof of Prop. 3
in App. B.3) then shows that dΨ(π, π′) ≈ MMD(π, π′), with high probability over the ωj . With this
choice of Ψ, we have the following result similar to Prop. 2.

Proposition 3 (EWMA-RF pointwise detection). Suppose that supx,ω |φω(x)| ≤ M . Define
Ψ (·) as in Eq. (4). Let ρ ∈ (0, 1) be a probability of failure. Suppose that the assumptions of Prop. 2,
(ii) hold. Then, with probability at least 1− 2ρ on both samples xi and parameters ωj, it holds that

‖zt − z′t‖ ≥ C
(

MMD2(π, π′)− εm
) 1

2

+
− ε1 − ε2 , (5)

where (x)+ = max(x, 0) and εm = 2
√

2M2
√
m

√
log 1

ρ .

By the previous proposition, if the MMD between π and π′ is large, then with high probability
so is the deviation of ‖zt − z′t‖. The additional error

√
εm is of the order of the previous error ε1 if

m = O
(
(Λ + λ)−2

)
.

The choice of a good kernel κ is a notoriously difficult problem. Ideally, one would choose it so as to
maximize MMD(π, π′), however neither π nor π′ are known in advance in our setting. In practice, we
use the Gaussian kernel. Having access to some initial training data, we choose the bandwidth σ using
the median trick as in [30]. We leave for future work more involved methods for kernel selection [46].

4.3 Fast random features and computational cost

A crucial factor in the application of NEWMA is the complexity of the mapping Ψ, both in compu-
tation time or memory footprint of the parameters necessary to compute it, which we respectively
denoted by CΨ and MΨ in Table 1. For usual RFFs [36], computing Ψ (x) requires storing the dense
matrix of frequencies ωj ∈ Rd, and performing a costly matrix-vector product. Therefore, in this case
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both CΨ and MΨ scale as O (md), which somehow mitigates the computations advantages of using
NEWMA over more costly methods.

However, a large body of work is dedicated to accelerate the computation of such random features.
For instance, the Fastfood (FF) approximation [29] reduces the time complexity to O (m log d) and
memory to O (m).

More strikingly, in [38], the authors build an Optical Processing Unit (OPU), to which we had had
access for our experiments (Sec. 6), that computes random features in O (1) and eliminates the need
to store the random matrix. Let us briefly describe how the OPU operates. To compute some random
mapping

(
φωj (x)

)m
j=1

, the signal x is first encoded into a light beam using a Digital Micromirror

Device (DMD). The beam is then focused and scattered through a layer of heterogeneous material,
which corresponds to performing many random linear operations on the underlying signal. Then, the
amplitude is measured by a camera, which adds a non-linearity on the output. The corresponding
kernel, which is imposed by the physical device, is an elliptic kernel whose expression is given in [38].
We refer the reader to [15,38] for complete details on the process. In addition to being able to compute
RFs in O (1) for m, d in the order of millions (for current hardware), OPUs are also significantly less
energy-consuming than classical GPUs.

We summarize the respective complexities of these three approaches in Table 2.

Table 2: Time complexity CΨ and memory requirement MΨ for different Random Features schemes.

RFF FF OPU

CΨ O (md) O (m log d) O (1)
MΨ O (md) O (m) O (1)

5 Setting the threshold

In this section, we go back to the case of any general mapping Ψ. An important question for any
change-point detection method that tracks a statistic along time is how to set the threshold τ above
which a change-point is detected. In this section, we begin by adapting to NEWMA two classical
approaches that use the property of the algorithm under the null hypothesis. However, while they
are interesting in their own right, these approaches generally cannot be directly used in practice since
they require to know the in-control distribution π. Hence we describe an efficient numerical procedure
to dynamically adapt the threshold during a continuous run with multiple changes.

5.1 Mean time between false alarms

A classical method to set the threshold τ is to adjust a desired mean time between false alarms under

the null, defined as T
def.
= E [inf {t | t is flagged}] , where the expectation is over the samples under the

null (that is, drawn i.i.d. from some distribution π). In the literature, it is often referred to as the
Average Run Length (ARL) under control.

Unless strong assumptions are made on π, it is often impossible to derive a closed-form expression
for the ARL. A possible strategy is to estimate it using some training data, however this method is
impractical in a continuous run with multiple changes. We will derive simpler strategies in the next
sections. For theoretical purposes, we nevertheless show that it is possible to adapt the Markov chain-
based proof developed for classical EWMA in [17] to NEWMA: this method derives an expression for
the ARL – however, as we mentioned, it rarely has a closed-form expression and requires unreasonable
prior knowledge. Unlike the results from the previous sections, our analysis is valid without any
boundedness assumption on Ψ. We present our theorem in the unidimensional case H = R.

Theorem 4 (Average Run Length of NEWMA). Assume that Ψ : Rd → R maps to a unidimen-

sional space, and assume that Ψ (X) has a density under the null. Denote by F (x)
def.
= PX∼π (Ψ (X) ≤ x)

10



its cumulative distribution function. For any ε > 0, define {a1, . . . aM} an ε-grid of [−1/ε, 1/ε], that

is, M
def.
=
⌈

2
ε2

⌉
and ai

def.
= (i − 1)ε − 1/ε. Then, consider the list of all couples uk = (ai, aj) such

that |ai − aj | ≤ τ , indexed by 1 ≤ k ≤ K for some K ≤ M2 that depends on ε and τ . For any
uk1 = (ai1 , aj1) and uk2 = (ai2 , aj2), define

pk1k2 =

{
F (u2)− F (u1) if u1 < u2

0 otherwise.

where 

u1 = max
(

1
Λ (ai2 − (1− Λ)ai1 − ε/2),

1
λ (aj2 − (1− λ)aj1 − ε/2)

)
,

u2 = min
(

1
Λ (ai2 − (1− Λ)ai1 + ε/2),

1
λ (aj2 − (1− λ)aj1 + ε/2)

)
.

Define the matrix P = [pk1k2 ]Kk1,k2=1. Then, we have

T = 1 +
∑
`≥1

lim
ε→0

e>1 P`1K , (6)

where T is the ARL of NEWMA, 1 = [1, . . . , 1]> and e1 = [1, 0, . . . , 0]>.

In App. A.1 we prove a (quite notation-heavy) more general version of this theorem in the case
where Ψ : Rd → Rm is a multidimensional map, in which case the grid {ai} is replaced by an ε-net.

From (6), it is difficult to describe precisely the effect of the different parameters of NEWMA
on its ARL. Naturally, the larger the threshold τ is, the higher the ARL is (in Theorem 4, a higher
threshold results in a larger K). Similarly, a larger window size B in Proposition 1 intuitively results in
a “smoother” algorithm and a higher ARL, although it is less obvious in the theoretical expression. In
simple cases where F is known, it is possible to perform numerical simulations using (6). In general, it
is impossible to exchange the infinite sum “

∑
`≥1” and the limit “ε→ 0” in (6), as this would require

uniform convergence. However, in practice, for numerical purpose, we can fix a small ε > 0 and use
the identity

∑
`≥0 A` = (Id−A)−1 to approximate T ≈ e>1 (Id−P)−11. We illustrate this principle

in Fig. 5 with a Gaussian distribution Ψ (X) ∼ N (0, 1), using respectively Th. 4 and the original
approach by [17], as well as numerical simulations of runs on synthetic data. As we mentioned before,
when the in-control distribution π is not known (or, more precisely, when the cumulative distribution
function F is not known), Th. 4 cannot be directly applied. In some cases [30], one can obtain an
asymptotic expression for T when τ → ∞ which does not depend on π, which we leave for future
work.

5.2 Asymptotic distribution under the null

Another, arguably simpler approach to set the threshold τ is to derive the distribution of ‖zt − z′t‖
under the null, and set τ to obtain a desired probability of exceeding it. In this section, we derive an
asymptotic result on the distribution of this statistic when λ→ 0 and t→∞. Unlike Prop. 2, where
Ψ is assumed uniformly bounded, it relies on the slightly weaker assumption that Ψ has a finite fourth
order moment.

Theorem 5 (Convergence under the null). Assume c = Λ/λ > 1 is fixed, and let Λ → 0, with

t ≥ 2
λ log 1

λ . Assume that all samples xi are drawn i.i.d. from π. Suppose that Eπ ‖Ψ (x)‖4 < +∞.

Set µ
def.
= EπΨ (x), and K(x, x′)

def.
= 〈Ψ (x)− µ,Ψ (x′)− µ〉H.

Define the eigenvalues and eigenvectors of K in L2(π), i.e., define ξ` ≥ 0 and ψ` ∈ L2(π) such
that K(x, x′) =

∑
`≥1 ξ`ψ`(x)ψ`(x

′) and 〈ψ`, ψ`′〉L2(π) = 1`=`′ .

11
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Figure 5: Comparison of the theoretical and observed values of T for NEWMA (resp. EWMA) with
respect to τ , with π = N (0, 1), Ψ (x) = x, Λ = 2 · 10−1 and λ = 10−1. The simulations are averaged
over 1000 runs, the theoretical expression is obtained with Th. 4 (resp. [17]) with a grid of precision
ε = 2 · 10−2. Here we do not qualitatively compare EWMA and NEWMA, but rather illustrate the
quality of the theoretical approximations for the ARL.

Then,

1

λ
‖z′t − zt‖

2 L−−−→
η→0

Y
def.
=

(1− c)2

2(1 + c)

∑
`≥1

ξ`W
2
` , (7)

where (W`)`≥1 is an infinite sequence of independent standard normal random variables.

0 10 20 30

Theory
Simu.

Figure 6: Distribution of 1
λ ‖zt − z′t‖

2
when λ→ 0 as predicted by Th. 5, on a toy example. Namely, π

is the uniform distribution on [0, 1] and Ψ(x) =
[√
ξ`ψ`(·)

]30

`=1
is defined as a collection of eigenfunc-

tions ψ`(x) =
√

2 cos(2π`x), where the eigenvalues (ξ`)
30
`=1 are randomly generated. We perform 1000

simulations of both Eq. (7) and NEWMA with Λ = 2 · 10−2, λ = 10−2.

The proof, given in App. A.2, follows closely [39] (Sec. 5.5.2) adapted to our setting, with the use
of a multivariate version of Lindeberg’s central limit theorem (recalled as Th. 12 in the supplementary)
instead of the classical Central Limit Theorem. Th. 5 allows to set the threshold τ if the eigenvalues
ξ` are (approximately) known, for instance they can be estimated using the Gram matrix of K on
training data [21], which we leave for future work. In Fig. 6, we illustrate the result on a toy example.
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Require: Stream of detection statistics St, estimation rate 0 < α < 1, coefficient a
Initialize µ0 = 0 (mean), µ

(2)
0 = 0 (second order moment)

for t = 1, 2, . . . do
µt = (1− α)µt−1 + αS2

t

µ
(2)
t = (1− α)µ

(2)
t−1 + αS4

t

σt =

√
µ

(2)
t − µ2

t

if S2
t ≥ µt + aσt then

Flag t

Figure 7: Adaptive Threshold procedure for any online change-point algorithm St, under the assump-
tion that S2

t is approximately Gaussian.

5.3 Choice of an adaptive threshold

The two strategies presented above are generally difficult to carry out in practice, since we do not
know the in-control distribution π. If we had access to training data, a classical method would be to

estimate either the ARL or the distribution of St
def.
= ‖z′t − zt‖ during a “Phase 1” estimation, before

the actual run. In the case where we do not have access to training data beforehand, we propose to
adapt the second strategy and perform an online estimation of the distribution of the statistic St,
which yields a dynamic threshold τt that can adapt to multiple changes in a continuous run (Fig. 8).

According to Thm. 5, S2
t asymptotically follows a distribution formed by a linear combination of

an infinite number of independent centered normalized Gaussians with unknown weights ξ`. While
it would be possible to estimate these weights with relatively heavy computations by maintaining a
Gram matrix [21], in the spirit of the paper we propose a light method that assume that S2

t itself
is approximately Gaussian: indeed, it is easy to see that with additional assumptions on the ξ`,
generalizations of the Central Limit Theorem (see e.g. Th. 12) would guarantee that with proper
normalization the r.h.s. of (7) converges to a Gaussian (details are omitted here).

Hence, if we consider S2
t to be Gaussian, we just need to estimate its mean µt and standard

deviation σt, which we do with a simple online estimation procedure using exponential weights with
a learning rate α (Alg. 7), to continuously adapt in the case of multiple changes. Then the threshold
at time t is set as τ2

t = µt + aσt, where a is chosen according to the desired quantile of the normal
distribution (e.g., a = 1.64 for 5% of false alarms). Recall that the amplitude of a change between
π and π′ is approximately described by (3) (and (5) when using RFs), and that we can expect a
successful detection when it is higher than the threshold.

While this method relies on a heuristic than may not necessarily be satisfied, we found in practice
this adaptive procedure to perform better than any fixed threshold, while avoiding having to set it.
In our experiments, we applied the same strategy to other change-point detection algorithms that
produce positive statistics St such as SW or Scan-B, and found the procedure to perform extremely
well in each case. We leave its theoretical analysis for future work, and emphasize again that, in
case where training data is available, more complex or computationally intensive procedures could be
used.

6 Experiments

In this experimental section we compare several model-free approaches: NEWMA where Ψ is one
of the three different random features schemes described in Sec. 4: classical RFFs [36], FF [29], or
OPU [38], the SW algorithm (Alg. 2, [3]) with RFFs, and the kernel Scan-B algorithm [30] with N = 3

windows. Scan-B is implemented with a Gaussian kernel κ(x, x′) = e−
‖x−x′‖2

2σ2 with a bandwidth σ
chosen by the median trick. All other methods use RFs that correspond to the same kernel, either
complex exponentials for RFFs (see Section 4.3) or the Fastfood (FF) method [29], except when using
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Figure 8: Illustration of the adaptive threshold procedure. The dotted line indicate a change, the blue
line is the NEWMA statistic ‖zt − z′t‖, and in yellow line is the adaptive threshold computed online
as described in Sec. 5.3.

the OPU, for which the RFs and corresponding kernel are imposed by the optical hardware [38].

Remark 3. We do not compare NEWMA with parametric methods such as GLR or CUSUM, or
methods requiring prior knowledge such as EWMA, since the settings are very different and fair
comparison would be difficult. In the presence of parametric modelling assumptions or prior knowledge,
we naturally expect the algorithms exploiting them to perform better than model-free methods such as
SW, Scan-B or NEWMA.

The experiments run on a laptop with an Intel Xeon Gold 6128 3.40GHz. The code is available at
https://github.com/lightonai/newma.
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Figure 9: Time of execution on 12000 samples with m = 3000 RFs for NEWMA and SW, window
size B = 250 for Scan-B and SW, and dimension d = 100 unless otherwise precised.

6.1 Time of execution

In Fig. 9 we examine the time of execution of the algorithms with respect to the dimension d of the
data and window size B. Being similar, Scan-B and SW have approximately the same running time.
As expected, NEWMA-FF is sublinear in the dimension, and NEWMA-OPU is almost independent of
the dimension and much faster than the other approaches in high dimension. The results also confirm
that NEWMA’s complexity is independent of B, while that of Scan-B increases linearly with B.
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Figure 10: Effect of the choice of hyperparameters in NEWMA. The thick red line indicates the
proposed choices.

6.2 Comparison of algorithms on synthetic data

Next we examine the detection performance of the algorithms on synthetic data. We generate the
data as follows: 106 samples are drawn from Gaussian Mixture Models (GMM) in dimension d = 100
with k = 10 components, and the GMM changes every n = 2000 samples (at each change, we draw k
new vector means according to a centered Gaussian distribution, k new covariance matrices from an
inverse-Wishart distribution, and k new mixing weights from a Dirichlet distribution), resulting in 500
changes to detect in a row. We recall that these settings are more typical of online methods, where
changes are detected on-the-fly, rather than offline ones, for which a high number of changes results
in a high computational complexity and memory-load. Note that the considered changes are rather
complex, with high-dimensional, multimodal, unknown distributions before and after the change, so
that classical parametric change-point detection methods cannot be applied here. For all algorithms
we use a window size B = 250.

To evaluate performance we compute false alarm rate, missed detections, and detection delay. We
consider that the algorithm should be stable before every true change and we count every detected
change in the n/2 samples before it as a false alarm. We record the time until the first detected change
in the n/2 samples after every true change as detection delay, and we record a missed detection if no
change is detected. This is then repeated for 500 changes in a row, and all statistics are averaged by
the number of changes. We plot different ratios Expected Detection Delay (EDD)-to-Number of False
Alarms or Missed Detections-to-Number of False Alarms (lower left corner is better), by varying a
fixed threshold τ . In Fig. 11, the result of the adaptive threshold procedure of Sec. 5.3 is plotted as
single large dots.

Effects of the hyperparameters In Fig. 10, we examine the effects of the different hyperparam-
eters in NEWMA and our choices described in the previous sections.

In Fig. 10a, we set the forgetting factors Λ? and λ? according to Sec. 3.3, and vary the number of
random features m. We compare it with our prescribed choice from Prop. 3, m? = O

(
(Λ? + λ?)−2

)
(in practice we choose an arbitrary multiplicative constant 1/4 to reduce computation time). As
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Figure 11: Experimental results. The solid lines corresponds to several possible choices of a fixed
threshold τ , while the single large dot corresponds to the performance of the adaptive threshold
procedure described in Sec. 5.3.

expected, the performance of the detection increases with m, and at low m the algorithm is observed
to be relatively unstable. However, it is also seen that increasing m beyond our choice m? has
negligible effect, so that our heuristic seems to yield the right order of magnitude for m. In the rest
of the experiments we always choose m = 1

4 (Λ? + λ?)−2, except when using the OPU, for which we
choose 10 times this value since we do not have computational restrictions in this case.

In Fig. 10b we examine the choice of the kernel bandwidth σ, and compare different values with
the median trick that we use in practice. It is seen that the median trick yields a correct order of
magnitude of about 102, with all other values performing worse.

Finally, in Fig. 10c we vary the forgetting factor Λ, while keeping the window size B constant
by choosing λ = λΛ,B . It is seen that our prescribed choice (Λ?, λ?) offers a balanced performance:
increasing Λ worsens the number of missed detections while only marginally decreasing the detection
delay, and decreasing Λ has the inverse effect.

Comparison of algorithms In Fig. 11a we compare the algorithms on synthetic data. We first ob-
serve that the adaptive threshold procedure, indicated by single large dots in the figure, is consistently
better than any fixed threshold for all algorithms.

It is seen that SW performs generally poorly, confirming the superiority of Scan-B as a window-
based approach. NEWMA with Gaussian random features (RFF or FF) exhibits a reduced detection
delay compared to Scan-B but a slightly higher number of missed detections. NEWMA-OPU is seen
to perform well, which may indicate that the kernel induced by the OPU is more appropriate than a
Gaussian kernel on this example.
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6.3 Real Data: voice activity detection

We apply our method to a Voice Activity Detection (VAD) task on audio data. We consider real
environments background noise from the QUT-NOISE dataset [14] and add, every 10s, a 3s speech
extract from the TIMIT dataset [18], with −7.5dB Signal-to-Noise Ratio. Our goal is to detect the
onset of the speech segments. We use the Short Time Fourier Transform (STFT) of the signal, a
Fourier transform localized in time that is ubiquitous in audio and speech processing [12]. It allows
to extract on-the-fly frequency information from the one-dimensional audio signal st, turning it into a
d = 128-dimensional time series xt ∈ Rd, where d is the number of considered frequencies (usually the
time axis is also dilated between st and xt). For xt, we consider a change every 1250 samples, and 300
changes in total. We take a window size B = 150. We display the results in Fig. 11b. Similar to the
results on synthetic data, Scan-B has a higher detection delay than NEWMA. However, it does also
exhibit slightly more missed detections: we suspect that, because it uses several windows of reference
in-control samples, Scan-B is sensitive to highly heterogeneous data, which can be the case for audio
data. In this case, the Gaussian random features are seen to perform on par with the OPU kernel.

7 Conclusion and outlooks

We introduced NEWMA, a new method for online change-point detection that is faster and lighter
than existing model-free methods. The simple, key idea behind NEWMA is to compare recursive
averages computed with different forgetting factors on the same data, in order to extract time-varying
information without keeping in memory the raw data.

In the future, we plan to further develop the analysis of our method under the null to derive prop-
erties that do not depend on the in-control distribution, as done in [30]. Additionally, the robustness
of the random generalized moments methodology to noise and missing data appears as an interesting
extension. Recent approaches for learning from random feature moments [23] would allow extracting
more information from zt−z′t than mere occurence of a change, without increasing the computational
load. Another direction for our research is the study of mappings Ψ for graph data, which, combined
with NEWMA, would allow to detect changes in large-scale social networks [34].
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A Proofs of theorems 4 and 5

We start with some elementary computations that are used throughout the rest of the proofs. Set
0 < λ < Λ < 1. For t ≥ 1 and i ≤ t, define α0 = (1−Λ)t, β0 = (1−λ)t, αi = Λ(1−Λ)t−i and βi =
λ(1− λ)t−i, such that in NEWMA zt = α0z0 +

∑t
i=1 αiΨ (xi) and similarly for z′t and βi. Then, for

any 1 ≤ t1 < t2 ≤ t, we have

t1∑
i=0

αi = (1− Λ)t−t1 , (8)

t2∑
i=t1

αi = (1− Λ)t−t2 − (1− Λ)t−t1+1 (9)

and similarly for β with λ, and

t∑
i=1

αr1i β
r2
i = Λr1λr2 (1−At)

1−A , with A = (1− Λ)r1(1− λ)r2 . (10)

A.1 Mean time between false alarm (Thm. 4)

In this section, we prove a multi-dimensional generalization of Theorem 4 (Theorem 6), inspired by
the approach in [17].

Assuming all samples xt are drawn i.i.d. from a distribution π, recall that we define the ARL
under control as

T = E [inf {t | St ≥ τ}] . (11)

where in the case of NEWMA, we have St = ‖zt − z′t‖. In this section, we derive a more tractable
expression for T .

Our proof strategy relies on the observation that (zt, z
′
t) is a Markov chain in H2, and thus it is

possible to apply a method similar to [17] for classical EWMA, with non-trivial modifications. We

assume here that H def.
= Rm, that is, Ψ : Rd → Rm. Since the stopping condition for NEWMA

involves both components zt and z′t of the chain, we define the set Vτ ⊂ H2 as the domain in which
the algorithm continues:

Vτ
def.
= {v = (z, z′) | ‖z− z′‖ < τ} . (12)

With these notations, when we run NEWMA and stop as soon as an alarm is raised, we produce a
Markov chain vt ∈ H2 defined as: v0 = (z0, z0), and

vt =


(

(1− Λ)vt−1,1 + ΛΨ (xt)

(1− λ)vt−1,2 + λΨ (xt)

)
if vt−1 ∈ Vτ ,

vt−1 otherwise.

In other words, the chain is stationary as soon as an alarm is raised. In order to state our theorem,
we need to introduce a fair amount of notations. Consider the space H2 = H×H, equipped with the
norm ‖(x,x′)‖ = ‖x‖+ ‖x′‖. For ε > 0, consider the ball of radius ε−1 in H2, Bε = {v | ‖v‖ ≤ 1/ε},
which is compact since H2 has finite dimension. Define Cε = {u1, . . . ,uNε} ⊂ Bε any ε-net of Bε
(we will see that its choice does not matter) such that u1 = (z0, z0), where Nε is the ε-covering
number of Bε. Without lost of generality, assume they are ordered such that u1, . . .uMε

∈ Vτ and
uMε+1, . . . ,uNε ∈ V cτ for some Mε. Denote Pε : H2 → Cε the projection operator onto Cε (i.e.,
that returns the ui closest to its input). Define the following Markov chain vεt ∈ Cε: initialize
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vε0 = (z0, z0) = u1, and

vεt =

Pε
((

(1− Λ)vεt−1,1 + ΛΨ (xt)

(1− λ)vεt−1,2 + λΨ (xt)

))
if vεt−1 ∈ Vτ ,

vεt−1 otherwise.

It is a projected and bounded version of the output of NEWMA, which is stationary as soon as it gets
out of Vτ . Finally, for 1 ≤ i, j ≤ Nε, define pij = P

(
vεt+1 = uj | vεt = ui

)
the transition probabilities

of the markov chain vεt . Define A = [pij ]1≤i,j≤Mε
that corresponds to the states ui ∈ Vτ , all other

states being absorbant, and a
(`)
ij such that A` =

[
a

(`)
ij

]
1≤i,j≤Mε

. Our theorem is the following.

Theorem 6 (Average Run Length, multidimensional case). Assume that π is such that
Ψ (x) ∈ Rm has a density with respect to the Lebesgue measure when x ∼ π. Then, the quantity

γ` = limε→0

(∑Mε

j=1 a
(`)
1j

)
does not depend on the choice of the nets Cε, and the ARL of NEWMA is

given by

T = E [inf {t | ‖zt − z′t‖ ≥ τ}] = 1 +
∑
`≥1

γ` . (13)

It is then easy to check that Theorem 4 is an immediate consequence of Theorem 6 in the special
case m = 1.

The proof of Theorem 6 relies on the key lemma:

Lemma 7 (Almost sure convergence of vεt ). For any fixed t, when ε goes to 0, vεt converges to
vt almost surely.

Proof. Let us first note that, since by assumption Ψ (x) has a density, is it easy to prove by recurrence
on t that vt also has a density. Therefore, for all t, P(vt ∈ ∂Vτ ) = 0 (it is trivial that the boundary
of Vτ has zero Lebesgue measure), and by a countable union of zero-measure sets:

P(∃t | vt ∈ ∂Vτ ) = 0 . (14)

Since we want to prove an almost sure convergence, we explicitly denote by Ω the set of all events
such that ∀t, vt /∈ ∂Vτ (which has probability 1), and the events in Ω by ω. A draw of a r.v. X will
be denoted by X(ω).

Fix any t ≥ 1. Consider any ω ∈ Ω, corresponding to a draw of samples x`(ω), ` = 1, . . . , t.
Remember that, by the definition of Ω, v`(ω) /∈ ∂Vτ . Note that, when ε varies, the vε`(ω) change, but
in a deterministic fashion. Our goal is to show that vεt (ω)→ vt(ω) when ε→ 0.

We are going to show by induction that ‖vε`(ω)− v`(ω)‖ −−−→
ε→0

0 for all ` = 1, . . . , t. Since v0 = vε0,

it is obviously true for ` = 0. Then, for any `, suppose that
∥∥vε`−1(ω)− v`−1(ω)

∥∥ −−−→
ε→0

0. By (14)

we have either v`−1(ω) ∈ Vτ or v`−1(ω) ∈ Vτ
c

since it does not belong to the boundary. We study
separately these two cases.

v`−1(ω) inside of Vτ . Since by inductive hypothesis
∥∥vε`−1(ω)− v`−1(ω)

∥∥ −−−→
ε→0

0, and since Vτ is

an open set of R2m, for all ε sufficiently small we have that vε`−1(ω) ∈ Vτ and the Markov chain vε is
updated at step `. Furthermore, since the radius of Bε goes to ∞ when ε → 0, for all ε sufficiently
small, v`(ω) ∈ Bε, and ‖Pε(v`(ω))− v`(ω)‖ ≤ ε. Hence, in that case,

‖vε`(ω)− v`(ω)‖
≤ ‖vε`(ω)− Pε(v`(ω))‖+ ε

=
∥∥∥Pε(((1− Λ)vε`−1,1(ω) + ΛΨ (x`(ω))

(1− λ)vε`−1,2(ω) + λΨ (x`(ω))

))
− Pε

((
(1− Λ)v`−1,1(ω) + ΛΨ (x`(ω))
(1− λ)v`−1,2(ω) + λΨ (x`(ω))

))∥∥∥+ ε
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and since projections are contracting,

‖vε`(ω)− v`(ω)‖ ≤
∥∥∥((1− Λ)vε`−1,1(ω) + ΛΨ (x`(ω))

(1− λ)vε`−1,2(ω) + λΨ (x`(ω))

)
−
(

(1− Λ)v`−1,1(ω) + ΛΨ (x`(ω))
(1− λ)v`−1,2(ω) + λΨ (x`(ω))

)∥∥∥+ ε

≤ (1− Λ)
∥∥vε`−1,1(ω)− v`−1,1(ω)

∥∥+ (1− λ)
∥∥vε`−1,2(ω)− v`−1,2(ω)

∥∥+ ε

≤
∥∥vε`−1(ω)− v`−1(ω)

∥∥+ ε .

Therefore ‖vε`(ω)− v`(ω)‖ −−−→
ε→0

0.

v`−1(ω) outside Vτ . We have v`(ω) = v`−1(ω) by definition of the Markov chain vt. Since Vτ
c

is
an open set, by inductive hypothesis for all ε sufficiently small we have vε`−1(ω) ∈ Vτ

c
and vε`(ω) =

vε`−1(ω), from which ‖vε`(ω)− v`(ω)‖ =
∥∥vε`−1(ω)− v`−1(ω)

∥∥ −−−→
ε→0

0, which concludes the proof.

We can now turn to proving the theorem itself.

Proof of Th. 6. We start by a reformulation:

T = E [inf {t | ‖zt − z′t‖ ≥ τ}] = E (inf {t | vt /∈ Vτ})

=
∑
`≥0

P(inf {t | vt /∈ Vτ} > `) = 1 +
∑
`≥1

P(v` ∈ Vτ ) ,

since the first time vt exits Vτ is strictly greater than ` if, and only if, v` ∈ Vτ . Since almost sure
convergence implies weak convergence, by Lemma 7, we have T = 1 +

∑
`≥1 limε→0 P(vε` ∈ Vτ ). Note

that the convergence in ε is not necessarily uniform: in general, one cannot exchange the limit operator
with the infinite sum in the last display.

To conclude the proof, we just have to compute P(vε` ∈ Vτ ). For 1 ≤ i, j ≤ Nε, recall that we
denoted the transition probabilities of the Markov chain vεt by pij = P

(
vεt+1 = uj | vεt = ui

)
. The

transition matrix of this Markov chain has the form:

P = [pij ]1≤i,j≤Nε =

[
A B
0 Id

]
,

where A = [pij ]1≤i,j≤Mε
corresponds to the states ui ∈ Vτ . Then, if we define a

(`)
ij such that A` =[

a
(`)
ij

]
1≤i,j≤Mε

, it is possible to show by induction [17] that:

P` =

[
A`

(∑`−1
i=0 Ai

)
B

0(Nε−Mε)×Mε
IdNε−Mε

]

and therefore

P(vε` ∈ Vτ ) = [1, 0, . . . , 0] P`

(
1Mε

0Nε−Mε

)
= [1, 0, . . . , 0] A`1Mε =

Mε∑
j=1

a
(`)
1j ,

which concludes the proof.

A.2 Asymptotic distribution of the statistic (Thm. 5)

Our proof follows closely [39], Sec. 5.5.2. with some modifications. In the following, we let λ → 0
with Λ = cλ and t ≥ 2

λ log(1/λ) (which goes to +∞ when λ goes to 0), such that (1− λ)t = O
(
λ2
)
.
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At time t, we denote γi = βi − αi, with α and β defined as in the proof of Prop. 1. Note that α and
β also depend on λ (and t), and that by Eq. (10) we have

1

λ

t∑
i=1

γ2
i −−−→
λ→0

G
def.
=

(1− c)2

2(1 + c)
, (15)

and
∑t
i=1 γ

q
i = O

(
λq−1

)
.

Define µ
def.
= EΨ (x). Using

∑t
i=0 γi = 0, at time t we have

1

λ
‖zt − z′t‖

2
=

1

λ

∥∥∥∥∥γ0z0 +

t∑
i=1

γiΨ (xi)

∥∥∥∥∥
2

=
1

λ

∥∥∥∥∥γ0(z0 − µ) +

t∑
i=1

γi(Ψ (xi)− µ)

∥∥∥∥∥
2

=
1

λ

t∑
i,j=1

γiγjK(xi, xj) +
2

λ
γ0

t∑
i=1

γi 〈z0 − µ,Ψ (xi)− µ〉H +
1

λ
γ2

0 ‖z0 − µ‖2 , (16)

where K is a positive semi-definite kernel on H defined by K(x, x′) = 〈Ψ (x)− µ,Ψ (x′)− µ〉H.
The last term of Eq. (16) is deterministic and goes to 0 with λ since γ2

0 = O
(
λ4
)
. Let us now prove

that the second term converges in probability to 0. By Cauchy-Schwarz’s and Jensen’s inequalities
we have

E 〈z0 − µ,Ψ (xi)− µ〉H 〈z0 − µ,Ψ (xj)− µ〉H ≤ ‖z0 − µ‖2 E
√
K(xi, xi)K(xj , xj)

≤ ‖z0 − µ‖2 EK(x, x) <∞,

Hence, since 1
λγ0 = O (λ) −−−→

λ→0
0, it implies that 2

λγ0

∑
i=1 γi 〈z0 − µ,Ψ (xi)− µ〉H has a second order

moment that converges to 0, and by Markov’s inequality it converges in probability to 0.
Let us now prove that the first term in Eq. (16) converges in law, and conclude with Slut-

sky’s Lemma (Lemma 13). We start by using Mercer’s theorem on K, within the ambient space
L2(π): we write K(x, x′) =

∑
`≥1 ξ`ψ`(x)ψ`(x

′) , with ξ` ≥ 0 and 〈ψ`, ψ`′〉L2(π) = 1`=`′ , such that

〈K(x, ·), ψ`〉L2(π) = ξ`ψ`(x). Note that, since ExK(x, x′) = 0, for any ξ` 6= 0 we have Eψ`(x) =
1
ξ`
〈EK(x, ·), ψ`〉L2(π) = 0. Finally, we have

∑
`≥1 ξ

2
`Eψ4

` (x) ≤ EK2(x, x) <∞ since E ‖Ψ (x)‖4 < +∞.

Our goal is to show that Tλ
def.
= 1

λ

∑t
i,j=1 γiγjK(xi, xj) converges in law to Y = G

∑
`≥1 ξ`W

2
`

where W` are independent centered normal variable. We are going to use the characteristic function
method, i.e., we are going to prove that:

∀u ∈ R, EeiuTλ −−−→
λ→0

EeiuY .

Fix any u ∈ R and ε > 0. Our goal is to prove that, for λ sufficiently small, we have
∣∣EeiuTλ − EeiuY

∣∣ ≤
ε. We decompose the bound in three parts.

Step 1. For an integer k ≥ 0, define T
(k)
λ = 1

λ

∑t
i,j=1 γiγj

[∑k
`=1 ξ`ψ`(xi)ψ`(xj)

]
. We are first going

to approach EeiuTλ by EeiuT
(k)
λ for k sufficiently big. We write∣∣∣EeiuTλ − EeiuT

(k)
λ

∣∣∣ ≤ E
∣∣∣eiuTλ − eiuT (k)

λ

∣∣∣
≤ |u|E

∣∣∣Tλ − T (k)
λ

∣∣∣ ≤ |u|√E
(
Tλ − T (k)

λ

)2

.

Denote fk(x, x′) = K(x, x′) −
∑k
`=1 ξ`ψ`(x)ψ`(x

′) =
∑
`≥k+1 ξ`ψ`(x)ψ`(x

′), such that Tλ − T (k)
λ =

1
η

∑t
i,j=1 γiγjfk(xi, xj). We have E [fk(x1, x

′
1)fk(x2, x

′
2)] 6= 0 if and only if both x1 = x2 and x′1 = x′2
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(or permuted since fk is symmetric), and we have

Ex,x′fk(x, x′)2 =
∑
`≥k+1

ξ2
`

(
Eψ2

` (x)
)2

=
∑
`≥k+1

ξ2
`

Efk(x, x)2 =
∑
`≥k+1

ξ2
`Eψ4

` (x) ,

where the last expression is summable since EK2(x, x) <∞. Then we have

E
(
Tλ − T (k)

λ

)2

=
1

λ2
E

 t∑
i1,j1=1

t∑
i2,j2=1

γi1γj1γi2γj2fk(xi1 , xj1)fk(xi2 , xj2)


≤ 2

λ2
E

 t∑
i,j=1

γ2
i γ

2
j fk(xi, xj)

2

 ≤ 2

(
1

λ

t∑
i=1

γ2
i

)2

max
(
Ex,x′f2

k (x, x′),Ef2
k (x, x)

)

≤ C

 ∑
`≥k+1

ξ2
` max

(
1,Eψ4

` (x)
) ,

for some constant C, since
∑t
i=1 γ

2
i = O (λ). Hence for k sufficiently big we have:

∀λ ∈ (0, 1),
∣∣∣EeiuTλ − EeiuT

(k)
λ

∣∣∣ ≤ ε

3
. (17)

Step 2. Let us now temporarily consider a fixed k, and prove that T
(k)
λ converges in law to Y (k) =

G
∑k
`=1 ξ`W

2
` . We write

T
(k)
λ =

1

λ

t∑
i,j=1

γiγj

[
k∑
`=1

ξ`ψ`(xi)ψ`(xj)

]
=

k∑
`=1

ξ`

(
1√
λ

t∑
i=1

γiψ`(xi)

)2

.

We now use Lindeberg’s theorem (Th. 12) on the random vectors X(i,t) =
(

1√
λ
γiψ`(xi)

)k
`=1

. They

are centered and their covariance is such that

t∑
i=1

Cov(X(i,t)) =

(
1

λ

t∑
i=1

γ2
i

)
Id −−−→

λ→0
G · Id .

We now check Lindeberg’s condition (21). By Cauchy-Schwartz and Markov’s inequality, for all δ > 0
we have

E
[∥∥∥X(i,t)

∥∥∥2

I{‖X(i,t)‖≥δ}

]
≤
√
E
∥∥X(i,t)

∥∥4 · P
[∥∥∥X(i,t)

∥∥∥ ≥ δ]
≤
√
E
∥∥X(i,t)

∥∥4 · δ−2E
∥∥∥X(i,t)

∥∥∥2

≤ Cδ−2 γ
4
i

λ2
,

where C is a constant, since ψ`(x) has finite second and fourth order moment. Using the fact that∑t
i=1

γ4
i

λ2 = O (λ), Lindeberg’s condition is satisfied. Hence, applying theorem 12,
∑t
i=1X

(i,t) con-

verges in law to N (0, G · Id), and T
(k)
λ converges in law to Y (k). Hence for a sufficiently small λ∣∣∣EeiuT (k)

λ − EeiuY
(k)
∣∣∣ ≤ ε

3
. (18)
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Step 3. Finally, similar to Step 1 we have∣∣∣EeiuY (k)

− EeiuY
∣∣∣ ≤ E

∣∣∣eiuY (k)

− eiuY
∣∣∣ ≤ |u|E ∣∣∣Y (k) − Y

∣∣∣
≤ |u|

√
E
(
Y (k) − Y

)2 ≤ |u|( ∑
`≥k+1

ξ`

)2

max(1,EW 4)

where W ∼ N (0, 1),and therefore for a sufficiently big k∣∣∣EeiuY (k)

− EeiuY
∣∣∣ ≤ ε

3
. (19)

To conclude, we fix k large enough such that Eq. (17) and (19) are satisfied, then λ small enough
and Eq. (18) is satisfied, which concludes the proof.

B Technical proofs

B.1 Proof of Prop. 1

Recall that we defined

B =

⌈
log (Λ/λ)

log ((1− λ)/(1− Λ))

⌉
.

Let t > B ≥ 1. By construction of definition of zt and z′t and by definition αi, βi, we have{
zt = α0z0 +

∑t
i=1 αiΨ (xi)

z′t = β0z0 +
∑t
i=1 βiΨ (xi) .

A straightforward computation yields that t−B is the “shifting” point for the weight coefficients.
Namely, for i = 1, . . . , t−B, we have αi ≥ βi, and for i = t−B+1, . . . , t, we have βi ≥ αi. According to
Eq. (8) and Eq. (9), we have

∑t−B
i=0 (αi−βi) =

∑t
i=t−B+1(βi−αi) = C, where C = (1−λ)B−(1−Λ)B .

Hence, if we define ai
def.
= (αi−βi)/C for i = 0, . . . , t−B and bi

def.
= (βi−αi)/C for i = t−B+1, . . . , t,

we have

zt − z′t =

t∑
i=1

(αi − βi)Ψ (xi) + (α0 − β0)z0

=

t∑
i=t−B+1

(αi − βi)Ψ (xi)−

(
t−B∑
i=1

(βi − αi)Ψ (xi) + (β0 − α0)z0

)
zt − zt
C

=

t∑
i=t−B+1

aiΨ (xi)− b0z0 −
t−B∑
i=1

biΨ (xi) .

B.2 Proof of Prop. 2

Prop. 2 is a direct consequence from the following, more general result.

Lemma 8 (Concentration of the detection statistic). Suppose that M = supx∈Rd ‖Ψ (x)‖ < +∞.
At time t, assume that the last B1 samples are drawn according to π′, and that the B2 samples that
came immediately before were drawn from π (earlier samples can be arbitrary), and that B1 +B2 ≥ B
for simplicity. Then, with probability at least 1− ρ on the samples, we have∣∣∣ ‖zt − z′t‖ − CdΨ(π′, π)

∣∣∣ ≤ Econc. + Einit. + Eassum. , (20)
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with

Econc. = 4
√

2M
√

log 2
ρ

√
ϕ(Λ,Λ) + ϕ(λ, λ)− 2ϕ(Λ, λ) ,

Einit. =
(
(1− λ)t − (1− Λ)t

)
‖z0 − EπΨ (x)‖ ,

Eassum. = 2M
(
f(λ)− f(Λ) + |g(λ)− g(Λ)|

)
where ϕ(a, b) =

ab(1−(1−a)t(1−b)t)
a+b−ab , f(a) = (1 − a)B1+B2 − (1 − a)t, and g(a) = (1 − a)B − (1 − a)B,

with B = min(B,B1) and B = max(B,B1).

Proof. We have seen that, ideally, the last B samples are drawn from π′, and all the samples that
came before are drawn from π. Let us call I the time interval of samples that are not drawn from the
“correct” distribution:

I
def.
= J1, t−B1 −B2K ∪ Jt−B + 1, t−BK .

Let us introduce “ghost samples” y1, . . . , yt drawn from the “correct” distributions, i.e. such that

y1, . . . , yt−B
i.i.d.∼ π, yt−B+1, . . . , yt

i.i.d.∼ π′, and such that yi = xi for i /∈ I. The idea of the proof is
to introduce the analogous of ‖zt − z′t‖ for the ghost samples in the left-hand side of Eq. (20), to use
the triangle inequality, and then to bound the resulting error terms. Thus, with the help of Prop. 1,

introducing γi
def.
= αi − βi, we first write∣∣∣ ‖zt − z′t‖ − CdΨ(π, π′)

∣∣∣
=

∣∣∣∣∣
∥∥∥∥∥γ0z0 +

t∑
i=1

γiΨ (xi)

∥∥∥∥∥− C ‖EπΨ (y)− Eπ′Ψ (y)‖

∣∣∣∣∣
≤

∣∣∣∣∣
∥∥∥∥∥γ0z0 +

t∑
i=1

γiΨ (yi)

∥∥∥∥∥− C ‖EπΨ (y)− Eπ′Ψ (y)‖

∣∣∣∣∣+

∣∣∣∣∣
∥∥∥∥∥γ0z0 +

t∑
i=1

γiΨ (yi)

∥∥∥∥∥−
∥∥∥∥∥γ0z0 +

t∑
i=1

γiΨ (xi)

∥∥∥∥∥
∣∣∣∣∣

def.
= (I) + (II) .

since |x− y| ≤ |z − x|+ |z − y|.
We first show that (II) is upper bounded by Eassum.. Since yi = xi for any i /∈ I,

(II) ≤ 2M
∑
i∈I
|γi| .

By definition of the integer interval I,

∑
i∈I
|γi| =

t−B1−B2∑
i=1

|γi|+
t−B∑

i=t−B+1

|γi| =

∣∣∣∣∣
t−B1−B2∑

i=1

γi

∣∣∣∣∣+

∣∣∣∣∣∣
t−B∑

i=t−B+1

γi

∣∣∣∣∣∣ ,
since γi has constant sign in the considered intervals. Using Eq. (8) and (9), we obtain the desired
expression for Eassum..

We now prove that (I) is upper bounded by Einit. + Econc.. By the triangle inequality and the
definition of ai and bi,

(I) ≤

∥∥∥∥∥(β0 − α0)z0 +

t−B∑
i=1

(βi − αi)Ψ (yi)− CEπΨ (y)−

(
t∑

i=t−B+1

(αi − βi)Ψ (yi)− CEπ′Ψ (y)

)∥∥∥∥∥
≤ Cb0 ‖z0 − EπΨ (y)‖+ C

∥∥∥∥∥
t−B∑
i=1

bi(Ψ (yi)− EπΨ (y))

∥∥∥∥∥+ C

∥∥∥∥∥
t∑

i=t−B+1

ai(Ψ (yi)− Eπ′Ψ (y))

∥∥∥∥∥
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since
∑t−B
i=0 (βi − αi) =

∑t
i=t−B+1(αi − βi) = C.

We now apply McDiarmid’s inequality (Lemma 11) to bound the right-hand side of the last display
with high probability. Define ∆ : (Rd)t−B → R by

∆(y1, . . . , yt−B) =

∥∥∥∥∥
t−B∑
i=1

bi(Ψ (yi)− EπΨ (y))

∥∥∥∥∥ .
This function satisfies the bounded difference property, that is,

|∆(y1, . . . , yi, . . . , yt−B)−∆(y1, . . . , y
′
i, . . . , yt−B)| ≤ 2Mai .

We then apply Lemma 11 with f = ∆ and ci = 2Mai to obtain

P (∆ ≥ E∆ + ε) ≤ exp

− ε2

4M2
(∑t−B

i=1 b2i

)
 .

We now bound E∆ by a symmetrization argument. Let us introduce the random variables y′i that have
the same law as the yi and are independent from the yi, and the σi, Rademacher random variables
independent from both yi and y′i. We write

E

∥∥∥∥∥
t−B∑
i=1

bi(Ψ (yi)− EΨ (y))

∥∥∥∥∥ = Ey,y′

∥∥∥∥∥
t−B∑
i=1

bi (Ψ (yi)−Ψ (y′i))

∥∥∥∥∥ = Ey,y′,σ

∥∥∥∥∥
t−B∑
i=1

biσi (Ψ (yi)−Ψ (y′i))

∥∥∥∥∥
≤ 2EyEσ

∥∥∥∥∥
t−B∑
i=1

biσiΨ (yi)

∥∥∥∥∥ = 2

√√√√EyEσ
t−B∑
i,j=1

bibjσiσj 〈Ψ (yi) ,Ψ (yj)〉H

≤ 2M

√√√√t−B∑
i=1

b2i

By applying the same reasoning to ∆′
def.
=
∥∥∥∑t

i=t−B+1 ai(Ψ (yi)− Eπ′Ψ (y))
∥∥∥ and a union bound,

we obtain that, with probability at least 1− ρ,

(I) ≤ Einit. + 2MC
(

1 +
√

log 2
ρ

)(( t∑
i=t−B+1

a2
i

) 1
2

+
( t−B∑
i=1

b2i

) 1
2

)

Since √√√√ t∑
i=t−B+1

a2
i +

√√√√t−B∑
i=1

b2i ≤
√

2

√√√√ t∑
i=t−B+1

a2
i +

t−B∑
i=1

b2i =

√
2

C

√√√√ t∑
i=1

(α2
i + β2

i − 2αiβi) ,

we recover the expression of Econc. with the help of Eq. (10). Therefore, we showed that, with
probability at least 1− ρ,

|‖zt − z′t‖ − CdΨ(π, π′)| ≤ Econc. + Einit. + Eassum. .
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B.3 Proof of Prop. 3

The proof is a combination of Prop. 2 and the following lemma, which is a simple consequence of
Hoeffding’s inequality.

Lemma 9 (Concentration of dΨ). Define Ψ as (4) and let ρ ∈ (0, 1). For any distributions π, π′,
with probability at least 1− ρ on the ωj’s, we have

dΨ(π, π′)2 ≥ MMD(π, π′)2 − 2
√

2M2

√
m

√
log

1

ρ
.

Proof. One can show [40] that the MMD can also be expressed as

MMD(π, π′)2 =

∫
|φω(π)− φω(π′)|2 dΓ(ω) .

where φω(π)
def.
=
∫
φω(x) dπ(x). By the definition of Ψ (x) = 1√

m

(
φωj (x)

)m
j=1

,

dΨ(π, π′)2 =
1

m

m∑
j=1

∣∣φωj (π)− φωj (π′)
∣∣2 .

Since supx,ω |φω(x)| ≤ M , we deduce that
∣∣φωj (π)− φωj (π′)

∣∣2 ≤ 4M2 we can apply Hoeffding’s
inequality (Lemma 10) to dΨ. Thus, with probability 1− ρ, it holds that

MMD(π, π′)2 − dΨ(π, π′)2 ≤ 2
√

2M2

√
m

√
log

1

ρ
.

C Third-party technical results

We gather here some existing results that were used in the proofs.

Lemma 10 (Hoeffding’s inequality ( [8], Th. 2.8)). Let Xi be independent, bounded random
variables such that Xi ∈ [ai, bi] a.s. Then, for any t > 0,

P

(
1

n

n∑
i=1

Xi − E

(
1

n

n∑
i=1

Xi

)
≥ t

)
≤ e
− 2n2t2∑n

i=1
(ai−bi)2 .

Lemma 11 (McDiarmid’s inequality ( [8], Th. 6.2)). Let f : En → R be a measurable function
that satisfies the bounded difference property, that is, there exist positive numbers c1, . . . , cn such that

sup
x1,...,xn,x′i∈E

|f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn)| ≤ ci .

Let X1, . . . , Xn be independent random variables with values in E and set Z = f(X1, ..., Xn). Then

P (Z − EZ ≥ t) ≤ exp

(
− 2t2∑n

i=1 ci

)
.

Theorem 12 (Multivariate Lindeberg’s Theorem ( [43], Th. 2.27)). For each n, let X(i,n),
1 ≤ i ≤ n, be independent, Rd-valued random vectors with zero mean and covariance Σ(i,n) such that∑n
i=1 Σ(i,n) → Σ when n→∞ (for the Frobenius norm), and Lindeberg’s condition is satisfied:

∀ε > 0,

n∑
i=1

E
[∥∥∥X(i,n)

∥∥∥2

I
{∥∥∥X(i,n)

∥∥∥ > ε
}]
→ 0 , (21)

when n → ∞. Then Sn =
∑n
i=1X

(i,n) converges in law toward a centered Gaussian with covariance
Σ.
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Lemma 13 (Slutsky’s Lemma ( [43], Th. 2.7)). Let Xn, X, Yn be random variables. If Xn

converges in law to X and Yn converges in probability to a constant c, then (Xn, Yn) converges in
law to (X, c).
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